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Kohn-Sham density functional theory calculations using conventional diagonalization based meth-
ods become increasingly expensive as temperature increases due to the need to compute increasing
numbers of partially occupied states. We present a density matrix based method for Kohn-Sham
calculations at high temperature that eliminates the need for diagonalization entirely, thus reducing
the cost of such calculations significantly. Specifically, we develop real-space expressions for the elec-
tron density, electronic free energy, Hellmann-Feynman forces, and Hellmann-Feynman stress tensor
in terms of an orthonormal auxiliary orbital basis and its density kernel transform, the density kernel
being the matrix representation of the density operator in the auxiliary basis. Using Chebyshev fil-
tering to generate the auxiliary basis, we next develop an approach akin to Clenshaw-Curtis spectral
quadrature to calculate the individual columns of the density kernel based on the Fermi operator
expansion in Chebyshev polynomials; and employ a similar approach to evaluate band structure
and entropic energy components. We implement the proposed formulation in the SPARC electronic
structure code, using which we show systematic convergence of the aforementioned quantities to ex-
act diagonalization results, and obtain significant speedups relative to conventional diagonalization
based methods. Finally, we employ the new method to compute the self-diffusion coefficient and
viscosity of aluminum at 116,045 K from Kohn-Sham quantum molecular dynamics, where we find
agreement with previous more approximate orbital-free density functional methods.

I. INTRODUCTION

Over the past few decades, Kohn-Sham density functional theory (DFT) [1, 2] has established itself as a powerful
framework for understanding and predicting a wide range of materials properties, from the first principles of quantum
mechanics, without any empirical or ad hoc parameters. The ubiquitous use of DFT is a consequence of its simplicity,
generality, and high accuracy-to-cost ratio compared to other such first principles methods. However, the solution
of the underlying nonlinear eigenvalue problem for the Kohn-Sham orbitals remains a challenging task, with the
computational cost and memory requirements scaling cubically and quadratically with system size, respectively [3–
5]. Moreover, the orthogonality constraint on the orbitals translates to significant global communications in parallel
computing, limiting the minimum time to solution that can be attained. This can become particularly important for
quantum molecular dynamics (QMD) simulations [6, 7], wherein tens or hundreds of thousands of such Kohn-Sham
solutions may be required to complete a single simulation.

To overcome the cubic scaling bottleneck in DFT calculations, significant efforts have been directed towards the
development of methods that scale linearly with system size (see, e.g., [3–5] and references therein), both in compu-
tational cost and computer memory, which have culminated in a number of mature codes, e.g., [8–14]. While major
advances have been acheived, a number of challenges remain for linear scaling methods and their implementations.
These include the need for additional computational parameters, which complicate use in practice; limitations of the
underlying basis sets used for discretization; subtleties in choosing the numbers and/or centers of localized orbitals
for different physical systems; scalability on parallel computing platforms due to complex communication patterns
and challenges in load balancing; and calculation of accurate atomic forces and stresses as employed in structural
relaxation and QMD simulations [4, 5, 15]. Perhaps most importantly, the study of systems with partially occu-
pied Kohn-Sham orbitals, as encountered in metallic systems or insulating systems at high temperature, remains
particularly challenging.

Kohn-Sham QMD simulations at high temperature are employed in a variety of applications areas, such as warm
dense matter and dense plasmas, as occur in fusion energy research and the inner regions of giant planets and stars
[16–21]. However, such calculations pose unique challenges in addition to those described above for ambient conditions.
In particular, the number of orbitals that need to be computed increases with temperature, due to the increase in
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number of states that become partially occupied in the Fermi-Dirac distribution, which advances the onset of the cubic
scaling bottleneck in diagonalization based methods, i.e., methods that calculate the Kohn-Sham orbitals. In addition,
these orbitals are more diffuse, since higher-energy states become less localized. As a result, local-orbital based linear
scaling methods suffer from large prefactors that increase rapidly with temperature. Consequently, Kohn-Sham QMD
simulations at high temperature become impractical using either of these approaches.

There have been recent efforts to address the aforementioned challenges associated with high temperature calcula-
tions, including orbital-free molecular dynamics (OFMD) [22], in which a functional of the electron density is used
to approximate the electronic kinetic energy; extended first principles molecular dynamics (ext-FPMD) [23, 24], in
which planewaves are used to approximate the higher-energy orbitals; finite-temperature potential functional theory
(PFT) [25], in which a coupling-constant formalism is used to develop an orbital-free approximation for the free energy
functional; stochastic DFT (SDFT) [26, 27], in which the density is computed directly from the Kohn-Sham Hamil-
tonian, without diagonalization, by averaging over multiple stochastic samples; and a mixed stochastic-deterministic
approach (MDFT) [28], in which the advantageous features of the deterministic and stochastic approaches are lever-
aged by suitable partitioning of the eigenspectrum. To address scaling with both system size and temperature, while
retaining full Kohn-Sham accuracy and systematic convergence for metals and insulators alike, the Spectral Quadra-
ture (SQ) method for linear scaling Kohn-Sham calculations at high temperature was recently developed [29–31]. In
particular, the computational cost of the SQ method decreases with increasing temperature, a consequence of the
faster decay of the density matrix, i.e., electronic interactions becoming more localized, and the increase in smoothness
of the Fermi-Dirac distribution. In addition, the SQ method has excellent scaling in parallel computations since the
communication pattern remains fixed and well localized to nearby processors throughout the computation. However,
while the SQ method has proven highly accurate and efficient in applications reaching millions of kelvin [32, 33],
the associated prefactor becomes larger at less extreme temperatures, e.g., O(10,000)–O(250,000) kelvin, particularly
when large numbers of grid points per atom are required.

