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Abstract

The research carried out explored and proved the feasibility and operational framework of a
new diagnostic technique termed Coherent Thomson Scattering (CTS) for electrons in a low tem-
perature plasma. The work is performed in collaboration with the Princeton Collaborative Re-
search Facility (PCRF) at Princeton Plasma Physics Laboratory. The novel technique builds on an
established and demonstrated single shot diagnostic method, called Coherent Rayleigh-Brillouin
scattering, which has successfully been applied in neutral flows. The proposed novel four wave
mixing diagnostic technique of CTS will allow for higher spatial resolution and lower detectable
number densities for the electrons than conventional Thomson scattering. In this project we devel-
oped the theoretical framework for Coherent Thomson Scattering as well as the specification of the
appropriate operational experimental parameters for successful CTS implementation in e.g. a low
temperature plasma. Additionally, the mode of operation and the detection limits for a practical
CTS experimental demonstration were explored. Ultimately, successful experimental demonstra-
tion of CTS can be seen as transformative in a multitude of plasma physics areas, since it will
allow for detailed, non-perturbative measurements of electron density and temperature, previously
unattainable by other measurement techniques. This project was the first successful step towards
this direction.
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Development of theory and experimental operational framework for Coherent Thomson
Scattering.

PROJECT DESCRIPTION

Classical Thomson scattering in plasma is a standard experimental diagnostic tool used to measure
density and temperature of plasma under real conditions. This technique relies on the scattering of
the electromagnetic radiation from the fluctuations of electron and ion densities. However, these
fluctuations produce weak, incoherent and undirected scattering signal, so that low density plasma
state is hard to probe.

One of the approaches to overcome the difficulty is to make the scattering signal coherent.
For this purpose, periodic perturbations of the plasma density may be initially induced by traveling
optical lattice and then the probe laser beam may be scattered from these perturbations. Such a four-
wave mixing scheme was applied successfully for Raleigh and Brillouin scattering diagnostics of
neutral gases in the form of single shot coherent Rayleigh-Brillouin scattering (CRBS) [1-3]. In
this project, drawing the analogy between neutral species and electrons, we calculate the profile of
the coherent Thomson scattering signal for electron gas perturbed by a traveling optical lattice. We
assume that the period of the optical lattice A; is much lower than the Debye length rp, A7 << rp.
This allows one to exclude from consideration collective plasma oscillations and waves generated
due to the build-up a large space charge and formation of the self-consistent electric field in plasma.
The creation of plasma waves by two counter propagating laser beams is discussed in detail in
Refs. [4, 5]. The study of the scattering of the probe beam from electron and ion perturbations
induced by these waves in the case of A << rp is not examined here, and is postponed to future
work.

The research conducted in this project explores the feasibility of, as well as the experimen-
tal operational framework of, a new diagnostic technique termed Coherent Thomson Scattering
(CTS), for electrons in low temperature plasma conditions. This technique builds on the com-
bined, demonstrated and established experimental and theoretical expertise that the PI has for a
similar technique applicable to neutrals, termed single shot Coherent Rayleigh-Brillouin scatter-
ing. We suggest the development of a novel, four wave mixing diagnostic technique in which
the resulting Thomson scattered signal beam will be another laser beam, thus allowing for higher
spatial resolution and lower detectable number densities for the electrons.

In this project we developed the theoretical framework for Coherent Thomson Scattering as
well as the specification of the appropriate operational experimental parameters for successful CTS
implementation in a low temperature plasma. Additionally, the mode of operation and the detec-
tion limits for a practical CTS experimental demonstration were explored. Ultimately, successful
experimental demonstration of CTS can be seen as transformative in a multitude of plasma physics
areas, since it will allow for detailed, non-perturbative measurements, previously unattainable by
any other measurement technique.

PI Gerakis collaborated with Dr. Mikhail Shneider of the Princeton Collaborative Research
Facility (PCRF) at the Princeton Plasma Physics Laboratory (PPPL), to lay out the theory and
experimental parameter space for CTS.



1 Review of Relevant Literature

1.1 State of the art in plasma diagnostics: Mechanical Probes

Standard mechanical probes used for the measurement of electron temperature, such as the
Langmuir [6] and emissive [7] probes, significantly perturb the field to be measured and often
will not survive the harsh environment they are being exposed to. These mechanical probes have
the advantages of being relatively easy and inexpensive to use, they exhibit high measurement
repetition rate, there exists good technical and theoretical know-how in their operation, construction
and data analysis, while they are readily available through commercial suppliers. The biggest
disadvantages of mechanical probes come from the fact that they are mechanical and thus finite in
size: they obstruct the plasma which they aim to measure, hence altering the measurement.

1.2 State of the art in plasma diagnostics: Laser Diagnostics

The advent of lasers in 1960 [8] and the further improvement of laser technology up until to-
day, has provided with novel, non-mechanical, generally non-intrusive techniques for the study
and characterization of plasmas. For the standoff measurement of electron density and tempera-
ture in plasmas, the most dominant laser based technique is Thomson scattering, with significant
applications to both high [9, 10] and low temperature plasmas [11, 12].

