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Executive Summary

Project Summary

The over-arching project objective is to fully develop and validate optimal controls frameworks that can
subsequently be applied widely to different WEC devices and concepts. Optimal controls of WEC devices
represent a fundamental building block for WEC designers that must be considered as an integral part of
every stage of device development. Using a building-blocks approach to optimal controls development, this
effort will result in the full development of a feed-forward and feed-back control approach and a wave
prediction system.

Phase | focused primarily on numerical offline optimization and validation using wave tank testing of three
industry partners’ WEC devices, including; CalWave, Ocean Energy, and Resolute Marine Energy. These
industry partnerships allowed us to identify optimal control strategies for these different WEC topologies
at different maturity levels. Phase Il focused on demonstrating an integrated control system on an at-sea
prototype that is to be custom-built and maturing the HW and SW required to successfully run our advanced
controls code frameworks on at-sea systems. A secondary focus during phase 1l is to adapt our systems
identification, controls and wave-prediction frameworks to become more robust and comprehensive in
respect to RT capability, robustness, and reliability.

Alignment with the Program
This project contributes to the following MHK Program Approaches:

e Foundational and Crosscutting R&D:
¢ Drive innovation in components, controls, manufacturing, materials and systems with early-stage
R&D specific to MHK applications
o Develop, improve, and validate numerical and experimental tools and methodologies needed to
improve understanding of important fluid-structure interactions
o Collaboratively develop and apply quantitative metrics to identify and advance technologies with
high ultimate techno-economic potential for their market applications
e Technology-Specific Design and Validation:
e Validate performance and reliability of systems by conducting in-water tests of industry-designed
prototypes at multiple relevant scales

Project Objectives and Impacts

Control of WEC devices plays a critical role in improving power capture, decreasing structural loads,
and reducing PTO requirements in WEC systems. Optimal controls leveraging Model Predictive
control and causal (feed-back) control strategies have the potential to significantly improve the
economic viability in most WEC devices under development.

The key objectives of this project are focused on developing “industry-ready” controls technology

building blocks that can be applied to a wide range of different WEC topologies including:

o Development of optimal controls algorithm frameworks that can be applied to a wide range of
different WEC topologies. Both causal and non-causal (requiring a prediction of excitation
forces) are being evaluated and applied.
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o Develop a wave prediction system that can be used to feed into Model Predictive Control (MPC)
frameworks. Evaluate the use of wave radar and measurement buoys to provide wave
measurements to feed into prediction algorithms.

o Develop and refine approaches by working with three different device developers and retiring
technical issues through an incremental testing and validation process using: (1) numerical
modeling, (2) wave tank testing, and (3) in-ocean validation on a small heaving point absorber.

Active valve assemble Linear potentiometer #2

5 Ibs weight

A N
]
£
\§ ” 4 Mooring line
Mooring line \ \ X
\ t ’ p . . —
¥ =

Tube for pressure sensor]' —~
Linear potentiometer #1
L
.V

[ Wavg gauge #2

=~
Ilustration:

End-User Engagement and Dissemination Strategy

We focused on the optimizing four different WEC topologies. To do so, we engaged with three different
device developers and optimized the control system of their devices including; (1) Resolute Marine Energy,
(1) Ocean Energy USA, and (3) CalWave. These collaborations allowed us to focus on solving device-
specific problems and bring these “lessons-learned” back to our algorithm frameworks. A fourth topology,
a heaving point absorber tethered to the seabed was brought along to enable testing at sea on our own small
controls unit at sea and fully integrate its controller with our wave prediction system.
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Management Approach

Re Vision Consulting leads the project and established subcontracts with all project partners and

consultants to execute on the scope. Quarterly reviews with the DoE project management were used to

align project scope and adapt the project plan to most effectively achieve our core objectives. Most of the
heavy lifting on controls development and validation was performed in-house. The co-location of the core
technical team (4 FT Engineers), enabled a tight integration between technical disciplines and allowed for

rapid resolution of issues. Communication with external team-members was done using weekly

conference calls.

Key milestones revolved around the controls optimization and wave tank validation tasks during phase |
and around the in-ocean testing and validation activities during phase Il. The following provides a high
level schedule and main milestones over the performance period.

Table 1: Schedule and Milestones

2016

2017

2018

2019

Phase | Activities

Detailed Implementation Planning

RME - Controls Optimization

RME - Wave Tank Testing

OE - Controls Optimization

OE - Wave Tank Testing

CalWave - Controls Optimization

Wave Prediction System Development

Design of In-Ocean Demonstrator

Phase Il Activities

Detailed Design

Build of Demonstrator

RT Testing of Wave Prediction System

Testing of Demonstrator

Milestones

RME Device Optimized

OE Buoy Optimized

CalWave Controls Evaluated

Wave-Prediction Buoys Built

In-Ocean Validation of WP Accuracy

Go/NoGo Review

Demonstrator Ready for Deployment

Complete Demo In-Ocean Testing

Success in avoiding/reducing costs: Re Vision was able to take advantage of measurement hardware
loaned from NREL reducing field-campaign costs. We also continuously re-aligned our scope to take
advantage of technical opportunities and reducing cost. The result is that we were able to complete a

broader scope than originally planned under our original budget umbrella.

Cost/time overruns: We underestimated the time and money required for building and testing our in-ocean

demonstrator. We were able to largely mitigate cost overruns, but at the expense of a stretched out

timeline. Specifically, the build process for our 8kW in-ocean demonstrator was delayed due to the long
lead on PTO hardware components. This resulted in us missing the summer deployment window on the

pacific coast during the summer of 2018, pushing it out by one year. We also underestimated the
challenges associated with the in-ocean testing efforts.

7|Page




Technical Approach

On the controls side, we leveraged linear and non-linear MPC methods, as well as causal methods developed
by Jeff Scruggs at the University of Michigan. We then applied these methods to our target topologies and
moved through a controls optimization process starting with a system with no constraints placed on them.
This allowed us to identify and benchmark the theoretical upper limits of that topology and identify the
potential level of improvements over the slow-tuned baseline. Subsequently we started to identify the
design’s sensitivity to PTO topology chosen, and constraints and losses imposed on the design. Trade-offs
were evaluated using appropriate techno-economic benchmarking to identify optimality in the systems
design. These trade-offs included all of the parameters affecting LCoE of the design such as average power
capture, peak-to-average power, and structural loads on the device structure. This design-optimization
approach is a significant change from other controls-optimization R&D, which is purely focused on power
capture.

On the wave-prediction side, we started with the evaluation of methods that utilize wave-radar as well as
wave measurement buoys but focused quickly on measurement buoys. This was largely because we felt
that we could attain reasonable prediction accuracies with less complexity and relatively well defined
technology development process. A subsequent project did focus on the utilization of wave radar in
predicting ocean waves.

Validation during phase | was completed using wave tank testing. In the process we built physical models
for the RME device (1:10 scale), the OE buoy (1:25 scale) and validated wave propagation models for the
wave prediction work.

Our core objective was to insure that we can identify the techno-economic optimal controls strategy using
causal and non-causal control laws, while retaining real-time capabilities. In the process, we had to solve a
number of significant challenges, resulting in the development of novel systems identification techniques,
better MPC solvers, and novel controls approaches. Together, these innovations enable solving most WEC
controls challenges out there Today.

Phase Il focused primarily on at-sea validation of our wave-prediction algorithms and the build/test of an
at-sea 8kW controls demonstrator. To do so, we had to move our controls algorithms developed in Matlab
onto robust RT hardware and develop a suitable front-end processing and fault handling. The end-product
is a matured algorithm framework that can be widely applied to any WEC and PTO topology.

Technical Accomplishments and Progress

The project is almost complete and we were able to advance the state of the art in several key areas

including:

o Demonstrated real-time wave prediction at sea. While academic papers have been presented on this
topic, no-one to our knowledge has successfully demonstrated phase-resolved wave prediction with
sufficient accuracy that would enable MPC in WEC technologies. This is a key building block to
enable optimal control.

o Demonstrated real-time MPC at sea. To our knowledge MPC has only been demonstrated in wave
tank environments. We are the first ones to demonstrate Model Predictive Control at sea. This
effectively enables a new generation of controls on WEC devices deployed at sea.

e We introduced controls co-design into the wave energy space leveraging model predictive control.
This will enable WEC design optimization while continuously insuring that controls optimality is
enforced. This capability enables design for optimality from the concept stage and reduces significant
uncertainties in the design optimization process.
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o We developed a method to efficiently introduce loss models and PTO limitations in the controls
design process. Bringing the PTO modeling capabilities into the controls design process and enabling
trade-off studies while enforcing optimality is a critical capability for this sector and has not been
systematically developed by this emerging industry.

o \We made several advances in the areas of numerical methods including: (1) efficient numerical
methods to represent the PTO in a controls model, (2) efficient development of sub-space models that
significantly improve the computational efficiency to handle MPC-type problems, (3) integrated
causal controls methods with MPC methods to significantly improve controls robustness and ability
to handle errors in the wave prediction scheme, and (4) introduced several method extensions to
handle constraints in causal controllers.

Our work with our device development partners has allowed them to establish critically needed trade-offs
with confidence, which reflects in their device design today resulting in significant performance
improvements and cost-reductions.

Future Work (New and Ongoing Projects Only)

While we have made significant progress in advancing state of the art optimal controls, significant
challenges and advances need to be made to enable the widespread commercial adoption of optimal
controls by device manufacturers. This includes the following core areas:

e Improvements in computational efficiency for non-linear MPC: To insure true optimality in many
device types, non-linear MPC methods are required. Many of these solutions are not real-time capable
and because MPC is a sequential optimization scheme, it cannot simply be improved by using parallel
processing schemes typically employed in high-performance computing. Further work is needed to
develop methods that are fully capable of handling these non-linearities in an efficient manner in real-
time.

e Enabling commercialization: While we have demonstrated many of the controls and wave-prediction
capabilities, continued funding will be required to turn these accomplishments in practical numerical
tools that can be used across all stages of product development.

These challenges outlined above will require continued funding by US Department of Energy. We hope
that we will be able to compete for such funding opportunities on a level playing field.

Award 8099, which will be presented separately is focused on extending the wave prediction efforts to
leverage the synergies of measuring with in-situ buoys as well as wave radar and combining these
approaches using sensor-fusion techniques. It builds directly onto this work and broadens the approaches
leveraged to predict ocean waves.
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Background

The current work builds on previous efforts in the areas of optimal controls for WEC devices by Re Vision
Consulting and University of Michigan. These efforts include among others:

1.

2.

An NSF STTR award that allowed Re Vision Consulting to establish numerical approaches for linear
and non-linear MPC as well as wave-prediction using radar and wave measurement buoys.

A SPA-I award from the US Department of Energy lead by Resolute Marine Energy (RME) aimed at
studying optimal control trade-offs for its Surge WEC Device. Re Vision Consulting and University of
Michigan were sub-recipients in this project.

The Wave Energy Prize Competition established by the US Department of Energy. Re Vision
Consulting established MPC-based controls algorithms to explore upper performance limits for the
Waveswing America Team, which won 3™ place out of 92 teams.

A parallel project was initiated in 2017 to look at sensor fusion methods to improve wave prediction
accuracy leveraging wave radar measurements. This effort is being carried out in collaboration with the
US Navy that previously developed wave prediction capabilities under it’s EMFS (Environmental
Motion Forecasting System) program that leveraged radar hardware and algorithms to measure ocean
waves using X-band radar.

Several engagements with device developers to assist in the WEC device optimization processincluding
controls co-design.

The over-arching project objective for this project was to fully develop and validate an optimal controls
framework that can subsequently be applied widely to different WEC devices and concepts. Optimal
controls of WEC devices represent a fundamental building block for WEC designers that must beconsidered
as an integral part of every stage of device development. Using a building-blocks approach to optimal
controls development, this effort will result in the full development of a feed-forward and feed- back control
approach and a wave prediction system.

The following elements formed a part of our scope of work:

N~ R

Wave Prediction System Development using Measurement Buoys as Sensing Elements
Linear and Non-Linear MPC Development and Application to Reference WEC Topologies
Causal Controls Development and Application to Reference WEC Topologies

Systems 1D and Reducing Model Order

PTO Modeling and Trade-Off Studies

Wave Tank Validation of 3 Reference Topologies

RT In-Ocean Control Testing and Validation

Techno-Economic Assessments

What follows is a brief descriptions of each one of these components. Details can be found in the enclosed
appendices that provide more detailed background information on each one of these components. Where
information is considered protected, it is identified as such. This includes device specific information
(obtained from device developers) and data-sets that are of commercially sensitive nature.
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Introduction to Work Packages

What follows, is a brief descriptions of each one of these components. Details can be found in the enclosed
appendices that provide more detailed background information on each one of these components. Where
information is considered protected, it is identified as such. This includes device specific information
(obtained from device developers) and data-sets that are of commercially sensitive nature.

Wave Prediction System Development using Measurement Buoys as Sensing
Elements

MPC relies on a prediction of the wave-excitation forces over a sufficiently long prediction horizon. Wave-
prediction methods can be generally categorized as either auto-regressive or deterministic. Auto-regressive
models extrapolate future wave excitation forces from a given measured history by fitting a model to it.
This type of model tends to do well for a few seconds into the future, but these predictions are generally
insufficient in length to meet the requirements of optimal feed-forward control for most WEC device
topologies. For wave predictions to be “good enough” for controls, they need to be accurate enough and
predict sufficiently far into the future to provide optimal results.

The required prediction horizon for MPC algorithms is a strong function of the device topology and
configuration. In general, devices with a high inertia and weak coupling between the primary absorption
mode and PTO require a longer prediction than devices with a low inertia and strong coupling between the
primary absorption mode and PTO. Herein, we refer to this as a strongly coupled closed-loop response. The
explanation for this observed phenomenon can be broken down into two distinct problems: (1) the non-
causality of wave-excitation forces (Falnes 2002) and (2) the coupling between control action and motion
response.

