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1. Introduction

The study of solitons in nonlinear partial differential equations (PDEs) with non-
Hermitian potentials is an important and growing area of research. Specifically, such
parity-time or PT-symmetric PDEs have been studied in detail [1]. Subsequent to the
introduction of PT-symmetry [2] and the ensuing intense research on this topic for a
decade and half, the concept of odd-P7T symmetry was first introduced by Jones-Smith
and Mathur [3] in the context of non-Hermitian Hamiltonians in Quantum Mechanics.
The extension to fermionic systems was made by Bender and Klevansky [4].

For odd P7T-symmetric systems, one has the P7T operator commuting with the
Hamiltonian [H,P7]| = 0, but in addition (P7)? = —1 in contrast with the +1
for the PT-symmetric systems. Its implementation in bosonic systems requires the
introduction of at least two components in the wave function. An optical system
having odd-P7T symmetry (meaning P7T symmetry with odd-time reversal symmetry
T2 = —1), was discussed in a recent paper by Konotop and Zezyulin [5]. Furthermore,
odd-PT symmetric couplers have been analyzed [6] and shown to lead to lasing
and coherent perfect absorption. These systems are experimentally reproduced by
having two waveguides locally coupled through an odd-P7T symmetric medium. The
connection with the two-component Schrodinger equation lies in the fact that with
the substitution of ¢ — z, the Helmholtz equation becomes the Schrodinger equation
in the paraxial approximation. Here we are interested in the question of what effect
an odd-PT external potential has on the motion and stability of a solitary wave
solution of the two-component nonlinear Schrodinger equation (NLSE). Therefore we
generalize the treatment of Konotop and Zezyulin [6] to the case of coupled NLSEs
which are also individually subjected to external potentials as well as coupled by an
antisymmetric medium. Such systems can be produced in nonlinear optics in the
wave-guiding approximation. For completeness, we note here that in contrast to P7T-
symmetric systems, for anti-P7-symmetric systems the P7T operator anticommutes
with the Hamiltonian {H,P7T} = 0 [7]. Anti-P7T-symmetric systems have also been
observed experimentally [8].

Previously we studied exact trapped solitary wave solutions of the two-component
NLSE in an external complex supersymmetric potential which had P7 symmetry [9].
In that situation we found regions of stability and instability predicted by both the
small oscillation equations for the collective coordinates (CCs), as well as the dynamic
criteria and a systematic numerical stability analysis. Although we were able to find
exact solutions of the two-component NLSE in some external complex supersymmetric
potentials similar to those considered in [9] but having odd-P7 symmetry, all the
solutions we have found so far are unstable. To better understand the behavior and
stability of solitons in the two-component NLSE in complex external potentials having
odd-PT symmetry, we will study here the simpler question of what happens to stable
solitary wave solutions of the two-component NLSE when they are subjected to an
external complex periodic potential having odd-P7T symmetry. To explore this question
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we generalize a previous problem in [10] that we studied for the single-component solitary
wave of the NLSE. In that study we observed the response of a solitary wave which was
placed in a complex periodic external potential with even-P7 symmetry.

In the present work, the NLSE soliton is a solution of a well known two-component
NLSE known as the Manakov system [11]. The Manakov equation appears in many
physical situations such as single optical field propagation in birefringent fibers [12] and
self-trapped incoherent light beam propagation in photo-refractive medium [13]. In our
previous work on solitons in P7T symmetrical external potentials, the single-component
complex external potential we chose was of the form V(z) = a; coskix + iagsin koz.
Instead, for odd-P7T symmetry, the complex matrix potential, U(x) takes the form (see
also [6]) U(z) = ooVo(z)+io3Vi(x)+ioy W (x), where Vi = a cos kyz, Vi(z) = as cos koz,
W(x) = azcosksx, with gy the 2 x 2 identity matrix, and o; and o3 being the Pauli
matrices. The second term in the potential changes two things qualitatively. Firstly,
calling the initial position of the center of the soliton ¢y, we have that Vj(z) has a
minimum at ksqo = 0 and a maximum at kyqy = 7 with magnitude a;. We will show that
this prevents us from obtaining a small oscillation expansion for the CC approximation.
Related to this, the effect of the o3 term in the potential is to cause ¥; and s to
initially grow and decay linearly in time, respectively (or vice versa depending on ).
This is the main reason for the fact that when ay # 0, the soliton becomes dynamically
unstable whether it is trapped or moving. In spite of this, when the soliton experiences
the external potential, the widths of both components remain almost identical. This is
true also for the position and momentum of each component. The complex potential
ioiasz cos ksx connects directly the two components of the wave function. Having a3 small
and nonzero has minimal effect on changing the “mass” M; of the two components if
as is zero. (Here we define M; := [4Fi;dz for each component.) We show that a CC
description of the two-component wave function describes reasonably well the response
of the solitary wave to this odd-P7T external potential if we allow the masses and phases
of the two components to differ, but keep the position, momentum, width and “chirp”
to be the same for both components.

In particular, when as = 0, we chose the strength of the two external potentials to
match those we used in our single-component case [10]. We also investigated the ability
of the dynamical indicator of instability, i.e., whether dp(t)/dv(t) becomes negative [14],
to indicate dynamical instability for this two-component NLSE system. Here ¢(t) and
v(t) are canonical variables with v(t) = ¢(t), and p(t) is related to the average value of
the momentum operator —id,. This indicator visually shows the instability near where
p(t) is turning around from a maximum or a minimum. Since o3Vi(x) initially places
the two components in opposite directions, it is the major cause for all the various ways
that the initial solitary wave can go unstable. These phenomena are reasonably well
captured by the eight collective coordinate (8CC) approximation which is compared
with direct numerical simulations.

The structure of this paper is as follows. In section 2 we discuss the conditions
that odd-P7T symmetry places on the wave function and the external potential. In
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section 3 we obtain exact moving odd-P7T symmetric solutions of the two-component
NLSE and use Derrick’s theorem to show that they are stable to scale transformations.
In section 4 we review the CC formalism and in section 5 we introduce our choice of
8CCs, partially motivated by the numerical simulations. In section 6 we show how to
compare the results of the numerical simulation with the time evolution of the CC by
relating the CCs to low order moments of the numerically determined wave function. In
section 7 we give some typical behaviors for different values of the parameters describing
the complex external potential. In section 8 we discuss the stability criterion dp/dv < 0
and show that in all the cases we study both the 8CC and numerical determinations of
p(v), it leads to the conclusion that these solitary waves are dynamically unstable. In
section 9 we state our conclusions and present directions for future study.

