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Abstract—A large-scale deployment of phasor measurement
units (PMUs) that reveal the inherent physical laws of power
systems from a data perspective enables an enhanced awareness
of power system operation. However, the high-granularity and
non-stationary nature of PMU data and imperfect data quality
could bring great technical challenges for real-time system event
identification. To address these challenges, this paper proposes a
two-stage learning-based framework. In the first stage, a Markov
transition field (MTF) algorithm is exploited to extract the latent
data features by encoding temporal dependency and transition
statistics of PMU data in graphs. Then, a spatial pyramid pooling
(SPP)-aided convolutional neural network (CNN) is established
to efficiently and accurately identify power events. The proposed
method fully builds on and is also tested on a large real-world
dataset from several tens of PMU sources (and the corresponding
event logs), located across the U.S., with a time span of two
consecutive years. The numerical results validate that our method
has high identification accuracy while showing good robustness
against poor data quality.

Index Terms—Event identification, Markov transition field,
phasor measurement unit, spatial pyramid pooling.

I. INTRODUCTION

Large-scale blackouts, such as the Northeast blackout of
2003 in the U.S., which started with a local event but eventu-
ally affected 50 million customers, continuously remind us of
the need for better and faster event detection and identification
to enhance the wide-area situational awareness of power
system operation [1]. Recent years have seen a rapid growth
in the deployment of phasor measurement units (PMUs), pro-
viding a unique opportunity for preventing cascading failures
and blackouts [2]. Unlike the supervisory control and data
acquisition (SCADA) system that only offers power system
monitoring at steady state, PMU collects high-granularity
voltage and current phasor, frequency, and frequency variation
(e.g., 30 or 60 samples per second in the U.S.), which enables
capturing the fast dynamics of power systems. Therefore,
exploiting PMU data for real-time event identification has
attracted increasing attention.

Related Works: The existing works on PMU-based event
detection and identification can be mainly classified into two
categories: 1) signal processing-based methods [3]–[6]; and 2)
machine learning-based methods [7]–[10]. In [3], a wavelet-
based method was designed for detecting the event occurrence
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and classifying events. In [4], a dynamic programming-based
swinging door trending method was developed to detect the
start-time and placement of events. The authors in [5] proposed
a quadratic fitting method to recover the dynamics of events
and a knowledge-based criterion to classify events. In [6],
the extended Kalman-filtering algorithm was applied to detect
voltage events. Inspired by the recent success of machine
learning techniques in data analytics, many researchers have
adopted different machine learning methods to identify the
types of events. In [7], a multiclass extreme learning machine
classifier was utilized to perform near-real-time automatic
event diagnosis. In [8], a data-driven algorithm consisting of
an unequal-interval reduction method and principal component
analysis was proposed to detect and locate events using
PMU data. In [9], a hierarchical clustering-based method was
proposed to determine the types of events, using several char-
acteristics of multidimensional minimum volume enclosing.
In [10], the k-nearest neighbor and support vector machine
classifiers were exploited to perform event identification based
on different pattern creation methods.

Challenges: While researchers have contributed numerous
valuable works on this topic, several critical questions remain
open, which may challenge the practical deployment of these
methods. 1) Data quality issues, such as bad data, dropouts,
and time error, arise frequently in reality, and can easily
lead to misclassification of bad data as events, which were
ignored in the previous works. Basically, data quality issues
can disjoint the dimensional consistency of data samples
during the training procedure, thus resulting in a failed event
identification. To avoid this situation, a common solution is to
drop data points with quality issues. However, this strategy is
hard to apply during online testing, such as real-time power
system operation, because data points cannot be dropped.
Thus, poor robustness against data quality makes the data-
driven event identification models insufficiently convincing
in practice. 2) Most of the previous methods rely on the
complicated data imputation and optimization in online event
identification, which may affect the real-time performance of
these methods [8]. 3) Some existing studies require the spatial
information of PMUs (i.e., detailed system topology), which
may be unavailable due to privacy protection.

Our Contributions: To solve these questions, in this paper,
a learning-based method is developed to identify power event
types using PMU measurements. The proposed method fo-
cuses on providing an efficient and accurate event identifier to
enhance situational awareness, while introducing robustness
against data quality issues in real-time operation. To achieve



2

this, two stages are included in the proposed method: 1) the
time-varying statistical characteristics of the PMU data (i.e.,
voltage magnitude and frequency variation) are extracted using
a Markov-based time-series feature extraction. In this stage,
the time-series PMU data is converted into image-like data.
2) A robust event identification model is developed to build a
mapping relationship between the results of stage I and event
types by adopting a spatial pyramid pooling (SPP) strategy
in a convolutional neural network (CNN)-based model. One
salient merit of the proposed method is that the dimension
of the testing data can be different with that of the training
data, thus providing a superior solution to the online data
quality problem. Specifically, after the model is trained using
the historical PMU data and the corresponding event labels,
when a new data sample shows data quality issues, the relevant
data points can be marked and then directly excluded. The
remaining good-quality PMU data of arbitrary dimension is
assigned as input to the trained model, and the output will be
the estimated event type. Hence, our model does not generate
any artificial data point that could reduce the accuracy of event
identification. Moreover, our method provides an efficient way
for encoding time-series PMU data into image-like data, which
preserves both temporal ordering and statistical dynamics,
under incomplete information of the transmission system (i.e.,
topology). To validate the performance of our method, a large
amount of real-world PMU data over two consecutive years,
gathered from several tens of PMUs throughout the U.S., and
sufficient real event labels are utilized for model development
and testing. It should be noted that the proposed method is
fine-tuned on our dataset to optimize the values of the model
hyperparameters. However, the methodology is general and
can be applied to any other PMU datasets after some fine-
tuning procedure. This is true for any data-driven solution.
Our method is designed to address common challenges in all
PMU datasets. The large number of real event labels contained
in this dataset provides a good foundation for developing an
efficient and practical event identification model. Besides, we
have tested the sensitivity of our model accuracy to the size
of missing data to demonstrate the robustness of the model.