In this work, we present a method, which we call SQ3, that is accurate and efficient at temperatures too high for
efficient calculations using conventional diagonalization based methods but too low for efficient calculations using the
SQ method. The combination of conventional diagonalization based methods at low temperatures, SQ3 at moderately
high temperatures (e.g., O(10,000)–O(250,000) kelvin), and SQ at higher temperatures then brings accurate and
efficient Kohn-Sham calculations to the full range of temperatures from ambient to millions of kelvin. As we detail
below, the key idea of the method is to employ spectral quadrature to compute the density kernel — i.e., density
operator in a minimal orthonormal basis — rather than required parts of the full density matrix — i.e., density
operator on the real-space grid — as in the SQ method. In so doing, the need for diagonalization is eliminated
and key operations are reduced to vectors and matrices of dimension equal to the number of occupied states rather
than number of real-space grid points. We implement the method in the SPARC electronic structure code [34–36],
where we find systematic convergence to exact diagonalization results and significant speedups relative to conventional
diagonalization based methods.

The remainder of this paper is organized as follows. In Sections II and III, we present real-space expressions for
the electron density, electronic free energy, Hellmann-Feynman atomic forces, and Hellmann-Feynman stress tensor
in terms of the density operator and density kernel, respectively. In Section IV, we describe the formulation and
implementation of the proposed SQ3 method, whose accuracy and efficiency are verified in Section V. Finally, we
provide concluding remarks in Section VI.

II. REAL-SPACE DFT: DENSITY OPERATOR FORMULATION

Consider a unit cell Ω with nuclei positioned at R = {R1,R2, . . . ,RN} and a total of Ne electrons. Neglecting spin
and Brillouin zone integration, the single-particle density operator D in Kohn-Sham DFT [2, 37] can be written as

D =

Ns∑
i=1

gi |ψi〉 〈ψi| (1)

or, in real space,

D(x,y) = 〈x| D |y〉 =

Ns∑
i=1

giψi(x)ψi(y) , (2)
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where Ns is the number of occupied states, and ψi are the Kohn-Sham orbitals with energies λi and occupations gi
given by the Fermi-Dirac function g:

gi = g(λi, µ, σ) ≡
(

1 + exp

(
λi − µ
σ

))−1

. (3)

Above, σ = kBT is the smearing value, where kB is Boltzmann’s constant and T is the electronic temperature, and
µ is the Fermi level determining the total number of electrons:

2Tr(D) = Ne , (4)

where Tr(·) denotes the trace of the operator.
The Kohn-Sham orbitals, energies, and occupations are solutions to the nonlinear eigenvalue problem(

H ≡ −1

2
∇2 + Vxc[ρD] + φ[ρD,R] + Vnl[R]

)
ψi(x) = λiψi(x) , (5)

where H denotes the Hamiltonian operator, Vxc is the exchange-correlation potential, taken in the local density ap-
proximation (LDA) [2] in the present work, φ is the electrostatic potential [38–40], Vnl is the nonlocal pseudopotential
operator, and ρD is the electron density:

ρD(x) = 2D(x,x) . (6)

The electrostatic potential is the solution of the Poisson problem [35, 38, 41]

− 1

4π
∇2φ(x,R) = ρD(x) + b(x,R) , (7)

where b is the total pseudocharge density. In addition, the nonlocal pseudopotential operator in Kleinman-Bylander
form [42] is given by

Vnl =
∑
J

Vnl,J =
∑
J

∑
lm

γJl |χ̃Jlm〉 〈χ̃Jlm| , (8)

where the summation index J extends over all atoms in Ω, l and m are azimuthal and magnetic quantum numbers,
respectively, and χ̃

Jlm
=
∑
J′ χJ′lm are periodically extended nonlocal projectors, with χ

J′lm being the projectors of

the J ′th atom and J ′ running over the J th atom and its periodic images.
The density operator can be written in terms of the Hamiltonian as

D = g(H, µ, σ) =

(
I + exp

(
H− µI

σ

))−1

, (9)

where I is the identity operator. Once the electronic ground state has been determined through the self-consistent
solution of the above equation, the electronic free energy can be written as [30, 31]

F(R) = 2Tr(DH) + Exc[ρD]−
ˆ

Ω

Vxc[ρD(x)]ρD(x) dx +
1

2

ˆ
Ω

(b(x,R)− ρD(x))φ(x,R) dx

− Eself(R) + Ec(R) + 2σTr (D logD + (I − D) log(I − D)) , (10)

where the first term is referred to as the band structure energy (Eband), the last term is the electronic entropy energy
(Eent) associated with partial occupations, Eself and Ec are the self and overlap energy corrections, respectively,
associated with the pseudocharges [43, 44], and Exc is the exchange-correlation energy:

Exc [ρD] =

ˆ
Ω

εxc [ρD(x)] ρD(x) dx . (11)

Here, εxc is the sum of the exchange and correlation energy per particle of a uniform electron gas.
The Hellman-Feynman forces on the nuclei can be written as [30, 31]

fI = f lI + fnlI
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=
∑
I′

ˆ
Ω

∇bI′(x,RI′)φ(x,R) dx + fsc,I − 4Tr (Vnl,I∇D) , (12)

where fsc,I = −∂(−Eself (R)+Ec(R))
∂RI

(see Ref. [45] for an explicit expression), bI′ is the pseudocharge density of the I ′
th

nucleus that generates potential VI′ , the summation index I ′ runs over the Ith atom and its periodic images, and I
extends over all atoms in Ω. The first two terms together constitute the local component of the force (f lI) and the
last term is the nonlocal component of the force (fnlI ).