2. Odd-PT systems

In the present work, we consider a two-component nonlinear Schrodinger equation
(NLSE) in 141 dimensions written in vector form as:

(10, + & + g [ Wi (a, ) W(w, 6)] — Ul) } U, £) = 0, (2.1)
where
Y1(, ) 2
Wz, t) = ( o) ) eC (2.2)

is the wave function and ¢ the nonlinearity strength. Here x and t stand for the
spatial and temporal variables, respectively, and subscripts in Eq. (2.1) for differentiation
with respect to the variables highlighted therein (unless stated otherwise). The matrix
function U(z) is the external potential that we describe next.

For two-component systems, the space (P) and time (7) reversal operators are

defined by:
P:x——x, T =i0K
PY(z,t) =V(—x,t), (2.3a)
TY(x,t) =102 K¥(z, —1) (2.3b)

:( 0 K><w1(x,—t)):( V3 (z, 1) )
K 0 1/}2(567 _t) —¢T(ﬂ7_at) 7
where K is the complex conjugate operator with the property K? = 1. The parity and

time-reversal operations commute, i.e., [P, 7] = 0, and obey the relations P? = 1 and
T2 = —1, so that (PT)? = —1. Then the PT operation on ¥ is given by

U(x,t) = . 2.4
PTvG) = 150 y) 24)
For odd-PT symmetry, the Hamiltonian must commute with the P7T operator, so that

[PT,H]=0. (2.5)

Page 4 of 28
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4
5 Let
° U(x) Va(z) 2
7 Uz) = e C¥*? 2.6
i ©=ve i) 20
?O be dependent on z only. Then, (2.5) requires that
11 Up(z) Va(z)\ ¢ O Uo(—z) Vo(—x) 0 —K
2 (v o )= ( )( o) s )k o)
14 B IC (—x)K  —KVo(—2)K
12 - ( 2)K  KUy(—2)K ) ’ (27)
17 from which we conclude that
18
19 Uo(z) = Ui (=), Va(z) =—-V5'(-2). (2.8)
20
2 We note that V3 is anti-P7T symmetric as noted in [6]. Setting Uy(z) = Vo(x) +iVi(2)
22 with Vy(z), Vi(z) € R, we find that Uy(x) = Uj(—x) = Vo(—x) —iVi(—x). This way,
;i we can write Eq. (2.6) as
25 Vo(z) +1Vi(x) Va(z)

U(x) = , . 2.9
20 @=("w Veten) i) ) 29)
28 If we additionally require that Vo(—z) = Vo(x) and Vi(—x) = Vi(x), i.e., Vj, V] are even
gg functions, and Va(z) :=iW(x) with W(x) € R and even, then U(x) is now given by
31 V(z) iW(x) :
5 U@ = (e v ) V@)=Y ) (2.10)
2‘5‘ It will be useful to split U(x) into real and imaginary parts via U(z) := Up(x) +1U;(z),
36 where
32 @ = (0 ) e = (8 Y e
e 0 Vita) ) Wix) Vi)
40 Calling g9 = I, i.e., the 2 X 2 unit matrix, we can write
41
42 U(x) = ooVo(x) +iosVi(z) + ioy W (x). (2.12)
43
44
45 3. Exact solitary wave solutions when U(z) =0
46
47 In the absence of external potentials, Eq. (2.1) reduces to the Manakov equations [11]:
48
49 {10+ 07 + g ([a (@, )" + [o(, 1)) }obi(,8) = 0, (3.1a)
o {10+ 02 + g (|1, )] + [a(@, 1)[*) } ool 1) = 0, (3.1b)
gg that admitthe traveling solitary wave solution
54 Uy (x,t) = Ay Bsech[f (x —vt) ] exp{i[p(xz —vt) —0(t)] }, (3.2a)
55 .
% Ua(,t) = Ay Bsech B (z — vt) | exp{i[p(z —vt) — ()]}, (3.2b)
;73 provided that

v

59 gUAP+AP) =2, p=". 6= (" + 81, (5.3)



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-114659.R1

Odd-PT stability 6

In our simulations we will choose for simplicity:
Ay =1A7. (3.4)

Furthermore we will set A, = A and Ay = iA = e*™/2A, with A real, then A% = 1/g.
Normalization integrals are given by:

M, = / 0 | (o, )2 = 2642, M,y = / da (e, )2 = 2842, (3.5)

such that the condition in Eq. (3.3) becomes g (M; + M) = 4/3. The total “mass” M
is given by:

M = M, + My = 45/g. (3.6)

Given now this form of the exact solution, the self-interaction potential term commutes
with the PT operator Vt. For the soliton at rest, Eq. (3.2) reduces to

Yy (x,t) = AfBsech(Bx) exp{i(—5*)}, (3.7a)
oz, t) = ABsech(Bx) exp{i(—p*t+n/2)}.

3.1. Derrick’s theorem

We can use the scaling argument of Derrick [15] to determine if the two-component static
solutions of (3.7) are stable to scale transformations. For the sake of completeness in
the present discussion, we introduce the nonlinearity exponent, identified as k hereafter,
which allows us to show that the stability depends on k. For the single-component
NLSE at hand, the solutions are unstable to either blowup or collapse when k£ > 2 [16].
Here we will confirm that the exact solutions we found for £ = 1 are stable to scale
transformations. To that effect, let us recall first the Hamiltonian given itself by

H = / ar{ 510.0) [ - 2 [0 @ wE) [ (3.8)

where U(z) denotes the static two-component solution of (3.1). It is well known that
using stability with respect to scale transformation to understand domains of stability
applies to this type of Hamiltonian. If we make the scale transformation of the solution

of the form

U(z) = o?U(ax) = o?U(y), y = ax (3.9)
which preserves the normalization, i.e., M = [ dx | ¥(x) |?, we obtain

H=oH, — o' H,y, (3.10)
where

1
=3 [ dy13,u0) >0, (3.11)
g k+1
Hy = —— [ dy [V (y)¥(y)]** 12
2= [ WV T >0, (3.12)

Page 6 of 28
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for all k£ as well as

OH («)

8—a = 205H1 — kOékil H2 s (313&)
2
H
0 8a(2a) =2H, —k(k—1)a*?%H,. (3.13b)

Setting the first (partial) derivative to zero at @ = 1 gives an equation consistent with
the equations of motion:

kHy =2H, , (3.14)
whereas the second derivative evaluated at the minimum, and at o« = 1 reads
O?H ()
=k(2—k)H,. 1
50z |._, = K2 k) (3.15)

Thus, we see that at & = 1, the exact solutions for the free case are stable. Only
when k& > 2 do the solutions become unstable to scale transformations. However, once
one adds the external complex potential terms, the windows of stability need to be
determined by the stability curve p(v) or simulations of the NLSE equation.
It should be noted in passing that for £ = 1 and using Eq. (3.7), we have that
Hy = (M; + Ms) 5°/3, (3.16a)
Hy = g(M; + M>)*B/6, (3.16b)
so that imposing (3.14) for k = 1 gives g (M; + Ms) = 4 §. This is satisfied by the exact
solution.