Thomson scattering is the result of the scattering of photons from free electrons [13, 14]. When
plasma is illuminated with a laser having a narrow linewidth, the resulting Thomson scattering
spectrum reveals the motion of the electrons due to Doppler shift of the scattered laser light. As
such, it can reveal the electronic density since the scattering process is a linear process. Thom-
son scattering is analogous to Rayleigh scattering from neutral atoms and molecules, however,
since the electrons have a mass thousands of times lower than atoms and molecules, the resulting
Thomson scattering spectrum is orders of magnitude greater than the Rayleigh spectrum. This wide
spectral characteristic has limited the application of Thomson measurements due to background in-
terference from rotational Raman scattering, Rayleigh scattering and inherent plasma luminosity;
approaches to overcome these background contributions include the use of molecular filters [15].
Moreover, since the Thomson signal is scattered in a 4z solid angle, signal acquisition in an op-
tically noisy environment (e.g. when plasma is present) is challenging. Additionally, Thomson
scattering cross-sections for electrons are wavelength independent, while for Rayleigh scattering
there is a & A~* dependence with wavelength, where 4 is the wavelength of the illuminating laser.
Due to the low cross-sections for Thomson scattering from electrons, highly energetic lasers (on the
order of 1.5—2 Joules/pulse over ~ 8 ns pulse duration at 10 Hz repetition rate) [ 16—18] are usually
employed to perform the measurement. Finally, in Thomson scattering the signal is collected in
a line integrated mode, thus resulting in a relatively low spatial resolution for the technique [19].
Increased spatial resolution for Thomson scattering has been demonstrated in Reference 20, where
the Thomson scattering beam is incident at the Bragg angle on inherent plasma waves in the device,
thus resulting in a localized measurement, as discussed in Section 2.1.

2 Coherent Thomson Scattering
2.1 From CRBS to CTS

CRBS relies on the electrostrictive force to attract neutral particles to the high intensity nodes
of the created interference pattern thus resulting in an optical lattice. Only particles with a velocity



v, equal (or close to equal) to the velocity of the lattice v, can follow its movement and populate
the lattice sites. This mechanism is key to the proposed concept of CTS.

Assuming a weakly ionized plasma, neutrals, ions and electrons will be present in the vicinity of
the optical interference pattern. If the lattice velocity is increased to values exceeding those of the
neutral and ionic velocity distribution functions (VDFs), then only electrons (whose VDF is much
wider than those of the ions and the neutrals) will populate the lattice sites. In this case, the signal
will be dominated by the electronic contribution, giving rise to Coherent Thomson Scattering.
The physics of our proposed concept is not dissimilar to that demonstrated in Ref. 20 in which a
laser beam was scattered off from waves naturally occurring in the plasma. The key difference
between the two approaches though is that with the approach proposed here electronic waves are
induced with the pump beams, hence rendering the CTS technique to be applicable to a multitude
of plasmas. Additionally, similarly to the spatial resolution exhibited with CRBS, CTS provides
with increased spatial resolution which many of the current Thomson scattering diagnostics are
lacking.

2.2 Simulation of CTS

The intensity of scattering signal is determined by the Bragg reflection coefficient R of the
probe beam, R ~ 2N 2(An)z(/l L//l)z, where N is number of periods in the optical lattice, An is the
perturbation of the refraction index for the probe laser beam having a wavelength A and A; is period
of the optical lattice. With the contribution due to ions neglected, the steady-state perturbation An
is related to electron density modulation An, induced by the optical lattice An = —%w%w_zAne/ne
where w, is the plasma frequency and  is the probe beam frequency. The intensity of the scattered

signal I in a relative units is proportional to the electron density perturbation squared, I ~ (Ane) .
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Figure 1: The creation of an optical lattice by two counter-propagating optical fields

The optical lattice to induce the electron density perturbations is formed by two counter- prop-
agating laser beams having wave vectors k; and k, with frequencies @; and w, close to each
other, w; % w, ~ w. (see Fig. 1).The mechanical motion of an electron is controlled by an op-
tical gradient force F,,,,. Let the crests and valleys of the lattice be along the x-axis and denote
ki, and k,, the projections of the vectors k; and k, on x-axis. If the phase velocity of the lattice
£ = (w; —w)/(k ,+ky,) is not zero, the force F,,,; = —e*Ey,/ (2ma?) a%[cos (Q1 + gx)], where
e 1s the electron charge, E,; and E, are the electric fields in the two laser waves, m is the electron
mass, Q = w; — w, and g = (k;, + k,,). Inthe limit £ = 0 and with E, = E(; = E,, the two
laser beams produce a standing wave, and in this case the optical gradient force averaged over time
is given by F,,,; = —ezEg/ (2ma)2) %cos (kx)), where k = k;,, = —k,,.
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As an example, we consider a one-component weakly ionized argon plasma with low electron
and ion n; densities, which are equal to each other, n, ~ n; ~ 10'°—10!! cm™3, electron temperature
T, = 1 eV, the cold argon atoms having density 6.6 X 10'7 cm™ and temperature T= 293 K .
Collisions between charged particles are totally ignored and those between electrons and neutrals
are assumed to be relatively rare, so that an electron mean free pass / is greater than the lattice
period A;. Actually, for the conditions mentioned above, we have 7 = 10~ s and the electron
mean free path [ ~ 7 x 10™*c¢m, which is 25 times higher than the period of the optical lattice
Ar = A2 = 2.66 X 107> cm, the lattice being created by the two identical counter propagating
laser beams with wavelength A, = 532nm.

