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ABSTRACT

In many network applications, it may be desirable to conceal cer-
tain target nodes from detection by a data collector, who is using a
crawling algorithm to explore a network. For example, in a com-
puter network, the network administrator may wish to protect
those computers (target nodes) with sensitive information from
discovery by a hacker who has exploited vulnerable machines and
entered the network. These networks are often protected by hiding
the machines (nodes) from external access, and allow only fixed
entry points into the system (protection against external attacks).
However, in this protection scheme, once one of the entry points is
breached, the safety of all internal machines is jeopardized (i.e., the
external attack turns into an internal attack). In this paper, we view
this problem from the perspective of the data protector. We propose
the Node Protection Problem: given a network with known entry
points, which edges should be removed/added so as to protect as
many target nodes from the data collector as possible? A trivial
way to solve this problem would be to simply disconnect either the
entry points or the target nodes — but that would make the network
non-functional. Accordingly, we impose certain constraints: for
each node, only (1—r) fraction of its edges can be removed, and the
resulting network must not be disconnected. We propose two novel
scoring mechanisms - the Frequent Path Score and the Shortest
Path Score. Using these scores, we propose NetProtect, an al-
gorithm that selects edges to be removed or added so as to best
impede the progress of the data collector. We show experimentally
that NetProtect outperforms baseline node protection algorithms
across several real-world networks. In some datasets, With 1% of
the edges removed by NetProtect, we found that the data collector
requires up to 6 (4) times the budget compared to the next best
baseline in order to discover 5 (50) nodes.
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1 INTRODUCTION

In many network applications, an agent may wish to prevent certain
nodes in the network from being detected in a network crawl. For
example, a computer network administrator may want to reduce
the probability of hackers locating certain machines that contain
confidential or sensitive information [11]. A popular protection
scheme in such networks is to restrict the entry points to the system
through jump servers (or jump boxes) [15]. This type of protection
provides two separate security zones (external and internal) and
jump servers act as intermediaries between these zones. Although
these jump servers do not store sensitive data, they store creden-
tials that allow access to the machines inside the protected zone.
Accordingly, these entry points are popular targets for attackers
breaching into the network [17]. In this scenario, it is of crucial
importance to protect nodes that are vital to the stability of the
network against the internal attackers (attackers from breached
entry points) [16]. In this paper, we ask the question: How can one
best modify the network so as to preserve its functionality while also
protecting target nodes from detection in a crawl-based attack? This
general problem can be viewed from two perspectives: that of the
data collector, who wishes to crawl a network and locate so-called
target nodes; and that of the data protector, who can perform small
modifications to the network to lower the chances of target nodes’
discovery by the data collector.

While the network crawling (data collection) and vulnerable
nodes identification problems are well-studied [2, 5, 10-13], to the
best of our knowledge, the existing literature has not considered
the perspective of the data protector in considering the attacks on
vulnerable nodes. Thus, in this paper, we assume the role of the data
protector, and consider the following problem: Given a network with
a set of known target nodes, a set of entry points to the system, and a
protection budget by, which by, edges can we add or remove to most
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hinder the data collector’s access to the target nodes? Note that this
problem could be trivially solved by removing all edges adjacent to
the target nodes or entry points. But in practice, the data protector
would wish to ensure the modified network is still functional as a
network. We thus impose connectivity-related constraints: (1) The
network must remain connected after the modification; and (2) The
number of neighbors of a node that are removed/added is at most
r-d(u, G), where d(u, G) is the original degree of the node in graph
G, for some specified r.

We propose two node-level scores which are intended to identify
those nodes that are most important to the data collector in reaching
its target(s): (1) the Frequent Path Score (FPS) which measures
the likelihood that a node will appear in an absorbing random
walk, and is thus intended to protect against random-walk-based
crawlers; (2) the Shortest Path Score (SPS), which incorporates
the number and length of shortest paths passing through a node
with the length of those paths, and is suited for protection against
expansion-type crawlers like breadth first search. Our proposed
algorithm, NetProtect, uses these scores to make modifications to
the network. We perform a variety of experiments on real-world
networks with different budgets, pitted against popular network
crawling algorithms. Our results show if a data protector removes
1% of edges based on NetProtect, the data collector must increase
its budget up to 6 (4) times than the next best baseline in order to
discover 5 (50) nodes respectively. (e.g., see NetProtect-, Degree
based Target for musae-facebook in Table 1). The contributions of
this paper are:

e We consider the Node Protection Problem of protecting target
nodes in a network from being discovered in an entry-point
attack. We formalize this problem with respect to the goals
of the data collector and the data protector.

e We propose the FPS and SPS for nodes based on their impor-
tance in random walk and expansion-based searches origi-
nating from a set of entry points before hitting the targets.
We use these scores to propose NetProtect, an algorithm
for determining which edges to add or remove to best protect
the target nodes.

e We compare the performance of NetProtect to a variety of
baseline protection schemes on networks, including ROAM
which is the state of the art node protection algorithm [18].
Our experiments show that, in comparison with baselines,
the deletion or addition of edges by NetProtect makes it
considerably harder for the data collector to find the target
nodes.

In Section 2, we describe previous work that addresses similar
problems. Next, in Section 3, we describe the problem statement in
more detail, including roles of the data collector and data protector.
Our proposed scoring measures are discussed in Section 4. Finally,
we present our experimental evaluations on real-world networks
in Section 5.