4. Collective coordinates

We consider in this work external potentials of the form:

Vo(z) = ay coskix, (4.1a)
Vi(z) = ag cos ko, (4.1b)
W(x) = az cos ksx , (4.1c)

which are (all real and) even functions of z. For Vj(x) to be confining near x = 0 we
need a; < 0. We review here the method of CCs (see for example Ref. [17]) applied to
our case. The time-dependent variational approximation relies on introducing a finite
set of time-dependent real parameters in a trial wave function that hopefully captures
the time evolution of a perturbed solution. By doing this, one obtains a simplified set
of ordinary differential equations (ODEs) for the CCs in place of solving the full PDE
for the NLS equation. To this end, let us first set

W, 1) = Ola, Q(t)] (4.2)
Q) ={Q'(1),Q*1),....Q" (1) } e R™,
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where Q(t) are the CCs. We note that the success of the method depends greatly on
the choice of the the trial wave function W[z, Q(t)]. The generalized dissipative Euler-
Lagrange equations lead to Hamilton’s equations for Q)(¢). The Lagrangian in terms of

Q(t) is given by

L(Q,Q) =T(Q,Q) — H(Q) (4.3)
with the dynamic term

7(Q.0) = [ dr (V(@,Q) Wi(2,Q) - V(2. Q) ¥(z. Q)

=m.(Q) Q" (4.4)

and 7, () defined via

7(Q) = 5 [ A {V(.Q)[8,%(,Q)) - [0,¥(0.Q) | ¥(w.Q) ), (45)
where 0, := 0/0Q". The Hamiltonian H(Q) is given by
1(Q) = [ e { 0,90, Q)F - ¥1(2.Q) Uo(2) ¥(,Q) - § 10w Q' } (4.6)

and on an equal footing, the dissipation functional (again, in terms of the CCs) is
respectively given by

F(Q,Q) = i/dx {Ui(2,Q) Ur(2) Uy(z, Q) — Ul(z, Q) Ui (2)¥(x,Q) } (4.7)
= w,(Q) qu

where

wu(Q) = i/ dz { U'(2,Q) Ui(2) [0,%(2, Q)] = [0,¥](, Q) Ui(2)¥(x, Q) } (4.8)

with Up(z) and U (z) being given by Eq. (2.11).
This way, the generalized Euler-Lagrange equations read

50~ (o5r) = o0 (49
If v,(Q) == 9,H(Q), we find

fu(Q) Q" = u,(Q) = v,(Q) — wu(Q), (4.10)
where

fu(Q) = 0,m,(Q) — 8,m,(Q) (4.11)

is an antisymmetric 2n x 2n symplectic matrix. If det (f(Q)) # 0, we can define an
inverse as the contra-variant matrix with upper indices,

Q) foe(Q) = 07, (4.12)
in which case the equations of motion (4.10) can be put in the symplectic form:
Q" = "(Q)u,(Q) . (4.13)

Page 8 of 28



Page 9 of 28

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-114659.R1

Odd-PT stability 9
5. Eight parameter time-dependent collective coordinates

From Egs. (2.1) and (2.10), the coupled equations we wish to solve are given by

(10, + 0% — V(@) +g(tn(z, ) + oz, O)2) Yo (2,8) — iW (2) ta(2,8) =0, (5.1a)
{10+ 02 = V*(2) + g (|a (2, )] + |¢a(a, 1)|*) Y ha(a, 1) =i W (2) ¢ (x,8) = 0. (5.1b)

We choose time-dependent variational wave functions of the form:

dilz, Q)] = Ay (t) B(t) sech] B(¢)(z — g(t)) ] ' lPHROI= 0T (5.2a)

balw, Q(t)] = Ax(t) B(t) sech] B(¢)(x — g(t))] ' lP1HRWI=020T (5.2b)
where

¢lz, Q)] = p(t) (x — q(t)) + A(t) (x — g(1))? . (5.3)
For the variational solutions, we define

M (t) = / da [n[z, Q)P = 28(t) |[A (), (5.4a)

Maft) = [ d foale. QU = 25(0) | 42(D) (5.4)
We will choose as our CCs the set of eight time dependent parameters:

Q:{M1>917M27027Q7p767A}7 (55)

with the canonical pairs,

{My(2),0.(1)}, {Ma(1),0:(1)}, {q(t),p()},  {B(), A1)} (5.6)

The CCs Q(t) are related to the low order moments of the coordinate and momentum
operators so that their actual behavior can be determined from the numerical simulation
of the NLSE. This choice of CCs was determined after the numerical simulations
suggested that the widths, position, and momenta of the two components followed one
another closely (even though they were not exactly equal as we will see in our numerical
simulations).

5.1. Initial conditions

At t = 0, we require that the variational wave functions [cf. Egs. (5.2)] match the
traveling wave solution of Eq. (3.2) with no external potential. Furthermore, we choose
g = 2 and f(0) = 1/2 in order to draw direct comparisons with our previous work on
the NLSE in a P7-symmetric potential [10]. For simplicity we will choose A;(0) real
and equal to the magnitude of A5(0). The phase of Ay we will put into 6, so that A, is
a real variable in what follows. This means that at ¢ = 0 we set

B0)=1/2, AO0)=0, 6,(0)=0, 6(0)=rn/2, M(0)=M(0)=1/2, (5.7)

so that A;(0) = Ay(0) = 1/v/2. Plots of the potentials and initial variational wave
functions are shown in Fig. 1 where we have set ¢(0) = 7. Note that the magnitudes of
the two wave functions are identical at ¢ = 0.
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0.15

0.1

0.05}

Figure 1. (Color online) Potentials and initial wave functions for 8CC variational
calculations for the parameters of Section 5.1 with ¢(0) = w. Here we have set
a; = —1/100, as = —1/200, and a3 = —1/300 with k; = 1, ke = 1/v/2, and ks = 1/3.