The rest of this paper is constructed as follows: Section II
introduces the available PMU dataset and data pre-processing.
In Section III, an Markov-based time-series feature extraction
algorithm is utilized to summarize the hidden features of
PMU data in graphs. Section IV proposes the SPP-aided
CNN-based event identification method based on MTF-graphs.
The numerical results are analyzed in Section V. Section VI
presents research conclusions.

II. PMU DATA DESCRIPTION AND PRE-PROCESSING

A. PMU Dataset Description

The available PMU dataset includes more than 440 PMU
sources that are installed in the Eastern, Western, and Elec-
tric Reliability Council of Texas interconnections at different
voltage levels with the nominal frequency of 60 Hz. For
convenience, let A, B and C denote the three interconnections
hereinafter. They are equipped with 215, 43 and 188 PMUs,
respectively. Most data segment is archived at 30 frames/s and

the remaining is archived at 60 frames/s. Each PMU mea-
sures voltage and current phasor, system frequency, frequency
variation rate, and PMU status information. The dataset spans
a time period of around two consecutive years (2016–2017).
The total size of the dataset is more than 20 TB (in Parquet
form)1. These data files were read in Python and MATLAB
environments. In total, around 670 billion sampling points
have been used to conduct the analyses.

B. Event Log Description

Since data-driven event identification can be converted to
a classification problem, real event labels play a vital role
in providing the ground truths. A unique advantage of our
dataset is that we not only have 20TB PMU measurements
but also enough real event labels recorded by utilities. This is
exactly the type of data that system operators have access to
and can utilize for event identification model development in
reality. Hence, the available dataset provides a good foundation
for developing an efficient and practical event identification
model. In summary, a total of 6,767 event labels, consisting
of 6,133 known events and 634 unknown events (where the
event type entry is empty or unspecified), are included in our
dataset. Each available event label contains the interconnection
number, start timestamp, end timestamp, event type, and high-
level event cause, of which a detailed statistical summary
is presented in Table I. The type and timestamp of events
have been verified by matching them with the corresponding
protection relay records, ensuring the high confidence of these
event labels. Note that the proofreading of these events was
done by the data providers. Thus, due to sensitive information
protection purposes, this information is unavailable for us and
cannot be utilized as input to the proposed event identification
model. Moreover, the definition of each event type was left
entirely up to the data providers. We did not make any manual
changes to the event labels. In other words, we try to simulate
the real situation faced by the system operators. The proposed
model is based solely on the event labels from the data
providers instead of integrating much prior event information,
thus ensuring the practicability of our model. Since three
interconnections have different event categorization systems,
it is impossible to directly merge the three event logs into
a single dataset. Therefore, in this work, we have used the
event log from one interconnection that has the most known
events (around 4800 known events) for model development
and validation.

C. Data Pre-Processing

As a real-world dataset, our dataset is not perfect and has
some vague and incomplete information. Hence, to eliminate
the impact of these problems on model training, the available
PMU dataset is initially passed through a data pre-processing
that combines various methods and engineering intuitions.
Note that this data pre-processing is developed on empirical
knowledge rather than purely heuristic. The goal of the data

1The pacific northwest national laboratory (PNNL) team has formatted the
raw dataset to 20 TB in Parquet form so as to save memory while facilitating
the learning algorithm design and validation.
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Fig. 1. Illustration of two-stage learning-based event identification framework.
In the data extraction and cleaning, a 2-s time window is selected to extract
the event data and then PMU status information and engineering intuition
are utilized to eliminate the missing and/or bad data for training dataset. The
stage I encodes the PMU data to a graph by characterizing the transition
probability and temporal dependency. The stage II constructs an end-to-end
mapping between the graphs and the event types by leveraging deep learning
techniques.

TABLE I
STATISTICAL SUMMARY OF THREE INTERCONNECTIONS.

A B C
Record period 1 year 2 years 2 years
Data size 3 TB 5 TB 12 TB
Number of PMUs 215 43 188
Sample rates [frames/s] 30 30/60 30
Total number of events 29 4854 1884
Number of unidentified events 0 0 634
Resolution of event record Daily Minute Minute
Number of event causes 13 3911 1883

pre-processing is twofold: 1) select an appropriate analysis-
window to extract the data into frames corresponding to
pre-event and event states for training a learning model; 2)
eliminate missing and bad data caused by communication and
meter malfunction.

Following the start timestamp in the event log, we have
extracted 60 seconds of pre-event and 120 seconds of post-
event data to visualize power events. Fig. 2 shows event plots
of all PMUs in the interconnection. Note that this figure
is plotted against a frequency event and line outage on the
data provider’s event log. As is demonstrated in Fig. 2, it
is clear that the most critical changes happen around the
inception of event, but the lengths of changes are different
for different PMU-recordings. In addition, these figures show
that the length of the change can be at second- or sub-second-
levels for different types of events. Thus, to apply PMU-
base event identifiers in real-world application, a second-level
analysis-window is needed. Hence, in this work, a 2-second
analysis-window is selected to extract the event data [10],
[11]. Obviously, the 2-second analysis-window cannot cover
all events, but it contains sufficient event features to deter-
mine the types. This has been demonstrated using numerical
results. Basically, using the data-driven event identification
model, most of the events could be identified with multiple
post-event samples rather than data from the entire event.
Moreover, the 2-second analysis-window can avoid the curse

(a) Frequency event example.