2 RELATED WORK

Our work mainly relates to two bodies of research: (1) node protec-
tion in social networks, and (2) graph crawling algorithms.
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2.1 Node Protection in Social Networks

The main idea behind hiding (protecting) certain nodes in the graph
is to decrease the importance of the target node through local graph
manipulations. These methods do not consider entry-point attacks,
nor the different crawling algorithms. The most well-known method
in locally manipulating graph structure is ROAM, the algorithm
proposed by [18]. ROAM (Remove One, Add Many) decreases the
degree centrality of the target node by removing a neighbor and
connecting it to other immediate neighbors of the target node. [1]
expands the same idea to decrease the eigenvector centrality of the
target node. The problem with this approach is the costly compu-
tation of the eigenvector centrality after each iteration. Moreover,
although ROAM decreases the degree centrality of the target node,
it increases the centrality of the final immediate neighbors of the
target. A degree-based crawling algorithm can easily access this
immediate neighbor which is only 1-hop away from the target. As
the number of iterations increases, ROAM is also biased towards
creating star-shaped subgraphs that can be detected by an anomaly-
detection-based algorithm. In a different approach, [8] uses greedy
edge removal to decrease the closeness centrality of a target node.
Their approach is prone to transforming the target into an isolated
node and is not effective in practical setting. Our proposed method
preserves the connectivity of the graph (no isolated nodes created)
and is not biased towards creating anomalous subgraphs. As ROAM
shows better performance than eigenvector-based ROAM and does
not produce isolated nodes, we benchmark our proposed algorithm
against ROAM in Section 5.

These studies often focus on minimizing some centrality of the
node without considering the perspective of the data collector. In
our study, we define scoring schemes that consider not only the
centrality of the target node, but also the centrality of the nodes
that contribute the most to guiding the crawler to the target. The
current methods, as explained above, do not disturb the crawler’s
path to the neighborhood of the target node. As such, a crawler
can still find its way easily to the vicinity of the target node, and
depending on the density of the target’s neighborhood, they can
find the target through a few trial and error steps. Our approach,
on the other hand, helps us to diverge the crawler’s path from the
target in early stages of the crawling by manipulating the paths
that lead to the target, rather than the target node itself.

2.2 Graph Crawling Algorithms

There have been numerous studies on graph crawling algorithms.
Common graph crawling algorithms include classical techniques
such as random walk (RW), breadth first search (BFS), depth first
search (DFS), and their variants such as selective BFS/DFS [14]
and Metropolis-Hasting RW [6]. We encourage the reader to refer
to [3, 9, 19] for a more comprehensive review of various graph
crawling algorithms and their applications. Our problem specifically
deals with aggressive crawling in contrast to innocent sampling
attempts, as discussed in [14]. According to this study, aggressive
crawlers generally use expansion-based methods that allows them
to travel as far as possible from the starting node (e.g., DFS), whereas
innocent crawlers stay in the vicinity of the starting node gathering
as many neighbors as possible (e.g., BFS). As expansion-based and
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random-walk-based methods are the core of all these methods, we
choose BFS, DFS, and RW in this study.

3 PROBLEM

To formalize the Node Protection Problem, consider a graph G =
(V,E), where V and E denote the nodes and edges respectively. In
this study, we focus on undirected graphs; however, our proposed
method can trivially be extended to directed graphs as well (see
Section 5.1). We assume that G has limited entry points to reduce
external accessibility (e.g., it uses jump servers to monitor the in-
going traffic and build a controlled security zone). As such, only
Vs € V nodes have connections to outside of G and are vulnerable
to external attacks. Among the internal nodes in G, there are V; €
V'\ Vs sensitive nodes (target nodes) that are to be protected against
internal attacks initiated from either of nodes in V;. There are two
agents that operate on the graph: (1) the data collector who seeks to
observe the network and find sensitive information; and (2) the data
protector who tries to hide nodes containing sensitive information
from the data collector. In this paper, we address the problem from
the data protector’s perspective: that is, which edges from the network
should the data protector add or remove to protect the target nodes?
Next, we discuss each of these agents in details.

3.1 Data Collector

Initially, the data collector knows the identity of the nodes in set
Vs € V and can explore (i.e., crawl) the graph G beginning from any
of the nodes in V5. To explore the graph, the data collector queries
for the neighbors of a node it has seen, and adds the neighbors
and edges found to its observed subgraph. We assume that a query
accurately returns all neighbors of the queried node, and once a
node is discovered by the collector, all its information is accessible
(i.e., the collector knows it has found a target node). There are many
algorithms a data collector could use to crawl the network, such as
a random walk, snowball sampling, or more sophisticated methods
(see Section 2.2). In most cases, there is a limit to the number of
unique nodes that can be queried (due to time or budget resources).
We will use G = (V, E) to denote the subgraph observed by the
data collector after b, unique nodes have been queried, where b,
is the collector budget. Given a collector budget b, and an initial
set entry points Vs, the task of the data collector is to (1) collect
the subgraph G, and (2) identify the target nodes (V; c V \ V) in
V. The goal is to identify as many target nodes as possible. More
formally, let 7¢ (v, G, be, Vs) be the probability of node v € V being
included in V through some data collection algorithm C on graph
G. When the context is clear, we will abbreviate this term with
7c (v, G). The objective of the data collector is to find a crawling
algorithm that maximizes this probability for nodes in the target
set, i.e, C* = argmax Y,ey, 7¢(0,G).
C

3.2 Data Protector

The data protector has global knowledge of the graph (e.g., as the
admin of the network). In particular, it is aware of (1) external gate-
ways to the network (V5) where intruders can potentially access
internal network, and (2) target nodes that have to be protected.
Given a protector budget by, the goal of the data protector is to add
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or remove by, edges from the network such that the performance of
the data collector is degraded by the greatest amount possible while
still respecting network connectivity-related constraints. It is worth
noting that we consider a data protector that either deletes or adds
edges, but not both. This is for two reasons: (1) Our experiments
showed that edge deletion alone is far more effective than combin-
ing the two operations, and (2) The relative costs of edge addition
and deletion are very application dependent, and there is no obvious
relationship between the two. As such, we only include the separate
edge addition and deletion analysis in our experiments (Section 5).
Formally, the data protector wishes to find the set of edges for graph
G’ = (V,E’) such that G* = argérllin Yoev, 1c(v,G’), subject to

the following constraints:

e Because adding/removing an edge may have an associated
cost (for example if too many edges are added/removed, it
may affect other properties of the network), the data protector
may only add/remove a total of b, edges (|[E” \ E| = by for
edge addition and |E \ E’| = by, for edge deletion).

e There is a limit to edge modifications on a single node
(otherwise there may be undesirable side effects such as
isolated nodes or shifted centralities). So, we require that
Yo eV, W < r, where d(v, G) is the degree of
node v in G.

e The number of connected components in G* must be the
same as that in G.