5.2. Equations of motion

Following the method described in Section 4, and using the variational wave function
(5.2), we find the following equations of motion for the 8CCs:

M1 = a2 M1 COS(kQQ) Gl(kg/ﬁ) (58&)
+ as\/ M1M2 COS(k’gQ) COS(@l — 62) G1<k3/ﬁ> y

. 2 k 5
b =+ 3 B+ G coslhig) [Galka/B) = 52 Gilk/B) ] — 596 M
+ a9 %% sin(k‘gq) G3(k’2/ﬁ) (58b)

— (a3/2)\/ Mz /My cos(ksq) sin(0y — 02) G1(ks/B)
+ az\/ My My /M? (2p/5) sin(ksq) cos(6, — ) Gs(ks/5) ,

M2 = —Q2 M2 COS(k’Qq) Gl(k’z/ﬁ) (58C)
+ as/ MlMQ COS(k}3q) COS(Ql — 02) Gl(kfg/ﬁ) s
. 2 k 5
by = —p"+ 38+ % cos(k1q) [Gl(kl/ﬁ) - ﬁ G/l(kl/ﬁ)] ~ 5 98M
+a %% sin(kag) G (ks ) (5.8d)

— (as/2)\/ My /M, cos(ksq) sin(0; — 02) G1(ks/B)
+ asy/ MlMQ/MQ (2]?/,3) sin(kgq) COS(Ql — 92) Gg(k'g/ﬁ) s

i =2p— % w sin(kaq) Gy (ks /B) (5.8¢)
— ag\/ MMy /M? sin(ksq) cos(61 — 02) (2/5) Gs(ks/B) ,
p = % sin(k1q) G1(k1/8) — as % % sin(kaq) Gy (ks /) (5.8f)

— a3(4M/B) \/ M1 My /M? sin(ksq) cos(8; — 03) G3(ks/f) ,
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b ——4BA+ % s cos(hoa) 5 B Gi (ko) B) — (12/72) G (k) B)] (5.8¢)

+ a3ﬁ ]\41]\42/]\4'2 COS l{igq COS 81 — 92) [Gl(l{ig/ﬁ) — (12/71'2> Gz(k’:g/ﬁ)] y
48t 6k16G,(k1/5)_gﬁ3

A = —4A2+—+ a (5.8h)
Details of this derlvatlon are given in Appendix A.

5.3. General Observations about the 8CC' equations

Firstly, we note that M; and Ms go in opposite directions from their initial yet equal
value due to as # 0. This often leads to one of the two masses going to zero. We further
note that when ay = 0, the effect of az on the dynamics is proportional to cos(6; — 65)
which initially is zero. Moreover, M;(0) = M3(0) due to odd-PT initial conditions. The
equation for 6; — 6y is given by

6, — 0 ”“3 K\/» \/M> cos(q(t)/4) esch(n/(85)) sin(6y — 65)| . (5.9)

Since the derivative is initially zero because the two masses are the same (unless M
differs greatly from M,), 0; — 05 stays small, and the presence of a3 does not change the
CC equations for ¢, p, 8, My, My greatly from the case when a3 = 0.

5.4. Small oscillation equations when as = az = 0

When ay < 0, M; and M, initially decrease and increase with time, respectively (or vice
versa depending on the sign of cos koz), so one is never in the small oscillation regime.
However when as = a3 = 0 small oscillations are possible in the potential Vy(z). In the
small deviation from the static soliton regime, the update equations for the set (q,p)
decouple from the set (3, A). The relevant equations when as = az = 0 are

L in(k1q) Ga (k1 /B) (5.10)

B=—4pA, A=—4A2+4—64+ 6]{;15(;’(l<:1/ﬁ)—g53

Setting 5(t) = 1/2 + §5(t) with 06(t) < 1Vt (and all the other parameters assumed
small deviations from zero), one has for the first two equations in (5.10):

q(t) =2p(t), p(t) = [arkimesch(kim)]q(t). (5.11)

Since a; < 0, we have that the frequency of both p and ¢ (in this small oscillation

q=2p, p=

regime) is just

wz = 2|ay|kim esch(kym) . (5.12)
For instance, if a; = —1/100 and k; = 1, the period T}, is given by
27 2m
T,=—= ~ 85.2. 5.13
W, \/alkff csch(mky) (5.13)
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Since initially gM = 4 5(0) = 2, we find (ignoring the a; correction)
. S
0 =—-20A, O0A= —5, (5.14)
272
such that
1 2
wy ==, Tp="2 =22~ 19.7392. (5.15)
™ wp
To include the a; correction, one can use
G (ki/B) — 272k, 6B [ Thky — 27k; coth®(mky) + 2 coth(mk,) | csch(mk,)
+ 7 [1 — 7k coth(mky ) | csch(mky). (5.16)

6. Comparison of Numerical Simulations with 8 CC equations evolution

In solving for the time evolution of the NLSE in these external potentials, we will employ
initial conditions corresponding to the exact solution of the NLSE in the free case. The
configuration space of possible solutions (and their associated time evolution) is huge,
and we will just exhibit five cases to give the general idea of how well the CC approach
matches with the time evolution of the NLSE. We have chosen parameters to be similar
to those used in our previous work on the single-component P7T-symmetric NLSE.

The cases we study in detail have parameters and initial conditions which are
presented in Table 1. These choices of parameters lead to solutions that display several
behaviors we identified. We have chosen ¢y so that as far as Vj is concerned, the initial
wave function is starting at either a minimum of the potential (¢o = 0), or a maximum
of the potential (g9 = 7). In particular, in cases 1 and 5, the soliton is trapped by
the potential Vj. In case 1, all k; are different and ¢y = 7. In case 5 we have instead
ki =1, qo = 0. Case 2 is a moving soliton that is unstable. Case 3 shows the effect of ag
on a moving soliton when a, = 0. To first-order approximation the result is similar to the
case where az = 0 in that the width of both components just oscillates, and (at least for
a reasonable amount of time) the two components stay equal in mass and these masses
do not change in time. Case 4 shows what happens when we add ay to case 3, which
then causes M; to gradually increase, and M, to gradually decrease. This situation
is unstable as the total mass M; + My gradually increases. The initial values of the
parameters we use for the CC simulations are also given in Table 1. These parameters
also determine the initial wave function used in our numerical simulations. The values
of qo and py were chosen so that a comparison with simulations in the one-component
case could be made. If we increase as in magnitude much beyond |as| = 1/300, then
the instabilities manifest themselves at quite earlier times.