(b) Line outage example.

Fig. 2. Plots of multiple PMUs’ data for two events.

of dimensionality for model development and ensure the real-
time performance of the event identification. Noted that the
previous method also utilizes a similar analysis window for
PMU-based event identification [2]. According to the sampling
rate of PMUs, each analysis window should include 120 data
points. However, as described in Table. I, the resolution of
the available event logs collected by the data providers is
minute-level, thus, not sufficient to directly extract the start
timestamp of events at the second-level. To tackle this, a
statistical algorithm is proposed to apply for the entire data
set, which can detect the transition between the normal and
event states. The rationale behind this is that, since PMUs are
synchronized, the variations in PMU-recordings will occur at
the same time. It should be noted that this statistical algorithm
can be bypassed if the resolution of event logs is sufficient for
a 2-second analysis-window. The proposed algorithm involves
the following steps:

• Step 1: Define and initialize the 2-second event set E = ∅
and the event counter i← 1.

• Step 2: Select the i’th event from the event logs and then
extract related 60 seconds of pre-event and 120 seconds
of post-event data Di.

• Step 3: Utilize the modified z-score for Di and identify
the time stamps with the minimum score, of which the
set is denoted as Ti [12].

• Step 4: Find the time stamp with the highest frequency
of minimum values belonging to Ti, denoted as t∗i .

• Step 5: Sort Di based on the 2-second analysis-window,
and find the 2-second data that includes t∗i , denoted as
D∗

i ; add D∗
i to E.

• Step 6: i ← i + 1; go back to Step 2 until i equals the
total number of events.

When the 2-second event dataset is obtained, PMU status



4

Markov Transition Matrix (W)

A B I J

A

B

I

J

0.0117 0.083 0 0

0

0

0.083 0.283

0.23

0.23 0

0

0.167

0.075

0.075

0.245

Markov Transition Field (M)

V1 V2 Vn-1 Vn

0.083 0 0.075 0.245

0.255

0

0 0.075

0.083

0.083 0.075

0.075

0.083

0

0

0.23

V1

V2

Vn-1

Vn
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(b) Survival function of size of single data quality problem

Fig. 4. Statistical analysis results about data quality problems using 20TB
PMU data.

flags information is utilized to perform data quality assessment
[13]. The status flags are in binary form and all information
is aligned as 16-bit long. Each bit corresponds to a different
status based on IEEE C37.118.2-2011 standard, such as bits
03-00 reflecting the trigger reason and bits 05-04 showing the
time error (i.e., asynchrony). When the value of the status
flag is 0 in the decimal format, data can be used properly;
otherwise, data should be removed due to the various PMU
malfunction. Also, the engineering intuitions is used to design
several simple threshold-based methods for further detecting
the data quality problems which are not identified by the
PMU. For example, a number of data windows contained a
single sample with an unreasonable value compared to the
nominal value, which is dismissed as bad data. Following our
data quality assessment, when a consecutive missing/bad data
occurs, the data is excluded from our study because it is hard
to provide a high accuracy data imputation for the consecutive
missing/bad data. The rest of the missing/bad data are filled
and corrected through a linear interpolation. [11].

III. MARKOV-BASED PMU DATA FEATURE EXTRACTION

Despite PMUs’ high precision and ability to capture system
dynamics, PMU-based event identification via simple features

(i.e., voltage magnitude and frequency) is a difficult task. The
source of this challenge is the non-stationary characteristics of
real-world PMU data, which is caused by sudden variations
in system behavior during events [3]. To address this issue, in
this paper, a Markov matrix-based feature extraction method
known as MTF is adopted to discover additional data features
for event identification [14]. It should be noted that the feature
extraction is a common theme as well in modeling any time-
series data. Also, our MTF method is a general method that can
be applied to any other PMU dataset for feature engineering.

Basically, the MTF method encodes the temporal depen-
dency and transition statistics of PMU data in a compact met-
ric. Compared to traditional feature extraction methods, such
as Fourier transform, wavelet transform, and multidimensional
minimum volume enclosing ellipsoid, our feature extraction
method offers two unique advantages: 1) The MTF method
can preserve both temporal ordering and statistical dynamics
of the PMU data, thus improving accuracy. 2) Using the MTF
method, PMU data is converted into the image-like structure
without requiring any spatial information of PMUs (i.e.,
topology), which provides a basis for utilizing the recently-
developed image-based deep learning techniques. In this work,
based on the previous work [15], voltage magnitudes and
frequency variations are selected as event indicators because
they are deemed to closely correlated to power events. Hence,
the input to the MTF method is the voltage magnitude and fre-
quency variation of each PMU. Note that the MTF method can
in principle be applied to the remaining PMU measurements
(i.e., voltage phase angles and current phasor measurements).
However, adding more inputs does not necessarily improve
the performance of the event identification model due to
the increased model complexity. Let V j

i denotes the voltage
magnitude data during event i as recorded by the j’th PMU.
The objective of the proposed feature extraction method is to
map this continuous signal V j