Thus, to determine An, due to the force F),,,; a kinetic approach is required. We assume that
the ions form a fixed neutralizing background. A kinetic equation for 1 D—1V electron distribution
functionf = f (x, v, ) has the form:

af af+<Fpond_eE>£: f_fO.

m

(1

ov T

Here, the right hand side is a Bhatnagar-Gross-Krook term, which describes the collisions between
electrons and neutrals, 7 is the characteristic time between the collisions, f, = 1/v/2zv,r exp(—vz/ng)

is the Maxwellian electron distribution function, v, = 1/kT,/m is the characteristic electron ther-
mal velocity and E is the self-consistent electric field that establishes due to the shift of the electrons
with respect to immobile ions. Eq. 1 is supplemented by the Poisson equation for the electric field

E:
%=£ p(x,t)=e<nl.—/f(x,v,t)du> (2)

ox g

where p is the density of space charge.

To find An,, we need to solve the initial value problem 1 - 2 with the initial conditions f (x, v, = 0)
foand E (x,t = 0) = 0. The phase velocity of the lattice § = /g serves as an input parameter,
which is varied from ~ 0 to & = 3.5v0,r. We assume that the counter - propagating laser beams
are practically identical; thus we have E, = Ey = Ey and g = ky, + k,, = 2k = 4z/A in
the expression for the force F,,,;. The computational domain in (x, v) space consists of a seg-
ment [O, /1T] along the x-direction, covering one period of the optical lattice A, and of a segment
[—SDeT, Sl)eT] in the u - direction. Eq. 1 is solved numerically by LeVeque’s insplit wave prop-
agation method [21]. As in [22], Eq. 2 is transformed to the current conservation equation and
solved by explicit scheme. The periodic boundary conditions for electron distribution function
fO,0,t)=f (/IT, 0, t) and electric field £ (0,¢t) = E (/IT, t) are employed. At a given velocity of
the lattice & = Q/q we calculate f (x, v, ) up to the steady state. The time required for the steady
state to establish is no longer than 107'° seconds. The computed stationary value of f (x, v, 1) gives

2
the relative perturbation of the electron density (Ane)2 = O/IT dx [ / _4-;0( f(x,0,t) = fo(0,0))d v]

for each ¢ and thus a scattered signal.



3 Results

At low intensity of the pump lasers, I = 10° W/cm?, the perturbations induced by the optical
lattice are small, and the scattering spectral profile corresponds to the Maxwellian electron distri-
bution function taken initially (see Fig. 2a). When increasing the pump intensity from up to I =
1012W/cm?, the spectral profile first gradually narrows and then its width does not decrease any
longer with I (Fig. 2b).
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Figure 2: a) Coherent Thomson scattering spectral profile from electron gas with T, = 1 eV at
the pump intensity I = 10° W/cm? vs the phase velocity of the optical lattice. Also shown is
the Doppler profile of spontaneous Thomson scattering from electron gas (dashed blue line) and
that from neutral argon gas with temperature T=293 K (dotted line); (b) A comparison between
calculated coherent Thomson scattering spectral profile from electron gas at pump intensities I =
10° (broad solid line) and 10'> W/cm? (narrow solid line). Also shown are the calculated spectral
profiles from electron gas at I = 10'9 W/em? (dashed line) and at I = 10'" W/em? (dashed-dotted
line).

An analogous narrowing of the spectral profile at the high pump intensities was predicted and
observed in neutral gas [23, 24]. When the narrowing occurs, the perturbations of the electron
distribution function due to optical force become noticeable. This is illustrated in Fig. 3.

Finally, it is interesting to compare the intensity of the discussed coherent scattering with that of
incoherent scattering. For this purpose we should compare the Bragg reflection coefficient R with
the value o7n,V/ (42), where o7 = 6.65 X 10—-25 cm? is the Thomson scattering cross-section,
Vis the scattering volume and r is the distance from the plasma source. Assuming the scattering
volume to be cylindrical in shape with length L= 0.1 cm and diameter D= 100xm and the distance
r = 1 m, for the electron density n, = 10'! cm™, we have o7n,V/ (47rr2) = 4.2 x 10**. On the
other side, from numerical simulations, we have the relative change of the electron density due to
optical lattice at pump intensity I = 10'! W/em? to be An,/n, = 1073.

2
For the perturbation of refraction index, we have An = —%% An”e = 1.3 x 10~!%. Thus, with

an optical lattice of 1 cm in length, having approximately N = 3.810* periods the reflection coef-
ficient R &~ 107!°. This value is almost five orders of magnitude higher than that the above value
4.2 x 1072* obtained for a spontaneous Thomson scattering signal.
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Figure 3: The steady-state perturbation of electron velocity distribution function by a pulsed optical
lattice moving with velocity & = 4.19 x 10’ cm s™!. The distribution function is averaged over the
lattice period. The pump intensity is I = 10'> W/cm? ; T, = 1 eV. The dotted line is the initial
Maxwellian distribution function.

4 Outlook

At the core, the proposed four-wave mixing Thomson scattering scheme is the utilization of
optical lattices for the creation of the periodic perturbation of electron density in plasmas via a
periodic optical dipole force. The traveling optical potential perturbs the motion of a group of
electrons whose velocities are close to the speed of the interference pattern of the crossed pump
fields. By changing the frequency difference between the two pump laser beams, or the speed of
the interference pattern, a perturbation of electron distribution function centered at the particular
velocity is created. The relative magnitude of the induced electron density perturbation at each
velocity can be determined by the measurement of the relative intensity of a third probe laser
beam, Bragg scattered from the induced electron density perturbations.