The Hellmann-Feynman stress tensor can be written as [46]

σαβ =
1

|Ω|

[
σIαβ + σIIαβ + σIIIαβ + σIVαβ

]
, α, β ∈ {1, 2, 3} , (13)

where |Ω| is the volume of the unit cell, and σIαβ , σIIαβ , σIIIαβ , and σIVαβ are the contributions arising from the electronic
kinetic energy, exchange-correlation energy Exc, nonlocal pseudopotential energy Enl, and the total electrostatic
energy, respectively:

σIαβ = 2

ˆ
Ω

(
∇yα∇yβD(y,x)

)∣∣∣∣
y=x

dx , (14)

σIIαβ = δαβ

(
Exc(ρD)−

ˆ
Ω

Vxc
(
ρD(x)

)
ρD(x) dx

)
, (15)

σIIIαβ = −2 δαβ
∑
J

∑
lm

γ
Jl

(ˆ
Ω

ˆ
Ω

χ̃
Jlm

(x,RJ)D(x,y)χ̃
Jlm

(y,RJ) dx dy

)
− 4

∑
J

∑
lm

γ
Jl

∑
J′

ˆ
Ω

ˆ
Ω

χ
J′lm(x,RJ′)

(
x−RJ′

)
β
∇xαD(x,y)χ̃

Jlm
(y,RJ) dx dy , (16)

σIVαβ =
1

4π

ˆ
Ω

∇xαφ(x,R)∇xβφ(x,R) dx +
∑
I

ˆ
Ω

∇xαbI(x,RI)
(
x−RI

)
β

(
φ(x,R)− 1

2
VI(x,RI)

)
dx

− 1

2

∑
I

ˆ
Ω

∇xαVI(x,RI)
(
x−RI

)
β
bI(x,RI) dx +

1

2
δαβ

ˆ
Ω

(
b(x,R)− ρD(x)

)
φ(x,R) dx− δαβEself(R)

+ σEcαβ . (17)

In the above equations, ∇xα is the αth component of the gradient vector ∇x; δαβ is the Kronecker delta function; σEcαβ
is the stress tensor correction corresponding to overlapping pseudocharges [47]; the summation index J runs over all
atoms in Ω; J ′ runs over the J th atom and its periodic images; and I extends over all atoms in R3. Note that, upon
substitution of Eq. 2 into the above expressions for the energy, atomic force, and stress tensor, the corresponding
expressions in terms of Kohn-Sham orbitals [35, 36, 47] are readily obtained.

III. REAL-SPACE DFT: DENSITY KERNEL FORMULATION

In this section, we formulate the electron density, electronic free energy, Hellmann-Feynman force, and Hellmann-
Feynman stress tensor in terms of the density kernel [10], which in the current context is the matrix Ds = (Ds

ij)

corresponding to the single-particle density operator D expressed in an orthonormal auxiliary orbitals basis {ϕi(x)}Nsi=1,
i.e., Ds

ij = 〈ϕi| D |ϕj〉. In particular,

D =

Ns∑
i=1

Ns∑
j=1

|ϕi〉Ds
ij 〈ϕj | , D(x,y) =

Ns∑
i=1

Ns∑
j=1

ϕi(x)Ds
ijϕj(y) , (18)

which corresponds to a unitary transformation of the Kohn-Sham orbitals

ψi(x) =

Ns∑
j=1

ϕj(x)Qji , (19)

where Q = (Qij) is the orthogonal matrix that diagonalizes Ds:

QTDsQ = diag (g1, g2, . . . , gNs) . (20)
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Hence, the auxiliary orbitals {ϕi(x)}Nsi=1 span the same subspace as the Kohn-Sham orbitals {ψi(x)}Nsi=1.

Let the subspace Hamiltonian Hs = (Hs
ij) be the matrix representation of H in the orthonormal basis {ϕi(x)}Nsi=1,

i.e., Hs
ij = 〈ϕi|H |ϕj〉. It follows that the density kernel can be expressed in terms of Hs as

Ds = g(Hs, µ, σ) =

(
I + exp

(
Hs − µI

σ

))−1

, (21)

where I is the identity matrix, and the Fermi level µ is determined from the constraint on the total number of electrons
(Eq. 4), which can be written in terms of the density kernel as:

2tr(Ds) = Ne , (22)

where tr(·) denotes the trace. In arriving at this equation from Eq. 4, we have used the relation

Tr(D) = Tr

 Ns∑
i=1

Ns∑
j=1

|ϕi〉Ds
ij 〈ϕj |

 =

Ns∑
i=1

Ns∑
j=1

Tr
(
|ϕi〉Ds

ij 〈ϕj |
)

=

Ns∑
i=1

Ns∑
j=1

Ds
ij 〈ϕj |ϕi〉 = tr(Ds) . (23)

To make the expressions for electron density, atomic force, and stress analogous to those based on Kohn-Sham
orbitals in the SPARC electronic structure code [34–36], into which we implement the proposed scheme, we introduce

the density kernel transformed auxiliary orbitals {ϕ̃i(x)}Nsi=1:

ϕ̃i(x) =

Ns∑
j=1

ϕj(x)Ds
ji . (24)

whereby, the density operator in Eq. 18 takes the form

D =

Ns∑
i=1

|ϕ̃i〉 〈ϕi| , D(x,y) =

Ns∑
i=1

ϕ̃i(x)ϕi(y) . (25)

Thereafter, the electron density in Eq. 6 can be written as

ρD(x) = 2

Ns∑
i=1

ϕ̃i(x)ϕi(x) . (26)

Once the electronic ground state has been determined, the electronic free energy can be written as

F(R) = 2tr(DsHs) + Exc [ρD]−
ˆ

Ω

Vxc [ρD(x)] ρD(x) dx +
1

2

ˆ
Ω

(
b(x,R)− ρD(x)

)
φ(x,R) dx

− Eself(R) + Ec(R) + 2σtr (Ds logDs + (I−Ds) log(I−Ds)) , (27)

where the first and last terms, i.e., the band structure (Eband) and electronic entropy (Eent) energies, have been
obtained using orthogonality and trace relations as in Eq. 23.

The nonlocal component of the atomic force in Eq. 12 can be rewritten as

fnlI = −4Tr (Vnl,I∇D)

= −4Tr

(
Vnl,I∇

Ns∑
i=1

|ϕ̃i〉 〈ϕi|

)

= −4

Ns∑
i=1

〈ϕi|Vnl,I |∇ϕ̃i〉

= −4

Ns∑
i=1

〈ϕi|
∑
lm

γIl |χ̃Ilm〉 〈χ̃Ilm | ∇ϕ̃i〉

= −4

Ns∑
i=1

∑
lm

γIl

(ˆ
Ω

ϕi(x)χ̃Ilm(x,RI) dx

)(ˆ
Ω

∇ϕ̃i(x)χ̃Ilm(x,RI) dx

)
. (28)
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Thereafter, the total Hellmann-Feynman atomic forces take the form

fI =
∑
I′

ˆ
Ω

∇bI′(x,RI′)φ(x,R) dx + fsc,I

− 4

Ns∑
i=1

∑
lm

γIl

(ˆ
Ω

ϕi(x)χ̃Ilm(x,RI) dx

)(ˆ
Ω

∇ϕ̃i(x)χ̃Ilm(x,RI) dx

)
. (29)

The stress tensor contributions arising from the electronic kinetic energy and nonlocal pseudopotential energy in
Eqs. 14 and 16, respectively, can be rewritten as

σIαβ = 2

ˆ
Ω

(
∇yα∇yβD(y,x)

)∣∣∣∣
y=x

dx

= 2

ˆ
Ω

(
∇yα∇yβ

Ns∑
i=1

ϕ̃i(y)ϕi(x)

)∣∣∣∣
y=x

dx

= 2

Ns∑
i=1

ˆ
Ω

ϕi(x)∇xα∇xβ ϕ̃i(x) dx

= −2

Ns∑
i=1

ˆ
Ω

∇xαϕi(x)∇xβ ϕ̃i(x) dx , (30)

and

σIIIαβ = −2δαβ
∑
J

∑
lm

γ
Jl

(ˆ
Ω

ˆ
Ω

χ̃
Jlm

(x,RJ)D(x,y)χ̃
Jlm

(y,RJ) dx dy

)
−4
∑
J

∑
lm

γ
Jl

∑
J′

ˆ
Ω

ˆ
Ω

χ
J′lm(x,RJ′)

(
x−RJ′

)
β
∇xαD(x,y)χ̃

Jlm
(y,RJ) dx dy

= −2δαβ
∑
J

∑
lm

γ
Jl

(ˆ
Ω

ˆ
Ω

χ̃
Jlm

(x,RJ)

Ns∑
i=1

ϕ̃i(x)ϕi(y)χ̃
Jlm

(y,RJ) dx dy

)

−4
∑
J

∑
lm

γ
Jl

∑
J′

ˆ
Ω

ˆ
Ω

χ
J′lm(x,RJ′)

(
x−RJ′

)
β
∇xα

Ns∑
i=1

ϕ̃i(x)ϕi(y)χ̃
Jlm

(y,RJ) dx dy

= −2δαβ

Ns∑
i=1

∑
J

∑
lm

γ
Jl

(ˆ
Ω

χ̃
Jlm

(x,RJ)ϕ̃i(x) dx

)( ˆ
Ω

χ̃
Jlm

(y,RJ)ϕi(y) dy

)

−4

Ns∑
i=1

∑
J

∑
lm

γ
Jl

(∑
J′

ˆ
Ω

χ
J′lm(x,RJ′)

(
x−RJ′

)
β
∇xα ϕ̃i(x) dx

)(ˆ
Ω

χ̃
Jlm

(y,RJ)ϕi(y) dy

)
. (31)

Thereafter, the Hellmann-Feynman stress tensor takes the form

σαβ =
1

|Ω|

[
− 2

Ns∑
i=1

ˆ
Ω

∇xαϕi(x)∇xβ ϕ̃i(x) dx + δαβ

(
Exc[ρD]−

ˆ
Ω

Vxc
[
ρD(x)

]
ρD(x) dx

)