i = {V j
i (k)|k ∈ N, V j

i (k) ∈ R}
to a network G = (O,B), which consists of a set of vertices
O and a set of edges B connecting different vertices. Since a
direct mapping from continuous data to a network with finite
nodes is not possible, we utilize a quantile-based approach
to obtain a discretized dictionary for V j

i [16]. Specifically,
given a V j

i , we create q quantile bins (states) S1, ..., Sq and
assign each V j

i (k), k = 1, ..., n, to the corresponding bins2

(see Fig. 3). While different strategies can be applied to assign
V j
i to the bins, our quantile strategy ensures that all bins in

each data have the same number of points [16]. Compared

2Note that, S1, ..., Sq are different for different i, j. For simplicity, we omit
the indexes i, j here.
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to other strategies, quantile mapping is more data-specific
and has shown the highest identification accuracy on our
dataset. Following this strategy, a weighted adjacency matrix
W ∈ Rq×q is developed by counting the transitions among
quantile bins similar to a first-order Markov chain. Each entry
of W is a non-negative real number representing a transition
probability that is determined as follows:

wSa,Sb
=Pr

{
V j
i (t) ∈ Sa|V j

i (t− 1) ∈ Sb

}
,

∀Sa ∈ {S1, ..., Sq}, Sb ∈ {S1, ..., Sq}. (1)

After normalization by
∑

Sb
wSa,Sb

= 1, W becomes a
standard Markov matrix that contains the transition probability
on the voltage magnitude axis. However, W fails to capture the
higher order temporal dependencies as it is based on a first-
order Markov chain. Hence, to preserve information across
the temporal dimension, we extend matrix W to a new matrix
M ∈ Rn×n by aligning each probability along the temporal
order, as follows [14]:

M =

m11 · · · m1n

...
. . .

...
mn1 · · · mnn

 (2)

with

mk1,k2
= wSa,Sb

, V j
i (k1) ∈ Sa, V

j
i (k2) ∈ Sb,∀k1, k2.

So, the kth row of M represents the transition probabilities
between the k’th point and all data points. In this way, M
encodes the transition dynamics of the PMU data between
different time lags. This process is applied to the remainder
of event dataset including voltage magnitudes and frequency
variations to obtain the MTF-based graph set, which are used
for training our learning-based event identification model.

IV. SPP-AIDED CNN-BASED EVENT IDENTIFIER

In this section, we lay out our PMU-based event identifi-
cation strategy. Considering that PMU-based models are de-
veloped to identify events and perform supervisory protection
in real-time, high speed and accuracy are required [10]. Also,
the robustness of the model should be considered because data
quality problems are common in current PMUs. Several previ-
ous works have mentioned the impact of data quality problems
in data-driven event identification task [2], [13]. Here, we
also provide a basic statistical analysis, survival function, on
our 20TB PMU dataset to show the probability of occurrence
of data quality problems. Specifically, the PMU status flag
information and engineering intuition are leveraged to mark
the data that has quality issues. The details are described in
our data pre-processing procedure (Section II). Then, survival
function is defined for the probability of missing data per PMU
per day as follows:

S(k) = Pr

{
number of missing data per PMU per day

total number of data per PMU per day
> k

}
.

(3)
As can be seen in Fig. 4 (a), PMUs show data quality issues
more than 30% of time which is a non-negligible number.
Moreover, the survival function of size of each individual

Fig. 5. Proposed SPP-aided CNN-based event classifier. As can be seen, our
model is a multiple-layer architecture that consists of different layers. The
input of this mode is the MTF-based graphs and the outcome is the event
type.

data quality issue is obtained and plotted in Fig. 4 (b). It is
clear that around 3% of data quality issues have more than 10
consecutive missing and bad data. Considering the extremely
high sampling rate of the PMU, it is quite common to have
consecutive missing and bad data due to long communication
failure intervals or equipment malfunction.

These statistical analysis results confirm the need for a
robust event identification model that can work well under
various data quality issues. For most of the existing PMU-
based event identification models, data quality issues cause
a data dimension imbalance problem since these models only
accept inputs with fixed dimensions. In other word, the testing
input dimension of the models should be exactly equal to that
of the training data (i.e., if n-dimensional data is used for
training, then the data-driven model allows for n-dimensional
test inputs). In the offline training procedure, the data dimen-
sion imbalance problem can be solved by dropping data points
and performing data imputation techniques. It should be noted
that our data pre-processing utilizes these solutions to address
the data quality issues of the training dataset. However, in the
online testing procedure, these solutions are not appropriate
because data points cannot be dropped, and it is hard to
generate accurate artificial data points for consecutive missing
and bad data that is also common based on our statistical
analysis. Meanwhile, many system operators avoid performing
data imputation techniques for PMU data in the industry
since they prefer not to modify the PMU data. Hence, to
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Fig. 6. Illustrate of the different layers in the proposed model; (a) Convo-
lutional Layer; (b) Max-Pooling Layer; (c) SPP Layer (d) Fully-Connected
Layer.

achieve reliable real-time event identification, we propose an
SPP-aided CNN-based event classification method. As shown
in Fig. 5, this method constructs an end-to-end mapping
relationship between MTF-based graphs and the event types
using deep learning techniques. The proposed method offers
a unique advantage: the dimension of the testing data can
be different with that of the training data, which provides a
natural solution for the online PMU data quality problems.
The rationale behind this is that the fixed-size constraint of
the learning-based event identifier is removed by adopting a
global pooling strategy, SPP.