This scheme is capable of by-passing the Rayleigh signal contributions from neutrals and ions
in the plasma — only keeping the Thomson scattering signal from the electrons. More importantly,
this scheme results in a coherent Thomson signal beam, which maintains all the beam character-
istics of the probe beam. This enables the placement of the collection optics far from the point
of measurement without any loss of signal, in comparison with, for example, incoherent Thomson
scattering where the signal scales with 1/r2 with respect to the distance r where the collection optics
are placed. Itis envisioned that this capability will enable accurate and non-intrusive measurements



in low-density plasmas, where the current state-of-the-art is mechanical probes.

The four-wave mixing nature of the proposed technique renders it ideal for application in op-
tically noisy environments, such as those encountered in plasmas—while the necessary angled
crossing of the laser beams provides with a high degree of localization and spatial resolution. Fur-
thermore, if one utilizes a chirped lattice approach, where the range of optical lattice velocities is
scanned in a single laser shot (as experimentally demonstrated and theoretically studied for neutral
gases in Ref. [25]), it is envisioned that the induced coherent Thomson scattering scheme will have
single shot spectral acquisition, making it an ideal diagnostic for highly dynamic systems. As the
next phase towards these directions, we will actively pursue the experimental demonstration of
coherent Thomson scattering in a low temperature plasma environment.

5 Products

The results of this project have resulted in one publication in a peer-reviewed journal:

Mikhail Mokrov, Mikhail N. Shneider, and Alexandros Gerakis , ”Analysis of coherent Thomson
scattering from a low temperature plasma”, Physics of Plasmas 29, 033507(2022)

The results of this project will be presented in two conferences:
* APS Gaseous Electronics Conference 2022

» APS Division of Plasma Physics Meeting 2022
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Abstract. The spectrum of coherent Thomson scattering (CTS) induced by a periodic
ponderomotive perturbation in a low-density low temperature plasma is considered. The
analysis is performed for the case when the period of the resulting optical lattice is less than
the Debye screening length in the plasma by solving an electron Boltzmann equation, where
the total force is the sum of the periodic force due to the optical lattice and the electrostatic
force due to self-consistent electric field in the plasma. An analogy between the CTS spectra
calculated here and coherent Rayleigh scattering spectra in a neutral gas is established. For
relatively low intensity for the optical lattice, the calculated CTS spectra are nearly Gaussian
with widths slightly wider than the incoherent Thomson widths. We demonstrate that at
higher intensities the line shape narrows and saturates to a width approximately half of that
found at low lattice intensities. The proportionality of the spectral width to the square root of
the electron temperature allows one to extract the electron temperature from the saturated
spectra. Possible application of CTS for remote measuring the electron temperature in plasma
is discussed.

I. INTRODUCTION
The study of the complex behavior of the charged species in various plasma sources

and devices requires substantial improvement of non-intrusive plasma diagnostic techniques.
Incoherent Thomson scattering (ITS) of radio waves and laser radiation has been used for the
non-invasive measurement of the electron density and temperature in plasmas from the 1960s
up to today [1,2]. ITS is characterized by the scattering parameter a = (hrp)~!, where
h = |k — K|, rp is the Debye length, and the wave vectors k and k' describe incident and
scattered waves, respectively. If a > 1, electron fluctuations in the plasma are strongly
coupled to those of ions, giving rise to the so-called 'collective' scattering. If « < 1, the
electrostatic interactions become non-important and thus the incoherent scattering due to
thermal fluctuations occurs as if the charged particles are free. Laser ITS experiments in this
regime have shown that the frequency of photons from a narrow linewidth laser is Doppler
shifted due to the scattering from the electrons in the plasma [3,4]. In the collisionless limit,

the spectrum of ITS is similar to that of the Rayleigh scattering from neutral particles [5].
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However, since the electrons have a much smaller mass and their translational temperature in
a low-density, low temperature plasma is usually much higher than that of heavy species, the
Thomson scattering spectral linewidth is orders of magnitude broader than the Rayleigh
linewidth.

ITS is mainly used for diagnostics of dense fusion plasma in state-of-the-art plasma
devices [2,6-10]. In this technique, the incident probe laser power is scattered to 4n
steradians, while the scattering power is proportional to the number of electrons in the
scattering volume, decaying as r 2 with the distance r from the scattering volume. This gives
rise to a low ratio of the scattered power to that of the probe laser and limits the application of
ITS for diagnostics of low temperature plasma sources with electron densities of 102 cm™ or
lower [4,11-17]. To perform ITS measurements under such low densities it is paramount to
attenuate stray light, collect statistics, accumulate measurements for thousands or tens of
thousands of laser pulses or significantly increase the intensity of laser radiation. These
approaches are problematic, since accumulating statistics over a long time (tens of minutes or
several hours) is impractical and meaningless under non-stationary plasma conditions, while
an increase in laser intensity may only lead to large disturbances in the plasma under
study [18].

