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* Experiments of nitrogen implantation in tungsten has » ARIES results were compare with the SNAP potentials
resulted in tungsten nitride formation which increases developed for W-H and DFT training data
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 SNAP can reproduce both gas-phase and condensed-phase
chemical interactions
* One set of descriptors for very different atomic species

Formation
* units in eV JIEST]) S * H, continually adsorbs to surface
E Dimer -4.75 -3.27 -9.79 -9.73 * H resides at offset bridge site
Efle: 0.88 0.83 1.85 1.39 » Some diffusion into bulk, resides at tetrahedral sites
E Oct 1.26 1.35 1.11 1.05 Conclusions
EoU0 4.08 3.93 4.72 4.20  SNAP potential for W-H and W-N have been developed
W,N, Cohesive that well reproduce key properties
' * These potentials predict adsorption sites consistent with
(WN) | (WN) | (W,N) ARIES experiments for H on W surfaces
DFET 182 091 -084 -023 -0.03 * H2/N2 adsorption on tungsten results in H surface layer
SNAP 213 _1 45 046  -1.16 0.36 with some diffusion to bulk or WN,, formation
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