These constraints exist because in real applications, the data
protector would likely wish to ensure that the network as a whole
demonstrates the same functionality (e.g., the nodes should still be
able to communicate effectively with one another and resources
should still be able to flow efficiently between nodes).

4 METHOD

As discussed in Section 3, the problem we are addressing is to
add/remove edges from G to obtain a graph G’ so that 3. ey, 7¢ (0, G”)
is minimized. To achieve this, there are a number of challenges that
the data protector faces, including:

Unknown data collection strategy. The data protector does
not know, a priori, the collector budget b, or the precise data col-
lector algorithm C. Although the data protector can observe the
data collector to get a sense of the kind of strategy it is using - e.g.,
expansion-type sampling or random-walk-based - the exact work-
ings of the data collector are not known. There are many crawling
algorithms that a data protector can use [2], including techniques
built in-house and tailored for a particular domain. However, in the
literature, most real-world crawling techniques are based on ran-
dom walk or expansion (e.g., breadth first search). We thus consider
scores based on these two algorithms for the data collector. Sepa-
rately, to account for the unknown collector budget, we maximize
the walk length required to find the target nodes.

Computational efficiency. The data protector has (‘fl) possi-
P

ble combinations of edges that can be deleted, and, in a sparse graph,
2
nearly (Hb/pl ) possible edges that can be added. It is clearly not com-

putationally efficient to measure the effect of adding/deleting each
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(a) edge deletion

(b) edge addition

Figure 1: Edge deletion/addition for protecting T from a
crawler C with budget b starting at node S is not submodu-
lar. (a) and (b) are counterexamples for the edge deletion and
edge addition scenarios. The budgets b, for (a) and (b) are 3
and 4, respectively. The crawling algorithm used in both ex-
amples is Pick Maximum Degree Next. The dashed edges in
(a) are originally included in the graph, whereas in (b) they
initially are not in the graph.

of these sets. Moreover, this problem is not submodular: for exam-
ple, it may be the case that there are two edges whose individual
removal is not very useful in protecting the target nodes, but whose
joint removal might seriously hinder data collection. Formally,
Claim: The problem of deleting/adding edges from/to a graph for
increasing the data collector’s path-length from starting node S to
target nodes T, using crawling algorithm C with budget b, is not
submodular.

Proof: Consider the toy graphs in Figure 1. In both figures, we try
to hinder the discovery of target node T by a crawler algorithm C
that starts at node S and has a limited budget b, (i.e., the crawler
can only visit b unique nodes). Suppose that the budgets b, for 1a
and 1b are 3 and 4, respectively. The crawling algorithm used in
both examples is Pick Maximum Degree Next (i.e., at each node, the
crawler picks the neighboring node with the highest degree as the
next node to visit). In Figure 1a, consider the dashed edges eT and
ed originally existing in the graph. Deleting any of these two edges
alone does not hinder the crawler to get from S to T. However,
deleting both eT and ed together, makes the shortest path from S to
T longer than be = 3 and, thus, T is protected. Similarly in Figure 1b
in which the two dashed edges ed and ec are not part of the graph, if
we add any of the two edges separately, the chances of S reaching to
T is high. However, if we add the two edges simultaneously, crawler
will not be able to reach T (note that in this scenario, crawler in
node ¢ will pick node e as the next target due to Pick Maximum
Degree Next strategy that it follows). |

For these reasons, we take the approach of assigning each edge
a score corresponding to how much its deletion/addition would
hinder the data collector.

Connectivity-related constraints. If the only goal of the data
protector was to prevent the data collector from reaching the tar-
get nodes, the protector could simply remove all edges adjacent
to those nodes. However, the data protector must obey network
connectivity-related constraints in order to ensure that the network
is still functional.

4.1 Frequent Path Score

We propose the Frequent Path Score (FPS) to specifically handle
the case of random walk based data collector. Note that we are not
assuming any knowledge on the crawler that collector would use.
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Indeed, as shown in Section 5 (Figure 3), we provide evidence that
this score gives satisfactory results for expansion-based crawling as
well. To elaborate on FPS, let the mean walk length to node v € V4,
given equal probability po = 1/|Vs| of starting at any of the nodes
in Vg, be L(v, po, G). We will denote this with £(v) where py and
G are clear from the context. Then, we have,

) j )
L(o) = Zi-ﬁc(v,G,i) = Zi-ftc(v,G,i)+ Z i #c(0,G,i),
i=1 i=1 i=j+1

(1)
where 7 (v, G, i) is the probability of landing on v with a walk of
length i (and not before), and 0 < j < co. For any j,

Jj oo
DG i)+ . Ac(e,Gi) =1, (2)
i=0 i=j+1

because we assume that the graph is connected. That is, if we
minimize Z?:O ic (v, G, i), Z;’ijﬂ 7ic (v, G, i) will increase by the
same amount.

THEOREM 1. Ifwe have a subgraph of G, G’, such thatZ{zO 7ic(v,G,i) >

Y, #ic(0.G', i), then, L(v,G) < L(v,G").