In this paper we propose a novel, alternative approach to measuring the electron
temperature and density in a low-density plasma. This approach relies on the observation of
Bragg scattering or induced coherent Thomson scattering from the electron gas trapped by
traveling optical lattice potentials and is a variation of four-wave mixing techniques.
Following this approach, it is anticipated that the scattered signal will be largely increased,
due to the constructive interference of the waves reflected from a refractive-index grating
induced in a weakly ionized plasma by the ponderomotive interaction of the electron gas with
an moving optical interference pattern. The resulting signal beam is another coherent laser
beam, maintaining all the characteristics of the probe. The diagnostic scheme presented here
is not to be confused with the “collective” Thomson scattering mentioned above, which is
sometimes referred to as “coherent Thomson scattering” in the literature [19,20].

In the case considered here, the electron density perturbation én, is a traveling wave
that oscillates at the beat frequency of pump beams 2 = w; — w,, with a grating wave vector
q = k; — ky, where k; and k; are wave numbers of two pump beams which interfere within
the plasma. The value of én, at different beat frequencies (2 determines the intensity of the

scattered signal. The character of electron density perturbation depends on the value of
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parameter (qrp)~%, where ¢ = |q|. If (grp)~! = 1, the electron density perturbations in the
plasma are strongly coupled to those of ion density via self-consistent electric field in
plasma [21,22]. In contrast, at (qrp) ! << 1, electrostatic interactions are weak, and the
electrons are, in fact, subject only to the external optical field. Here we focus on the latter
case and check the unimportance of the electrostatic interactions by direct numerical
simulation. The condition (qrp)~! << 1 can be met in a plasma with a not too large electron
density n,; for example, if it is assumed that the electron temperature is T, = 1 eV and the
optical lattice produced by two counter-propagating laser beams has a wavelength of A = 266
nm, then n, <« 1.2 X 107cm™. Here, we calculate the line shape of the resulting coherent
Thomson scattering signal and demonstrate that line narrowing occurs for high intensities of
the pump lasers. This is in analogy to similar phenomena observed and studied in the past for
atomic and molecular gases, where the four-wave mixing technique has been used to
determine temperature and neutral atomic and molecular gas composition from the coherent

Rayleigh and Rayleigh-Brillouin scattering line shape [23-26].

II. FORMULATION OF THE PROBLEM

Consider the motion of charged particles in an electric field of two interfering laser
beams, termed the pumps, that cross at angle & and have frequencies w; and w, and wave
numbers k; and k;. We choose the x-axis along the vector q = k; — k3, which is
perpendicular to the fringes of the optical lattice. The period of the lattice d is determined by
the angle 8, d = A4/[2sin(6/2)], where 4 is the pump wavelength. For two almost
counter-propagating (8 ~ m) pump beams (see Fig.1), d =A4/2 and q = 4w /A, where

q= |q| . In an experiment, the beams must be crossed within a plasma at an angle close to but

not equal to m, to avoid backwards propagation of the laser beams. This crossing angle results
in the interference pattern to be two-dimensional. However, as work in gases with the beams
crossing at an angle of 178° shows, the theory based on the one-dimensional approximation

describes the experiment well [23-25].
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Pump 1 Pump 2

Plasma
ouLY
i Signal
>
Phase velocity & Probe

FIG. 1. The creation of an optical lattice within a plasma, bytwo almost counter-propagating optical beams of
the same polarization. A third probe beam, of orthogonal polarization is shown at the Bragg angle on the
induced electron periodic density modulation, giving rise to the four-wave mixing Thomson scattering signal
beam. The probe beam’s polarization is set perpendicular to that of the pump beams in order to avoid
interference between the probe beam and any of the pump beams.

The electric field of the two interfering pump beams produces a traveling optical
potential which moves at a phase velocity & = 2 /q. In a weakly ionized plasma this potential
will trap electrons in the low intensity nodes, due to the ponderomotive force. To induce
noticeable electron density perturbations, the phase velocity £ has to fall within the range of
electron velocities v for which the value of the one-dimensional velocity distribution function
(VDF) of electrons f « exp (—v2/2v2.) is significant, where v,; = m, where T, is
the electron temperature and m is the electron mass. Similarly, the one-dimensional VDF of
ions or neutral species with velocities v, will be given by f;, o exp (—v#/2v2), where the
characteristic thermal velocity now is vy = m , where T is the species’ temperature and
M is their mass. Since M =>>> m, it follows that the electronic VDF will be much wider than
the one for the heavy species, even if assuming that T, = T. Consequently, if £ is greater
than the velocities seen in the heavy species VDF, then one cannot expect that the motion of
ions and neutral particles will be greatly perturbed by the optical lattice. On the other hand, a
relative shift of electrons with respect to ions in the plasma leads to the generation of a self-
consistent electric field, which tends to slow down the electrons and drag the ions. However,
if the charge separation occurs at a distance of about one optical lattice period which is much
lower than the Debye length, then this electric field is relatively small and the motion of ions
under its action can be neglected. Thus, the electrostatic field is taken into consideration to
maximize its effect on the electron motion, while the ions are assumed to form a fixed

neutralizing background.
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An electron placed in the electric field generated by the interference of two pump

beams is accelerated by the ponderomotive force F = —dU(x,t)/dx with an effective optical

2
€°Ep1Eoz

potential U(x,t) = o

cos(f2t + gx), where e is the electron charge, Ey; and E,, are

the electric fields amplitudes of the two pump beams, and w is the laser frequency, which is
close to both w; and w,; we assume that |2| = |w; — w,| < wy,w,. The formula for
U(x,t), which corresponds to the traveling optical potential, has been obtained by us by
modifying slightly the derivation (given, for example, in [27]) of the stationary
ponderomotive potential U(x) for a standing light wave.

