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Inverse problems

Find parameters (z , θ) such that

F (z , θ) = Q(u(z , θ)) ≈ d

where

• d are sparse and noisy observations of a state variable u(z , θ).

• u(z , θ) is the solution of a PDE and Q is the observation operator.
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The joint Bayesian formulation

• Assume a prior distribution for (z ,θ) ∼ N ((zprior,θprior), Γprior) .

• Assume that d = F (z?,θ?) + ε where ε ∼ N (0, Γnoise).

• The joint posterior probability density function (PDF) is

πpost(z ,θ) ∝ πlike(d |z ,θ)πprior(z ,θ)

where

• πlike is the likelihood function,

• πprior is the prior PDF.

Analyzing properties of πpost(z ,θ) provide a wealth of information, but may be
computationally intractable.
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The conditional Bayesian formulation

• The posterior probability density function (PDF) for z given θ = θprior is

πpost(z |θprior) ∝ πlike(d |z ,θprior)πprior(z ,θprior).

• Fixing θ = θprior to its prior mean simplifies the analysis.

• How does θprior influence the posterior distribution for z?

πpost(z , θ1|θ2)
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Leveraging PDE-constrained optimization

• The maximum a posteriori probability (MAP) point(s) for πpost(z |θprior) are
local minima of

min
z∈Rm

J(z ;θprior) := M(z ,θprior) + R(z ,θprior)

where M(z ,θprior) and R(z ,θprior) are the negative log likelihood and prior.

Benefit of PDE-constrained optimization

• Leverages computationally scalable, matrix free, and parallel algorithms.

Limitation of PDE-constrained optimization

• Only provides a limited characterization of the posterior distribution.

This work focuses using hyper-differential sensitivity analysis (HDSA) to analyze
the influence of θprior on the MAP point for z |θprior.
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Post optimality sensitivity analysis

min
z∈Rm

J(z ;θprior) := M(z ,θprior) + R(z ,θprior)

• Let z? denote a local minimum when θ = θprior is fixed,

∇zJ(z?,θprior) = 0 and ∇z,zJ(z?,θprior) � 0

• The implicit function theorem gives

G : N (θprior)→ N (z?),

defined on neighborhoods of θprior and z?, such that

∇zJ(G(θ),θ) = 0 ∀θ ∈ N (θprior)
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Post optimality sensitivity analysis

G : N (θprior)→ N (z?)

• G associates parameters θ with the corresponding MAP points for z given θ

• Further, G is differentiable at θprior and its Jacobian is given by

G′(θprior) = −H−1B ∈ Rm×n

• H = ∇z,zJ is the Hessian of J and,

• B = ∇z,θJ is the Jacobian of ∇zJ with respect to θ

G′(θprior) is like a Newton step to update the MAP point given a perturbation of θ.
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Hyper-differential sensitivity analysis

Compute properties of

G′(θprior) = −H−1B ∈ Rm×n,

a large dense matrix which is only accessible through matrix vector products.

• Compute matrix-vector products with H and B using

- adjoint-based derivative computations,
- matrix free linear algebra.

• Approximation G′(θprior) via a randomized generalized SVD

- efficiently expose low rank structure,
- embarrassingly parallel,
- appropriate inner products to facilitate the interpretation.
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Hyper-differential sensitivity analysis: Previous work

Has been used in the context of:

• Parameter uncertainty in
PDE-constrained control

• Nuisance parameter uncertainty in
deterministic inverse problems

• Data sensitivity to augment
optimal experimental design

• Feedback controller robustness

• Model form error in
PDE-constrained optimization

Has been applied in:

• Aerospace vehicle trajectory
planning

• Thermal fluid system control

• Subsurface source inversion

• Ice sheet bedrock topography
inversion
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Pulling it all together

• State-of-the-art tools enables efficient analysis for the sensitivity of z ’s MAP
point with respect to perturbations of θprior.

• Scalability in the parameter dimension is achieved through adjoint
calculations and low rank approximation.

There are two questions we must address to facilitate this analysis:

1. What is the Bayesian interpretation of G′(θprior)?

2. Can I still compute/interpret G′(θprior) for ill-posed problems where:

- An ill-conditioned Hessian introduces theoretical and computational challenges,
- The optimizer may struggle to solve the MAP point estimation problem to

optimality (satisfaction of the first order optimality condition)?
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The linear case

Theorem

If F (z ,θ) = Az + Bθ then the posterior is Gaussian with covariance

Σpost =

(
Σz,z Σz,θ
Σθ,z Σθ,θ

)
and the post-optimality sensitivity is given by

G′(θprior) = Σz,θΣ−1θ,θ.

• The post-optimality sensitivity is a correlation between z and θ.
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An illustrative example

F (z , θ1, θ2) = e
1
10 zθ1 + θ2

πpost(z , θ1|θ2) πpost(z , θ2|θ1)

• High sensitivity (left panel) corresponds to stronger correlations

• Approximately Gaussian distribution (right panel) has nearly constant
sensitivity (local correlations = global correlations for Gaussians)
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Handling ill-conditioning

G′(θprior) = −H−1B

• For ill-posed inverse problems, H may be ill-conditioned.