The more dominant prediction horizon driver appears to be how closely coupled the closed-loop response
of the dynamic system is to the control input. This becomes apparent when evaluating the optimal prediction
horizon for other topologies in this paper. Figure 14 shows the average normalized absorbed power as a
function of the prediction horizon for two different topologies. It illustrates that the optimal prediction
horizon for the RME Surge WEC device is longer than for the heaving point absorber. In some cases, that
prediction horizon requirement is reduced to only about half a wave period, which opens up interesting
alternatives to replace a deterministic wave forecast with an auto-regressive model and/or use causal
controllers.
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Figure 1 - Normalized performance as a function of the prediction horizon for a heaving point absorber and a surge
WEC device.

A second issue to consider is the accuracy of the forecast. To better understand this issue, we carried out a
sensitivity study to phase and amplitude errors of the forecast for a simple heaving point absorber. The
study’s results, summarized in Figure 15, demonstrate that MPC is more robust against wave-amplitude
prediction errors than phase prediction errors. It shows that a change in the phase error causes a bigger
reduction in power than a change in the amplitude error.
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Figure 2 - MPC sensitivity to amplitude and phase error in the wave prediction

To understand how well waves can be forecasted in the open ocean, we carried out a field campaign in
Santa Cruz, assimilated data from six custom-built wave-measurement buoys, and predicted the wave field
to a down-wave location, where a seventh wave measurement buoy was located. The down-wave
measurement buoy was then used to validate the wave prediction from the up-wave buoys. Various methods
of identification, propagation and correction were applied and tested to minimize wave prediction errors.
The final result showed that a mean absolute amplitude error of less than 15% is attainable for a forecasting
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time horizon that is about twice as long as the dominant wave period. Figure 17 provides a snapshot of the
actual and predicted wave surface elevation with a 20s forecasting horizon (roughly twice the wave period
in this case).
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Figure 4 - Wave prediction from field campaign showing measured vs. predicted (propagated) wave surface elevation.

To understand the impact of this error on MPC, we used the predicted surface elevation values to compute
a controls command with MPC and the actual values of the wave-surface elevation to drive the system
dynamics model. This approach allowed us to understand the performance degradation due to the
introduction of realistic prediction errors. The results for a simple heaving point absorber for a given sea
state are shown in Table 2.
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Table 1 - Performance Effects of Wave-Prediction Error

Controls Method Absorbed Power | Normalized
Optimal Linear Damping 16.3 kW 100%
Optimal Causal Control 25.8 kw 153%
Linear MPC (No Prediction Error) 47.9 kw 293%
Linear MPC (Realistic Prediction Error) 39.6 kW 242%

Performance degradation is a function of the device topology and its sensitivity to the error as well as the
control algorithm itself. However, a net improvement over the feed-back control system can be clearly
demonstrated. Since this benchmark has been performed, we have been able to significantly improve the
wave prediction accuracy from our systems using better instrumentation and improved algorithms and
expect MPC performance to be very close to the idealized MPC version. We should also point out that the
causal controller only used the PTO velocity as a feedback variable. The causal controller could be
improved by assuming that either the wave surface elevation at the device or the wave pressure forces are
known. Both of these assumptions would require additional instrumentation on the device.

This work-package included the following elements: (1) Wave Prediction modeling in the computational
domain and trade-off studies, (2) Wave tank validation, (3) Build of 8 custom Genl wave measurement
buoys, (4) In-Ocean data collection, and (5) Validation of Wave-Prediction Algorithms. The build and
testing of a second generation wave measurement buoy system is being pursued under a separately funded
project with the over-arching aim of improving wave prediction accuracy.

Datasets Collected

A total of 14 field measurement campaigns were carried out to benchmark and improve the wave prediction
accuracy of the wave prediction system. Further data is being collected under a separately funded project
and will be made available once that project completes.

Outcome

The key objective of this work package was to demonstrate wave prediction accuracy that is good-enough
for controls purposes using Model Predictive Control. This objective has been fully met and present efforts
focus on the development of a wave prediction system that can be used as a building block by device
developers.

Additional Details & Publications
Appendix: A journal publication is forthcoming.

Linear and Non-Linear MPC Development and Application to Reference WEC
Topologies

Controls optimization was carried out on 4 different WEC topologies, including (1) The OE buoy, (2) the
Resolute Marine Energy Surge WEC device, (3) the Wave Carpet, and (4) a heaving point absorber that we
moved along as a reference case design. Linear MPC, Non-Linear MPC control optimizations were carried
out and refined on these devices. Method extensions were developed to enable the controls optimization
using discreet PTO force control, improve the computational speed of MPC and NMPC algorithms, and
represent PTO losses and dynamics in a universal way. Significant efforts were directed at systems
identification methods and model order reduction using subspace techniques.

QOutcome
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Annual average power output improvements were attained for all WEC topologies and performance
improvements were benchmarked against theoretical upper limits where possible. It showed that optimality
can be guaranteed using MPC methods for any device type and considering any PTO topology. Controls
studies using wave prediction time-series from at-sea testing showed that performance degradation due to
realistic errors is less than 5%.

Additional Details & References

1. Appendix: Controls report describing methods used and application examples

2. Publication: A.Karthikeyan, M.Previsic, J.Scruggs, A.Chertok, “Non-linear Model Predictive Control
of Wave Energy Converters with Realistic Power Take-off Configuration and Loss Model”, 2019 IEEE
Conference on Control Technology and Applications, HongKong, China, August 2019

3. Conference Presentation: A.Karthikeyan, M.Previsic, A.Chertok, J.Scruggs, “Constrained Optimal
Control of a Flap-Type Wave Energy Converter with a Hydraulic Power Take-Off and Realistic Loss
Model”, Marine Energy Technology Symposium (METS), Washington, DC, USA, May 2018

4. Conference Presentation: M.Previsic, “Towards the Practical Application of Optimal Controls in
WECs”, Marine Energy Technology Symposium (METS), Washington, DC, USA, May 2017

Causal Controls Development and Application to Reference WEC Topologies

Professor Jeff Scruggs at the University of Michigan developed several causal controls implementations
and assisted with the development of loss models and subspace techniques. Most of his work has been
published, so we suggest to review the publications directly.

In Scruggs et al (2013), a general technigue for causal control of linear WEC systems is presented. In this
technique, the wave-excitation force is modeled as a stochastic process with a known spectrum, and control
decisions are made using only localized feedback information. In other words, deployed wave-forecasting
sensors are not used, and feedback information is limited to dynamic phenomena in the immediate
proximity of the WEC, as well as the WEC response itself. It is shown that, when the dynamic model of the
WEC is linear and the PTO loss model is quadratic, the optimal causal controller developed in this
framework can be represented as a linear transfer function and can be solved exactly as the solution to a
LQG (Linear Quadratic Gaussian) problem. Such controllers can be broken into an observer subsystem
(Kalman-Bucy filter), which estimates the full dynamic state of the WEC system, and a state feedback
controller, which makes decisions on the basis of these estimates to maximize power in the absence of
wave-prediction information.

Additional Details

Several papers were published as part of this and previous efforts. A list follows below:

1. J. Scruggs, Y. Lao, M. Previsic and A. Karthikeyan, "Discrete-time causal control of WECs with finite
stroke, in stochastic waves", in 13th European Wave and Tidal Energy Conference (EWTEC2019),
Napoli, Italy, 2019.

2. R.Nie, J. Scruggs, A. Chertok, D. Clabby, M. Previsic and A. Karthikeyan, "Optimal causal control of
wave energy converters in stochastic waves - Accommodating nonlinear dynamic and loss models,"”
International Journal of Marine Energy, vol. 15, pp. 41-55, 2016.

3. J. Scruggs, S. Lattanzio, A. Taflanidis and I. Cassidy, "Optimal causal control of a wave energy
converter in a random sea,”" Applied Ocean Research, vol. 42, pp. 1 - 15, 2013.

PTO Modeling and Trade-Off Studies

To better understand the trade-offs with different types of PTO capabilities, we have categorized all the
PTOs into four different categories. This categorization allows us to establish fundamental trade-offs and
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subsequently refine them based on the specifics of the physical system. These four options are illustrated
below.

a\ '
1 t _j_lj_t
P
x| 7R ~ Option 4 Option 3
Y I
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Q T /§ Option 2 Option 1
A t

Figure 5 - PTO Options 1-4

Option 1 — Uni-directional power flow (damping only) with discrete force/torque values. This topology
would be representative of a very simple hydraulic PTO, where the PTO force is given by a fixed system
pressure. We still allow for that force to be switched between high and low and optimize the timing of these
switching events.

Option 2 — Uni-directional power flow (damping only) with continuous force values. In this case, the force
can be continuously varied, but only positive power flow is allowed. This uni-directional power flow
constraint allows us to model PTOs that cannot act as an actuator (i.e., return power to the sea to maximize
performance).

Option 3 — Same as Option 1, but allowing for bi-directional power flow.

Option 4 — Same as Option 2, but allowing for bi-directional power flow.

PTO capability and cost increase as PTO topology becomes progressively more complex from Option 1 to
4. This increased complexity can also be associated with higher failure rates. If properly weighted in a
techno-economic model, these attributes can be translated into LCoE, allowing for an identification of the
optimal topology for a given WEC design. While the complexity of the physical PTO increases with
increasing capability, it is actually much easier to implement an optimal control algorithm for such an
unconstrained system than for a heavily constrained one or one involving only discrete force levels.

Modeling the dissipation in the power train is essential when designing optimal control systems for WEC
devices, because the objective is to maximize the generated power, not the absorbed power. However, it is
often much more straightforward to control the absorbed power directly. Consequently, control decisions
involving the absorbed power must anticipate the dissipation between absorbed and generated power. Such
loss models can be as simple as a single efficiency number during conceptual design stages of a WEC
device. However, as a WEC designer moves to a more realistic power train, the loss model must reflect this
added complexity accurately.

In the course of this project, we developed an extremely detailed model of the hydraulic dynamics in the
power train for the Surge WEC device for Resolute Marine Energy. This model is highly complex,
involving nonlinear differential equations, high-frequency switching valves, and numerous saturation
limits. Such a model, although essential for accurate simulation, is not conducive to control design, because
its complexity makes it very difficult to analyze. As such, this highly accurate model was distilled to create
a less accurate but still useful “control-oriented” PTO model.

This simplified model estimates the transmission dissipation in the power train as a nonlinear algebraic
function of the flap torque, T, and angular velocity, w. This model is physically meaningful, in the sense
that it first approximates the high-pressure line flow Qn and pump flow Q, as
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Qu=Go+ G,T + G,aT
Q,=Hy+H,0

and then approximates the dissipation from these as
D =Dy +D;,Q, + D, +D oni +®0,Q°Q +@ Q° + (1_77 )Ta)

p h 30 p p

where 7, is the static efficiency of the pump, and the parameters @;;, G;, and H; are all algebraic functions
of the physical parameters of the power train. (There are 24 distinct physical parameters, including pipe
diameters, pre-charge pressures, and switching frequencies.)

This model, it should be remembered, is only an approximation of the true behavior. However, care was
taken to be very explicit about what approximations were being made. These include the assumption that
certain dynamics in the power train are “fast” in relation to the dynamics of the flap and waves and may be
viewed (for the purpose of control decisions) as responding instantaneously. This eliminated the differential
equations from the more accurate model. Additional simplifications were made by assuming that the
pressure drops in the power train due to fluid flow were small in comparison to the accumulator pressures.
For a given PTO configuration, PTO conversion efficiency becomes a simple function of velocity and
torque. This type of model can be fitted easily and used effectively in the controls development process.
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Figure 6 — Sample loss model used for controls-design purposes.

Because the approximate loss model is algebraically related to the parameters of the physical system,
systematic parametric sensitivity studies can be conducted to determine how the performance of optimal
control varies with these parameters. This provides an extremely useful and essential tool that can be
leveraged in both the PTO and the controls optimization process. The final velocity/torque efficiency can
be expressed easily as a polynomial function and used in the reduced-order plant model of the WEC device
for controls purposes.
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Additional Details

The controls report appendix contains a section that includes PTO modeling. Since most of the work was
done on a device-specific PTO configuration with Resolute Marine Energy, this work will remain under a
5-year protection with the US Department of Energy:

1. Appendix: The Controls Methods Report includes a section on loss modelling

Wave Tank Validation of 3 Reference Topologies

The fluid-structure interaction effects can be scaled well from relatively small-scale models. In fact, some
of the best research on fluid-structure interaction has been carried out in very small wave flumes. The core
issue is often how the PTO can be modeled at a small scale to represent the behavior of the full-scale system.
Building small-scale models of the PTO is usually unrealistic, because friction becomes dominant at smaller
scales. As an example, consider a very large model that is tested at 1:10 scale. The Froude-scale for power
is 3.5, so that we are producing 10"3.5 = 3,162 times less power in the model scale experiment than at
full-scale. It is virtually impossible to retain Froude similarity for any electro-mechanical system over this
scaling range.

Fortunately, off-the-shelf electronic actuators and controls can be effectively leveraged to mimic the
behavior of a full-scale PTO. In our case, we leveraged servo-drives to provide the motion response and
implemented closed-loop feedback controllers to track accurately the Froude-scaled force/torque behavior
of the full-scale system. Specifically, we leveraged an off-the-shelf LinMot actuator/drive that was
programmed to track a reference force value. A load cell and PID loop were used to separate any dynamic
behavior of the actuator from the device dynamic. The following figure shows that setup for a heaving point
absorber. Using a fast-tracking PI control loop was essential in allowing the system to track any demand
torque provided by the real-time controller. In our case, we leveraged a SpeedGoat system that allowed us
rapidly to design and implement control loops in a convenient Simulink environment.
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Figure 7 - Controls and force-tracking setup for testing a heaving buoy
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Figure 8 - Physical setup of test in wave tank at the Oregon State University

Issues encountered and resolved during our test campaign involved the PTO emulator and included (1)
force-tracking Issues requiring fine-tuning of the PID loop, (2) measurement noise on the load cell, (3)
bearing issues, and (4) an outdated driver on the SpeedGoat system that introduced delays into the control
loop. While these issues were all resolvable, they illustrate the added complexity encountered with this type
of setup compared with the more traditional, passive mechanical means of providing a viscous damping
force that is possible when the control force is not dependent on time.