The cases shown in Table 1 are explored by performing numerical simulations at
the level of Egs. (5.1a)-(5.1b). At first, the infinite spatial domain is truncated into a
finite one [—L, L], and then a one-dimensional spatial grid of equidistant points with
resolution Az is introduced (L = 30 and Az = 0.1 in this work). The Laplacian in
Egs. (5.1a)-(5.1b) is replaced by a second-order accurate, finite difference scheme. We
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Table 1. Parameters for simulations. In all cases we take g = 2, M;(0) = M>(0)
=T

/2. B

1/2, [31(0) = ﬂQ(O) = 1/2, and Al(O) = AQ(O) = 07 and Wlth 01(0) = 0, 92(0)
Case a1 as as ki ks ks q(0)  p(0)

1 ~1/100 —1/500 —1/1000 1 1/+2 1/3 =  .001

2 ~1/100 —1/100 —1/500 1 1/3 1/4 =  —0.0457
3 —1/100 0 —1/100 1 1 1 T 0.0531649
4 ~1/100 —1/1000 —1/100 1 1 1 7 0.0531649
5 —-1/100 —1/1000 —1/100 1 1 1 0 0.0531649

impose zero Dirichlet boundary conditions at the edges of our computational domain,
that is, ¥ 2(x = £L,t) = 0, Vt > 0. As a result, the coupled NLSEs reduce into a
(large) system of ODEs that are advanced forward in time by employing the Dormand
and Prince method with time step-size adaptation [20]. When the dynamics revealed
an instability of the pertinent waveforms, we stopped the integrator before they hit
the boundary. Also, we corroborated our numerical results by considering a fourth-
order accurate, finite difference scheme for the Laplacian operator. We found that both
discretization schemes produce identical results.

To compare the numerical simulation results of the NLSEs with the 8CC equations
we use the fact that we can extract the values of the CCs from the various low order
moments of the numerically obtained wave function. In fact, the equations the low
order moment equations obey are an alternative way of obtaining equations that are
equivalent to those obtained from the variational approach. Assuming a more general
variational wave function ansatz where we allow different values for the expectation of
ap, 22, p, pr for each component of the wave function, we can extract easily the values
of all these time evolving parameters from the moments of the numerical solution. In
particular, let us assume that each component of the wave function can be parametrized
as

il Q)] = Ai{t) Bi(0)sech] (1) (@ — (1)) | #0001,
B, Q) = plt) (& — (1)) + Aife) (2 — au(0))” (61

The n'™ moment of the density distribution for each component of the wave function is

defined by
Mi(t) = / do 2 | i )

M;(t) Y " 2
= /dy [&(t) +qi(t) | sech”(y), (6.2)
which gives
M(t) = My(t), (6.3a)
Mi(t) = Mi(t) ai(t) (6.3b)
M) = 200) [0+ 5] (6.3¢)
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Note that from Eqgs. (6.3), we can find M;(t), ¢;(t), and 5;(t). On an equal footing, the

n'™™ moment of the momentum operator is defined by

PO = 5 [ doa (010, 0) (0012 0)) — (0,03 2.0) | 1))

~ [ st vt (D]}, (6.0

which gives
Pot) = Mi(t) pi(t) , (6.5a)
Pi(t) = Mi(t) [pi(t) a(t) + %} , (6.5b)

from which we can find p;(t) and A;(¢). Finally, for the phase, we compute:
) i
£4(0) = 5 [ do (.0 10010 0)] = 100700 ] ant))

~ a0 [p0- 5 50 a0+ 00} (6.6)

from which we can find 6;(t). We expect the time evolution of the higher moments of

the coordinate and momentum operators (i.e. [ and A of our variational ansitz) to
become less accurate than the time evolution of the lower moments, which seems to
be the case in our simulations. What is remarkable is that to a good approximation,
we find that using the moments of the numerical simulations of the wave function, the
moments have the property that

() =q@l), pi@)=pt), Bi(t)=0F(t), M) =AN(P), (6.7)

so one can use a trial wave function with & instead of 12 CCs.

7. Discussion of Typical Behaviors

In this section, we show some typical behaviors which are quite dependent on the
parameters chosen (see Table 1). If one looks at the potential Vy(z) in Fig. 1, we
see it has maxima at « = 7w and x = 37 (in general at x = (2n + 1)7/k; with n € Z) so
if the soliton has a small initial momentum in the positive direction it can lead to the
behavior seen in Fig. 2. For this case, the soliton stays trapped between 7 < x < 37 (see
the panel showcasing ¢(t) therein). At later times (¢ > 300) in the CC evolution one
sees a very slight reduction in amplitude of the ¢ oscillations. Note that §(¢) continues
to oscillate about ((t) = 0.47 and A(t) about zero. Also, M;(t) is creeping up linearly
with a very small slope, and Ms(t) is decreasing linearly with a small slope such that
the time averaged value of M; + M, is remaining near one. However the amplitudes
of oscillations of M; + M, have almost reached one percent by ¢ = 100. Here p(v)
indicates that this case is dynamically unstable as seen in Fig. 7. When we compare the
CC results to the numerical simulations, we find that the CCs are much closer to the
numerical results for the lower order moments, but even 3(t) and A(t) give qualitatively
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Figure 2. (Color online) Numerical results corresponding to parameters and initial

conditions for case 1 of Table 1. The top left and right panels demonstrate the spatio-
temporal evolution of the densities |11]? and [¢2|?, respectively. The blue lines in the
second, third, and fourth rows correspond to numerical results of the Schrédinger’s
equation whereas the red lines to the 8CC variational calculation. The solid and
dashed lines correspond to the first and second component, respectively. We see that
around ¢ = 200 the variational approximation starts diverging quantitatively from the
numerical result.

good results. We notice that § and A have a secondary oscillation frequency that is
not captured by the CC equations. This is typical of what happens when the soliton is
trapped by Vy(z).

The second example is shown in Fig. 3 and corresponds to case 2 of Table 1. Here,
we chose different periods for the three potentials. This is a moving soliton where now
M, (t) is decreasing slowly in time and Ms(t) increasing in time. Here B(t) as well
as My + M, are increasing in time indicating eventual blowup of the solitary wave.
The magnitudes of the oscillations of p(t) and ¢(¢) are decreasing in time, and at each
turnaround dp/dv < 0, thus indicating an unstable case. This behavior of p(v) is shown
later in Fig. 7.

Case 3 is shown in Fig. 4. Here we consider the effect of a; on a moving soliton
when k; = 1 for i = 1,2,3. The 8CC approximation in this case gives M; = My = 1/2
for all time so that the effect of as on the motion in the real potential Vy(x) is minimal.
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Figure 3. (Color online) Same as Fig. 2 but for the case 2 of Table 1. The top left
and right panels demonstrate the spatio-temporal evolution of the densities |t/ |?
|22, respectively. The blue lines in the second, third, and fourth rows correspond

and

to numerical results of the Schrodinger’s equation whereas the red lines to the 8CC
variational calculation. The solid and dashed lines correspond to the first and second
component, respectively.