Since the mean free path of the electrons with respect to various types of collision,
such as electron-neutral particle and electron-ion, is higher than the length scale of the optical
force gradients (typical dimensions of d = A/2 = 266 nm, assuming counter-propagating
pump beams with a wavelength of 532 nm) the perturbation of the electron density dn, is
found by a kinetic approach. To calculate the electron distribution function f = f(x,v,t),
we solve the Boltzmann equation, subject to the assumption that the total force acting on
electrons in the plasma is a sum of the periodic ponderomotive force F and the self-
consistent electrostatic force —eE:

of L ,Of L (F=eE)3f _ [-fo
6t+vﬁx+ m  dv T

1
Here fy = 1/(V2mv.p)exp (—v2/21v2;) is the Maxwellian electron distribution function, the
collision integral is written in the Bhatnagar-Gross-Krook approximation [28] and t is the
characteristic time between collisions. If electron-neutral atom collisions are dominant, the
relaxation time T in (1) can be calculated as T = I/vem’ where [ = 1/(Now) is the electron
mean free path for electron-neutral atom collisions with gas of a density N ,
Vo = m is the electron mean velocity and o« is the effective momentum transfer
cross section.

To illustrate the validity of the operating regime considered here, without loss of
generality, we consider the perturbation of electron density in a quasineutral weakly ionized
plasma in a gas of argon, which is at a temperature of T = 293 K and at a pressure of 216

Torr, having an electron density of n, = 10! cm™

at a temperature of 7. = 1-3 eV. These
conditions are typical for a low-temperature plasma source. For T, =1 eV, we have
1= 10" sand [ = 6.7x 10™* cm, which is 25 times higher than the period of the optical
lattice d=A/2=266 nm, hence demonstrating the validity of the kinetic approach followed

here.
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To determine the electric field E in equation (1) self-consistently, we use the Poisson
equation:
JE_p
ox g5’ @
where p(x, t) = e(n; — [ f(x,v,t)dv) is the space charge density and n; is a fixed density
of ions.
Thus, the perturbation of the electron density at each lattice phase velocity & = 2/q is

determined by solving the initial value problem for Egs. (1)—(2) with the initial conditions
flx,v,t = 0) = f; and E(x,t = 0) = 0. The intensities of the two pump beams are
assumed to be equal to each other | =/ =[5 . Even for the highest pump intensities
considered in this paper, I = 10*2 — 10** W/cm? we have the parameter
|U|/(kT,) = 0.1, so that the modification of the electron distribution function by the
optical lattice is relatively small, as compared to the Maxwellian one.

The computational domain is rectangular in the (x,v) space, with the domain width
along the x — direction equal to the optical lattice period d. Eq. (1) is solved numerically by
LeVeque’s unsplit wave propagation method [29]. As in Ref. [30], Eq.(2) is transformed to
the current conservation equation and solved for E(x,t) by an explicit scheme. As in Refs.

[31,32], the assumption of the optical potential which is one-dimensional and periodic allows
the use of the periodic boundary condition f (0,v,t) = f (d,v,t). The same condition is
applied for the electric field E(0,t) = E(d, t). In addition, we have f(x,v — o0,t) =0.
With regards to the latter condition, in the implemented numerical method we have restricted
the absolute value of electron velocity to values not exceeding 5v.;. We seek the solution of
Eqgs. (1)—(2) for the potential U (x, t) created by the pump laser field pulse with a rectangular
shape and temporal width not greater than 0.1 ns.

The mean electron density perturbation squared is computed as
(6n,)? = n2d ! J'Od de_t:[f(x, v,t) — fo]dv\z and it takes a time of the order of 10 ps for
(6n,)? to approach the steady state in the numerical simulations. The fact that the steady
state is reached quickly confirms the initial assumption that electrostatic plasma oscillations
can neglected in the case considered here. The value of (§n.)? ultimately determines the
scattering signal at each phase velocity of the optical lattice £. Indeed, the intensity of the
generated signal laser beam is described by the Bragg reflection coefficient R from the
periodic structure with the modulation of the refractive index én. The refractive index &n is

expressed via the electron density perturbation &§n, induced by the optical lattice,

on = f(mp/m3)25ne/(2ne), where wy, is the plasma frequency and wj is the frequency of
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the probe beam. The reflection coefficient from such a grating with §n <« 1 is given by
R =~ tanhz(ﬁé'an/AS) [33], where K = L/d is the number of periods in the optical lattice
having a length L and A; = 2mc/w;. The argument of hyperbolic tangent can only be small
by virtue of §n being very small in our case. Hence we have R ~ 2(6n)2K?(d/A3)? and the

intensity of the scattered signal I o R o¢ (6n,)?%.

III. RESULTS AND DISCUSSION

The resulting induced coherent Thomson scattering spectral profiles, in relative units,
calculated as outlined above are presented in Fig. 2. As checked by direct numerical
calculations, the electrostatic electric field E given by (2) is negligible and dropping it from
equation (1) does not affect the results presented below. With ne = 10'' cm™ and a
numerically established amplitude of electron density perturbation (81c)a/ne= 1.5x1072 for the
high pump intensities assumed here (amplitude of 7 = 10'> W cm™2), the corresponding
maximum electric field strength would be 0.013 V cm™.