Proor. Since the graph is finite, for a sufficiently large k, we
have 7 (v,G,I) = 0 and 7 (v, G’,I) = 0, where [ > k. Then, we can
write £(v,G) and £L(v,G’) as,

J k
L(0,G) = Z i #(v,G, i)+ Z i #(,G,i)
i=1 i=j+1
j k
<j ) #@GH+k- Y #(2,Gi) 3)
i=1 i=j+1
J k
L(0,G) <)Y #(0,Gi)+k- Z #(v, G, i) ()
i=1 i=j+1
j j
L(©,6) - L(0,G) < - (Z #(0,Gi) = Y #(0,G0) | +
i=1 i=1
k k J J
k- Z #(0,G, i) — Z #(0,Gi)|<j- (Z #(v,G, i) — Z #(0, G, i)
i=j+1 i=j+1 i=1 i=1
j j
+k- (1 - Zfr(v,G,i) -1 +Zfz(a,c’,i) <
i=1 i=1
j j
G-k - (Z #(0,G,0) - Y #(0,G, i)) ()
i=1 i=1

We are given that Z{:O e (v, G, i) > 2{:0 #c(v,G',i), and by
construction k > j. Therefore, £L(v,G) < L(v,G’). O
From Theorem 1, we can see that the problem of maximizing
L(v,G) is equivalent to minimizing 7¢ (v, G, j) = Z{zl ic(v,G,i).
When we have multiple target nodes, the paths to discovering them
may not be independent. So, we restate the goal of the data protector

to find G’ such that arg max min £(o, G’).
G’ veV;

We model the random walk using an absorbing Markov chain.
The first step is to merge all the nodes in V; U N(V, G’) into one
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node, and consider this node as the absorption state. The rest of the
nodes are the transient states (including the source nodes). Let Q be
the sub-matrices representing the transition between the transient

states. Then the fundamental matrix is given by F = (I — Q).

The expected number of steps before hitting an absorption state
starting from v is given by the t,, where t = F1. Then, we can
show that min E(v,G’) = X,ev, mo(u) - ty. If Fy is the diagonal

veV;

matrix of F, transient probabilities are given by H = (F - I) - F(; .

That is, H; j is the probability of visiting node j in a walk starting
from node i before being absorbed. Our goal is to assign scores to
nodes based on their importance in a random walk starting from
Vs before hitting a node in V;. So, we define the Frequent Path
Score (FPS) of node u as,

Spw)= ), polo) d( Y ©)
veVy
Running Time. Calculating the FPS for all the candidate edges
requires inverting the matrix (I-Q). This can be done in O(|V|?). To
scale up, we developed an efficient approximation that is described
in Section 4.5.

4.2 Shortest Path Score

In an expansion-based crawling algorithm, the length of the shortest
path from the source node determines if a node v € V; will be
reached. That is, in contrast to the frequent path score used above,
what matters here is the shortest path score: if [ is the shortest path
length of v € V; from the source nodes, 7¢ (v, G/, be) decreases with
increasing [ and for | > b, nc (v, G’,b;) = 0. Let P(u, v) be the set
of all shortest paths between nodes u and v. For a path p € P(u,v),
let §(w, p) be such that §(w, p) = 1if w € p and 0 otherwise. Then,
we define the Shortest Path Score (SPS) for node u as,

6(u, p)
Sp(u) = ———= > po(v)
? d( <) Z ’ Z;W(MMMZ(M) o]

The idea behind the Shortest Path Score (SPS) is that if
an edge appears in multiple shortest paths then it is important.
It is weighted by: (1) ﬁ: The inverse of the shortest path length

™

since nodes on longer paths are less important; (2) m The
inverse number of possible paths between the source and target
because, if there are a lot of possible paths, it dilutes the importance
of the paths; (3) d(u ed) . The inverse of the node’s degree because,
if a node has a lot of nelghbors, it is more likely that the crawler
will follow other paths. SPS is different from existing measures
such as betweenness centrality because it considers the importance
with respect to source nodes Vs and target nodes V;. The length
and number of shortest paths is also important in SPS, unlike in
betweenness centrality. As with FPS, we show that SPS can be used
for random-walk-based crawling as well.

Running Time. Computing the SPS for all the candidate edges
can be done in O(|Vs||E|). In general |Vs| < |V|. So, the running
time is O(|V]).

4.3 Edge Importance

SPS and FPS give us measures of the importance for the nodes in
the network with respect to finding the target nodes. Since our
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Algorithm 1: NetProtect-()
Input: G, V;, Vs, by
Yu € V, calculate S; (u);
V(u,v) € E, calculate S (u, 0);
R « Sort (u,v) € E by decreasing order of S; (u, v);

counter « 0;

while couter < b, do

(u,0) < R.pop(0);

Remove (u, v) from G;

if ConstraintsSatisfied(G) then
‘ counter <« counter + 1;

else
‘ Add (u, v) to G;

end

if IsEmpty(R) then
| return G
end

end
return G

Algorithm 2: NetProtect+()
Input: G, V;, Vs, by
Yu € V, calculate S, (u);
X « Sort u € V by decreasing order of S, (u);

counter < 0;

i« 0;

jevi-g

whilei < |[V|-1do

while j > 0 do

if (X[i],X[j]) ¢ E then

Add (X[i],X[j]) to G;

if ConstraintsSatisfied(G) then
counter < counter + 1;

if counter > b, then
| return G

end
else
‘ Remove (X[i],X[j]) from G;
end

end

end
end
return G

goal is to remove/add edges from/to the network, we need to assign
scores to existing and non-existing edges. That is, in the case of edge
removal, we need to identify the important edges and remove them
(while obeying the constraints), and for edge addition, we need to
assign scores to node pairs that do not have an edge between them.

Edge Deletion The candidates for edge deletion are all the edges
that exist in the network and are allowed by the constraints. Let
us consider SPS. For an edge (u,v) € E, the Edge Deletion Shortest
Path Score (ED-SPS) is defined as Sy (u,v) = Ss(u) + Ss(v). That
is, edges with important nodes as endpoints are more important.
Similarly, we can define Edge Deletion Frequent Path Score (ED-FPS).