The causal controller was implemented directly on the SpeedGoat system because it is computationally
very efficient. However, we were unable to test the MPC controller in real-time, because the algorithm is
not real-time capable at model scale. Instead, with the knowledge of exactly which waves were pre-scribed,
we pre-computed optimal PTO command values offline and synchronized the pre-computed PTO command
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values with the wave-maker start signal. This allowed us to achieve our appropriate controls validation
objective at this model scale.

.
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Figure 10 - RME Device being tested at Oregon State University

Wave tank testing was carried out on three different topologies, including: (1) the heaving point absorber,
(2) the RME WEC device, and (3) the OE buoy. This effort allowed us to validate fluid-structure interaction
models and validate controls strategies at model scale.

Datasets Collected

1. Appendix: Heaving Buoy Wave Tank Testing Report
2. Heaving Buoy Wave Tank Testing Dataset
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RT In-Ocean Control Testing and Validation

In order to enable robust application of controls at sea, suitable HW and SW needs to be integrated. To do
so, we built a small demonstrator WEC device and designed a controls architecture that allowed us to fully
re-use controls algorithm codes developed and tested during earlier phases and therefore enable rapid
prototyping and controls testing. While we initially tried to use a Speedgoat system, we found that the
Simulink-based architecture was too constrained and did not allow us to execute many of computationally
efficient codes written in Matlab and C. We also found that the Speedgoat HW system was not very robust
encountering several driver related issues.

The overall controls topology is shown in the following figure and consists of: (1) a set of wave
measurement buoys that transmit wave information in real-time to a wave-prediction algorithm, (2) a
computer that runs the wave-prediction algorithms and provides a wave excitation force forecast, (3) a
controls computer that uses the wave prediction and sensor feedback from the WEC device to compute an
optimal response, and (4) a National Instruments cRio front end that provides robust industrial-grade 1/O
capabilities and incorporates low-level control to protect the hardware from overload and provides error
handling capabilities. These systems communicate with each other over a low-latency ethernet-based
communication link, called the Pacemaker that insures real-time communication.

The separation of these systems allowed for systems to be developed and tested concurrently so that the
development of the different components would not interfere with each other. The same system was also
used for hardware in the loop testing by running a WEC device emulator on the cRio device. Overall, this
setup enabled a seamless development process, resulting in efficient project execution.
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Figure 11 - Controls Topology for In-Ocean Deployments

The WEC device is a slender cylindrical buoy with a diameter of 0.5m and a height of 4m, and is connected
to the seabed over a tensioned wire. The wire tension is controlled using a rotary winch that is driven by a
commercial servo motor/drive system. Peak power output from the drive system is 8kW. To ease permitting
requirements, the buoy was only deployed temporarily in about 20m of water depth in the Pacific Ocean
off Santa Cruz, California, while being connected to a vessel for power.
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Figure 13 - Demonstrator WEC Device: Scale (left), Build images (right)
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Figure 14 - Identification of Major Buoy Sub-Systems — Device in horizontal position

The deployment was carried out using a 52foot long research vessel with appropriate lift capabilities. The
following images shows the deployment of the system and subsequent installed position off the coast in
Santa Cruz in about 20m water depth.

Figure 15 - Buoy deployed at sea (left) and on deck before installation (right)

Outcomes

At-sea testing included initial validation using a velocity-dependent damping term and subsequent
application of Model Predictive Control showed that the numerical simulations agree well with the at-sea
time-domain execution showing that MPC control can be executed on devices at sea. Further testing will
be required to fully validate a number of different controls strategies.

Techno-Economic Assessments

LCoE baseline assessments have been carried out during phase | of the project, which provides a detailed
cost and economic assessment of the devices. Performance improvements have two fundamental effects:
(1) they increase the capital cost of the powertrain because the increased power output will require a larger
PTO to convert the mechanical power into electricity, and (2) power capture is increased. So on a very
fundamental level, the LCoE improvements due to controls can be evaluated by scaling PTO costs linearly
with average power capture. All other costs scale either at a $/device level or $/farm level. As mentioned
above, various trade-offs were studied and these studies are device specific and protected by nondisclosure
agreements. However, a brief example of the heaving point absorber working in heave against an
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embedment anchor is given below to illustrate the effect of improved power capture due to controls. It
should be acknowledged that such a simplified techno-economic assessment does not capture all the factors,
but can be used to understand overall cost-drivers.

The heaving point absorber has the dimensions of Reference Model 3 (RM3), for which detailed cost and
economic assessments have been completed. However, instead of reacting against a subsea reaction plate,
it reacts against the seabed with a PTO configuration that is similar to the Aqua Harmonics WEC device or
the Fred Olson device tested in Hawaii. This is a device architype that has been identified as techno-
economically promising.

As a first step the cost profile was identified by augmenting the RM3 cost profile. This involved primarily
the removal of the subsea plate and replacing the anchor system with a structurally efficient embedment
anchor. The baseline performance of this device is identified using viscous linear damping on a heaving
point absorber. The upper performance limit is identified using MPC simulations on all sea-states within
the scatter diagram. A simple 80% powertrain efficiency is assumed.

Table 2 - Performance Comparison for Heaving Point Absorber

Slow Tuning
Rated Power (kW) 183
Annual Energy (MWh/yr) 481
Average Power (kW) 55
Capacity Factor 30%
MPC
Rated Power (kW) 449
Annual Energy (MWh/yr) 1180
Average Power (kW) 135
Capacity Factor 30%
Relative Improvement 245%

A simplified assessment is used to establish cost-drivers on a system assuming that it is deployed at a scale
of 100 Units and assuming that the technology features a similar O&M cost as land-based wind turbines
Today. It is further assumed that financing of the technology has a fixed charge rate (FCR) of 7%, which is
representative of a mature technology sector and is the standard assumption the US Department of Energy
uses for its technology assessments.
Table 3 — Baseline Cost Assessment

$/kW| $1000/Unit $1000/Farm cents/kWh in%
Development $590 $108 $10,774 1.6 5%
Infrastructure $1,180 $215 $21,549 3.1 9%
Mooring/Foundation $290 S53 $5,296 0.8 2%
Device Structural Components $1,210 $221 $22,097 3.2 9%
Power Take Off $1,690 $309 $30,862 4.5 13%
Subsystem Integration & Profit Margin $580 $106 $10,592 1.5 4%
Installation $3,600 $657 $65,743 9.6 28%
Contingency $910 $166 $16,618 24 7%
Total $ 10,050 $1,835 $183,531 26.8 78%
Fixed Charge Rate 7%
O&M (Percent of Capex per Year) 2%
LCoE S 0.34
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Next some simple linear scaling relationships were established to identify the cost profile of a wave farm
with the same WEC devices that have increased power output due to improvements in the control strategy.

Table 4 - Cost Scaling Relationships

Development Fixed Cost per Farm

Infrastructure Fixed Cost per Farm

Mooring/Foundation Fixed Cost per Device

Device Structural Components Fixed Cost per Device

Power Take Off Fixed Cost per kW Rated

Subsystem Integration & Profit Margin  10% X (Structural Components + Power Take Off + Moorings)
Installation Fixed Cost per Device

Contingency 10% X Total Cost

The big change driving economic improvements come from a larger amount of power capture per device,
resulting in a lower shared costs for fixed per device costs (such as riser cables and moorings), and reduced
structural cost per unit of energy output due to the improvements in the structural efficiency of the device.

Table 5 - Cost and Economic Summary of Optimally Controlled WEC Device

$/kW|  $1000/Unit $1000/Farm cents/kWh in%
Development $239.88 $108 $10,774 0.6 4%
Infrastructure $480 $215 $21,549 1.3 7%
Mooring/Foundation $118 $53 $5,296 0.3 2%
Device Structural Components $491.96 $221 $22,097 1.3 7%
Power Take Off $1,690 $759 $75,907 4.5 25%
Subsystem Integration & Profit Margin $230 $103 $10,330 0.6 3%
Installation $1,464 $657 $65,743 39 22%
Contingency $471 $212 $21,170 13 7%
Total S 5,185 $947 $94,679 13.8 78%
Fixed Charge Rate 7%
O&M (Percent of Capex per Year) 2%
LCoE S 0.18

Additional Details
1. LCoE Assessment of Heaving Point Absorber (Excel)
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Conclusions

In this project, we investigated causal and non-causal controls approaches and their application to WEC
devices. Both controls frameworks are universal in nature and can be adapted and applied to most WEC
topologies found within the literature. The key controls objective can be summarized as maximizing
electrical power output while considering all losses in the system and respecting constraints. This type of
constrained optimization is required to address successfully realistic WEC controls optimization problems.

During this project we were able to advance the state of the art in several key areas including:

o Demonstrated real-time wave prediction at sea. While academic papers have been presented on this
topic, no-one to our knowledge has successfully demonstrated phase-resolved wave prediction with
sufficient accuracy that would enable MPC in WEC technologies. This is a key building block to
enable optimal control.

e Demonstrated real-time MPC at sea. To our knowledge MPC has only been demonstrated in wave
tank environments. We are the first ones to demonstrate Model Predictive Control at sea. This
effectively enables a new generation of controls on WEC devices deployed at sea.

o We introduced controls co-design into the wave energy space leveraging model predictive control.
This will enable WEC design optimization while continuously insuring that controls optimality is
enforced. This capability enables design for optimality from the concept stage and reduces significant
uncertainties in the design optimization process.

o We developed a method to efficiently introduce loss models and PTO limitations in the controls
design process. Bringing the PTO modeling capabilities into the controls design process and enabling
trade-off studies while enforcing optimality is a critical capability for this sector and has not been
systematically developed by this emerging industry.

¢ \We made several advances in the areas of numerical methods including: (1) efficient numerical
methods to represent the PTO in a controls model, (2) efficient development of sub-space models that
significantly improve the computational efficiency to handle MPC-type problems, (3) integrated
causal controls methods with MPC methods to significantly improve controls robustness and ability
to handle errors in the wave prediction scheme, and (4) introduced several method extensions to
handle constraints in causal controllers.

Our work with our device development partners has allowed them to establish critically needed trade-offs
with confidence, which reflects in their device design today resulting in significant performance
improvements and cost-reductions.

While we have made significant progress in advancing state of the art optimal controls, significant

challenges and advances need to be made to enable the widespread commercial adoption of optimal

controls by device manufacturers. This includes the following core areas:

e Improvements in computational efficiency for non-linear MPC: To insure true optimality in many
device types, non-linear MPC methods are required. Many of these solutions are not real-time capable
and because MPC is a sequential optimization scheme, it cannot simply be improved by using parallel
processing schemes typically employed in high-performance computing. Further work is needed to
develop methods that are fully capable of handling these non-linearities in an efficient manner in real-
time.

¢ Enabling commercialization: While we have demonstrated many of the controls and wave-prediction
capabilities, continued funding will be required to turn these accomplishments in practical numerical
tools that can be used across all stages of product development.
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These challenges outlined above will require continued funding by US Department of Energy. We hope
that we will be able to compete for such funding opportunities on a level playing field. What follows are a
few more thoughts related to optimal control of WEC devices.

The Need for Wave Prediction — While causal control with acceptable performance has been
demonstrated on a limited set of device topologies, it remains to be explored to what extent causal control
laws can approximate the performance of MPC with a wave-forecast. It is important that controls
performance does not only relate to energy capture, but also the capabilities of the algorithm to
accommodate realistic device-specific constraints such as PTO force, velocity, acceleration, and
powerflow. It should be pointed out that the cost of predicting ocean waves (a requirement for effective
MPC implementation) is very small compared to the cost of the device itself at commercial scales. A simple
1% improvement in power capture would pay for the cost of the wave prediction system many times over.
Causal controls approaches however may be useful at smaller scales required for applications within the
blue economy such as recharging unmanned vehicles at sea, where the economic calculus is driven by
reliability and operational simplicity and not performance.

Controls Co-Design - Working with a number of different topologies at different TRL levels, we
found that the performance improvements attainable for any given WEC are in general less than initially
projected from theory and/or simplified models. This is because various constraints and losses in any
realistic WEC system tend to reduce motion amplitudes that are required to improve power capture. In
many cases, the PTO system’s ability to modulate PTO forces/torques efficiently and cost effectively in
real-time limits the performance upside potential of any WEC approach. It is therefore important that
controls design be integrated into any WEC development effort, beginning with the conceptual design.
Techno-economic models can become effective tools for evaluating trade-offs between performance and
the incremental cost of additional PTO capabilities, leading to an optimized WEC design.

During the device development process it is important to understand the fundamental upper limits
of a particular configuration and use sensitivity studies to understand the trade-offs and design-drivers
involved in arriving at an economically optimal configuration. MPC can serve as an important tool to
explore this trade-off space, because it allows us to establish upper limits of constrained systems, which is
not easily done using analytical methods, or linearized frequency-domain methods. Once these trade-offs
are fully understood, the designer can turn to the evaluation of simpler control strategies to further reduce
complexity in the system.

Real-time Capabilities — The computational cost of control systems in WEC devices span about
2 orders of magnitude - anywhere from 10X slower than real time to 10X faster than real-time. This means
that some of the more complex, non-linear MPC approaches cannot yet be used in realistic applications.
However, we have to remember that computational capabilities are rapidly advancing and according to
Moores law, which predicts a doubling a computational power every 18 months, a 10X improvement will
require less than 6 years to materialize.

Robustness — While we demonstrated that causal and non-causal controllers can be implemented
on at-sea WEC devices, our work also shows that these controls and wave prediction building blocks need
to be incredibly robust and fault tolerant to be useful on at-sea devices. Further work will be required to
turn these controls capabilities into building blocks to enable at-sea optimal control.

As optimal controls in WEC devices continues to evolve, it is shaping what type of systems will become
cost-competitive in the future, and is impacting how we fundamentally think about wave energy extraction.
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1 Introduction

Advanced control optimization is well recognized as a major pathway for cost reduction in wave energy
conversion applications. Intelligent real-time control has shown significant improvements in power capture
for various device topologies and power take-off mechanisms. For some devices the relative improvement
in power capture using advanced control is on the order of two to three-fold over baseline “slow-tuning”
method of viscous damping. This makes advanced control an exciting avenue for research and development

that has the potential to improve the economics of wave energy conversion systems.