The actual numerics show that the 8CC approximation is breaking down although the
parameters q(t), p(t), 5(t), and A(t) are qualitatively the same for both components (in
fact, they differ so that the total mass M; + My very slowly increases).

Case 4 is shown in Fig. 5. Here we have a moving soliton starting at gy = 7 and the
same initial conditions as in case 3 but we now turn on as = —1/1000. This causes M;
to slowly increase, and My to slowly decrease, with M; + M slowly increasing which
eventually leads to blowup. This instability is seen in the p(v) curve shown in Fig. 7.
Here we start seeing a divergence from the solid blue lines for ¢(t), p(t), B(t), and A(?)
from the dashed blue lines in the numerical simulations, indicating a slight breakdown
in our assumption that the two components have the same values. Nevertheless the
8CC parameters follow reasonably well the numerically obtained moments.

Case 5 is shown in Fig. 6. Here we have a moving soliton starting at ¢o = 0 but
otherwise the same initial conditions as case 4. This results in the soliton being trapped
in the well of Vo(z). Here M; slowly decreases and M, slowly increases, opposite to
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Figure 4. (Color online) Same as Fig. 2 but for the case 3 of Table 1. Again, the top
left and right panels demonstrate the spatio-temporal evolution of the densities |11 |?
and |1p5|?, respectively. The blue lines in the second, third, and fourth rows correspond
to numerical results of the Schrodinger’s equation whereas the red lines to the 8CC
variational calculation. Finally, the solid and dashed lines correspond to the first and
second component, respectively.

that in case 4, with M; + M, as well as §(t) slowly increasing, which eventually leads
to blowup. This instability is seen in the p(v) curve shown in Fig. 7.

8. Dynamical stability using the stability curve p(v)

In references [14, 18, 19] it was shown that the stability of a solitary wave subjected to
external forces could be inferred from the solution of the CC equations by studying the
stability curve p(v), where p(t) is the momentum conjugate to ¢(¢) and v(t) = ¢(t). A
positive slope of the p vs v curve is a necessary condition for the stability of the solitary
wave. If a branch of the p(v) curve has a negative slope, this is a sufficient condition
for instability. In our simulations, we will show that this criterion is consistent with
the numerical simulations (see Fig. 7). Note that in the present setup, exact solutions
are no longer available once we add the external potential, and simultaneously, the CC
equations do not possess exact solutions of the form ¢(t) = qo+vst, 5(t) = Bo, p(t) = po,
and 0;(t) = 6p,; + 7; t. Because of this, we cannot perform a phase portrait analysis for
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Figure 5. (Color online) Same as Fig. 2 but for the case 4 of Table 1. The top left

and right panels demonstrate the spatio-temporal evolution of the densities |1,

| 2

and

|22, respectively. The blue lines in the second, third, and fourth rows correspond
to numerical results of the Schrodinger’s equation whereas the red lines to the 8CC
variational calculation. Again, the solid and dashed lines correspond to the first and
second component, respectively.

solutions which are near these fixed-point solutions of the CC equations. Nevertheless,

for most of the cases where instabilities occur, p(v) is a good indicator of instability.

Indeed, we show four cases where this turnaround is clearly visible both for the trapped

as well as the moving soliton. It is only when ay = 0 (case 3) that we did not detect

a place where dp/dv < 0 in our CC evolutions. When we increase the value of |as|

to be greater than 1/300 the turnaround of the curve is much more visible than at

az = —1/1000. We have included the numerically determined curves p;(v;) which show

this turnaround more dramatically at ay = —1/1000. Where the curves turn around at

the top and bottom of these motions, careful examination of these regions shows that

the slope of the curve changes from positive to negative. An example of this change of
slope at such a region for case 5 is shown in Fig. 8.
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Figure 6. (Color online) Same as Fig. 2 but for the case 5 of Table 1. All panels have
the same format as the ones of Figs. 3-5.

9. Conclusions

To understand the difference between the effect of even PT-symmetric vs odd PT-
symmetric external potentials on solitary wave dynamics, the present work generalized
the PT symmetric external potential problem studied in [10], to a two-component
NLSE in an odd P7T-symmetric external potential. Depending on initial conditions,
the real external periodic potential can trap the solitary wave. On the other hand,
the two imaginary external potentials affect the solitary wave differently. In particular,
the potential term proportional to o3 causes M; and M, to initially move in opposite
directions. Which way the masses diverge depends on the sign of ay cos k2q(0). The term
in the potential proportional to a3 becomes more important when the term proportional
to o3 causes M; to differ from M,. Then it tends to accelerate the collapse of one
component and/or accelerate the blowup or collapse of the entire soliton. Otherwise,
when ay = 0, the effect of ag on the behavior of the soliton is initially quite small and
is negligible in the CC approximation. However, the numerical simulations show that
eventually the presence of a3 leads to an instability. When as > 1/1000, we observe that
the instability criterion determined by dp/dv < 0 is being met, and can be seen visually
either in the 8CC approximation or the numerical solution of the moment equations. We
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Figure 7. Plots of p(v). Case 1 (top row), Case 2 (second row), Case 4 (third row),
and Case 5 (fourth row). In many cases, the change of slope is not visible. The red
lines are the 8CC results whereas the blue lines are the PDE results. Even though the
8CC (red) curves look linear in some cases, in fact (under detailed examination) they
are not and indicate instability.

Page 20 of 28



Page 21 of 28

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-114659.R1

Odd-PT stability 21

p(t)
-0.0527175

-0.0527180

-0.0527185

-0.0527190

-0.0527195

-0.0527200

L

v(t)

-0.1054400.1054400.1054390.1054390.1054380.105438

Figure 8. Plot of p(v) for case 5 using the collective coordinate method. Notice that
the expansion of the curve at the left turning point shows the change of slope from
positive to negative.

displayed cases where M; + M, and ((t) get larger and larger signaling blowup. Even
in the trapped cases, when ay is still quite small, the p(v) criterion predicts dynamic
instability which is seen in the simulations.

In all cases the lower order moments, M (t), M(t), q(t), and p(t) are well described
by the CC equations whereas 5(t) and A(t) are just qualitatively in agreement with the
numerical solution of the PDEs. The values ¢ = 2 and §(0) = 1/2 were chosen to
compare our results with the P7T-symmetric single-component NLSE results. Because
of the destabilizing effect of o,, there is in general no small oscillation theory for the
odd-PT external potential problem. This is a major difference from the P7T-symmetric
one-component NLSE. Whenever ay # 0 holds, one finds dynamic instability which
explains why we were unable to find stable solutions of the two-component NLSE in
the presence of an odd-P7T symmetric external potential. We considered cases in this
paper where the soliton was trapped by the real potential Vj(z) as well as cases where
the solitary wave was moving. In both cases the 8CC approximation gave a reasonable
description of the motion of the two components of the wave function. The phase space
of possible behaviors is huge, and we reported on a few representative cases.