Here, consider a training set {V,F,L}, V :=
{v(1), ..., v(h)} and F := {f (1), ..., f (h)} are the MTF-
based graphs based on the PMU-based voltage magnitude
and the frequency variation data, and L := {l(1), ..., l(h)} is
the corresponding event label set from the event logs. Then,
the probability that the label l(i) of {v(i), f (i)} is equal to j
can be calculated by:

Pr
{
l(i) = j|z(j)

}
=

exp
(
θj(v

(i), f (i))
)∑o

c=1 exp(θc(v
(i), f (i))

(4)

where, o is the number of event types and θc(·) denotes
the mathematical model in the proposed SPP-aided CNN
method. The learning parameters are obtained by minimizing
the following cost function J :

J := − 1

h

h∑
i=1

o∑
j=1

1{j = l(i)}ln
(

exp(θj(v
(i), f (i)))∑o

c=1 exp(θc(v
(i), f (i)))

)
(5)

where 1{j = l(i)} equals 1, if j equals l(0); otherwise, it is
0. Here, θ(·) consists of multiple convolutional, batch normal-
ization, max-pooling, SPP, and the fully-connected layers. To
help readers who are not familiar with machine learning, we
provide the details of each typical layer as follows.

Convolutional Layer: The key component of the convolu-
tional layer is the convolution operation: ∗. Basically, this layer

computes convolutions of the input with a series of filters,
which can be mathematically described as follows [17]:

ϕζ
g =

∑
u∈U

xu
g−1 ∗W ζ

g + bζg (6)

where, ϕζ
g is the latent representation of the ζ’th feature map

of the g’th layer (the first feature map is the MTF-based graph
{v(i), f (i)}); xu

g−1 is the u’th feature map of the previous
layer and U is the total number of feature maps; W ζ

g and
bζg are the kernel filter and the bias of the ζ’th feature map of
the g’th layer, respectively. Since all event signals have been
regarded as 2-dimensional MTF-based graphs after the feature
reformulation, xu

g−1 ∗W ζ
g can be written as [18],

(xu
g−1∗W ζ

g )(i, j) =

U−1∑
δi=0

U−1∑
δj=0

xs
g−1(i−δi, j−δj)W ζ

g (i, j) (7)

where, i and j are the row and column indices of the MTF-
based graphs. Hence, the convolutional layer operates in a
sliding-window way to output the feature maps (see Fig. 6(a))
[19]. The amount of horizontal and vertical movement in the
sliding-window is set to 1 here. For each convolutional layer,
the size of the output feature map is ϕζ

g ∈ R(p−q+1)×(p−q+1)

where xu
g−1 and W ζ

g are p×p and q×q matrices, respectively.
A typical drawback of the convolutional layer is that the
impact of the data samples located on the border of data graph
is much smaller than those at the center. To tackle this, a
padding strategy is used by adding an additional layer to the
border of the feature maps [20].

Activation Layer: To make up for the limitation of linear
modeling in the convolutional layer, the outcomes of g’th
convolutional layer are passed to an activation layer. A nonlin-
ear function, such as sigmoid, hyperbolic tangent, or rectified
linear unit (ReLU), is utilized to introduce nonlinearity to the
model [18]. In this work, ReLU is used for all activation layers
except for the output layer, as follows:

ϕζ
g = max(0, ϕζ

g). (8)

Unlike sigmoid and hyperbolic tangent activation functions,
ReLU is robust to the vanishing gradient, thus, allowing deep
models to learn faster and perform better [18].

Batch Normalization Layer: A batch normalization layer
is added after the activation layer to avoid internal covariate
shift, which leads to an exponential increase in computation
burden by requiring much lower learning rates [21]. Thus, the
output of each activation layer is normalized by subtracting
the batch mean and dividing by the batch standard deviation
for each training mini-batch.

Max-pooling Layer: After batch normalization, a max-
pooling layer is utilized to summarize feature maps. Max-
pooling can be considered as a sample-based discretization
procedure that takes the feature map from the previous layer:
ϕζ
g ∈ RNin×Nin and outputs a smaller matrix, denoted as

Nout × Nout. This is achieved by dividing the input matrix
into N2

out pooling regions Pi,j and selecting the maximum
value [22]:

Pi,j ⊂ {1, 2, ..., Nin}2,∀(i, j) ∈ {1, 2, ..., Nout}2. (9)
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In our work, a 2× 2 max-pooling is used, as shown in Fig. 6
(b). Thus, Nin = 2Nout and Pi,j = {2i−1, 2i}×{2j−1, 2j}.
The functions of the max-pooling layer generalize the results
from the convolutional-normalization operation and reduce the
model complexity while alleviating overfitting.

SPP Layer: In the proposed model, an SPP layer is adopted
to replace the last max-pooling layer for mitigating the fixed-
size constraint of the proposed model [19]. Unlike the standard
pooling operation, such as max-pooling layer, which performs
a single pooling operation, the SPP layer maintains spatial
information by pooling in local spatial bins, as shown in Fig.
6(c). This figure provides an exemplary 3-level SPP layer.
Suppose the last convolutional layer has r feature maps. In
the first level, one bin is utilized to pool each feature map
to become one value, thus, forming an r-dimensional vector.
Then, four bins are leveraged to divide each feature map into
4 regions of equal size with a rectangular shape. The max-
pooling strategy is applied to each region to form a 4 × r-
dimensional vector. In the final level, each feature map is
pooled to have 16 values, and form a 16 × r-dimensional
vector. In general, the outputs of the SPP are r ·B-dimensional
vectors, where B is the number of spatial bins, which is
proportional to the MTF-graph size but is fixed. Basically, the
SPP layer pools the features and generates fixed-dimensional
outputs, which are then fed in to the last fully-connected
layer. Hence, after the event identification is trained using the
historical data and the corresponding event labels in offline,
when PMU data quality problems (i.e., bad and missing
data) occur in online, the related data points can be marked
and then directly excluded. The remaining good-quality-data
of arbitrary dimension can be assigned as the input of the
proposed method. Moreover, while the conventional pooling
operations use only a single window size, SPP utilizes multi-
level spatial bins, which shows the better performance [23].

