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Introduction/Overview
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DOE Earthshots: Innovations using Al

* Towards net-zero energy economy

« Reduce emission of greenhouse gases

o Design more energy-efficientsystems (industrial/domestic)
« Capture CO,from point sources and air

e Enhanced oil recovery (EOR)

« Geological storage of CO,

e All the above require fast development cycles

* Developing Al-based digital twins of engineering
devices

* Digital replica of engineering process/device
* Greatly accelerate the transition to net-zero
» Efficientlyhandle a large design space

* Developandscale CCSdevices

* Develop fuel efficientsystems

Image sources: NETL Communications/Multimedia Services
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Flue gas
capture

© Conventionol coal fired power plonts release CO; directly into the otmosphere
MM.\E@‘CCSHMMJNCO;MM

Underground carbon storage




Physics Informed Neural Networks N = [NATIoNAL
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Physics guided deep learning approach using Modulus from NVIDIA

Relates spatial & temporal coordinates (X, y, z, t) to physical fields (e.g., velocity, pressure, temperature)

NN trained to minimize the residual form of the same physical equations as in CFD

Parameterized system representation can solve for multiple configurations simultaneously

Near-instantaneous inference

Orders of magnitude faster than CFD for UQ/design optimization problems

ONLINE prediction for arbitrary conditions

OFFLINETRAINING over a parameter space
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Figure source: Hennigh et al., “ NVIDIA SimNet: An Al-accelerated multiphysics simulation framework” (2020)
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Modulus: Salient Features —|NATIONAL
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Modulus Model Training

® Uses TensorFlow 1.x butis being ported to PyTorch

® Exactdifferentiation

® Soft constraints on governing equations and BCs

® No requirement for structured grid format or grid connectivity information
® Can utilize advanced NN architectures like Fourier Network/SiReN

® Options for dynamic loss weighting (being tested now)
Loss(8) = Ew;LoSSinterior + LwpLoSSpoundary

Hyperparamete
Is

Loss'nterior = |LH Sgov —RH Sgovlorder Lossboundary = |LH S BC™ RHS BC |order

I
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PINN for Reacting Flows

Formulation and PINN vs CFD

Aim: Create a digital twin of an industrial scale boiler

Simplified methane oxidation

Implemented reacting flow transport equations for
kinetics-controlled combustion

* No requirement for training data

% Single PINN model for a range of input conditions
% Fidelity and accuracy comparable to CFD

% Trained PINN can provide near-instantaneous
inference for any input condition
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Figure source: https://commons.wikimedia.org/wiki/File:Steam_Generator.png




Towards a Reacting Flow
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Solver N=

Governing Equations: Strongly Coupled PDEs

Single species Multiple species

Multiple species
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Multiple species Multiple species

« Turbulent =) ° Turbulent * Reacting o) Reacting =) Reacting
- Steady state - Steady state «  Turbulent + Turbulent «  Turbulent
-« 2D « 2D « Steady state * Transient « Transient
« 2D - 2D - 3D
. P dp | d(pyy) _
Continuity: ot o = 0
. : - (43 o . 0 9
Species mass fraction: P, TPy ox; = Wk + ox, (pDk 6xi)
. . dpuy) | Opwuy)  dp | Oty
Momentum: or ox; ~ ox T ox
. - o 0 oy _wr , 0 ( or
Temperature: o T ox: (uJT) =, + axi(aaxi)
* Kinetics-controlled single step irreversible reaction CH,+ 2(0,+3.76N,) - CO, + 2H,0 + 7.52N,
o . . - PYcH4 PYo2
Species source/sink terms Wepa = MWCH4kf(MWCH4) (MWoz) etc
» Temperature source term Wr = = Npeg hx@pe = — Xpog R Wi — Xp=q ARL
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Parametric Boundary Conditions N=|raTona:
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Inlet Conditions
_ |Fuelinlet _|Oxidizerinlet
Y ch4 0.5 0.0 _ (\
Y 02 0.0 0.23 TZU
Y_co2 0.01 0.01 2 outlet
Y_h20 0.01 0.01 2 —
Y n2 0.48 0.75
Velocity, m/s 1.0 1.0-5.0
Temperature, K 650 650 Fuel oxidizer
Wall Conditions inlet :> <: inlet