The control system affects power capture, structural loads, and power take off (PTO) design. To achieve
true economic optimality in a WEC system, optimal control needs to be considered as part of the design
trade-off space. Simply adding controls to an existing WEC device topology will often not yield significant
performance improvements, because the PTO may not be able to provide the capabilities needed to improve
performance or the device envelope is not optimized to take advantage of advanced controls. Device and
PTO attributes can only be optimized if their cost-drivers and their performance impacts are quantified.

Constrained optimal control is a key tool in this optimization process.

This paper reviews the controls approaches utilized in our controls optimization project and shows the main
formulations to provide the reader with background on the methods used. The main sections include:

e Optimal linear damping control formulation and performance benchmarking for a heaving point

absorber

e Linear MPC formulation and performance benchmarking for a heaving point absorber

e Linear MPC performance with realistic errors in wave prediction

e Non-linear MPC formulation and performance benchmarking for a flap-type WEC

e  Optimal Causal Control

o Power Take-off configurations used in wave energy conversion

e System identification methods for numerical modeling and model order reduction

2 Overview

Control systems are broadly classified on as either (a) feedback or (b) feed-forward controllers. A feedback
controller uses information from sensors that monitor the states or outputs of a dynamical system, in our
case the Wave Energy Converter (WEC). The sensor information is used as feedback by the controller to
follow a desired command signal. Whereas, feed-forward controllers act solely on the command signal

without feedback from sensors that measure system output variables. Combination of feed-forward and
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feedback control is also possible in a hybrid manner as shown in Figure 1. In general, for wave energy

conversion applications, the controller issues command signals based on measurements of output quantities

such as position, velocity and input variables such as pressure or wave excitation force.

COMMAND +
WEC

OUTPUT

CONTROLLER

(a) FEEDBACK CONTROLLER CONFIGURATION

COMMAND
—_—

CONTROLLER

WEC

OuUTPUT

(B) FEED-FORWARD CONTROLLER CONFIGURATION

FEED-FORWARD

CONTROLLER
+ ouTPUT
WEC

COMMAND

CONTROLLER

(C) EXAMPLE OF A HYBRID CONTROL CONFIGURATION

Figure 1 - Control configurations used in Wave Energy Conversion

Control laws used in wave energy conversion are also classified as either causal or non-causal depending

on the use of wave prediction data using up-wave sensor measurements. Feedback controllers have a causal

relationship between the control command signal and input/measurement signals. Whereas, controllers such

as Model Predictive Control (MPC) require anticipatory information of future waves to plan control

commands using a non-causal optimization method.

In this report we will discuss the following control algorithms in detail

e Optimal linear damping
e Linear MPC
e Nonlinear MPC

e  Optimal Causal Control

Optimal linear damping will be considered as a baseline for evaluating the performance of Linear MPC and

Causal Control. We will use a cylindrical heaving point absorber as an example for the first two cases. This

point absorber WEC is described in the next section.
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3 Example of a Heaving Point Absorber

Many WEC topologies have appeared in literature, a few of them allowing the possibility of an active
controller. Among these, the linear one-body point-absorber, has received the greatest attention in literature.
This converter is composed of a semi-submerged floating body, which is fixed to the seabed through a
connection containing a linear actuator. This device is subject to: (1) an inertial force, (2) a viscous force
due to hydrodynamic dissipation, (3) a buoyancy force, proportional to the device displacement according
to Archimedes’ principle, (4) a radiation force f,(t) capturing the wave radiation effect of the device, and
(5) an excitation force f.(t) which represents the effect that the wavefield has on the device. In addition, a
control force u(t) is applied to the device. Denoting with z(t) the WEC heaving displacement, the balance
of forces on the device is given by

mz(t) +r z(t) + k z(t) = f+(@) + ut) + fe(t)

folt) I [ fe(t)

AT

s
DS

LILLLLA A
Figure 2 - Model of a one-body point absorber WEC device

where m is the device mass, r is the viscous damping, and k is the buoyancy stiffness, defined as k = pgs$,
where p is the water density, g the gravitational constant, and S the water-plane area. The radiation force

fr(t), can be expressed as

fr(t) = —mez(t) — fr(t)
fr(®) = —mez(®) — [ h(t — D2()de

where m., is the added mass, f(t) is the radiation force, and h,(t) is the impulse response function of the
radiation force. For simplicity, in the rest of the paper we will refer to the term f,(t) as the radiation force.

The excitation force f.(t) is expressed as
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@)= f+°° h (t —n(r)dr

e —0 e

Where h.(t) is the excitation force impulse response function and 7(t) is the wave elevation at the device
location. The impulse response function relating the wave elevation to the excitation force affecting the
device is non-causal. The main reason is that the chosen input, i.e. the wave elevation at the device location,
is not the direct cause of the output, i.e. the interaction force between the wavefield and the device. The
actual cause of the output may be a storm far away, and the resulting wavefield is only a means through

which such input propagates, hence the loss of causality.

In order to recast the system dynamics into state-space form, the radiation force f,(t) can be discretized

through the following state-space realization:

Xr(t) = ArXr(t) + Brz(t)
fr(®) = C:Xx(t) + Dz (t)

This leads to the following state-space model

x(t) = Ax(t) + Bu(t) + Bf(t)
y(t) = Cx(t) + Du(t)

with
Ay 0 B,
A= O 0 I
_ Cr _ k r+Dy
0
B=[ 9]
m+moo
00 1 0
=1l o 1
p=1]
0

where x(t) = [X,(t) p(t) v(t)]" is the state-space vector containing the variables X, used to discretize the
radiation force, the position p(t) and the velocity v(t) of the device. 0, is a matrix of zeros with appropriate

dimension. Similarly, I is an identity matrix of appropriate dimensions.
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4 Dimensions of the Heaving Buoy

To analyze the performance of optimal linear damping and Linear, we consider a cylindrical heaving buoy

(see Figure 3) with dimensions given in Table 1.

BUOY DIAMETER

ICAL HEIGHT

FREE
SURFACE

e
|
|
|
|
|
|
|
R
BUOY CYLINDL
|
|
|

BUOY BOTTOM HEIGHT

REACTION PLATE SUBMERSION

|_
I
[0}
Ll
I
! p e
Iz
o
|_
REACTION PLATE DIAMETER _ 2
D : &
Figure 3 - Heaving buoy with dimensions
Table 1 - Dimensions of Heaving Buoy
Quantity Value units
Buoy diameter 11 m
Buoy cylinder height 4 m
Reaction diameter ratio 1 -
Reaction diameter 11 m
Buoy conical height 1.2 m
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Buoy displaced volume 228 m?
Total displacement 2 m

Motion displaced volume 190 m?
Buoy mass 228080 kg
Area 95 m?
Coefficient of drag (CD) 0.5 -

5 Theoretical Limits on the Average Absorbed Power

5.1 Point Absorber Limit

Point-absorber effect in wave-energy extraction was first described by [1], and shortly after theoretical
limits for the ocean-wave absorption by oscillating bodies were derived by several authors, independently
[2] [3] [4]. As described in [5], for a heaving axisymmetric body oscillating without constraints in resonance
with an incoming regular wave of period T and wave height H the average absorbed power B is limited by
the expression

Where d, = B/Jr (m) is the absorption width, Jz (W /m) is the wave-power level, and k (1/m) is the
wave number. The last equality is only valid for deep water conditions and is referred to as the point
absorber limit. If we define the excitation power B as the averaged product of the excitation force and the

body velocity B = m and the average radiation power as P ;= a@ the absorbed power is

‘B = P. — P.. The theoretical limit may be reached provided the average absorbed power equals half the

average excitation power, which happens when the radiated power equals the absorbed power, B = B.

It is known that the point absorber limit can only be reached up to a certain wave height and period,

depending on the constraint set for the motion amplitudes. Beyond, only a lower relative power absorption
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5.2 Volumetric Limit

This second limit is due to the finite volume swept by the body during its oscillation cycle. It was
theoretically described by [4]. Their starting point was that the absorbed power must be less than the
excitation power, and that equality can be approached only if the radiated power becomes negligible in
comparison. By arguing further that the total volume V of the body sets limits for the maximum excursion,
velocity, and excitation force in heave, they arrived at an upper theoretical bound for the power P, that can

be absorbed by a heaving body. This is called the volumetric limit which is given by
B < (mpgHV /AT)

The point absorber limit and the volumetric limit tell us that no matter how well we control the motion of

our device we will not be able to reach the region above any of them.

6 Optimal Linear Damping

Optimal linear damping is a control strategy that involves the application of a damping force proportional
to the velocity of the WEC. The power take-off (PTO) applies this damping force against the velocity,

consequently extracting power from the ocean waves. Typically, the damping force is defined as follows

Fpro(t) = —B v(t)

Fyave(t) p(t)

[ —— —

Foro(t) WEC v(t)

~ Popt

Figure 4 - Block diagram of Optimal linear damping control

Where, B is the damping coefficient and v(t) is the device velocity. An optimal value of damping (Boyt)

can be pre-calculated from offline simulations for different sea states. The damping value which maximizes
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the average absorbed power is identified as the optimal damping coefficient (B, for that sea state. The

PTO force Fpero(t) and absorbed power Pgs(t) in the case of optimal linear damping are given by

FpTg(t) = —Bomv(t)
Pabs(t) = _FPTO(t)v(t)

Figure 4 shows a block diagram of optimal linear damping control. Here F.ae(t) is the wave excitation

force, p(t) is the device position, v(t) is the velocity and Fero(t) is the PTO control force that is calculated

using the velocity feedback signal.

6.1 Results of Optimal Linear Damping Control

Optimal linear damping was applied to a set of sinusoidal wave inputs of height H=1m and period in the
range of 3s to 18s. Figure 5 shows a comparison of optimal linear damping performance vs the theoretical
limits. It is clear from these results that a “slow-tuning” method such as optimal linear damping is not an
effective control strategy to maximize power absorption. Figure 6 and Figure 7 show an example of the
device response with MPC for an input wave of H=1m, T=15s.

220

200 Point ashorber limit
§ 180 — — Volumefric limit
“_:" 160 - -@ - Optimal Linear Damping
2 N
3 140 <

~

© 120 ~
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2 ~
S 100 e
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£ =~
P 80
[=T1]
£ 60
)
>
< 40

20 -0 0 0 0-0-0-0-0-0-0--0-9

0 L
2 4 6 8 10 12 14 16 18 20

Period (s)

Figure 5 - Comparison of optimal linear damping vs theoretical limits
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Figure 6 - Optimal linear damping time domain response with wave input of H =1m, T = 15s
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Figure 7 - Optimal linear damping normalized time domain response with wave input of H =1m, T = 15s
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7 Linear Model Predictive Control

Linear Model Predictive Control (MPC) is used for optimizing the performance of a Wave Energy
Converter (WEC) with a linear device model. In this type of problem, the device dynamics is linearized and
non-linearities such as viscous drag are approximated using linear relationships. Under the assumption of
no loss in the power generation process, optimizing the device average power absorbed B at a given instant

to over a defined control horizon T\, can be achieved by determining the optimal control sequence u(t)

maximizing the following cost function:

P=—" Ty u)dt

a Ty to

Where, v(t) is the device velocity. The minus sign is due to the convention of considering absorbed energy
with a negative sign. After discretizing the integral and changing sign, the optimization problem now
requires the minimization of

1 @N—
J= LyN-14T sTy
N k=0 k+1 v k

in which N is the number of time intervals over the control horizon T, and S, is a linear operator extracting
the WEC velocity from the state-space vector. The control force and state vector, however, are not
independent variables, and they are constrained by the dynamics equation of the WEC, which in discrete

time is defined as
Xk+1 = AaXk + Baur + Bafe,, k=0,..,.N—1
with assigned initial condition xo = xo. In order to preserve mechanical and structural integrity, motion and

machinery constraints are imposed, which limit the maximum actuation force and the WEC device velocity

and vertical displacement for structural safety, i.e.

umin S uk S umax ) k = 0, .,N - 1
Pmin < prk < Pmax , k=0,..,N
VUmin < vak < VUmax , k= O, ,N
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where S, is a linear operator extracting the WEC displacement from the state vector. The cost function,
together with the constraints represents a linear MPC problem in its standard formulation. A more compact

formulation can be obtained by defining the following vectors

X=[xT xT .. xT]T
12 N

U= [u" uT .. uT]”
1 2 N

In this way, the cost function can then be expressed as

J = xrsTU
N v

The inequality constraints become

DX < dx
With
I u
= [ ] d — max
D. -1 u [_umin
S
P Pmax
D = _Sp d = [_pmm]
x Sy x Vmax
[_ SU] ~VUmnin

in which S, and S, are block-diagonal matrices having the velocity extraction matrix S, and the position
extraction matrix S,, respectively, on the main block-diagonal. By recursively applying the discrete-time
dynamics equations, it is possible to express X as a function of the control vector U, the excitation force

vector F., and the initial condition Xo:

X = Agxo + BaU + BiF.

where
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Aa

A
Aa= Eé]
N
Ag
Bg 0 0 0
A4Ba By 0 0
Ba=[ ", : .. o0l
AN1B, A’é-zBd .. Bg
- T
F=[fr fr .. fr ]
e eo e1 eN—1

This allows us to rewrite the MPC problem as the following cost function and constraint equations

min UTBTSTU + (S A x + S B F)'U

U dv v do v de
[Du U < u ]
Dx]u dx_ DxAd.x_O_ DdeFE

Provided the Hessian of the cost function is positive definite, the maximization of power take-off requires
the solution of a constrained convex optimization problem, for which well-consolidated routines, such as
interior-point or active-set methods are available in literature. Positive definiteness of the Hessian is in
general always guaranteed for the optimization of a point-absorber device, unless the time step chosen for
the conversion of the continuous time model into discrete time turns out to be too large to represent the
actual dynamic behavior of the WEC device. At each timestep, an MPC problem needs to be solved, and
the first value of the optimal solution vector U+ is applied to the system. In this way, it is possible to achieve
a real-time instantaneous optimization of the WEC device average power take-off. It has to be noticed,
however, that, since the state vector x also contains the dummy variables used for the state space realization
of the radiation force, the whole state is in general not available, and the initial condition x, in the MPC
optimization is not known and needs to be reconstructed through a state observer based on sensors placed
on the device. Furthermore, an excitation force prediction must be calculated 20 to 30s into the future using

up-wave measurement probes.