This work paves the way for future directions of study. At the level of the NLSEs, a
systematic stability analysis around the steady-state and moving soliton solutions over
(a1, as, az) will identify potential intervals of stability of the pertinent waveforms. If the
solutions obtained are identified as unstable, then it would be interesting to corroborate
even further our dynamical instability criterion employed in this work, i.e., dp/dv < 0.
Also, another direction of future work involves other kind of external potentials, such
as hyperbolic ones in the form of V;(z) = sechx tanhz and Va(x) = iW (x) = isech®s.
Those directions are currently under consideration and results will be reported in future
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Appendix A. Derivation of the eight component CC equations of motion

Appendiz A.1. Dynamic term

From Eq.(4.4), the dynamic term splits into the sum of two independent parts:

T(Q? Q) = tl(Q? Q) + tQ(Qa Q) = WM(Q) QN ) (Al)
where
' - A A
tl(Q?Q):Ml{el +pq_1262 }7 ( 2&)
. . . 7'['2 .
t2(Q,Q) =My o +pd— ——= A ¢, (A.2b)
128
so that
2
T, =My, mg, =My, mg= (M + Ms)p, ™= T (M + My) . (A.3)
From these expressions, the symplectic matrix is:
0O 1 0 0 p 0 0 —c
-1 0 0 0 0 0 0 0
0O 0 0 1 »p 0 0 —c
0 0 -1 0 0 0 0 0
v =0 v azx - , A4
0O 0 0 0OM O 0 0
0O 0 0 0 O 0 0 Md
0 ¢ 0 O 0 —-Md 0
where
2 2
M = M, + M. = =—. A.
1+ 25 c 12 52 ) d 653 ( 5)
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The determinant of f,,(Q) is d*M*, and its inverse is given by:

0 0 0 O 0
0 0 0 —p c¢/d
0O -M 0 O 0
M 0 0 —p c¢/d
0 0
0
0
0

oNOYTULT D WN =

j Q) =

o O O O O

0 1 0

p -1 0 0 0

—¢/d 0 0 0 -—1/d
0 1/d 0

—_
coocoococo o

l |
oQ@ooooi
QL

0 0

18 where

1 c
20 d 7w d

™

Appendiz A.2. Hamiltonian and its decomposition

Based on Eq. (4.6), the Hamiltonian can be written as the sum of three parts:

26 H(Q) = Hyin(Q) + Hpot(Q) + Hu(Q) , (A.8)

28 where Hyin, Hpor, Hy stand for the kinetic, potential, and nonlinear terms, respectively.
Let us consider the kinetic term first. Using the integral definitions of Appendix
31 B, we find:

2 A2
33 Hiin(Q) :/dx 10,V (2, Q) = M {p2 + %52 + % % } . (A.9)

35 In a similar fashion, the potential term gives

A Hpor(Q) :/dx Volz) [ (a, )2 = [A23 + A2 ) Bal/dx sech?[B(z — ¢)] cos krx

38 P
40 = % aj cos(k1q) G1(k1/5) , (A.10)

42 where G1(z) is given in (B.1a). Finally, we consider the nonlinear term,
2‘5‘ Hy(Q) = —g/d:c U (2, Q)* = —%BMQ . (A.11)

46 From (A.9), (A.10), and (A.11), the Hamiltonian is given by
1 ™ A2 a
49 H(Q):M{p2+§52+§ﬁ+§Cos(qu)Gl(kl/ﬁ)}—%BMQ. (A.12)

51 Defining
53 0u(Q) = 0, H(Q) | (A13)

the nonzero derivatives of the Hamiltonian with respect to the parameters are given by:

s 1, mA g
58 Uny = UMy = P +§ﬁ +§@+§ COS(k‘lq)Gl(kl/ﬁ)—gﬂM, (A14a)
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kiay

v, =-M 5 sin(k1q) G1(k1/8) , (A.14b)

v, =2Mp, (A.14c)
2 212 A2 aik , g

vy = {5 B-5 5 ﬁ; cos(k1q) G (k1/B) } - M? (A.144)

212 A
VA = M ? @ . (A14e)

Here G| (2) is given in (B.1d).

Appendiz A.3. Dissipative term

From (2.11) and (4.7), the dissipative term splits into two parts. We find

FQ,Q) =i / A { W (2, Q) Uy (2) Uy(, Q) — W} (2. Q) U (2) ¥ (2, Q) }

where
Fl(Q,Q) =a2[F11(Q»Q) _F22(QaQ)] ) (A.16a)
Fy(Q,Q) = as[ Fi2(Q, Q) + Fun (Q, Q) ], (A.16b)
with
Fi(Q,Q) = —2/ dz cos(kex) Im{ ¢ (z, Q) Obi(x, Q) }, (A.17a)
Fi2(Q, Q) = —2/ dz cos(ksz) Im{ ¥} (z, Q) Opba(z,Q) }, (A.17Db)
Fn(Q,0) = —2 / dz cos(ksz) Tm{ ¥3(z, Q) Ot (2, Q) } . (A17¢)
Changing variables to y = B(x — ¢), we find
Fi(Q,Q) = Mi/dy cos[/@(% —i—q)}{@z - §y+pq'— %yZ—F %y}sech%y)
= M;{ cos(kzq) [(9Z +pq)Gi(ke/B) — (A/ﬁ2) Ga(k2/B)]
+ sin(kaq) [ (p — 2Aq)/B] Gs(k2/B) } - (A.18)

So from (A.16a), we find

Fl(Q, Q) = Qg M1{COS(ICZQ) [(91 +pQ> Gl(k’Q/B) - (A/52) G2(k2//3)]
+sin(kaq) [(p — 2Aq)/B] Gs(ka/B) }
— az Ma{ cos(kzq) [ (02 + pd) Gi(k2/B) — (A/B%) Galka/B)]

+sin(kaq) [(p— 2A4) /8] Gs(k2/B) } . (A.19)
Defining
w1, (Q) = aon (A.20)
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we find the non-zero components are:

wl’gl = Q9 M1 COS(kgq) G1<k2/5> y
Wi, = —A2 M2 COS(/{?QQ) Gl(kg/ﬁ) y

Wi, = G2 (Ml - MQ) [p COS(kQQ) G1<k2/ﬁ> — % Sin(kfgq) G3(l€2/6> s

M g M sin(kaq) Gs(k2/f)

M1B—2M2 cos(kaq) Ga(ka/f3) .
For F15(Q, Q) and again setting y = 3(z — ¢), we find
Fia(@. Q) = -2 [ do cos(hoa) Im{ v1(2.0) (B 1))}

— w/Ml]\/[Q/dy cos[ k3(y/B) + ksq] sech®(y)

Wyp = Q2

Wi,A = —0ag

x {cos(6r — 02) [—py/B + pq — Ay?/ B> + 2Aqy /B + 0 ]
—sin(6y — 62) [As/As + B/B — (By/B — Bq) tanh(y)]} .