For the intensity of the pump beams of I = 10° Wcm™2, which corresponds to
|U|/(kT,) = 1074, the periodic density perturbation induced on the electrons by the optical
lattice is very small. The electron distribution function remains approximately equal to the
Maxwellian one. However, as shown on Fig.2a, this weak perturbation provides the
broadened Thomson scattering spectral profile, which is 10% wider than the spontaneous
scattered profile. This effect is analogous to that predicted and observed in neutral
gases [23,32].

With increased pump intensity I > 10 W cm2, the obtained spectral profile first
begins to narrow and then reaches saturation. The variation of the line shape with the pump
intensity is shown in Fig. 2b for the electron temperature 7e= 1 eV, where the considered
pump intensity is not higher than 10'> W cm™. The comparison of the spectral lines at [ =
10" and 10'> W cm? clearly demonstrates the saturation of the narrowing with pump
intensity. Such a narrowing is again similar to that predicted and observed in neutral gases
[32,34].

For an increased electron temperature, Te= 3 eV, we again find the spectral profiles

undergoing the saturation of the broadening when decreasing the pump intensity and the
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saturation of the narrowing when increasing the pump intensity. The broad and narrow

spectra are shown in Fig. 2c.
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FIG. 2. (a) Induced coherent Thompson scattering spectral profile from an electron gas with temperature 7. = 1
eV at a pump intensity. / = 10° W cm vs the dimensionless phase velocity of the optical lattice. For
comparison, also shown are the Doppler profile of spontaneous Thomson scattering from an electron gas at 7. =
1 eV (dashed blue line) and Doppler profile of spontaneous Rayleigh scattering from neutral argon gas with
temperature 7= 293 K, as seen at characteristic electron velocities (dotted line). The spontaneous Thomson and
Rayleigh scattering profiles are shown as a function of £ = Af/h, where AR is the difference between the
incident light wave frequency and the scattered one and h = |k — k'|; (b) A comparison between calculated
induced coherent Thompson scattering spectral profiles from electron gas with temperature 7. = 1 eV at pump
intensities 7 = 10° W-cm 2 (red solid line) and 7 = 10'2 W-cm 2 (black solid line). Also shown are the calculated
spectral profiles from the same electron gas at intermediate intensities / = 10'® W-cm2 (dotted line) and at [ =
10" W-cm™? (dashed line); (c) The same as in (b) but for 7. = 3 eV; I = 3-10° W-cm 2 (red solid line) and I =
3-10"2W-cm 2 (black solid line).

Although an analytical theory of the narrowing is not developed yet, qualitatively the
effect is related to the trapping of the particles (electrons) within the moving potential [32].

Additionally, we note that the pump intensity I = 10'> W cm™? corresponds to
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|U|/(kT,) = 0.1. Unlike the case with low pump intensity, at high pump intensity the
perturbation of the electron distribution function due to its interaction with the optical lattice
is noticeable. As a result, after interaction of the electronic gas with intense optical fields, a
plateau forms within the distribution function due to the oscillation of the particles within the
potential well. This effect is counteracted by electron-neutral collisions trying to restore the
Maxwellian distribution function. The resulting perturbed distribution function is shown in
Fig. 3. A significant fraction of the electron distribution function is trapped by the optical
potential only when optical lattice velocities are not too high § < 2.5v,;. For this reason,
the calculated saturated spectra of Fig.2(b,c) at the high pump intensity strongly deviates
from that found at low intensity, where the trapping effect is negligible (Fig. 2(a)). But at
& > 2.5v,r the saturated spectrum at the high pump intensity approaches that found at low

intensity (Fig.2(b,c)).

0.4

0.3 4

FIG. 3. The steady-state electron velocity distribution function averaged over the optical lattice period, as
calculated for the initially unperturbed electron gas placed in an optical lattice moving with velocity & =
4.19% 107 cm s7!. The pump intensity is / = 10> W/em? ; T. = 1 eV. The dashed line is the initial unperturbed
Maxwellian distribution function.

It is expected that a broad Gaussian spectrum at low pump intensities would be
difficult to observe, due to the low strength of induced electron density perturbations and the
scattered signal. However, the scattered signal should be detectable at higher pump

intensities. From the results of Fig. 2, it is observed that the width of the line shape to which
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the signal saturates at the high pump intensity is approximately two times lower than that of
the Gaussian spectrum.

The width of the Gaussian spectrum is proportional to square root of 7e. The narrow,
saturated signal possesses approximately the same property for the above numerical examples
with 7e = 1 eV and 3 eV in argon. In these calculations, we took into account the variations of
the electron mean free path with 7. , /[=l(T¢) through the dependence of the momentum
transfer cross section on the electron energy [35]. Let us calculate full-width-at-half-
maximum (FWHM) Aw=¢¢12 of the narrowed spectra of Fig. 2b and Fig. 2¢c, where g = 4n/A
and £i2 is FWHM measured in terms of the lattice velocity. For the narrowed spectrum of
Fig 2b (black solid line), we have &, & 1.2ver, ver = /kTe/m_Te =1 ¢V , and Ao~
1.2-108 57" or 1.9-10° GHz. For the narrowed spectrum of Fig 2c¢ (black solid line), with Te =
3eVand &/, ~ 1.24v,; found from this figure, we obtain Aw=2.1-10"*s™" or 3.4-10° GHz.
We see that within the accuracy of 3% (the constant 1.2 replaced by 1.24) FWHM is
proportional the square root of the electron temperature 7ec , Aw = q& & \fﬁ .