Figure 8 shows a block diagram of Linear MPC. F,,(t) is the wave excitation force at time t. F, (z) is the

wave excitation force prediction for all T > t. p(t) is the device position, v(t) is the velocity and U(t) is
the PTO control force that is calculated using the wave force prediction by MPC.
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Figure 8 - Block diagram of Model Predictive Control

7.1 Results of Linear Model Predictive Control

Linear MPC was applied to a set of sinusoidal wave inputs of height H=1m and period in the range of 3s to
18s. Motion constraint of +1m was enforced during these simulations. shows a comparison of Linear MPC
performance vs optimal linear damping and the theoretical limits. It is evident that Linear MPC can
maximize the average power captured, bringing it close to the theoretical limits. It is also clear from this
plot that MPC can provide significant improvement in performance over baseline optimal damping control.
Figure 10 shows an example of the device response with MPC for an input wave of H=1m, T=15s. Notice
that the position constraint of £1m is effectively met during this simulation. MPC also exhibits a “latching”

behavior where the buoy is held stationary for a period before extracting power in the next stroke cycle.
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Figure 9 - Linear MPC performance vs linear damping (baseline) and theoretical limits
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Figure 10 - Linear MPC time domain response with wave input of H=1m, T = 15s
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Figure 11 - Linear MPC normalized time domain response with wave input of H = 1m, T = 15s

8 Performance Benchmarking for a Deep-Water Reference Site

Simulation studies were carried out with optimal linear damping and Linear MPC to estimate the annual
energy captured at the DOE deep water reference site in Humboldt Bay, CA. Motion constraints of +1m
were applied for each simulation. Table 2 shows the scatter diagram for this reference site. Table 3 and
Table 4 show the constrained performance matrix for optimal linear damping and Linear MPC respectively.

For performance benchmarking the annual energy and capacity factor are defined as follows

MW

h) = Average Power (kW) * 24 * 365/1000
yr

Annual energy (

Capacity factor = Average Power/Rated Power

Assuming a capacity factor of 30% for our analysis revealed a 245% relative improvement in performance
with MPC (see Table 5).
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Table 2 - Scatter diagram for DOE reference site in Humboldt Bay, CA

% of Total Energy Period - Te (s), center of bin

Occurance | 0.5] 1.5] 2.5 3.5| 4.5 5.5 6.5] 7.5] 8.5 9.5] 10.5] 11.5[ 12.5] 13.5] 14.5] 15.5] 16.5] 17.5] 18.5[ 19.5] 20.5
0.25/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 00 00 00 00 00 00 00 0.0 0.0
0.75/ 0.0 0.0 0.0 0.0 0.0 05 1.5 2.7 1.9 11 05 02 00 00 00 00 00 00 00 00 0.0
1.25/ 0.0 0.0 0.0 0.0 0.0 0.6 41 56 45 27 13 07 03 01 00 00 00 00 00 00 00
175 0.0 0.0 0.0 0.0 00 0.1 3.3 51 46 39 21 12 08 03 01 00 00 00 00 00 00
225/ 0.0 0.0 0.0 0.0 0.0 0.0 0.9 53 37 41 29 13 08 04 02 01 00 00 00 00 00
275/ 0.0 0.0 0.0 0.0 0.0 0.0 0.1 24 26 28 28 1.6 08 03 01 01 00 00 00 00 0.0
3.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 04 15 1.5 20 14 08 03 01 00 00 00 00 00 0.0
3.75/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 05 0.6 11 1.0 06 03 01 00 00 00 00 00 0.0
4.25/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 02 04 06 04 02 01 00 00 00 00 00 00
4.75( 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 01 01 03 03 02 01 00 00 00 00 00 00
5.25( 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 01 02 01 01 00 00 00 00 00 00
5.75/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 01 01 00 00 00 00 00 00 0.0
6.25/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 00 00 00 00 00 00 00 0.0
6.75/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 00 00 00 00 00 00 00 0.0
7.25| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 00 00 00 00 00 00 00 0.0
7.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 00 00 00 00 00 00 00 0.0
8.25/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 00 00 00 00 00 00 00 00 0.0
8.75/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 00 00 00 00 00 00 00 0.0
9.25/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 00 00 00 00 00 00 00 00 0.0
9.75/ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 0.0 00 00 00 00 00 0.0 0.0
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Table 3 - Constrained Performance Matrix (Optimal linear damping)
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Table 4 - Constrained Performance Matrix (Linear MPC)

Energy Period - Te (s), center of bin
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Table 5 - Performance benchmarking of Optimal linear damping and Linear MPC at DOE reference site

Optimal linear damping
Rated Power (kW) 183
Annual Energy (MWh/yr.) 481
Average Power (kW) 55
Capacity Factor 30%
MPC
Rated Power (kW) 449
Annual Energy (MWh/yr.) 1180
Average Power (kW) 135
Capacity Factor 30%
Relative Improvement 245%

9 MPC Performance with Realistic Errors in Wave Prediction

To study the effect of errors in wave prediction on MPC performance we simulated MPC with real

measurement data collected during a field campaign at Santa Cruz and wave predictions obtained from up-
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wave measurements. This wave elevation measurement data has a significant wave height Hs = 2.03m and
peak period T, = 13.7s. A 480s measurement time window was selected for evaluating the performance of
(a) optimal linear damping (baseline) (b) Linear MPC with perfect prediction (ideal case) and (c) Linear
MPC with errors in wave prediction (realistic case). The point absorber WEC described earlier was used as
the target WEC for numerical simulation and performance assessment for the three cases. The wave

elevation measurement input for all three simulations is shown below:

Wave elevation
2 T T T T T T T T T m

Measurement data

-0.5

0 50 100 150 200 250 300 350 400 450 500

Figure 12 - A 480s time window of wave elevation measurement data collected at Santa Cruz

9.1 Optimal Linear Damping (Baseline)

The optimal damping value for this sea state was found by simulating the numerical model of the heaving
buoy for different damping values. A series of simulations were carried out, starting with a low damping
value of 1KN-s/m, followed by increasing values of damping in successive simulations until an optimum
value was achieved. Figure 13 shows the mean absorbed power as a function of the simulated damping
value. The maximum value of mean absorbed power (45.9 kW) corresponds to the optimum damping value
(1515 k N-s/m). This is indicated by a * in Figure 13.

Figure 14 shows the device response with optimal linear damping. The device motion is well within the

motion constraint of £1m. The max. PTO force is 0.7MN and the average power value 45.9kW.
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Figure 13 - Mean absorbed power vs damping for given wave measurement time series. * indicates the
optimum value of damping and maximum value of mean absorbed power
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Figure 14 - Device response with optimal linear damping
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9.2 Linear MPC with Perfect Wave Prediction

We simulated the Linear MPC algorithm assuming a perfect wave forecast at every update interval of the
algorithm. A prediction horizon of 15s was chosen and motion constraints of +1m were imposed. The wave
elevation measurement data and device response with MPC are shown in Figure 15 and Figure 16
respectively. Notice that MPC meets the motion constraints effectively during this simulation. The average

absorbed power for this simulation was 108.9kW. In this ideal scenario where perfect wave forecast is

assumed, MPC provides a relative improvement of 237% over the baseline.

2

Fe (MN)

Figure 15 - (a) top: Wave elevation measurement and prediction (b) bottom: wave excitation force

Wave elevation

T T T T
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1 Measurement
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0 50 100 150 200 250 300 350 400 450 500
Wave excitation
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measurement and prediction for the case of perfect prediction
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Figure 16 - Linear MPC with perfect wave prediction
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Figure 17(a) top: wave elevation (predicted vs measured) (b) bottom:

measured)
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9.3 Linear MPC with Realistic Errors in Wave Prediction

Figure 17 shows a visualization of the wave elevation and wave excitation force time series for the measured
and predicted signals. The mean absolute error in prediction (o) for this case is 15.3%. This error

metric is calculated according to the formula

~7§rror = (lnmeas - ﬁpred |)/ma X(lnmeas - ﬁpred D

Where the operation (n) calculates the mean value of a given time series 7.
When compared to the idealized case with perfect wave prediction, the reduction in MPC performance due
to a 15.3% mean absolute error was 5.6%. Whereas, the relative improvement with respect to the baseline

was still as high as 224%.

Wave excitation
1.5 T T T T ]

— — — Prediction
Measurement

275 280 285 260 295 300 305 310 315 320 325
time (s)

Figure 18 - Comparison between the predicted and measured wave excitation force for a select time window
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Figure 19 - Device response using Linear MPC with a 15% mean absolute error in wave prediction

The results of this study are summarized below in Table 6. For this example, the results show that MPC can
provide significant improvement in performance with a realistic 15% mean absolute error in wave

prediction.

Table 6 - Absorbed and normalized power for optimal linear damping (baseline), MPC with perfect
prediction and MPC with error in prediction

Control Method Absorbed Power (kW) Normalized (%)
Optimal linear damping (baseline) 45.9 100%
Linear MPC (perfect prediction) 108.9 237%
Linear MPC (prediction with errors) 102.8 224%

10 Nonlinear Model Predictive Control

Non-linear Model Predictive Control (NMPC) is applied in cases where the device dynamics features
significant nonlinearities that cannot be linearized. Common examples of nonlinearity in wave energy
conversion are viscous drag, hysteresis, stiction in the mechanical parts and losses occurring in the

powertrain.
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10.1 Example Flap-Type WEC Device

We take the example of a flap-type WEC device to describe our NMPC algorithm. The WEC is bottom-
mounted and comprises a hinged flap that drives a PTO system. A buoyancy chamber at the top of the WEC
provides restoring force to the flap and, as waves pass overhead, the flap oscillates and drives one or more
hydraulic PTO pumps. A high-level illustration of the control algorithm setup for this WEC is provided in
Figure 20. The theory developed for this flap-type WEC can be easily extended to other WEC topologies,

however, each device may show a different behavior based on its geometry, mode of operation and control

method.
PROPAGATION DIRECTION FORECASTING PROBES
A A = - A =
a, a, ] a, . Y
! (lJ
>
» CONTROL  ©
\ 8- > ALGORITHM
) O > .
o v’
“ PRESSSURE CONTROLLER
: :
- L 4 Py, Y
L PTO T T YDRAULICS
A e SYST. l« (A

Figure 20 - Block diagram of feed-forward control of flap-type WEC

The linear dynamics of the flap (referred to as the plant) is modelled in state space, while non-linearity
(viscous drag force) is modelled separately within the system. The overall system dynamics is computed
by adding the output of the linear and non-linear blocks. The time integration of the system dynamics is
carried out using a suitable Runge-Kutta scheme. Using Newton’s laws of motion, the dynamics of the flap

can be modelled according to the following force balance equation.

I totalg = Twave + TPTO - lrad — Thydro - Tvisc
Lot =1+ g
Thydro = kpg

Tyisc =Cq | V4 | Vg

where Iotal, is the sum of the moment of inertia of the flap and the infinite frequency added inertia. Thyaro

denotes the hydrostatic restoring torque. T.isc denotes the nonlinear viscous drag force caused by flow
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separation at the edges of the flap. The viscous drag force is approximated using the hyperbolic tangent

function, as

Tvisc = Cq tanh(Kvg) va

Setting K = 10 in the above expression gives a good approximation to the value of viscous drag. This is
done in order to use smooth analytical gradients and to aid in convergence. For numerical simulation and

controls optimization, the force balance equation is modelled in state-space form as follows

X(t) = f1(X(t), u(t); Twave, Tvisc)
= Ax(t) + Bu(t) + ETvisc(t) + ETwave(t)

With
Ar 0 B 0 0
A=[ 0 0 11 B=[Y] E=[0]
_Cr _kp Dy 1 1
Itotal Itotal Itotal Iiotal Itotal

and where {4, B, C. D:}represent the state-space matrices of the radiation-damping sub-system. Torque
u(t) = Trro(t) is treated as the control input, and the state vector x = [x7 8 8]%-includes the radiation-
damping states, angular position and angular velocity, respectively. For simplicity of notation wewrite
f1(x(t), u(t), Twave, Twisc) as f1(x(t), u(t)) and it is understood that the system dynamics are a function of

all the torques acting on the system. The electrical generated power P, is the difference of themechanical

absorbed power P(t) = u(t)6(t) and the total transmission loss in the PTO power train, Pjoss. As such,
Pgenzp_ Pioss -
The mathematical nature of P.ss, and its dependence on the response states of the WEC, will vary for

different PTO topologies, and in many realistic scenarios can be rather complex. However, for now, it

suffices to say that this model relates P, to absorbed power P, through a nonlinear algebraic equation.
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10.2 Nonlinear MPC Problem Setup

The objective of MPC is to maximize the electrical generated power P4en. At each instant to, a cost-function
J(x,u) is minimized over a control horizon subject to motion constraints, limitations on the type of control
(discrete or continuous), maximum applied control force and the ability to have bidirectional power flow.