− 2δαβ

Ns∑
i=1

∑
J

∑
lm

γ
Jl

(ˆ
Ω

χ̃
Jlm

(x,RJ)ϕ̃i(x) dx

)( ˆ
Ω

χ̃
Jlm

(y,RJ)ϕi(y) dy

)

− 4

Ns∑
i=1

∑
J

∑
lm

γ
Jl

(∑
J′

ˆ
Ω

χ
J′lm(x,RJ′)

(
x−RJ′

)
β
∇xα ϕ̃i(x) dx

)(ˆ
Ω

χ̃
Jlm

(y,RJ)ϕi(y) dy

)

+
1

4π

ˆ
Ω

∇xαφ(x,R)∇xβφ(x,R) dx +
∑
I

ˆ
Ω

∇xαbI(x,RI)
(
x−RI

)
β

(
φ(x,R)− 1

2
VI(x,RI)

)
dx

− 1

2

∑
I

ˆ
Ω

∇xαVI(x,RI)
(
x−RI

)
β
bI(x,RI) dx +

1

2
δαβ

ˆ
Ω

(
b(x,R)− ρD(x)

)
φ(x,R) dx− δαβEself(R)
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+ σEcαβ

]
. (32)

IV. SQ3 METHOD: FORMULATION AND IMPLEMENTATION

In this section, we describe the calculation of the auxiliary orbitals {ϕi(x)}Nsi=1 and density kernel transformed

auxiliary orbitals {ϕ̃i(x)}Nsi=1 in each iteration of the self-consistent field (SCF) method [48], using which the electron
density, electronic free energy, Hellmann-Feynman atomic forces, and Hellmann-Feynman stress tensor can be com-
puted as discussed above. We refer to the resulting method as SQ3, given its inherent similarity in philosophy and
formulation to the linear scaling Spectral Quadrature (SQ) method [29–31], with notable differences that the SQ3
method does not assume the subspace Hamiltonian to be sparse and does not employ truncation in the calculation of
the density kernel, making the computational cost scale cubically with Ns rather than linearly.

In the SQ3 method, we perform Chebyshev filtering [49, 50] on the auxiliary orbitals from the previous SCF

iteration followed by orthonormalization to generate the auxiliary orbitals {ϕi(x)}Nsi=1 for the current SCF iteration.

To calculate {ϕ̃i(x)}Nsi=1, the density kernel Ds needs to be determined (Eq. 24), which we recall can be written in

terms of the subspace Hamiltonian Hs — projection of the Hamiltonian H on to the basis {ϕi(x)}Nsi=1 — using the
Fermi-Dirac function g (Eq. 21):

Ds = g(Hs, µ, σ) =

(
I + exp

(
Hs − µI

σ

))−1

. (33)

One possible strategy to determine Ds is to perform an eigendecomposition of Hs, an approach that would also
make the Kohn-Sham orbitals available. However, this method not only scales cubically with Ns, but also has limited
scalability in parallel computations, which limits the minimum time to solution that can be reached in DFT simulations
[34]. To delay this bottleneck for calculations at high temperature, we perform a Fermi Operator Expansion (FOE)
of the density kernel in terms of Chebyshev polynomials [51, 52]:

Ds ≈
npl∑′

j=0

cj(µ, σ)Tj

(
Hs − χI

ξ

)
=

npl∑′

j=0

cj(µ, σ)Tj

(
Ĥs

)
, (34)

where the prime on the summation indicates that the first term is halved, npl is the degree of the expansion, Tj denotes

the Chebyshev polynomial of degree j, χ = (λNs + λ1)/2, ξ = (λNs − λ1)/2, and Ĥs = (Hs − χI) /ξ is the scaled
and shifted subspace Hamiltonian whose spectrum lies in the interval [−1, 1]. The coefficients cj in the Chebyshev
expansion can be determined using the relation

cj(µ, σ) =
2

π

ˆ 1

−1

g(ξλ+ χ, µ, σ)Tj(λ)√
1− λ2

dλ . (35)

Analogous to the Clenshaw-Curtis SQ method [30, 31], the nth column of the density kernel in the SQ3 method is
written as

Dsen ≈
npl∑′

j=0

cjt
j
n , (36)

where en is the standard basis vector, and tjn is the nth column of Tj(Ĥs), determined using the three term recurrence
relation for Chebyshev polynomials:

t0
n = en,

t1
n = Ĥsen,

tj+1
n = 2Ĥst

j
n − tj−1

n , j = 1, 2, . . . , npl − 1 . (37)

The coefficients cj in Eq. 36 are determined using Eq. 35, with the Fermi level µ chosen such that the constraint on
the number of electrons is satisfied (Eq. 22):

2

Ns∑
n=1

npl∑′

j=0

cj(µ, σ)eT
nt

j
n = Ne . (38)
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Note that to avoid performing the iteration in Eq. 37 — the most expensive operations of the SQ3 method — for every
guess µ encountered during the solution of Eq. 38, we store the vectors tjn, whereby µ can be efficiently determined.