Temperature, K 350.0
Species Zero flux
Velocity No-slip
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Multi-Species Nonreacting Flow NATRAL
CFD vs. PINN [ABORATORY'

* 3 non-reacting species (CH,4, O,, N,)
* Species (Y) and Temperature (T)
distributions compare well with ANSYS

Fluent

* Improved predictions after normalization
of the governing equations and BCs

U.S. DEPARTMENT OF

Mass_fraction_of_chd
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Ansys Fluent Modulus

Temperature (K)
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Oxidizer Inlet vel = 2 m/s




First AHempt at Reacting Flow Solver = [NnONAL
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Handling Y-T coupling

» Strongly coupled PDEs

* Y and T source terms allowed to : l | 4
. |—
increase gradually ‘ - [

1.0 '

0.8 Y_chd advection_Y_chd diffusion_Y_chd Q_mass_ch4 Y_chd_resid_abs
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thdIStrlbUtI:lon goes UnPh)’S|CaI 054 1.00 -0.50 0 0.50 '0'50- [I] 2’0 temPerature_source_term UOTU_reSId_oé)sm
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— O

* Unphysical Y distribution affects
the T field
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Without T-Source

Simplified system

e T sourceremovedfrom the
system for the time being

* Thereactantand product
distributions are reasonable

* Thisfield is usedas IC for
subsequent cases
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One Way Y-T Coupling = |y
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Frozen Species Field

. 1 3
e Species notallowed to ‘
evolve from the |C | L
- 000 Y_ch4 050 advection_Y_chd O?gfusiog_Y_cgz]IA . (?]Bmﬂss_cé‘goo Y_ch4_resid_abs
=l Sl 024 0 0.10 - . =2 M 0.00 0.10
* T-sourcereasonably - I O o -
developed at the reaction |
zone .
<. ﬂ
* Decoupled T and Y fields
can lead to severe errors
U T g thermal_advection 11%Ermalﬁdiﬁus]i%ra o ol
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Simplified Systems N=|ranona:
PINN vs. CFD TL
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Species distributions for case without T source term Temperature distribution with frozen species
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Increasing Y-T Coupling = BTy
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-
(8]

— fully-coupled
—— jterationsy/iterationSspecies = 1e + 3

=
o

* Toincrease the Y-T coupling, Y
solved for every 100-1000 T

—— frozen species

o
o

:

. . 2
iterations 2 0.6
= 0.4
* Issue persists: T-source drops off .
0.0

Training iteration index
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Resolving the issue with large T-source N =[MenYA

TL TECHNOLOGY
LABORATORY

Handling large T-source

* T-source dominates the Y-source
* This can lead to imbalances between the backpropagated gradients

A) Gradient normalization approach

* Attempts to remove the dominance
of any component of the global loss
function
* Dynamically assigns weights to
different constraints '. '. 'h b
i

B) Transientapproach

Y _chd Y_o2 Y_n2
0.00 050 000 O 0.23 048 06 075 054 1.00
|

* Handles large source terms by — - - —
learning the change between states
instead of learning everything at
once
* Uses a moving time window
approach
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TF32 vs. FP32 and Scaling Study = |y
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Math Mode & Strong Scaling Performance

* Boiler cases ran on NVIDIA P100 GPUs
* Performance metrics available for sample problems using TF32 on A100 GPUs

* Good multi-node scaling obtained using Horovod for a 3D decaying turbulence case

3D Taylor Green strong scaling
DGX A100 80G

0.15 4
312 © Spzedup  we ww (deal Speedup @ Efficizncy  « s Ideal Efficiency

50

0.10

5
4 0.78
'-'E 2 ;31 10 g
E o 1 1.00 E‘ 5 0.50 %
0.25
1 0.00
0.00 0 B8 16 3z 64 128 256 512
V100 FP32 A100 FP32 A100 TF32 V100 FP32 A100 FP32 A100 TF32
. . . GFUs
(a) Time per iteration (b) Speed-up
Accelerated training using TF32 on A100 GPUs Strong Scaling- Speedup and Scaling Efficiency

.S. DEPARTMENT OF
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Short and Long-Term Goals

Transition to PyTorch framework from TensorFlow
Develop a PINN methodology for stiff chemistry
Develop an RNN-based PINN for transient problems

Integration with NVIDIA tools for deployment as digital twin
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Thank Youl!
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