Simplifying, we obtain
Fi2(Q, Q) = /MM,

x { cos(ksq) cos(fy — 02) [(62 +p¢) Gi(z) — (A/B?) Ga(2)]
— COS(k’3q) 11(91 02

) [ My /My + B/B1G1(2)/2 + (B/B) Gs(2) ]
+ sin(ksq) cos(6r — 0:) [(p — 2A¢) G3(2)/B]
+sin(ksq) sin(6y — 62) [B¢Ga(2)] } -

Similarly,

Fn(Q,Q) = v/ M M,
x { cos(ksq) cos(fy — 02) [ (61 +pq) Gi(z) — (A/B*) Ga(2) ]
+ cos(ksq) sin(6; — 0o

[
( ) [ M /Mi+ 53/B]Gr(2)/2+ (B/B) Gs(2)]
+ sin(ksq) cos(6h — 62) [(p — 2A¢) G3(2)/F]
—sin(ksq) sin(6y — 62) [B¢Ga(2)] } -

So from (A.16b), combining (A.23) and (A.24), we get
F(Q,Q) = a3 [ Fia(Q, Q) + Fu (Q, Q)]
= ag\/ MM,
x { cos(ksq) cos(by — 02) [(61 + 62 +2p ) Gr(2) —2(A/5°) Ga(2)]
+ cos(ksq) sin(fy — 0) [( My /My — My /My ) G1(2)/2]
+ sin(ksq) cos(6y — 0) [2(p —2A4) G5(2)/5] } -
Defining

aFQ(Qa Q)
oQr

w?,,u(Q) =

Y

25

(A.21a)
(A.21D)

(A.21c)
(A.21d)

(A.21e)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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we find
Wa, My, = A3/ MQ/Ml COS(kgq) Sil’l(@l — 02) Gl(k3/5>/2 s

wap, = asy/ MMy cos(ksq) cos(0; — 02) G1(ks/B) ,
wa v, = —ag\/ My /My cos(ksq) sin(0; — 02) G1(ks/5)/2 ,
wap, = asy/ MMy cos(ksq) cos(0; — 02) G1(ks/B) ,
wa g = asy/ My Ms { cos(ksq) cos(6; — 02) 2p G (ks/5)
— sin(ksq) cos(61 — 02) (4A/B) Gs(ks/B)},
wa, = asy/ MM, sin(ksq) cos(6y — 62) (2/8) Gs(ks/fB) ,
weg =0,
won = —ag\/ MM, cos(ksq) cos(61 — ) (2/ﬁ2) Ga(ks/B) .

Appendiz A.4. Equations of motion

From (4.13), the equations of motion are found from

Q" = Q) uu(Q),  uu(Q) = vu(Q) — wu(Q) .

Let us first find w,(Q). From (A.14), (A.21), and (A.27),

Upng,

1 ™ A2 q
2, Lt T AT a1 9
=p +36 + 3 3 + 3 cos(ki1q) G1(k1/B) SBM

— ag\/ My /My cos(ksq) sin(0; — 02) G1(k3/B)/2,

U@l = —Q2 M1 COS(:I{ZQQ) Gl (l{fg/ﬁ)

UM2

— agy/ My M; cos(ksq) cos(0y — 02) G1(ks/B) ,

™ A% a

1
=P 30 g oy coslhg) Gk /B) — 50 M

+ as Ml/MQ COS(ng) Sin(91 — 62) Gl(kg/ﬁ)/Q s

up, = ag My cos(kaq) G1(k2/B)

Uq

ug

UA

— azy/ M1 M cos(ksq) cos(01 — 6) G1(ks/B)

kyay

— M - sin(k1q) G1(k1/B)

— Q2 (Ml - Mz) [pCOS(kaQ) Gl(k2/ﬁ> - (2/\/5) Sin(kQQ) G3(/€2/5)]
— agy/ MMy { cos(ksq) cos(01 — 02) 2p Gy(ks/P)

- Sin(’%@) 005(91 - 92) (4 A/ﬁ) G3(k3/ﬁ)} )
W sin(kaq) Gs (ko) B)

— asy\/ M1M2 Sin(k3Q) COS(Gl — (92) (2/ﬁ) Gg(kg/ﬂ) y
2 272 A2 k

{202 5~ S coslian) Githa/) |~ 202,
2 —

2 A %mg(/@q) G (ks )

+ as M1M2 COS(k’gq) COS(Ql — 92) (2/52) Gg(kfg/ﬂ) .

:M2p—a2

26

(A.20b)

(A.29¢)

(A.29d)

(A.29¢)

(A.20f)

(A.29g)

(A.20h)
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Using (A.6) and (A.29) and (4.13), we obtain the 8CC equations of motion as given by
Egs. (5.8).

Appendix B. Useful integrals and definitions
We define the following integrals:

G1(2) ::/dy cos(zy) sech?(y) = 7z csch(mrz/2) (B.1a)

Go(2) ::/dyy2 cos(zy) sech?(y)

2

- _% csch®(mz/2) [z (3 + cosh(nz) ) — 4 sinh(n2)], (B.1b)
Gs(2) ::/dyysin(zy) sech®(y)
= g csch(mz/2) [ -2 + w2 coth(nz/2)], (B.1c)

G4(2) ::/dy sin(zy) sech?(y) tanh(y)

7T22

=5 csch(mz/2) , (B.1d)

G5(2) ::/dyycos(zy) sech?(y) tanh(y)

- % [4 — 72 coth(n2/2)] csch(mz/2) (B.1e)
G (z) = mesch(mz/2) [1 — (wz/2) coth(rz/2)] . (B.1f)
We note that
d
- sech(z) = —sech(z) tanh(z), (B.2a)
d
Etanh(z) = sech’(2), (B.2b)
together with the following useful integrals:
/dz sech®(z) =2, (B.3a)
4 4
dz sech®(z) = 3 (B.3b)
2
/dz 2?sech?(z) = r (B.3c)
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