Once the density kernel has been so calculated, {ϕn(x)}Nsn=1 are transformed by the density kernel to obtain

{ϕ̃n(x)}Nsn=1 (Eqn. 24). The electron density is then calculated using Eqn. 26 and the electronic free energy is evaluated
using Eq. 27, while employing the following expressions for the band structure and electronic entropy energies:

Eband ≈ 2

Ns∑
n=1

npl∑′

j=0

dje
T
nt

j
n , (39)

Eent ≈ 2

Ns∑
n=1

npl∑′

j=0

eje
T
nt

j
n , (40)

where the coefficients are calculated using the relations

dj =
2

π

ˆ 1

−1

(ξλ+ χ)g(ξλ+ χ, µ, σ)Tj(λ)√
1− λ2

dλ , (41)

ej =
2

π

ˆ 1

−1

(g(ξλ+ χ, µ, σ) log g(ξλ+ χ, µ, σ) + (1− g(ξλ+ χ, µ, σ)) log(1− g(ξλ+ χ, µ, σ)))Tj(λ)√
1− λ2

dλ . (42)

In arriving at the above expressions, we have performed Chebyshev polynomial expansions for Eband and Eent, similar
to that done for the density kernel (Eq. 34). At the electronic ground state, the Hellmann-Feynman atomic forces
and stress tensor are computed using Eqns. 29 and 32, respectively.

We have implemented the SQ3 method in the SPARC electronic structure code [34–36]. In particular, we build
upon the implementation of the CheFSI method [49, 50] in SPARC, which shares a number of computational kernels
with the SQ3 method. Specifically, the Chebyshev filtering, orthogonalization, and projection kernels are used in
the SQ3 implementation. In particular, we start the QMD simulation with a random guess for the auxiliary orbital
basis and perform multiple Chebyshev filtering and orthogonalization steps in the first SCF iteration [53]. For every
subsequent QMD step, we use the auxiliary orbital basis generated in the last SCF iteration of the previous QMD step
as the initial guess. We calculate the density kernel Ds using the iteration in Eq. 37, while parallelizing computations
over the different columns of the density kernel. Such a scheme restricts the communication to only that required for
the calculation of the Fermi level (Eq. 38), while the computationally intensive step (Eq. 37) is free from any data

transfer between processors. To calculate {ϕ̃n(x)}Nsn=1 from {ϕn(x)}Nsn=1 (Eqn. 24), we perform a dense matrix-matrix
multiplication using the parallel PDGEMM routine in ScaLAPACK [54]. In doing so, we first use the PDGEMR2D routine to
redistribute the density kernel from column-wise distribution to two-dimensional block-cyclic distribution, as required
by PDGEMM.

The degree of the the Chebyshev polynomial npl required for a given accuracy is dependent on the the smearing
σ, spectral width of the subspace Hamiltonian Hs (i.e., 2ξ), and the relative location of the Fermi level µ within the
spectrum of Hs [29]. In particular, the value of npl required decreases with increasing temperature and decreasing
spectral width, a consequence of the increased smoothness of the Fermi-Dirac function and smaller interval over
which it must be evaluated. Since the target application for the SQ3 method is systems at high temperature, and
the spectral width of Hs is only slightly more than that of the occupied spectrum, low polynomial orders generally
suffice so that the SQ3 method can be highly efficient, as we demonstrate below. And since computations at each real-
space grid point are largely independent, the SQ3 method can attain excellent parallel scaling, as also demonstrated
below. It is worth noting that since Hs is dense, the computational cost of the SQ3 method as described above has
O(N3

s ) scaling, similar to that for eigendecomposition, but with a smaller prefactor that decreases with increasing
temperature. Indeed, it is possible to achieve O(Ns) scaling, as in the SQ method, if the auxiliary orbitals are such
that Hs is sparse and truncation is adopted based on the decay of the density kernel.

V. RESULTS AND DISCUSSION

In this section, we verify the accuracy and efficiency of the SQ3 method for the calculation of the electronic
free energy, Hellmann-Feynman atomic forces, and Hellmann-Feynman stress tensor by comparison to conventional
diagonalization based methods. For this purpose, we have implemented the SQ3 method in the SPARC electronic
structure code [34–36]. We consider aluminum at density 2.7 g/cc with temperatures ranging from T = 10,000 K to
250,000 K. We demonstrate the practical utility of the method by calculating the self-diffusion coefficient and viscosity
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of aluminum at temperature T = 116, 045 K (kBT = 10 eV). In all simulations, we employ a twelfth-order accurate real-
space finite-difference discretization, the local density approximation [2] for exchange-correlation interactions, a three-
electron optimized norm conserving Vanderbilt (ONCV) pseudopotential [55] suitable for the range of temperatures
considered, Γ-point Brillouin sampling, the restarted Periodic Pulay method [56, 57] for acceleration of the SCF
iteration, and the alternating Anderson-Richardson (AAR) linear solver [58, 59] for calculation of the electrostatic
potential and application of the real-space Kerker preconditioner [60].

A. Accuracy and convergence

We first verify the accuracy and convergence of the SQ3 formulation and implementation by considering a 24-atom
aluminum cell at four different temperatures: T = 10,000 K, 50,000 K, 100,000 K, and 250,000 K. In each system,
all atoms are randomly perturbed by up to 10% of the nearest neighbor distance in an FCC configuration. We
choose a mesh size of 0.5 bohr to put associated discretization errors within chemical accuracy. In Fig. 1, we plot
the convergence of the electronic ground state free energy, Hellmann-Feynman atomic forces, and Hellmann-Feynman
stress tensor with respect to npl, i.e., degree of polynomial used in the Chebyshev polynomial expansions for the
density kernel, band structure energy, and electronic entropy energy. The error is defined to be the difference from
standard diagonalization results in the SPARC code. The results show exponential convergence of the energy, atomic
forces, and stress tensor with respect to npl, with degree O(10−30) sufficient at the temperatures considered to attain
accuracies typical in practice. The results also show that the polynomial degree required decreases with increasing
temperature as expected.
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FIG. 1: Convergence of the electronic free energy, Hellmann-Feynman atomic forces, and Hellmann-Feynman stress
tensor with respect to the polynomial degree npl used in the Chebyshev polynomial expansion. The error is defined

to be the difference from the corresponding results obtained by diagonalization in SPARC.
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B. Performance and scaling