For continuous control with bi-directional power flow, the cost function J(x, u) at a given time instant to

over the interval t € [to, to + Th] is defined as

Jaw = ' [T (Hae

T_h to gen

LT - P ()dt

Th to loss

LT eu® - P (D) dt

E to loss

The MPC objective is to find the optimal control u*(t) that satisfies

max J(x, u)
u
s.t. Xo—x(t)) =0
f1(x(®),u(t)) —x = 0, t € [to, to+Th]
6] < pmax, t € [to, to+ Tk
16(O)] < Vma, t € [to, to+ T4
[u(®)| < Umax,  t € [to, to+ T4

If Py, can be written as a polynomial of the absorbed power such that,

Pgen = ®(P) = ap + a1P + azP?2 + --- a,Pn

then the cost function J(x, u) can be written as

Juw) = L [T ey (tde

Th to

As the generated power is represented as a function of the absorbed power, the optimization problem can

now be solved using the chain rule while computing the Gradient and Hessian of the cost function.
33|Page



10.3 Nonlinear MPC Algorithm and the Loss Model

The first step in solving the non-linear program (NLP) is to discretize the continuous-time problem over the
control horizon [to, to + Tx] by dividing it into N smaller intervals [tk, ti+1] With a constant time step &t.
Assuming a zero-order hold condition, the continuous control input u is taken to be a constant u in each
ke interval. Similarly, the excitation forces and other external disturbances are discretized assuming a zero-
order hold. We also introduce a matching condition to impose the dynamics constraints at the end of each

interval [ty, tx+1], i.€.
Xie(Xk+1; X, W) — Xk41 = 0, t = tk+1

where yy represents the state-trajectory discretized over the interval. After discretization, the cost function

can be written as

JGo,u)= "IVL (x u)

k k k Ny k=0 k k k

=1ZN-1(P(x 2u)—P (x,u))

N k=0 k k loss k k
= lywv-19 (P))
N k=0 k

The discretized non-linear programming (NLP) problem is then given by

max Ji(xk, ui)
u
s.t. Xo—x =20
(X, Xir1, uk) = xr(Xks1; X6, Uk) — Xkr1 = 0, k=01.,N-1

d(xk, uk) = 0, k= 0, 1, ...,N -1

The NLP can be solved using a sequential quadratic programming (SQP) approach. To setup the SQP for

this cost function, let us define the vector of optimization variable, WT = [yT XxT]", where, UT =
[ug wout X = [x(T) ... xT ]. At each iteration of i, we use an appropriate initial guess for the

optimization variable wo and Lagrange multiplier A, for the constraints and solve the following quadratic

programming (QP) problem instead of solving the NLP:
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s.t. COAw+ c® =0
DOAwW + d® =0

Where B(i) is the Hessian of Li(xx, ux) and b(i) is the cost function gradient, evaluated at the current

iteration i. The constraint matrices are obtained by evaluating

C®» = Vwc(w)| c® = C(W(i))

wh

D® = Fudw)|,, dO =dwd)

The solution is then updated as follows

wltD = w® + y Aw*

Here Aw+ is the optimal solution of the QP problem, and y € [0,1] can be determined using a line search
algorithm. The algorithm is said to have converged when the norm ||w@D — wi|| is less than a prescribed

tolerance.

10.4 Results of Nonlinear Model Predictive Control

Tp(s)
5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
0.25 000 0000 0000 0001 0000 0000 0001 0000 0001 0000 0000 0000 0000 0000 0000
0.75 0005 0017 0028 0034 0025 0019 0015 0011 0007 0004 0001 0000 0000 0001 0000
1.25 00 0025 0046 0061 0042 0029 0020 0013 0010 0006 0003 0001 0000 0001 000
1.75 0001 0007 0030 0051 0035 0018 0008 0009 0008 0005 0002 0002 0002 0001 0000
225 0000 0000 0009 0023 0039 0027 0013 0006 0005 0005 0004 0001 0001 0001 0000
Hs(m) 275 000 0000 0001 0006 0022 0026 0021 0008 0005 0003 0001 0001 0001 0000 0000
3.25 000 0000 0000 0001 0007 0016 0019 0015 0007 0003 0002 0002 0001 0001 000
3.75 000 0000 0000 0000 0000 0004 0011 0020 0009 0004 0002 0000 0000 0000 0000
425 000 0000 0000 0000 0000 0000 0002 0008 0008 0005 0001 0001 0000 0000 0000
475 000 0000 0000 0000 0000 0000 0000 0000 0001 0002 0003 0002 0001 0000 0000
5.25 000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0001 0001 0001 0001 Q000
5.75 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Figure 21- Yakutat scatter diagram

The numerical model of the flap was used to simulate two control strategies (a) Coulomb damping
(baseline) (b) Non-linear Model Predictive Control with bi-directional power flow. The shallow water
reference site near Yakutat, Alaska was chosen for computing the annual energy captured for both control
methods. Subsequently, a 10% reduction in performance was taken to account for the effects of shallow

water. Each sea state occurring in the Yakutat scatter diagram (see Figure 21) was simulated for 1200s. The
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average value of absorbed power and generated power was calculated for each sea state. The Annual Energy

Captured (AEC) in Mega Joules (MJ) was calculated according to the formula given below:

AEC = YN min(Pgen(i), Pratea) X p(i) X 24 x 365 / 1000

Here i denotes a given sea state, Pg..(i) is the average generated power (KW), p(i) is the probability of
occurrence of a sea state, N, is defined as the total number of sea states in the scatter diagram and Prated IS
the rated power of the flap (kW).

The Normalized Annual Energy Captured (NAEC) for a given control method (j) was obtained by using
the annual captured energy for Coulomb damping as baseline.

NAEC(j) = AEC(j)/AEC(Coulomb damping)

The following table compares the normalized annual captured energy for the two control methods. It is
evident from these results that Non-linear MPC offers significant improvement over the baseline Coulomb
damping control. However, in cases where the effect of nonlinear drag forces dominates the system’s
dynamical response, the performance of MPC deteriorates and the relative improvement in performance is

diminished.

Table 7 - Performance of Coulomb damping (baseline) and Non-linear MPC (continuous control, two-way
power flow) for an example flap-type WEC

Control method Normalized performance
Coulomb damping (baseline) 100%
Non-linear MPC (continuous control, two-way power) 188%

For more details on the Non-linear Model Predictive Control algorithm, PTO configurations, and derivation
of a “controls-oriented” loss model for MPC, please refer to our paper [6] entitled “Non-linear Model
Predictive Control of Wave Energy Converters with Realistic Power Take-off Configurations and Loss
Model" authored by Anantha Karthikeyan, Mirko Previsic, Jeffrey Scruggs and Allan Chertok. This paper
was published in the proceeding of the 3 IEEE Conference on Control Technology and Applications, held
in Hong Kong, from Aug 19-21, 20109.
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11 Causal Control

11.1 Discrete-Time Causal Control with Nonlinear Stroke Protection

A detailed description of discrete-time optimal causal control with non-linear stroke protection is available
in our paper [7] entitled “Discrete-time causal control of WECs with finite stroke, in stochastic waves”
authored by Jeffrey Scruggs, Yejun Lao, Mirko Previsic and Anantha Karthikeyan. This paper was
presented at the 13th European Wave and Tidal Energy Conference (EWTEC 2019) which was held
between 1st — 6th of September 2019 in Napoli, Italy.

11.2 Optimal Causal Control with Nonlinear Dynamics and Loss Model

Detailed derivation of optimal causal controllers and simulation results for four different PTO
configurations can be found in our paper [8] entitled “Optimal causal control of wave energy converters in
stochastic waves — Accommodating nonlinear dynamic and loss models” authored by Rudy Nie, Jeff
Scruggs, Allan Chertok, Darragh Clabby, Mirko Previsic and Anantha Karthikeyan. This paper was

published in the International Journal of Marine Energy in 2016.

12 Power Take-Off Configurations

One of the core constraints in the overall system is the Power Take-off (PTO). Because the PTO is a key
cost driver, imposing reasonable constraints on its capabilities will help contain cost. Constraints that can
affect PTO cost include position, velocity, acceleration, force/torque, and power flow amplitude and
direction. For example, a hydraulic PTO may use a hydraulic piston pump as the primary actuator, which
has a stroke limit that must never be exceeded. This can be introduced as a position constraint in the
optimization problem and be used in combination with a force constraint to avoid end-stop violations that
would otherwise affect the mechanical integrity of the PTO and device structure. In a similar way, velocity
and acceleration constraints can be used to keep the PTO within an envelope of acceptable limits, satisfying
reliability concerns. Power flow constraints can be imposed to limit instantaneous power flow, which
directly affects the cost of the PTO as well as power flow direction. A positive power flow constraint, for
example, precludes the transport of reactive energy for maximizing power capture, which would require a
more costly PTO to implement. Finally, PTOs may be able to produce only discrete force levels — typical
in hydraulic systems, where a fixed displacement pump pressures fluid in an accumulator at fixed pressure.
To better understand the trade-offs with different types of PTO capabilities, we have categorized all the

PTOs into four different categories. This categorization allows us to establish fundamental trade-offs and
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subsequently refine them based on the specifics of the physical system. These four options are illustrated

below.
‘T T

/T/\\«t _j_D_'
;‘ #A&“ Option 4 Option 3
t
N\/ Option 2 Option 1

Figure 22 - PTO Options 1-4

Option 1 — Uni-directional power flow (damping only) with discrete force/torque values. This topology
would be representative of a very simple hydraulic PTO, where the PTO force is given by a fixed system
pressure. We still allow for that force to be switched between high and low and optimize the timing of these
switching events.

Option 2 — Uni-directional power flow (damping only) with continuous force values. In this case, the force
can be continuously varied, but only positive power flow is allowed. This uni-directional power flow
constraint allows us to model PTOs that cannot act as an actuator (i.e., return power to the sea to maximize
performance).

Option 3 — Same as Option 1 but allowing for bi-directional power flow.

Option 4 — Same as Option 2 but allowing for bi-directional power flow.

PTO capability and cost increase as PTO topology becomes progressively more complex from Option 1 to
4. This increased complexity can also be associated with higher failure rates. If properly weighted in a
techno-economic model, these attributes can be translated into LCoE, allowing for an identification of the
optimal topology for a given WEC design. While the complexity of the physical PTO increases with
increasing capability, it is much easier to implement an optimal control algorithm for such an unconstrained
system than for a heavily constrained one or one involving only discrete force levels. The following
illustrations show the time domain behavior of the control forces for Options 1-4 using optimal control.
Responses were computed using Model Predictive Control and are meant to illustrate these different

response types for a flap type WEC.
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Figure 23 - Normalized response of surge WEC under control option 4 (Note: negative power flow)
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Figure 24 - Normalized Response of Surge WEC under Control Option 2 (Note: no negative power flow)
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Figure 26 - Normalized Response of Surge WEC under Control Option 1 (Note: no negative power flow

allowed)

13 System ldentification Methods

System dynamics model for WEC devices are typically developed from frequency domain data that are
obtained from Boundary Element Method (BEM) codes, such as WAMIT, Nemoh, or analytical models.

Frequency domain data is then augmented in the time domain with non-linear terms for viscous damping

and other non-linearities. These models are typically not directly su

and a reduced-order model is required to make it fast-enough in
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the optimization process. This proved



particularly challenging for the oscillating water column (BBDB), which has four heavily coupled
oscillatory modes that must be described in the dynamic system.

In order to design controllers (both causal and MPC) for the oscillating water column, it was first necessary
to develop an accurate linear finite-dimensional state-space model. By “linear finite-dimensional,” we mean
that, at any given time t, the dynamics of the system can be described by a system of ordinary differential

equations of the form:

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

where x(t) is a continuous, finite-dimensional vector of coordinates, u(t) is a four-dimensional vector of

incident wave forces on the BBDB system, defined as

| incident heave force |
incident surge force

U=
incident pitch force
incident chamber pressure

and y(t) is a four-dimensional vector of response velocities co-located with these forces. This is a challenge
because the true physical system is the consequence of partial differential equations, which may be thought
of loosely as an infinite-dimensional state-space. Consequently, any finite-dimensional model, as described
above, constitutes an approximation, and the goal is to find the best approximation for a given
dimensionality of x. The dimension of x should be as small as possible to enhance the efficiency and
practicality of the control designs based on this model. However, because the accuracy of the model
decreases with dimensionality, there is a trade-off between accuracy and practicality.

One of the things that make MPC challenging for the BBDB is that the finite-dimensional model has four
inputs and four outputs. There are consequently 16 input/output channels, all of which must be estimated
accurately by the finite-dimensional model. A reasonable approximation without any model reduction
techniques yielded a total of about 190 states, which proved detrimental to the computational efficiency of
the MPC algorithm.

To address this issue, we refined a subspace-based system identification technique ( [9]) to generate the
finite-dimensional model. Subspace techniques are analytically sophisticated but very widely used methods
for generating such models. They have the distinct advantage of being scalable to systems with many inputs

and outputs, as well as systems requiring higher-dimensional state vectors to achieve desired modeling
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accuracy. The drawback to these techniques is that the physical meaning of the internal states becomes lost.
Figure 27 illustrates how accuracy improves as the number of states is increased. A reasonably accurate
model is identified with about 50 states, representing a four-fold reduction in states compared with the

original model. More details on model order reduction techniques can be found in [10] and [11].

Truth Model
- = =|dentified model (50 states)
-------- Identified model (20 states)

- - = -|dentified model (10 states)

Normalized Average Power

-t

Period (s)

Figure 27 - Comparison of truth model vs identified model for different states
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1 INTRODUCTION

This testing program measures the performance of a 1-DoF heaving wave-energy converter device to
validate control strategies as part of our efforts under our SPA-II project to develop optimal controls
approaches.

The core objectives of this project is to improve the power capture of three different wave energy
conversion (WEC) devices by more than 50% using an advanced control system and validate the
attained improvements using wave tank and full scale testing. In parallel, we will bring along the
development of a wave prediction system that is required to enable effective control and test it at full
scale. Development efforts will start at a TRL 3 and end at a TRL6.