Edge Addition For edge addition, the goal is to add enough
edges to the important nodes so that we ‘mislead’ the data crawler,
and send it to a less-important part of the network. This means we
have to connect important nodes with unimportant ones. So, we
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define the Edge Addition Shortest Path Score (EA-SPS) of (u,v) ¢ E,
w0 € V as St (u,0) = |Ss(u) — Ss(v)|. We can define the Edge
Addition Frequent Path Score (EA-FPS) similarly.

4.4 NetProtect: Data Protector Algorithm

In this section, we describe the NetProtect algorithm. Depending
on whether we are dealing with edge deletion or addition, we can
pick one of the two algorithms NetProtect- and NetProtect+
respectively. If protector has the knowledge on the type of crawler
used by data collector, we can use either FPS or SPS. However, in
a general setting, we can use either of these scores as they both
surpass benchmarks, regardless of the crawling algorithm. The
first step in NetProtect is to calculate the node importance (FPS
or SPS) for all nodes in the network. Then, the edge scores are
calculated depending on whether we are dealing with edge deletion
or addition. Finally, the top b, edges with the highest scores are
removed/added from/to the network. Algorithm 1 and 2 describe
the NetProtect- and NetProtect+ algorithms in detail. Although
recomputing the scores after each edge perturbation yields a more
accurate result, it also increases the computation cost and does
not scale for larger graphs. Our experiments showed that using the
initial scores as the estimated score in each step yields a satisfactory
trade-off between the performance and time.

4.5 Speeding Up the Computation of FPS

As described, the time required to compute the FPS for all nodes
is O(|V|?). Thus, in many applications, it may not be feasible to
compute FPS. In this section, we describe a sampling method to
calculate approximate FPS values. Recall that the idea behind FPS is
that nodes that are traversed frequently during a random walk from
Vs to V; should be given more importance. This means that nodes
that are very far away from Vs and V; will not be important. Before
we begin, the data protector sets a sample size for approximating the
scores, denoted by s. A larger sample size results in a more accurate
approximation of FPS but, obviously, increases the running time.
The first step is to find all the shortest paths from all nodes in Vg to
all nodes in V;, as is done during the SPS computation. Let V’ be
the set of all nodes that lie in at least one shortest path that does not
begin or end at that node. The set of all nodes in the original graph
that have a neighbor in V’ but are not themselves in V” is given
by N(V’,G) \ v’. A random node is selected from this set of nodes
and added to V. This process repeats until |[V’| = s. Then, FPS is
calculated for the nodes in V” using the induced subgraph. The FPS
for the nodes that are not included in the sample is assigned as 0.
The time complexity of this approach is O(|V|?).

5 EXPERIMENTS & RESULTS

In this section, we perform an experimental evaluation of the pro-
posed versions of NetProtect algorithm across several real-world
networks. In these experiments, we consider various types of tar-
get nodes, data collection strategies, and baseline data protection
algorithms.!

Datasets. We consider five real-world networks: lastfm-asia,

musae-twitch, deezer-europe, musae-facebook, and musae-github.

10ur code is publicly available at https://github.com/rlaishra/NetProtect.
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All datasets are available from SNAP repository?. Table 1 shows
basic statistics of these networks.

Baseline Algorithms. As mentioned in Section 2.1, we bench-
mark NetProtect against the state-of-the-art node hiding algo-
rithm, ROAM, which uses both edge deletion and addition. We also
benchmark against two protection algorithms with the objectives
of minimizing betweenness centrality and Personalized PageRank
of the target nodes, respectively. Finally, we include Random edge
deletion/addition as a naive baseline. In

o ROAM: We use the same algorithm as in [18] and iteratively
remove the neighbor with highest degree from a target node
and add b new edges from this node to neighbors of the target
(we set b = 3 as in the original paper). To adapt this algorithm
to our experimental setup, we enforce the same connectivity
constraint that we have considered for NetProtect: we can
decrease the degree of a node by at most r.d(v, G). We also
treat the cost and budget of node deletion and addition to be
the same, and choose a total budget equal to the protector
budget in NetProtect. In each iteration, we choose one tar-
get node uniformly at random and perform ROAM (remove
one, add many) if the connectivity constraint holds. The it-
eration is continued until either the budget is exhausted, or
no target nodes can be manipulated without violating the
connectivity constraint.

e Random Edge deletion/addition: A random edge satisfy-
ing the connectivity constraint is selected for deletion. Edges
are deleted until the required number is reached. Similarly,
for random edge addition, a random pair of nodes that are
not already connected is selected and the corresponding edge
is added as long as the constraints are not violated.

e Betweenness Centrality deletion/addition: As explained
in Section 4.2, SPS is different from Betweenness central-
ity, despite both grounding their intuition on the shortest
paths. To empirically emphasize this difference, we assign
each node a score based on their betweenness centrality [4].
Then, the edges to delete/add are selected as described in Sec-
tion 4.3.

e Personalized PageRank deletion/addition: It is similar
to Betweenness Centrality, but uses the average Personalized
PageRank [7] calculated from the target nodes.

Data Collection Algorithms. As described in Section 2.2, the
literature contains numerous graph crawling algorithms. Many of
these algorithms have been designed for specific data collection
goals and domains, but a large number are based on random walk
or expansion-based strategies. Thus, we consider Random Walk,
BFS, and DFS crawlers as they are the foundations for many other,
possibly more sophisticated, methods. Note that, in our experiment
results in Table 1, DFS results are not reported due to both the lack
of space and the similarity of results to that of BFS.