We next investigate the efficiency of SQ3 relative to diagonalization for Kohn-Sham calculations at high temperature.
For this purpose, we choose four FCC aluminum systems: (i) 1,568-atom cell at T =10,000 K, (ii) 500-atom cell at
T =50,000 K, (iii) 256-atom cell at T =100,000 K, and (iv) 64-atom cell at T =250,000 K; all with Ns = 10,000 and
atoms randomly perturbed by up to 10% of the nearest neighbor distance in the FCC configuration. The system
sizes have been chosen to be comparable to those typical in QMD simulations at the associated temperatures. In all
cases, we select a mesh-size of 0.75 bohr to put associated discretization errors within chemical accuracy, i.e., 0.001
Ha/atom, 0.001 Ha/bohr, and 1% in the energy, force, and stress, respectively. In addition, we select npl = 33, 12,
10, and 8 in SQ3 for the Al1568, Al500, Al256, and Al64 systems, respectively, to reduce npl related errors to chemical
accuracy also (Fig. 1). All simulations have been performed on the phoenix cluster at Georgia Institute of Technology
[61].

In Table I, we compare the strong scaling performance of SQ3 and CheFSI based diagonalization methods [49, 50].
In particular, we consider numbers of processors ranging from 24 to 1,000 and report the time taken per QMD step,
along with the time taken for subspace diagonalization using ELPA [62] — a recently developed library that has been
found more efficient and scalable than other widely used libraries such as ScaLAPACK [54] in the electronic structure
context — and density kernel calculation in the diagonalization and SQ3 methods, respectively. Indeed, these are
the main computational kernels that are distinct between the two methods. We observe from the results that the
SQ3 method scales up to O(1, 000) processors, with further reduction in wall time possible for the density kernel
calculation when more processors are utilized. The density kernel calculation does not scale ideally, a consequence of
the reduced effectiveness of the BLAS3 operations as the number of columns of the density kernel associated with each
processor becomes smaller. As expected, the speedup provided by the SQ3 method over diagonalization increases
with increasing temperature, as the value of npl required becomes smaller. In particular, while the minimum times
to solution for diagonalization and SQ3 are similar for Al1568 (10,000 K), SQ3 achieves an overall speedup of ∼ 1.3,
∼ 1.5, and ∼ 2.1 for Al500 Al256, and Al64 respectively, with corresponding speedups of the density kernel calculation
over subspace diagonalization of ∼ 2.5, ∼ 2.7, and ∼ 3.5 respectively.

np
Al1568, T = 10,000 K Al500, T = 50,000 K Al256, T = 100,000 K Al64, T = 250,000 K

Diag SQ3 Diag SQ3 Diag SQ3 Diag SQ3

24 1757.2 (84.8) 1970.1 (297.7) 580.5 (84.8) 598.7 (103.1) 383.5 (84.8) 382.1 (83.4) 173.6 (84.8) 151.4 (62.6)

48 844.0 (49.8) 964.7 (170.5) 345.4 (49.8) 355.6 (60) 218.0 (49.8) 220.6 (52.4) 104.9 (49.8) 93.4 (38.3)

96 518.6 (31.7) 568.6 (81.8) 192.7 (31.7) 188.0 (27.1) 124.7 (31.7) 116.5 (23.5) 64.1 (31.7) 51.1 (18.8)

192 307.4 (27.0) 332.9 (52.6) 118.1 (27.0) 110.0 (18.9) 79.5 (27.0) 68.1 (15.6) 48.4 (27.0) 33.6 (12.3)

384 224.2 (27.0) 236.0 (38.9) 81.6 (27.0) 68.0 (13.5) 59.7 (27.0) 44.8 (12.1) 40.2 (27.0) 22.5 (9.3)

500 178.2 (27.0) 187.0 (35.8) 73.3 (27.0) 58.7 (12.4) 54.8 (27.0) 38.9 (11.1) 38.9 (27.0) 20.6 (8.8)

768 170.7 (27.0) 176.2 (32.6) 67.1 (27.0) 51.5 (11.4) 52.5 (27.0) 35.8 (10.4) 38.8 (27.0) 20.3 (8.6)

1000 173.4 (27.0) 177.2 (30.8) 61.8 (27.0) 45.5 (10.8) 49.7 (27.0) 32.6 (9.9) 37.5 (27.0) 18.2 (7.8)

TABLE I: Strong scaling comparison of CheFSI diagonalization and SQ3 methods. The timings are in seconds and
correspond to the wall time for a single QMD step, with 6 SCF iterations required for convergence in all instances.

The numbers in parentheses for diagonalization represent the wall times for diagonalization of the subspace
Hamiltonian, performed using ELPA [62]. The numbers in parentheses for SQ3 represent the wall times for the
density kernel calculation. The dimensions of the real-space Hamiltonians for the Al1568, Al500, Al256, and Al64

systems are 413,362, 132,651, 68,921, and 16,400, respectively. The dimension of the subspace Hamiltonian in each
case is 10,000.