The purposes of this report are to:

e Plan and document the 1/25" scale device testing at the wave-tank facility;

e Document the test article, setup and methodology, sensor and instrumentation, mooring,
electronics, wiring, and data flow and quality assurance;

e Communicate the testing results between the associated members;

e Facilitate reviews that will help to ensure all aspects (risk, safety, testing procedures, etc.);

e Provide a systematic guide to setting up, executing and decommissioning the experiment.
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2 TEST OBJECTIVE

The main objective of the 1/25™ scale point-absorber type heaving buoy is to obtain the necessary
measurements required for validate the performance of different control strategies. This includes:

e Validate the hydrodynamic coefficients such as wave-excitation force, radiation damping,
drag coefficient of the device;

e Validate the numerical results from WAMIT;

e Measure the power-extraction performance of the WEC device with different control
strategies (Linear damping, Causal control, MPC).
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3 TEST FACILITY

Testing was mainly conducted in the Directional Wave Basin (DWB) at O. H. Hinsdale Wave Research
Laboratory of Oregon State University (OSU), Corvallis, Oregon. The DWS is an indoor basin having
an overall length of 48.8 m (160 ft.), a width of 26.5 m (87 ft.) and a depth of 1.37 m (4.5 ft.). A
photo of the DWB can be found in Figure 1. The basin has an instrumentation carriage spanning the
width of basin. The opposite end of wavemaker is 1:10 removable steel beach. Uni-strut inserts are
placed in rows with 1.2 m spacing to affix wave gauge and model in floor of the basin. Figure 2
shows general schematic of the DWB layout.

The second testing was performed in the Richmond Field Station (RFS) of University of California at
Berkeley, which is shown in Figure 3. The RFS wave-tank has 68 m length, 2.4 m width, and 1.8 m
depth with a flap-type wave maker. A carriage can travel along with the length of the tank.

Figure 1. Overview of the DWB, OSU
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Figure 3. Overview of the wave tank, RFS
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3.1 WAVE MAKER

The OSU wave maker is a piston-type system made of 29 boards with up to 2.1 m long stroke. The 29
boards of 2 m (6.6 feet) height are driven by electrical motors. The facility has been designed to
generate regular, irregular, Tsunami and multidirectional waves. Detailed specifications of the OSU
wave maker are list in Table 1.

Table 1. Specifications of OSU wave maker

Parameter Value

Period range 0.5 to 10 sec

Max. wave 0.75m (2.5 ft.) in 1.37 m (4.5 ft.) depth
Max. stroke 2.1m (6.9 ft.)

Max. velocity 2.0m/s (6.6 ft./s)

Figure 4 shows the performance curves of the OSU wave maker as functions of wave height
(h)/water depth (H) and wave height (h)/wave length (L). Based on this performance curves, wave
conditions, i.e., periods and height, were selected to retain linear-wave theory.

1 el i + el limitdedh=1C4)
Ceneraftonstrone-Hmit{syn=iob

i
4 : - Fenton's Limit: L/h=21.5exp(-2.5 H/h)

Generation breaking limit

Airy Wave Theory u

h/L=0.05
| bhf=0s L

Shallow Water

Intermediate Deep Water

0.001

h/L

Figure 4. Performance curves of the OSU wave maker
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4 SCALED MODEL DESCRIPTION

4.1 DEVICE DESCRIPTION

4.1.1 Full-scale device

The heaving buoy designed by RE Vision Consulting, LLC., is a heaving point-absorber wave-energy
converter (WEC). A single body is constrained to move vertically in response to incident waves. The
relative vertical motion with respect to the fixed structure or platform is utilized to capture wave
energy. The buoy has an axisymmetric body, with conical bottom shape. The general concept of the
heaving buoy is illustrated in Figure 5.

PTO

-
Diameter |

N

Cylindrical height

Conical bottom height_

Figure 5. Schematic of the heaving buoy.

The full-scale device is expected to be deployed in intermediate or deep water, and dimensions are a
diameter of 11 m, a cylindrical height of 4 m, and conical bottom height of 1.2 m (30% of the
cylindrical height).

4.1.2 Model-scale device

For testing in the wave basin, the device was scaled down by 25X from the full-scale design. A
SolidWorks rendered image of the 1:25 scale model and proposed arrangement for testing at wave
tank are shown in Figure 6. An engineering view of the heaving buoy is also shown in Figure 7.
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Figure 6. Prospective view of overall system(left) and buoy (right) for 1:25 scale model
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Figure 7. Engineering view of 1:25 scale heaving buoy
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The elements of the model-scale WEC device for tank testing are as follows:
o The buoy: moving part of the device made by Foam and Fiberglass for surface;
e The power take-off: permanent magnet linear motor consisting of stator and slider;
e The transducer assembly: contains a load cell and connects the slider to the heave rod;
e The ballast disk: weights to match desired draft of the buoy, 15 |bs (6.8 kg);

e The heave rod: (1) 8” (length) x 0.5” (diameter) shaft for compatibility with load cell carrier;
(2) 36” (length) x 0.625” (diameter) shaft connected to the center of buoy.

The power take-off and linear bearings for heave rod are mounted on 80/20 frame, which is
attached to the platform or carriage using C-clamps.

4.2 POWER TAKE-OFF DESCRIPTION

The power take-off (PTO) is a direct-drive permanent magnet linear motor PS01x37-120C with PLO1-
20x1600/1520-LC slider manufactured by LinMot. It provides a maximum 163 N reaction force.
Specifications of motor and drive is included in Appendix A.

The moving part of magnet or slider is connected to the buoy, while the stator is mounted on the
bridge. The motor force is controllable via an analog signal provided by the motor drive which allows
real-time force control loops to be implemented. The load cell is positioned between the slider and
the heave rod as shown in Figure 8, thus measuring the total linear force between the buoy and the
PTO. Linear bearings isolate the forces transferred to the load cell to 1-DoF and insure off-axis loads.
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Figure 8. Detailed view of the transducer assembly

The motor drive provides position measurements in form of a simulated encoder output. A encoder
to voltage converter manufactured by Laurel Electronics, provides the user scalable analog output O-
10V from digitally transmitted pulse counts.

4.3 DEVICE PROPERTIES
The full-scale and 1:25" model-scale buoy properties are listed in Table 2. Definition of geometrical
parameters of the buoy is shown in Figure 5.

Table 2. Critical properties of the buoy

Full-scale Model-scale
Diameter (m) 11 0.44
Cylindrical height (m) 4 0.16
Conical bottom height (m) 1.2 0.048
Draft (m) 3.2 0.128

17 |Page



Water depth (m)
Displaced mass (kg)

Submerged volume (m3)

35

228079.6

228.08
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1.365
14.60

0.146

4.4 FROUDESCALING

Device linear dimensions and properties are scaled per Froude scaling laws, listed in Table 3 below.

Table 3. Froude scaling law

Quantity Units Scaling
Wave height and length m s
Wave period and time sec s03
Wave frequency Hz 503
Linear displacement m S
Linear velocity m/s g
Force N 53
Power w 53>
Mass Kg s°
Linear stiffness N/m s?
Linear damping N/(m/s) 5235
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5.1 TEST MATRIX

The performed tests of the 1/25" scale device at wave-tank listed in Table 4, and incident-wave

conditions for testing are shown in Table 5. Detailed test runs are listed in Appendix G.

Table 4. Test matrix

ID Tests Measurements Device Wave
1 Free-decay . Position -
o . Force .

2 Wave-excitation force . ) Fixed Regular
. Incident-wave elevation
. Force

3 Power performance . Position - Regular
. Incident-wave elevation

Table 5. Test waves
Type Period Height TestID
Regular 1.0/1.4/1.8/2.2/2.6/3.0/3.4 sec 4 cm 2.3
5/7/9/11/13/15/17 sec 1m (Full scale)
h/L (OSU) 0.87/0.45/0.28/0.21/0.17/0.14/0.12 0.03 (H/h)

5.2 TEST SCHEDULE
TEST CAMPAIGN | was carried out at the Oregon State University (OSU) tank facility from March 6
(Monday) to March 8 (Wednesday), 2017, as shown in Table 6.

Table 6. Testing schedule — Test Campaign |

Date/Time

Event

Monday

WEC installation and work-in

08:00 —14:00

Assembling and installation of the device, set up for testing and verifying operation

14:00-17:00

Force control loop debugging
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Tuesday Full Test Day
08:00 — 15:30 | Force control loop debugging
15:30-17:00 | Wave-excitation force test
Wednesday Full Test Day
08:00 — 08:30 | Free-decay test
08:30 —10:00 | Wave-excitation force test
10:00 -17:00 | Performance test in regular waves with linear damping and MPC

TEST CAMPAIGN Il was carried out at the Richmond Field Station (RFS) of the UC Berkeley from April
19 (Wednesday) to April 21 (Friday), 2017, as shown in Table 7.

Table 7. Testing schedule - Test Campaign 11

Date/Time Event
Wednesday WEC installation
18:00 —20:00 | Assembling and installation of the device, set up for testing and verifying operation
Thursday Full Test Day
09:00 — 15:30 | Performance test in regular waves with linear damping
15:30 —20:00 | Performance test in regular waves with MPC
Friday Full Test Day
09:00 — 14:00 | Performance test in regular waves with MPC
14:00 — 19:00 | Performance test in regular waves with Causal control
19:00 - 21:00 | Decommissioning the model

TEST CAMPAIGN Il was carried out at the OSU from May 24 (Wednesday) to May 26 (Friday), 2017,

as shown in Table 8.

Table 8. Testing schedule — Test Campaign Il

Date/Time Event
Wednesday WEC installation and work-in
12:00 —15:30 | Assembling and installation of the device, set up for testing and verifying operation
15:30—-17:00 | Performance test in regular waves with linear damping
Tuesday Full Test Day
08:00 —11:00 | Performance test in regular waves with MPC
11:00—-12:00 | Performance test in regular waves with Causal control
12:00—17:00 | Performance test in regular waves with linear damping
Wednesday Full Test Day
08:00 —11:00 | Performance test in regular waves with Causal control
11:00 —16:30 | Performance test in regular waves with MPC
16:30—-17:30 | Decommissioning the model
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6 EXPERIMENTAL SET UP AND METHODS

6.1 INSTALLATION

The slider, transducer assembly, and heave rod need to be connected sequentially. Figure 9 and
Figure 10 show the installed device in the Oregon State University (OSU) wave basin and the
Richmond Field Station (RFS) wave tank, respectively. One of wave gauges is aligned with the center
of buoy, and another one is positioned the device ahead.

After installing the device in wave tank, a fundamental functionality test should be done to check
force control mode of LinMot motor and to confirm direction of the force and position. The positive
PTO force moves the buoy up (positive position).

Bridge

structure Load cell
Stator
Heave rod
(8”x0.5”)
C-clamp
Shaft coupling
(0.5” to 0.625")
80/20 frame
Heave rod
Slider (367%0.625”)

Ballast disk
Linear bearing
Heave rod
(36”x0.625")
Buoy

Buoy

Figure 9. Installed device in the OSU wave basin
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Stator —_

Slider -

Heaving buoy - Wave gauge

Figure 10. Installed device in the RFS wave tank

6.2 INSTRUMENTATION
The sensors used for testing are listed in Table 9 below:

Table 9. Sensors

Function Sensor Maker Units
PTO force LSB200 — 50Ib Futek N
Linear position LT61QD Laurel Electronics, Inc. m

. Twin-wire resistance wave gauge (OSU)
Wave elevation . - m
Capacitance wave gauge (RFS)

The following points should be noted in relation to the interface with sensor systems:

e Force feedback is provided by way of a dedicated load cell, which is connected to a strain
gauge amplifier manufactured by Mantracourt Electronics. An output in volts from the
sensor is provided in the calibration curve, which is shown in Figure 11. Detailed information
of the load cell and amplifier is included in Appendix B.
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e Linear position is provided by way of a simulated quadrature encoder outputs, providing
A/B/Z TTL signals from the LinMot drive. The connected Laurel transmitter provides analog
output for position from quadrature encoder signal by digital-to-analog converter. To scale
analog output, two endpoints of output range needs to be set. After calibration, a slope of -
11.913 mm/V was used at +/- 3000 count range of the encoder, with 10 um resolutions.

e OSU provided the wave gauge of twin-wire resistance type. Seven wave probes were
installed around the device in semicircle as shown in Figure 12. The provided conversion
slope between the voltage output and wave elevation in meter is listed in Table 10. At the
RFS facility, wave gauges of capacitor type were installed with 18.05 m distance between
them. In addition, wave maker signal is also provided, which is 5 volts from 0 volt when it

starts.
Load cell calibaration
100
y = 34.334x- 202.12 .

80 Rz2=1
— S
Z 60 3
3
6 40 et
L

20 ®

0 =
5 6 7 8 9 10

Sensor output (Volts)

Figure 11. Calibration curve of force sensor
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Figure 12. Layout of the installed device and probe in OSU wave basin

Table 10. OSU wave gauge calibration slope and position

Wave probe # Slope Slope unit X-Position (m) Y-Position (m)
1 0.231 m/V 9.477 0.003
2 0.228 m/V 10.704 2.687
3 0.227 m/V 11.909 3.427
4 0.346 m/V 13.141 3.624
5 0.228 m/V 14.351 3.414
6 0.239 m/V 15.574 2.697
7 0.230 m/V 16.779 -0.006
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/ DATA PROCESSING AND ANALYSIS

7.1 DATAQUALITY ASSURANCE

Data collection started just before wave maker started and continued until wave generation
stopped. This ensure that the data captures the initial conditions and ramp-up/down as well as the
trigger signal to enable subsequent time synchronization.

Raw data from the wave gauges and from the sensors were collected by the same data acquisition
system and stored in a .mat file for each test run. The data quality assurance was checked at three
points: 1) visually in real-time during each test, 2) in-between test runs through the initial
processing, and 3) data analysis after testing. Corrective action was taken if any issues in the data
and device were observed.

7.2 DATAPROCESSING IN REAL-TIME

The data flow and processing steps are shown in Figure 13. The tests were performed using pre-
written scripts that run on a Speedgoat system. These scripts load the data, perform initial
processing, and create figures for review. Post-processing and analysis were completed using
achieved data file after testing was complete.

RFS/0OSU Real-time target
Wave Matlab/Simulink
Sensors Controller
|
i Speedgoat :
PTO > 1/0 module > Post-processing
| and Analysis
Force Signal .
Transducer Conditioning Data Inmal
Processing
Position | )
Sensor Real Tlme
Data Display

Figure 13. Data flow and processing steps.