Experimental Setup. For each network, we consider two types
of target nodes (V;): random target nodes and degree-based target
nodes. As the name suggests, in the first case, the target nodes
are selected uniformly at random. The degree-based target nodes
are selected randomly with the selection probability proportional
to the node degree. For each network, we consider five sets of

Zhttps://snap.stanford.edu/data/index.html
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Table 1: The fraction of nodes queried (data collector budget) to find 5 and 50 target nodes of various types after perturbations
implemented by different data protector algorithms. Higher numbers indicate better performance by the data protector.

Networks Data Protector Random Target Degree based Target
BFS RW BFS RW
5 50 5 50 5 50 5 50
NetProtect 0.15 0.56 0.14 0.79 | 0.04 0.08 0.08 0.12
.. Betweenness | 0.12 0.51 0.09 0.61 | 0.02 0.05 0.04 0.09
Addition
P PageRank 0.10 0.52 0.10 0.63 | 0.02 0.08 0.05 0.08
lastfm-asia Random 0.05 0.41 0.08 0.53 | 0.02 0.04 0.04 0.06
V] =17,624 NetProtect 0.18 0.78 0.19 0.74 | 0.24 0.40 0.17 0.27
|E| = 27,806 Deletion,  Betweenness | 0.10 060 0.12 065 | 0.08 0.12 007 0.3
P PageRank 0.07 0.65 0.10 0.62 | 0.06 0.14 0.09 0.15
Random 0.07 0.58 0.08 0.52 | 0.01 0.04 0.02 0.05
Both ROAM 0.05 0.55 0.05 0.53 ] 0.03 0.31 0.02 0.22
NetProtect 0.09 056 0.12 068 | 0.07 0.10 0.11 0.16
. Betweenness | 0.03 042 0.07 0.45 | 0.02 0.05 0.03 0.05
Addition
P PageRank 0.03 0.41 0.07 0.57 | 0.02 0.05 0.02 0.05
musae-twitch Random 0.04 0.47 0.04 0.51 | 0.01 0.05 0.02 0.04
V| =7,126 NetProtect 0.13 080 0.17 0.74| 0.14 0.20 0.12 0.18
|E| = 35,324 Deletion  Befweenness | 0.08  0.60 0.08 0.62 | 0.01 0.04 0.02 0.05
P PageRank 0.07 0.65 0.07 0.59 | 0.02 0.03 0.02 0.04
Random 0.06 0.55 0.10 0.53 | 0.01 0.03 0.02 0.03
Both ROAM 0.07 0.59 0.05 0.53 | 0.01 0.10 0.00 0.06
NetProtect 0.12 0.32 0.11 0.38 | 0.02 0.05 0.04 0.09
.. Betweenness | 0.10 0.25 0.13 0.25 | 0.01 0.04 0.01 0.06
Addition
d P PageRank 0.10 0.24 0.12 0.20 | 0.01 0.04 0.02 0.07
eezer-europe
|V| — 28281 Random 0.07 0.22 0.12 0.18 | 0.01 0.02 0.02 0.06
|E| _ 92’752 NetProtect 0.20 0.66 0.20 0.81 | 0.12 0.24 0.09 0.19
’ Deletion Betweenness | 0.10 0.60 0.08 0.52 | 0.02 0.05 0.04 0.09
P PageRank 0.07 0.61 0.12 0.59 | 0.02 0.04 0.05 0.10
Random 0.07 0.58 0.08 0.52 | 0.01 0.03 0.02 0.04
Both ROAM 0.10 0.61 0.07 0.60 | 0.03 0.40 0.02 0.30
NetProtect 0.18 0.59 0.11 0.66 | 0.09 0.12 0.08 0.10
... Betweenness | 0.07 052 0.06 0.51 | 0.02 0.07 0.01 0.08
Addition
musae-facebook P PageRank 0.06 0.51 0.10 0.53 | 0.02 0.07 0.06 0.09
V| = 22,470 Random 0.04 047 0.05 0.48 | 0.01 0.05 0.01 0.06
|E| = 171 002 NetProtect 0.16 0.62 0.17 0.64 | 0.23 0.33 0.07 0.11
’ Deletion Betweenness | 0.06 0.59 0.07 0.53 | 0.02 0.05 0.01 0.06
P PageRank 0.08 0.55 0.10 0.53 | 0.04 0.05 0.04 0.08
Random 0.05 0.51 0.05 0.50 | 0.01 0.05 0.01 0.04
Both ROAM 0.10 0.68 0.07 0.61 | 0.01 0.08 0.00 0.04
NetProtect 0.14 0.55 0.15 0.61 | 0.11 0.17 0.03 0.05
. Betweenness | 0.06 0.51 0.05 0.49 | 0.01 0.08 0.02 0.06
Addition
. P PageRank 0.08 047 0.12 0.52 | 0.02 0.06 0.02 0.07
musae-github
V| = 37,700 Random 0.05 045 0.04 0.42 | 0.01 0.04 0.01 0.06
|E| = 28’9 003 NetProtect 0.17 0.70 0.11 0.67 | 0.03 0.17 0.05 0.14
’ Deletion Betweenness | 0.08 0.52 0.07 0.56 | 0.02 0.07 0.02 0.06
P PageRank 0.06 049 0.06 0.49 | 0.02 0.06 0.03 0.06
Random 0.05 045 0.05 0.49 | 0.01 0.05 0.01 0.05
Both ROAM 0.39 0.79 0.11 0.64 | 0.02 0.16 0.00 0.01

source (V) and target nodes (V;). In all cases, the source nodes
are selected randomly from the set of non-target nodes. We set
|Vs] = 10, |V¢| = 100, and p(v) = 0.1 for all v € V5. For each (Vs, V;)
pair, we perform 30 trials, and set r = 0.5. We select protector
budgets (number of edges that can be deleted/added) ranging from
0.2% — 1.00% of the edges in the entire network.