Fully-connected Layer: The last layer of the proposed
method is a fully-connected layer, which integrates informa-
tion across all locations in all the feature maps from the
SPP layer. In this fully-connected layer, the softmax activation
function is applied to calculate probabilities of the input being
in a particular event type.

In the proposed SPP-aided CNN-based method, the adaptive
moment estimation (Adam) algorithm is used to update the
weight and bias variables [24]. Adam is a combination of
gradient descent with momentum and root mean square prop-
agation algorithms. Compared to backpropagation algorithms
with constant learning rates (i.e., stochastic gradient descent),
Adam computes individual adaptive learning rates for each
parameter from estimates of first and second moments of the
gradients [24], which significantly increases the training speed.
To calibrate the hyperparameters of the proposed method,
we utilize the random search method to find the appropriate
sets [25]. It should be noted that the training procedure of
the proposed model is an offline process. Hence, the high
computational burden of the random search method does not
impact the real-time performance of our event identification
model. Moreover, the dropout strategy is utilized in our model
to further reduce the risk of overfitting.

TABLE II
THE STRUCTURE OF THE SPP-AIDED CNN-BASED MODEL.

Layout Type Output Shape Model Complexity
1/1 Conv2D (120,120,32) 608
1/2 Activation (120,120,32) 0
1/3 Batch Norm (120,120,32) 128
2/1 Conv2D (120,120,32) 9k
2/2 Activation (120,120,32) 0
2/3 Batch Norm (120,120,32) 128
2/4 Max-pooling (60,60,32) 0
3/1 Conv2D (60,60,64) 18k
3/2 Activation (60,60,64) 0
3/3 Batch Norm (60,60,64) 256
4/1 Conv2D (60,60,64) 36k
4/2 Activation (60,60,64) 0
4/3 Batch Norm (60,60,64) 256
4/4 Max-pooling (30,30,64) 0
4/5 Dropout (30,30,64) 0
5/1 Conv2D (30,30,128) 73k
5/2 Activation (30,30,128) 0
5/3 Batch Norm (30,30,128) 512
6/1 Conv2D (30,30,128) 147k
6/2 Activation (30,30,128) 0
6/3 Batch Norm (30,30,128) 512
6/4 Max-pooling (15,15,128) 0
6/5 Dropout (30,30,64) 0
6/6 SPP (1,2688) 0
7/1 Fully-connected (1,1,5) 13k
7/2 Activation (1,1,5) 0

V. NUMERICAL RESULTS

To validate the effectiveness of the proposed event identifi-
cation method, we test it on the PMU dataset and the related
event log from interconnection B. This includes around 4800
known events that consist of line outage, XFMR outage, and
frequency event. Moreover, the same number of the 2-second
analysis-window in normal conditions have been added. Since
each event type was left entirely up to data providers and
we do not make any changes to the event log, the recorded
line and XFRM trip categories in interconnection B cannot be
determined as faults based on the current high-level description
of the event logs. Hence, fault is not added as an event type in
this work. We are trying to negotiate about the more detailed
information of events with the data providers. The future work
will be done to meet the gap once we acquire this information.

To ensure the generalization ability of the proposed method,
it is necessary to observe whether the trained model suffers
from an overfitting problem. To facilitate a better understand-
ing, we provide a simple explanation about the overfitting
problem. Overfitting refers to a method that can only model
the training data well. In other words, if a model is highly
customized for a specific training dataset, this model should
suffer from a severe overfitting problem. Hence, in this work,
the event dataset is randomly divided into two separate subsets
for training (80% of the total data) and testing (20% of the total
data). Moreover, to make the testing procedure more rigorous
which can demonstrate the proposed model works well on
unforeseen PMU data, we have applied k-fold cross validation
strategy and k is selected as 5 in this work. The k-fold cross-
validation strategy is performed in a rolling-horizon manner
with a sliding window of PMU data. Specifically, the whole
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dataset is partitioned into k disjoint folds and k − 1 folds
are utilized for model development and the remaining fold
is used to validate the accuracy of the trained model. This
procedure is repeated until each of the k folds has served for
model validation. Then, the final accuracy of the proposed
model is obtained based on k-time model validations. In other
words, all data in the available dataset have been treated
as the unseen data for calculating the final accuracy of our
model. Based on the difference between the average training
and testing accuracy, we can determine whether the overfitting
problem arises. The case study is conducted on a standard PC
with an Intel(R) Xeon(R) CPU running at 4.10GHZ and with
64.0GB of RAM and an Nvidia Geforce GTX 1080ti 11.0GB
GPU. The training computation time of the proposed model is
around a few hours. However, since the training procedure is
an offline process, the high computation burden of the training
procedure does not impact the real-time performance of our
event identification model. After the model is trained, we have
tested the average testing time based on 5000 Monte Carlo
simulations. In this work, the average testing time is around 1.4
ms. Even including the communication delays, our model is
feasible in real-time, in accordance with the IEEE C37.118.2-
2011 standard.