For real-time data assessment and control prototyping, Speedgoat was used. Speedgoat is a real-

time target machine that allowed us to execute Simulink models in real-time. Specifications of the
Speedgoat system is included in Appendix C. This Speedgoat system allows live parameter tuning,
signal monitoring and execution control. Workflow of the Speedgoat system is illustrated in Figure
14. Wiring to sensors via I/O module of the Speedgoat is illustrated in Appendix D.
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Development computer Target computer Physical system

3 - o
BELRE o
=R
Gt T

Ethernet
MATLAB, Simulink, MATLAB Coder, Multi-core CPU running Simulink
Simulink Coder, and Real Time kernel, FPGAs, 1/O Hardware under test with sensor
Simulink Real-Time and protocol interfoces and actuator interfoces

Figure 14. Workflow of Speedgoat.

A screen-shot of the front panel for real-time data processing and different control mode is provided
in Figure 15. It should be noted that all input values from control panel should be full-scale values,
and are then converted into model-scale values in Simulink. The parameters implemented on the
front panel as follows:

Table 11. Parameters on control panel

Parameter Description Units

Control Modes  1: Linear damping, 2: Causal control, 3: Safe damping, 4: MPC

Set loop gain Loop gain for all control modes
Damper Used to set PTO damping value for linear damping (Test 5) N/(m/s)
Safe damper PTO damping value for safe operation N/(m/s)
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Figure 15. Front panel of real-time controller

7.3 CONTROL MODES
Three different control modes are considered in this work: Linear damping, Causal, and MPC. These
control strategies are implemented ion the real-time target machine, Speedgoat.

For linear damping control mode, the PTO is assumed to be linear damper system. This mode uses
velocity feedback, and provide a force demand by multiplying linear damping value into the PTO. A
damping value is constant and continuous value, which can be controlled on the front panel.

Causal control uses both position and velocity feedback signals, and provides a force demand signal
into the PTO. Optimal tuning parameters needs to be set for different wave conditions.

MPC simply applies pre-determined PTO force-demand, which is optimized using an offline MPC
optimization. For this purpose, wave information from wave gauge aligned with the device is needed
in advance. In experiment, the optimized force time series is synchronized using the wave-maker
trigger signal.
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8.1 NOMENCLATURE

Table 12. Nomenclature of all variables and constant

Symbol Unit
Displaced mass M kg
Added mass M. kg
Radiation damping B N/(m/s)
Viscous damping Buis N/(m/s)
Total damping Br=B+Buis N/(m/s)
Hydrostatic stiffness Kp N/m
Damping ratio < -
Logarithmic decrement 0 -
Damped natural period Ty sec
Damped natural frequency Wd Rad/s
Natural frequency Wn Rad/s
Wave number k m?
Water density o) Kg/m3
Drag coefficient Co -
Water-plane area of the buoy A m?
Wave amplitude a m
Group velocity Vy m/s
Wave-excitation force Fexc N
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8.2 NUMERICAL RESULTS

The first step for determining hydrodynamic performance of the device is to obtain the
hydrodynamic coefficients including; added mass M,, radiation damping B, and wave-excitation
force Fex.. The numerical hydrodynamic coefficients for given geometrical properties of the buoy in
full scale were computed by WAMIT, which is plotted in Figure 16.

WAMIT results in full-scale

2 1000
g 900 ——Added mass, Ma
g Lg 800 Radiation damping, B
X 700 Excitation force, Fexc
w
L
=3
o 400
3 300
S 200 T
100
0

0.0 20 4.0 60 80 100 120 140 16.0 18.0 200
Period (s)

Figure 16. Hydrodynamic coefficients in model-scale from full-scale WAMIT analysis.

8.3 FREE-DECAY TEST

The oscillation of the buoy gradually decreases to its steady-state position after releasing from a
certain initial displacement, which shows a typical underdamped mechanical system. The decaying
period reveals the natural resonance frequency of the device using the logarithmic decrement
method.

The damped mechanical system typically has the following form:

MX+BX+ Kpx=0=X+2p X+w’x=0

n n

where M, B and K, are mass, damping and spring coefficient, respectively. Also, ¢ and @ are the

damping ratio and the natural frequency:

e[ 2V,
U )

a):\/gz 0w, _ 2z
M e T g
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where @, represents the damped natural frequency.

In addition, the logarithmic decrement O is obtained from the successive peaks and related to the
damping ratio:

[y, ) 2 27g  or S
S=mnly—l=Co T =¢o, =@-¢) &= ar’+o?
k n+1) d

Thus, the natural frequency is obtained from the oscillation data of the device over time as shown in
Figure 17. With the use of the added mass coefficients from WAMIT, the spring stiffness and
damping value considering a linear-viscous damping term in real fluid were deduced:

w,= K, [(M+M,)=K, =0*(M+M )

n a

BT = B+ Bvis = Zé/a)n (M + Ma)

Free-decay test
70

50

30

10

-10 0|0 0.5 1.0 \/A 2.0 25 3lo

-30

Position {(mm)

-50

-70

Period (s)

Figure 17. Time history of the buoy position after initial position

A summary of the free-decay test results is listed in Table 13. Initially, a linear drag or viscous
damping value was assumed as follows:

B,. =0.5xC, x px A

where Cp = 0.5, p = 1025 kg/m3, and A is the water-plane area.

It turns out that the measured resonance frequency matches well with prediction, and measured
linear viscous damping value is close to the prediction.
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Table 13. Summary of free-decay test results

Full-scale Model-scale Model-scale
(WAMIT) (WAMIT) (Experiment)
Natural resonance period (s) 4.5 0.9 0.88
Natural resonance frequency (rad/s) 1.40 7.0 7.17
Displaced mass, M (kg) 233781.62 14.96 14.96
Added mass at resonance freq., M, (kg) 210100 13.45
Hydrostatic restoring stiffness, K, (N/m) 899275.7 1438.8 1460.1
Radiation damping at resonance freq., B
111801.5 35.78
(N/(m/s))
Total damping including viscous effects,
- - 47.97
BT=B+BVIS
Linear-viscous damping, Byis 24352.25 7.79 12.19

8.4 \WAVE-EXCITATION FORCE

With a fixed position of the buoy, measured wave-excitation force was measured and compared to
the WAMIT results as a function of incident-wave period in full scale, which is shown in Figure 18.
Measurements match well with predictions.

The Haskind’s relation represents reciprocity relation between wave-excitation force and damping:

F =al 4p9Vy B—IU2

- [

where a is the incident-wave amplitude, V,is the group velocity, k is the wave number, and B is the
radiation damping.

The computed wave-excitation force from the Haskind’s relation has the same results with
numerical results. Thus, it proves that the radiation damping between the prediction and the
experiment agrees well.
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Figure 18. Wave-excitation force comparison
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8.5 POWER PERFORMANCE IN REGULAR WAVES

8.5.1 PTOforce control

Supporting visionary renewable energy projects

100 120 140 160 180 20.0

Reaction force of the PTO affects the motion response of the buoy to incident waves as well as

power extraction. Thus, the PTO force was controlled during the test to investigate the motion
response and power extraction performance. With use of the permanent magnet linear motor as the
PTO, internal Pl algorithm of LinMot drive was used for the force control loop. The purpose of the

force control loop is to match actual force to desired force demand. Pl gains are adjustable on the

motor drive, and set to P=0.1 and |=2 for experiments. A schematic of the PTO force control loop is

illustrated in Figure 19.

PTO

Load cell

(Linear motor)

“

A

Vel
_ Pl < Bito
Motor driver Real-time controller

— Force demand

— > Force feedback

Figure 19.Schematic of PTO control loop
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8.5.2  Power extraction performance results

A) TEST CAMPAIGN I
During Test Campaign |, a few performance tests performed to verify operation of the device in
different control modes. In testing with linear damping control mode, two things were observed: (1)
increasing motion response with increasing PTO damping shown in Figure 20; (2) time delay in force
feedback from force input shown in Figure 21.

It is expected that motion response decreases with increasing PTO damping because PTO force
applies against motion velocity. It turns out that force input direction of the PTO was wrong during
the testing, thus feeding power into waves not extracting power from waves. The time delay
between force input to the PTO and feedback from load cell was also observed in MPC mode trials,
which can be found in Figure 22, as an example of T = 11 sec (2.2 sec in model scale). In addition,
measured motion response and absorbed power lag simulation results when compared in time
domain as shown in Figure 23 to Figure 25. However, experimental results have a similar amplitude
with simulation results, so measured time-averaged power extraction agrees with simulation as
shown in Figure 26. The time delay issue on feedback signal was resolved by updating 10 module
driver of the Speedgoat after Test Campaign | was complete.

15 T T T

o
o

position (m)
o

05 F U U—
Ak U .
300 kNs/m 400 kNs/m £00 kNs/m

_1 5 1 1 1
950 1000 1050 1100 1150
time (s)

Figure 20. Time history of motion response with different linear damping values — Test Campaign |
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Figure 21. Time history of PTO force between input and feedback with linear damping — Test Campaign |
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Figure 22. Time history of PTO force between input and feedback with MPC— Test Campaign |
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Figure 23. Time history of displacement between simulation and measurement with MPC- Test Campaign |
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Figure 24. Time history of velocity between simulation and measurement with MPC — Test Campaign |
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Figure 25. Time history of absorbed power between simulation and measurement with MPC — Test Campaign |
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Figure 26. Time-averaged power performance with MPC — Test Campaign |
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B) TEST CAMPAIGN II
By fixing the force input direction of the PTO and updating the hardware driver of the target
machine, the issues observed in Test Campaign | disappeared. The heave response amplitude of
operator (RAO), amplitude of motion response with respect to amplitude of incident wave,
decreases with increasing PTO damping value, as shown in Figure 27. The phase shift between force
input to PTO and feedback from load cell is significantly reduced and is negligible, which is shown in
Figure 28.

Each frequency has a different optimal PTO damping at which maximum power is captured. By
sweeping different PTO damping values for given frequencies, an optimal linear damping was found
as shown in Figure 29. As an example of T = 9 sec, Figure 30 shows instantaneous power, applied
PTO force, and motion responses with the optimal damping value of 1200 kN/(m/s) in time domain.
In addition, time histories of performance for causal control and MPC are plotted in Figure 31 and
Figure 32.

As a summary of this Test Campaign |l, time-averaged power absorption for 1m incident-wave height
as a function of frequency with different control methods is plotted in Figure 33. Obviously, the
causal control and MPC improve performance of the power capture when compared to the constant
linear damping control. For the simulation results, an actual wave data measured from wave gauge
was used not to overestimate performance with ideal sinusoidal waves. Overall trends between
experiment and simulation agree for all control modes, but fine tuning of developed numerical
model is needed for better matching with experimental results.

Linear Damaping (T=11s)
1.0

0.8

0.6 e

0.4

0.2

Heave RAO {m/m)

0.0

1000 1100 1200 1300 1400 1500
Damping (kNs/m)

Figure 27. Heave response amplitude of operator for different linear damping - Test Campaign 11
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Figure 28. Time history of PTO force between input and feedback with linear damping - Test Campaign Il
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Figure 29. Linear damping optimization - Test Campaign Il
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Figure 30. Performance with linear damping in time series - Test Campaign I
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Figure 31. Performance with causal control in time series - Test Campaign Il
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Figure 32. Performance with MPC in time series - Test Campaign
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Figure 33. Time-averaged power performance - Test Campaign I/
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The Test Campaign Il repeated previous test matrix, but with tuned numerical model parameters, to
verify the performance improvement by causal control and MPC than that of linear damping control.
Figure 34 shows searching of the optimal damping at each frequency, and compares with predicted
power computed by simulation. A found optimal linear damping from experimental results has the
same with one from simulation results as well as time-averaged power value. Absorbed power, PTO
force, and motion responses in time domain for three different control methods are plotted in
Figure 36 to Figure 38, which is at 11 sec wave periods. For the MPC, measurements and simulation
results for selected periods are compared through Figure 39 to Figure 42. It shows good agreement
between them, even in latching-like velocity behavior.

Figure 43 presents time-averaged power as a function of frequency. At a glance, causal control and
MPC improve performance in power extraction, especially 9 sec wave periods onward. The causal
control and MPC lead to maximum 3-fold and 5-fold power performance respectively when
compared to the optimal linear damping control. Figure 44 is the heave response amplitude of
operator (RAO) in the same way with power comparison. It is consistent with power performance
results, and can explain power improvement by the causal control and MPC.
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Figure 34. Linear damping optimization - Test Campaign 1
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Figure 35. Optimal linear damping for each wave period
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Figure 36. Performance for linear damping in time series - Test Campaign I/
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Figure 37. Performance for causal control in time series - Test Campaign 1/
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43 |Page

time (s)

Fm (MN)

-1

o
w

velocity (m/s)
o
(9)] o

1
—_

Max. Force = 1.05 (MN)

/

A

AV

\

|

240 250 260 270 280 290

J

il

\

V

I

240 250 260 270 280 290
time (s)



vision

Supporting visionary renewable energy projects

15 T T T T T T T T T T

Simulation
Experiments

position (m)

-1.5 1 1 1 1 1 1 1 1 1 1
235 240 245 250 255 260 265 270 275 280 285 290

time (s)

Figure 39. Position comparison between simulation and experiment with MPC — Test Campaign IlI
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Figure 40. Velocity comparison between simulation and experiment with MPC - Test Campaign Il
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Figure 41. PTO force comparison between simulation and experiment with MPC - Test Campaign Ill
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Figure 42. Power comparison between simulation and experiment with MPC - Test Campaign III
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Figure 43. Time-averaged power performance - Test Campaign IlI

Figure 44. Heave response amplitude of operator - Test Campaign Il
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In order to confirm the power performance improvement brought by the MPC, tests were also
performed in irregular waves. For this purpose, a JONSWAP spectrum with significant wave height of
1m and peak period of 11s in full scale was used. An optimal damping of 1013600 Ns/m was found
from simulation study for linear damping control, and performance for certain time window is
plotted in Figure 45. In the same way, performance controlled by MPC can be found in Figure 46.
Those results indicate the MPC significantly improves absorbed power by factor of about 4;
measured mean power absorption for [100s, 2500s] is about 10kW by linear damping control and
38kW by MPC.
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Figure 45. Performance with optimal linear damping in irregular waves
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