Performance Metric. To measure the performance of a data
protector algorithm, we compute the number of queries the data
collector has to make to find a fixed number of target nodes. If the
data protector is effective, the data collector will have to perform a
large number of queries before finding target nodes. As the goal is
to maximize the number of queries required by the data collector
to find the target nodes, higher values indicate better performance.
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Figure 2: NetProtect- performance for different values of r.
For smaller set of target nodes, the performance is almost
independent from r. As the target set grows and protector
budget shrinks, increasing r improves the performance.
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5.1 Performance Comparison against Baseline
Methods

Table 1 shows the amount of budget the collector has to invest in
order to find 5 and 50 target nodes (the best values in each batch
are indicated in bold). The protector budget in these experiments is
set to 1% of the edges. We have run the experiments with different
budgets as well (see Figure 3) and chose this value as it resulted in
a decent trade-off between performance and computation cost. We
also performed experiments using a DFS crawler, which gave results
similar to BFS which are not shown here to reduce space. In almost
all cases, NetProtect offers better performance than Betweenness,
Personalized PageRank, and Random edge perturbations. Note that
Personalized PageRank and Betweenness Centrality are skewed
towards low degree nodes that are acting as bridges. However,
tampering with the connectivity of these bridge nodes leads to
changing the connectivity of the graph. As such, the nodes detected
by these two centrality measures are often useless and result in a
performance close to Random edge perturbation, as seen in Table 1.
Indeed, the superiority of Netprotect in comparison is in finding
the nodes that are not crucial in maintaining the connectivity of
the graph, but crucial in reaching the target nodes.

NetProtect generally outperforms ROAM for all datasets. In
fact, in many cases, ROAM does not even surpass the three other
benchmarks in hindering the collector. The only instances in which
ROAM offers a better performance are for random target nodes in
musae-github and degree-based targets in deezer-europe. This
interesting observation hints at the fact that ROAM for certain sets
of target nodes can offer a competitive performance. Consider a
randomly chosen target set that contains one target node with high
degree and the rest of the targets with degree 1. In this case, our
implementation of ROAM focuses on that one high degree node,
as pruning the other target nodes would violate the connectivity
constraint (creating isolated nodes). As a result, the high degree
node will use up all the budget and lose its degree centrality rapidly.
The final network will have target nodes that are in the fringe
of the network, i.e., accessible through only one or two nodes. In
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Figure 3: Using SPS and FPS for random walk crawler. The
similar performance of the two scores against the same
crawling algorithm shows that they can be used interchange-
ably, regardless of the crawling algorithm.
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this case, a BFS crawler will have a hard time finding the targets.
However, once we use random walk crawler or change the struc-
ture of target nodes (for example, degree-based targets), ROAM
immediately loses this advantage and lags behind NetProtect, as
seen in muse-github results. Now consider a similar setup with
many target nodes in fringe of the network, but this time with more
than one high-degree target node. In this scenario, due to budget
constraint, ROAM cannot turn all target nodes to fringe nodes. In
this scenario, ROAM gives a poor performance for protecting a
handful of target nodes (e.g., 5), but does better as the tolerance
for number of discovered target nodes increases (see degree-based
target for deezer-europe).

Another interesting observation from Table 1 is the superior-
ity of edge deletion over edge addition for NetProtect and other
benchmarks, which is consistent with previous observations [8].
Note that we also tested a variation of NetProtect that combines
edge addition and removal by deleting from high score region and
adding to low score regions (not shown due to space constraint).
We found the edge deletion to be still superior.

5.2 Tuningr

The main connectivity constraint that we imposed in all of our
experiments depends on parameter r (the allowed fraction of change
in a node’s degree). To study the impact of r on our results, we
repeated our experiments with different values of r. Figure 2 shows
the result for NetProtect- and a random-walk-based collector on
musae-facebook. The different colors represent different protector
budgets. As we see, for discovering 5 target nodes, the performance
is almost independent from r. As the number of target nodes and
protector budget increase, higher value of r makes the task harder
for data collector.

5.3 Scores and Different Crawling Algorithms

We initially proposed FPS and SPS to target random-walk-based
and expansion-based crawlers, respectively. However, as we as-
sumed that the protector does not have prior knowledge on the
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Table 2: Average time (in seconds) to find SPS and FPS for all
the nodes

Network SPS FPS (Approximate) FPS (Exact)
musae-twitch 3.9 X 107 4.1 % 102 8.7 x 104
musae-facebook | 2.5 x 102 6.5 % 103 9.1 X 10°
musae-github | 4.1 x 10 1.1 x 10* -

crawling algorithm that collector uses, we need to confirm that
both of these scores are indeed successful with respect to both
random walk or expansion-based crawling. To achieve this, we
repeated our experiments using SPS for random walk and FPS for
expansion-based crawling. The result for NetProtect- with ran-
dom walk crawler on musae-facebook is shown in Figure 3. As we
see, their performances are similar and we can use these two scores
interchangeably. In general, SPS has a lower computation cost (our
experiments for SPS were 10 times faster than FPS, see Table 2).
However, for random walk crawlers, as we reduce the protector
budget, FPS gives a better performance than SPS.

5.4 Running Times

Table 2 shows the time it takes to calculate FPS and SPS for all
nodes in three graphs. In the case of FPS, we use the approximate
method described in Section 4.5. The values presented are the av-
erage over 50 trials (except for FPS exact). Although computation
of FPS without the approximation is not feasible for some of the
networks we consider, it is much faster with the approximation.

5.5 Limitation

The focus of this study has been on increasing the robustness of
the network against external attacks while maintaining the func-
tionality of the network through connectivity criterion. However,
there are other criteria that might be of interest depending on the
application of the network. For example, if latency is of crucial
importance, increasing the shortest path length between targets
and certain nodes might not be desirable. In this case, we need
to define a tolerance threshold for the maximum latency that the
network can handle and include it in ConstraintsSatisfied in
Algorithms 1 and 2. The overall latency of the network is tune-able
by using the right value for parameter r (see Section 5.2).