A. Performance of the Proposed Method

The detailed structure of the proposed classifier is presented
in Table II. As can be seen, our model is a seven-layer
architecture that includes multiple convolutional, activation,
batch normalization, SPP, and fully-connected layers. Each
row represents layers with specific layer type, the dimension
of output feature map, and model complexity calculated with
the number of hyperparameters. Based on this structure, the
training and testing performances of the proposed method are
shown in Fig. 7. As demonstrated in this figure, the training
and testing accuracy converge to around 95.1% and 94.6%.
The difference between these two values is small, which
proves the generalization ability of the proposed model.

Moreover, the performance of the proposed method for each
event type is explained using confusion matrix shown in Fig.
8. In this figure, the rows correspond to the estimated type
and the columns correspond to the true type. The diagonal
and off-diagonal cells correspond to events that are correctly
and incorrectly classified, respectively. The value of each cell
represents the accuracy of the specific event type. Here, two
statistical indexes are utilized: the precision and the recall rates
are presented in the cells on the far right and the bottom of
the figure, respectively [12]. The cell in the bottom right of
the figure is the overall accuracy. As seen in this figure, the
worst-case precision and recall rates of the proposed method
are around 90.5% and 90.4% for the XFRM outage and line
outage classes, which still are acceptable values. It can be
observed that the accuracy of the proposed method for the
XFRM outage and line outage events is relatively lower than
the rest. One possible reason is that the event patterns of
these two types of events are some similarities, which is
described in the confusion matrix (see Fig. 8). Around 8.3%
of line outage events are inaccurately deemed to be XFRM
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Fig. 7. Training and testing results of the proposed model.

Fig. 8. Confusion matrix for interconnection B using the proposed model.

outage events. As shown in the figure, the false positive rate
(system is inferred to have an event while its actually state
is normal operation) is pretty low, meaning that our model is
extremely unlikely to provide inaccurate identification in the
normal operation. When an event occurs, in more than 90% of
cases, our model will provide an accurate event identification.
Besides, in more than 99% of cases, our model will at least
provide a meaningful event warning for system operators,
which is important in emergency situations. In contrast, the
false negative rate (system is inferred to be operating normally,
while its actual status is that an event has occurred.) is only
around 0.5%.

In practice, operators are interested in knowing a single
system-level classification outcome rather than multiple PMU-
level outcomes. Hence, we have obtained and tested the
system-level results by collecting the classification outcomes
of all PMUs: for a specific event, if more than 90% of PMU-
level outcomes are positive, the event is identified at the
system-level, using the proposed method. In this case, the
system-level accuracy of our technique is around 91.07%.

Considering that the proposed method is composed of three
components: MTF, SPP, and CNN, we have tested the event
identification accuracy for each component, as shown in Fig.
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Fig. 9. Sensitivity of event identification accuracy to the size of consecutive
bad/missing data.
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Fig. 10. Sensitivity of event identification accuracy to the size of nonconsec-
utive bad/missing data.

11. It is observed that the model that only includes MTF and
CNN achieves similar accuracy with the proposed model. This
indicates that the SPP strategy does not impact the identifica-
tion performance; however, SPP is needed for resolving online
data quality issues. Further, we compare the accuracy obtained
by sending the PMU data before and after the MTF-based
feature extraction to the model respectively. As described in
the figure, utilizing the MTF-based feature extraction model,
identification accuracy has been increased a lot. This result
proves that the MTF-based feature extraction is valuable and
can improve the identification accuracy. Moreover, to further
evaluate the performance of the MTF, we have conducted
numerical comparisons with several commonly-used feature
extraction techniques for PMU data, PCA, wavelet trans-
formation, and multidimensional minimum volume enclosing
ellipsoid [11], [15], [26]. The result is shown in Fig. 12. To
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Fig. 11. The performance of MTF feature extraction and SPP layer.

ensure a fair comparison between the four feature extraction
methods, CNN is utilized to perform event identification for
all feature extraction methods. It is observed that through
the Markov-based feature extraction, the accuracy of event
identification can be considerably improved.

B. Method Comparison

We have conducted numerical comparisons with three pre-
vious event identification models: k-nearest neighbors (kNN)
[27], support vector machine (SVM) [10], and random forest
(RF) [28]. Further, two state-of-the-art classification meth-
ods, light gradient boosting machine (LGBM), and gradient
boosting decision tree (GBDT), have also been compared
with our methods in terms of event identification accuracy
[29]. As described in Fig. 13, the testing accuracy of the
proposed method is around 94%. On the other hand, kNN,
SVM, RF, LGBM, and GBDT, show the testing accuracy
of {81.8, 79.1, 76.7, 85.3, 88.1}, respectively. Hence, based
on this PMU dataset, the proposed method shows a better
accuracy for event identification compared to the previous
works.