If it is assumed that /=/(Tc)=const, as it is in helium in the considered range of Te, it
would have been obtained that the above dependence of FWHM of the narrowed spectrum on
Te is exact. The reason for this behavior is clear: in the case of a negligible electrostatic field
E =0, Eq. (1) can be rewritten, introducing the dimensionless variables # = v/v.p, X=x/d

and £ = tv,r/d:

o [ (%er)]g—f = f\l%?(ffﬁ,) 3)

2
muver

~ —_— - 22
with f = 1/(V2n)exp(—v2/2), f=fve, §=qd and E, == 5od (in the last expression

pa—
we assume that Ey = Ey; = Epy,). Equation (3) shows that if [ = [(T,) = const the solution
of = f::(f — foddv = f::(f —ﬁ;)dﬁ as a function of /v, depends only on the value
E,d/(mvZ.) « 1/T,. Therefore, with &/v,; fixed, the variations in both I and T, such that
the ratio I/T, remains constant would not change the perturbation §f and thus the calculated
signal lies on the universal curve I vs. & /1,7

To demonstrate the improvement offered by our approach, let us estimate the intensity of
the coherent scattered signal for relatively high pump beam intensities I; =1, = I = 10%?
W-cm 2, and probe beam intensity /3=I. According to the numerical simulations, with these
values of I; and I,, the perturbation of the electron density of n, = 10'* cm™ due to the

optical lattice is 8n,/n, ~# 1072, For a probe beam with wavelength A; = 532 nm, this

10
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results in the perturbation of the index of refraction
én = —(wp/w3)26ng/(2ne) = —1.3-1071%. Assuming a typical length for the optical
lattice of L = 1 cm, the number of lattice periods will be K = 3.8 x 10* and thus the
reflection coefficient R ~ 1.2 x 10717, Therefore, the intensity of the scattered signal will
be I, = RI; = 1.2x 107> W-cm 2. The number of photons in the reflected signal per a
probe laser pulse of a duration 6t is Ny, = [1,6tA35/(hc), where S = mRZ is the area of the
laser beam and / is Plank’s constant. With 8t = 5 ns and Rj, = 100 um we have N, = 50,
which is acceptable for reliable measurements [4]. At the low pump intensities I; and
I, = 10° W-cm 2, we have the amplitude of perturbations 6n./n, =~ 4 x 1075 and the
number of photons Nph would be significantly lower.
In case of a standard incoherent Thomson scattering, number of scattered photons Ns is

given by [4]

L6tAs

N =
s he

n Vrg A0, 4)

where V = SLg is the scattering volume, L is its length, 7y is the classical electron radius,
AR is the solid angle of observation and 1 is the transmission coefficient of the optical
system. Let us estimate N, for a typical experimental case. Using the same values of
I; = 102 W-cm 2, 8t= 5 ns, 13=532nm, ne= 10" cm™, S=2zR;, Ry=100 pym, and Ls= 1
cm as we have taken above in evaluating Nph for the coherent scattering, substituting ro =
2.82x107"3 cm, and assuming AQ =107 sr and ) =0.1 as in [4], we obtain Ns~ 3. Comparing
this value with Nph = 50 estimated for the coherent Thomson scattering, we can conclude that
the proposed coherent Thomson scattering technique can be preferable to a standard

incoherent Thomson scattering technique for diagnostics of low-temperature plasma sources.

CONCLUSION

At the core of the proposed four-wave mixing Thomson scattering scheme is the
utilization of optical lattices for the creation of the periodic perturbation of electron density in
plasmas via a periodic optical dipole force. The traveling optical potential perturbs the motion
of a group of electrons whose velocities are close to the speed of the interference pattern of
the crossed pump fields. By changing the frequency difference between the two pump laser
beams, or the speed of the interference pattern, a perturbation of electron distribution function
centered at the particular velocity is created. The relative magnitude of the induced electron

density perturbation at each velocity can be determined by the measurement of the relative
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intensity of a third probe laser beam, Bragg scattered from the induced electron density
perturbations.

This scheme is capable of by-passing the Rayleigh signal contributions from neutrals
and ions in the plasma - only keeping the Thomson scattering signal from the electrons. More
importantly, this scheme results in a coherent Thomson signal beam, which maintains all the
beam characteristics of the probe beam. This enables the placement of the collection optics
far from the point of measurement without any loss of signal, in comparison to e.g.
incoherent Thomson scattering where the signal scales with 1//* with respect to the distance r
where the collection optics are placed. It is envisioned that this capability will enable accurate
and non-intrusive measurements in low density plasmas, where the current state-of-the-art is
mechanical probes.

The four-wave mixing nature of the proposed technique renders it ideal for application
in optically noisy environments, such as those encountered in plasmas - while the necessary
angled crossing of the laser beams provides with a high degree of localization and spatial
resolution. Furthermore, if one utilizes a chirped lattice approach, where the range of optical
lattice velocities is scanned in a single laser shot (as experimentally demonstrated and
theoretically studied for neutral gases in Ref. [25]), it is envisioned that the induced coherent
Thomson scattering scheme will have single shot spectral acquisition, making it an ideal

diagnostic for highly dynamic systems.
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