6 CONCLUSION

In this study, we formulated the problem of modifying a network
so as to best hide target nodes from an entry-point attack. We pro-
posed two node-level scores: FPS and SPS. FPS assigns importance
to nodes to prevent a random-walk-based crawler from discovering
the target nodes within their budget limit; and SPS is designed for
expansion-type crawlers. We proposed the NetProtect algorithm
to remove or add edges to hinder a data collector from finding the
target nodes. NetProtect uses FPS and SPS to identify the candi-
date edges for removal or addition. Our experiments on multiple
real-world networks show that NetProtect outperforms all consid-
ered baseline algorithms, including the state-of-the-art protection
algorithm, ROAM. In some networks, with 1% of edges removed
by NetProtect, the data collector, compared to the best baseline
method, requires up to 6 times the query budget in order to find
the same number of target nodes. We also show that our proposed
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scores can maintain their superior performance even for crawlers
that they are not optimized for (i.e., SPS and FPS can be used for
random walk and expansion-based crawlers as well).

7 ACKNOWLEDGMENTS

Wendt was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories, a multi-
mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under con-
tract DE-NA0003525. Soundarajan and Laishram were supported
by Army Research Office award W911NF-18-1-0047. Soundarajan
was additionally supported by NSF award 1908048.

REFERENCES

[1] Olle Abrahamsson. [n.d.]. Master’s thesis. Linkoping University, Sweden.

[2] Katchaguy Areekijseree, Ricky Laishram, and Sucheta Soundarajan. 2018. Guide-
lines for online network crawling: A study of data collection approaches and
network properties. In Proceedings of the 10th ACM Conference on Web Science.
57-66.

[3] Katchaguy Areekijseree and Sucheta Soundarajan. 2019. Crawling Complex Net-
works: An Experimental Evaluation of Data Collection Algorithms and Network
Structural Properties. The Journal of Web Science 6 (2019).

[4] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology 25, 2 (2001), 163-177.

[5] Hale Cetinay, Karel Devriendt, and Piet Van Mieghem. 2018. Nodal vulnerability
to targeted attacks in power grids. Applied network science 3, 1 (2018), 34.

[6] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou. 2010.

Walking in Facebook: A case study of unbiased sampling of osns. In IEEE Confer-

ence on Computer Communications. 1-9.

Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceed-

ings of the 12th International Conference on World Wide Web. 271-279.

[8] Jie Ji, Guohua Wu, Chenjian Duan, Yizhi Ren, and Zhen Wang. 2019. Greedily

Remove k Links to Hide Important Individuals in Social Network. In International

Symposium on Security and Privacy in Social Networks and Big Data. Springer,

223-237.

Manish Kumar, Rajesh Bhatia, and Dhavleesh Rattan. 2017. A survey of Web

crawlers for information retrieval. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery 7, 6 (2017), e1218.

[10] Ricky Laishram, Katchaguy Areekijseree, and Sucheta Soundarajan. 2017. Pre-

dicted max degree sampling: Sampling in directed networks to maximize node

coverage through crawling. In IEEE Conference on Computer Communications

Workshops. IEEE, 940-945.

Yali Liu, Cherita Corbett, Ken Chiang, Rennie Archibald, Biswanath Mukherjee,

and Dipak Ghosal. 2008. Detecting sensitive data exfiltration by an insider attack.

In Proceedings of the 4th annual workshop on Cyber security and information intel-

ligence research: developing strategies to meet the cyber security and information

intelligence challenges ahead. 1-3.

Arun S Maiya and Tanya Y Berger-Wolf. 2010. Online sampling of high centrality

individuals in social networks. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining. Springer, 91-98.

Arun S Maiya and Tanya Y Berger-Wolf. 2010. Sampling community structure.

In Proceedings of the 19th international conference on World wide web. 701-710.

Mainack Mondal, Bimal Viswanath, Allen Clement, Peter Druschel, Krishna P

Gummadi, Alan Mislove, and Ansley Post. 2012. Defending against large-scale

crawls in online social networks. In Proceedings of the 8th international conference

on Emerging networking experiments and technologies. 325-336.

Anthony Piltzecker. 2011. The Best Damn Windows Server 2008 Book Period.

Elsevier.

Yilin Shen, Nam P Nguyen, Ying Xuan, and My T Thai. 2012. On the discov-

ery of critical links and nodes for assessing network vulnerability. IEEE/ACM

Transactions on Networking 21, 3 (2012), 963-973.

Chris Steffen. 2017. Should jump box servers be consigned to history? Network

Security 2017, 11 (2017), 5-6.

Marcin Waniek, Tomasz P Michalak, Michael ] Wooldridge, and Talal Rahwan.

2018. Hiding individuals and communities in a social network. Nature Human

Behaviour 2, 2 (2018), 139-147.

Shaozhi Ye, Juan Lang, and Felix Wu. 2010. Crawling online social graphs. In

2010 12th International Asia-Pacific Web Conference. IEEE, 236-242.

—_
)

[

—_
-

[12

[13

(14

[15

[16

[17

(18

[19



	Abstract
	1 Introduction
	2 Related Work
	2.1 Node Protection in Social Networks
	2.2 Graph Crawling Algorithms

	3 Problem
	3.1 Data Collector
	3.2 Data Protector

	4 Method
	4.1 Frequent Path Score
	4.2 Shortest Path Score
	4.3 Edge Importance
	4.4 NetProtect: Data Protector Algorithm
	4.5 Speeding Up the Computation of FPS

	5 Experiments & Results
	5.1 Performance Comparison against Baseline Methods
	5.2 Tuning r
	5.3 Scores and Different Crawling Algorithms
	5.4 Running Times
	5.5 Limitation

	6 Conclusion
	7 acknowledgments
	References