C. Sensitivity Analysis

To demonstrate the sensitivity of the proposed event identifi-
cation accuracy to the size of missing data, we have calculated
the average performance of our method under various sizes of
missing/bad data. For each percentage of missing/bad data,
1000 Monte Carlo simulations are conducted to obtain the
average accuracy. Here, we consider two different data quality
issues: consecutive and nonconsecutive data quality issue. In
real-time event identification, consecutive data quality issue
is more challenging compared to nonconsecutive data quality
issue. The reason is that data with the nonconsecutive data
quality issue can keep a portion of the critical information
(i.e., event patterns). This information can still be used for
accurate event identification. For the consecutive data quality
issue, it is likely that all event information is lost within
a time period. As the length of consecutive data quality
issue increases, the probability for loss of event information
significantly increases. Hence, we can expect performance
degradation with the increase of consecutive missing/bad data.
For each experiment, we have randomly selected a time-stamp
as the start time for the data quality issue. Then, n consecutive
data points after this time-stamp are removed, where n is
determined by the percentage of bad/missing data. Here, we
gradually increase n from 0 to 50% of the data samples.
The result is shown in Fig. 9. As is presented in the figure,
the model accuracy drops as the percentage of missing data
increases from 0% to 20%. This result is expected. It is
clear that no event identification model can provide a good
estimate when event information is missing. Then, when n
continues to increase to 50% of the data sample, the accuracy
of the proposed model is stabilized around 65%. These results
demonstrate that the proposed learning-based method can still
provide meaningful results with 50% data loss. Note that the
50% consecutive bad/missing data is an extremely rare case.
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Moreover, we have tested the robustness of our method for
nonconsecutive data quality issues. In each experiment, we
have randomly selected n independent data points as the miss-
ing/bad data points. The result is shown in Fig. 10. It can be
observed that the nonconsecutive data quality issues are much
easier to handle using the proposed method. As is described in
the figure, the model accuracy slightly drops as the percentage
of missing data increases from 0% to 20%. Even if 20% of the
data points are treated as nonconsecutive missing data points,
the proposed model can still reach an average accuracy of
83%. It should be noted that in practice most of the data quality
issues are nonconsecutive. The consecutive data quality issue
can be considered as the worst-case scenario. Last but not
least, unlike the previous data-driven methods that rely on data
imputation techniques to introduce robustness, our solution
addresses online data quality issues by eliminating the fixed-
size input constraint of the learning process. In comparison,
our method can handle consecutive data quality issues without
any additional computational burden in real-time. Meanwhile,
based on discussions with our industry partners, many system
operators avoid performing data imputation techniques for
PMU data since they prefer not to modify the PMU data.
Hence, our method provides a good solution for system
operators to deal with online data quality issues, especially
for consecutive data quality issues.

D. ACTIVSg500 Test Case
This subsection further explores the performance of the pro-

posed method using a benchmark synthetic power system with
artificial PMU data generated by simulated events. Specifi-
cally, this synthetic PMU dataset is generated by the Siemens
Power System Simulator for Engineering (PSS/E). The Illinois
500-bus system, known as the ACTIVSg500 test case, is
utilized to demonstrate the results. The detailed description and
parameters of this power system can be obtained from [30]. To
be consistent with the available real-world PMU dataset, the
sampling rate of PMUs is set to be 60 recordings per second.
PMUs are placed at buses 22, 66, 187, 308, and 500 to record
voltage phasor and frequency. Three types of events described
are simulated: line fault events, line trip events, and generator
loss events. More precisely, we have simulated 350 events,
including 150 line fault events, 150 line trip events, and 50
generator trip events at different locations with the same pre-
event system condition. We have applied the aforementioned
strategy to obtain the training and testing data. In this case
study, the average testing accuracy converges to about 98.7%.
Fig. 14 shows the estimated and actual labels for 20 events.
As can be seen, the proposed method is able to accurately
classify the event types. From a statistical perspective, based
on this synthetic PMU dataset, the proposed method offers
classification accuracy of 100% for line fault, 97% for line
trip, and 98.2% for generator trip. Also, the Area under the
Curve (AUC) index is employed to assess the classification
performance of our method [31]. In this case, the proposed
SPP-aided CNN-based method achieves an AUC value of
0.98. The comprehensive case study including the real-world
dataset and the synthetic dataset helps to demonstrate the
generalization of the proposed approach.
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Fig. 12. Comparison results of four feature extraction methods.
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Fig. 13. Comparison results of six event identification models.

E. Cost of Misclassification

In this subsection, we analysis the cost of misclassification
caused by the proposed model. It should be noted that we
have developed a data-driven event analyzer rather than a
protection module. The goal of our data-driven model is to
enhance situational awareness by identifying system vulner-
abilities (i.e., relay misoperations) in real-time. Hence, in
normal operation, data-driven event identification models are
treated as supervisory monitoring, which will not provide input
to digital relays and or interfere with relay operation. In the
worst-case scenario, if the trained model provides an incorrect
estimation, the relay protection will still operate despite the
loss of selectivity [10]. When SCADA is dysfunctional, as
was the case during the 2003 North American large-scale
blackout, data-driven models will still work, thus maintain-
ing partial system awareness. Such strategies can reduce
the risk of misclassification caused by the proposed model
(i.e., inadvertent operations). Moreover, our method introduces
robustness against data quality issues in real-time operation,
which prevents the misclassification caused by missing and
bad data. Since the historical relay operations are not available,
we cannot exactly quantify the cost of misclassification at this
stage. We leave it for future work once they are available.
More comprehensive results will be provided.

VI. CONCLUSION

In this paper, we have presented a novel two-stage learning-
based method for real-time event identification to enhance
the situational awareness of power systems using PMU data.
Comparisons with previous methods show that our method
achieves more accurate event identification outcomes. More-
over, this approach shows robustness against data quality
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Fig. 14. Comparison of estimated event type and actual event type in
ACTIVSg500 case study.

problems in online operation, which highly improves the
practical applicability in real-world systems. The proposed
method is successfully validated on a large-scale PMU dataset
and the real event logs.
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