Overall, we find that the SQ3 method is able to delay the cubic scaling bottleneck for Kohn-Sham calculations at high
temperature, with increasing advantages as the temperature and/or number of processors is increased. Implementation
of the SQ3 method on GPUs is likely to bring down the minimum time to solution substantially, which would then
merit comparison with efficient eigensolver implementations on GPUs, such as that found in the cuSOLVER library
[63]. We note that we have verified that alternate forms of parallelization such as block cyclic decomposition of the

Ĥs and Tj

(
Ĥs

)
matrices — matrix-matrix multiplication routine replacing the iteration in Eq. 37, as in conventional

FOE methods — are not as efficient as the approach adopted here (∼ 1.3x slower). It is worth noting also that since
the SQ3 method does not employ truncation and has cubic scaling with Ns, the linear scaling SQ method [29–31]
would become the method of choice at temperatures higher than those considered here.
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C. High temperature QMD: self-diffusion coefficient and viscosity of aluminum at 116,045 K

We now calculate the self-diffusion coefficient and viscosity of aluminum at density 2.7 g/cc and temperature
116,045 K (kBT = 10 eV). Specifically, we consider a 108-atom unit cell in the isokinetic ensemble using a Gaussian
thermostat [64]. In order to efficiently obtain sufficient statistics, we average over QMD simulations corresponding to
20 different initial conditions for the atomic positions and velocities — obtained by performing 20 orbital-free DFT
[41, 65] simulations, each run for 40,000 steps with a time step of 0.15 fs — where each simulation has been run
for more than 24,000 steps with a time step of 0.15 fs. In Fig. 2, we present the variation in total free energy, i.e.,
including the electronic entropy, during the QMD simulations. It is clear that the energy is well conserved, consistent
with the accuracy and systematic convergence of the SQ3 force formulation/implementation.

FIG. 2: Variation of the total free energy during the QMD simulation for aluminum at density 2.7 g/cc and
temperature 116,045 K.

Since macroscopic dynamical properties can be written as time integrals of associated microscopic time correlation
functions using Green–Kubo (GK) relations [66], we calculate the self-diffusion coefficient D and viscosity η using the
expressions

D(t) =
1

3N

N∑
i=1

ˆ t

0

〈vi(τ) · vi(0)〉dτ , (43)

η(t) =
|Ω|
kBT

ˆ t

0

(
1

5

5∑
i=1

〈si(τ)si(0)〉

)
dτ , (44)

where 〈.〉 denotes the ensemble average, vi is the velocity, and si are the independent components of the deviatoric
(i.e., traceless) stress tensor: σ12, σ23, σ31, (σ11−σ22)/2, and (σ22−σ33)/2 [67]. We present the results so obtained in

Fig. 3. It is clear that the both the velocity autocorrelation function (VACF) (i.e., 1
N

∑N
i=1〈vi(τ) · vi(0)〉) and stress

autocorrelation function (SACF) (i.e., 1
5

∑5
i=1〈si(τ)si(0)〉) decay in ∼ 100 fs, yielding a self-diffusion coefficient and

viscosity of (0.984 ± 0.001)×10−2 cm2/s and 1.943 ± 0.015 mPa·s, respectively. The present full Kohn–Sham DFT
result for the self-diffusion coefficient is consistent with recent orbital-free DFT calculations [68], where a value of 0.93
×10−2 cm2/s was reported, while being free of the kinetic and entropic energy approximations inherent in orbital-free
DFT.

VI. CONCLUDING REMARKS

We presented the SQ3 method, a density matrix based method for Kohn-Sham calculations at high temperature that
eliminates the need for diagonalization, thus reducing the cost of such calculations significantly relative to conventional
diagonalization based approaches. We developed real-space expressions for the electron density, electronic free energy,
Hellmann-Feynman forces, and Hellmann-Feynman stress tensor in terms of an orthonormal auxiliary orbital basis
and its density kernel transform. Using Chebyshev filtering to generate the auxiliary basis, we then developed an
approach akin to Clenshaw-Curtis spectral quadrature to compute the individual columns of the density kernel based
on the Fermi operator expansion in Chebyshev polynomials; and employed a similar approach to evaluate band
structure and entropic energy components. Upon implementation of the method in the SPARC electronic structure
code [34–36], we found systematic convergence to exact diagonalization results and significant speedups relative to
conventional diagonalization based methods of up to ∼ 2x, with increasing advantages as the temperature and/or
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FIG. 3: (a) Velocity autocorrelation function (VACF) and self-diffusion coefficient, and (b) stress autocorrelation
function (SACF) and viscosity for aluminum at density 2.7 g/cc and temperature 116,045 K.

number of processors is increased. Finally, we employed the new method to compute the self-diffusion coefficient and
viscosity of aluminum at 116,045 K from Kohn-Sham quantum molecular dynamics, where we found agreement with
previous more approximate orbital-free density functional methods.

The combination of conventional diagonalization based methods at low temperatures, SQ3 at moderately high
temperatures (e.g., O(10,000)–O(250,000) kelvin), and SQ at higher temperatures enables accurate and efficient
Kohn-Sham calculations over the full range of temperatures from ambient to millions of kelvin. The use of a localized
orthonormal basis as in the discrete discontinuous basis projection (DDBP) method [69], in combination with a GPU
implementation, is likely to further increase the efficiency of such calculations, making it a worthy subject for future
research.
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