• Can yield high sensitivity as a result of lacking information/data.

• Analyzing G′(θprior) will be numerically troublesome and the resulting
sensitivities may be dominated by what the data does not tell you.

Proposed Approach: Compute sensitivities

PG′(θprior) = −PH−1B

where P projects onto the likelihood informed subspace 2.

2T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini,
Likelihood-informed dimension reduction for nonlinear inverse problems,
Inverse Problems, 30 (2014), pp. 1– 28.
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Likelihood informed subspaces (LIS)

HMvj = λjHRvj H = HM +HR

The eigenvalue

λj =
vT
j HMvj

vT
j HRvj

measures the ratio of the likelihood and
prior in the direction of vj .

PG′(θprior) = −PH−1B

Project the sensitivities onto the span of
{v1, v2, . . . , vr}, the subspace
which is most informed by the likelihood.

Joseph Hart (joshart@sandia.gov) HDSA for Bayesian Inversion RISE 20 / 38



Computing LIS sensitivities

Theorem

The LIS sensitivity is given by

S(θ) =
∣∣∣∣PH−1Bθ∣∣∣∣

WZ
=

√√√√ r∑
k=1

r∑
j=1

(
vT
j Bθ

1 + λj

)(
vT
k Bθ

1 + λk

)
vT
k WZvj .

• Need the leading eigenpairs

HMvj = λjHRvj

rather than H−1.

• Sensitivities inherit the likelihood to prior ratio interpretation.

• WZ measures the inner products in the original function space.
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Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem

min
z∈Rm

J(z ;θprior) := M(z ,θprior) + R(z ,θprior)

to optimality if ill-conditioning yields slow convergence.

• Early iterations refine features which are well informed by the data.

• Ill-conditioning may yield slow convergence in the uniformed subspace.

Question: HDSA assume satisfaction of the optimality criteria. What can I do
when converging the optimization is impractical/unnecessary?
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.

• Assume that z? is an approximation of the MAP point but

∇zJ(z?,θprior) 6= 0.

• Find a minimum norm perturbation R̃ so that ∇zJ(z?;θprior) +∇z R̃(z?) = 0,

min
R̃∈Q
||R̃||L1(µ)

s.t. ∇z R̃(z?) = −∇zJ(z?;θprior)

where

• Q = {R̃ : Rm → R|R̃ ≥ 0, R̃ is quadratic, R̃ is convex}
• L1(µ) is defined by a Gaussian measure µ with mean z? and covariance α2I

• α is a user defined length scale parameter (will revisit it later)
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First order a posteriori update

Can solve

min
R̃∈Q
||R̃||L1(µ)

s.t. ∇z R̃(z?) = −∇zJ(z?;θprior)

in closed form (with judicious algebraic manipulations) to find the update

R̃(z) =
α

2
||g ||2 − (z − z?)Tg +

1

2
(z − z?)T

1

α||g ||2
ggT (z − z?),

where g = ∇zJ(z?;θprior).

• R̃ is a “nice” function.

• The length scale parameter α dictates the curvature.

• Computational cost is negligible since a closed form expression is available.
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The perturbed MAP point problem

min
z∈Rm

J(z ;θprior) + R̃(z)

• z? satisfies the first order optimality condition.

• Post-optimality sensitivities are well defined for this perturbed problem.

Some important questions:

• What is the Bayesian interpretation of R̃?

• How does the perturbation influence the sensitivities?

• How do the sensitivities depend on α (the length scale parameter)?
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A perturbed Gaussian prior

• What is the Bayesian interpretation of R̃?
• How does the perturbation influence the sensitivities?
• How do the sensitivities depend on α (the length scale parameter)?

Theorem
The perturbed inverse problem has a Gaussian prior with mean

z̃prior = zprior +
α− (z? − zprior)T s

α− vT s
v

and covariance

Γ̃prior = Γprior −
1

||g ||2
1

α− vT s
vvT

where

g = ∇zJ(z?;θprior), s = − g
||g ||2

, and v = Γpriorg .

The perturbation shifts the mean and reduces uncertainty in the direction v .
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Difference in sensitivities

• What is the Bayesian interpretation of R̃?

• How does the perturbation influence the sensitivities?

• How do the sensitivities depend on α (the length scale parameter)?

Theorem
The quantities

S(θ) =
∣∣∣∣PH−1Bθ∣∣∣∣

WZ
and S̃(θ) =

∣∣∣∣PH̃−1B̃θ∣∣∣∣
WZ

satisfy

|S̃(θ)− S(θ)|∣∣∣∣H−1Bθ∣∣∣∣
WZ

≤ ||Pn||WZ

sTn + α
,

where

g = ∇zJ(z?;θprior), s = − g
||g ||2

, and n = −H−1g .
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Robustness with respect to α

• What is the Bayesian interpretation of R̃?

• How does the perturbation influence the sensitivities?

• How do the sensitivities depend on α (the length scale parameter)?

Theorem

Letting S̃α(θ) be the sensitivity as a function of α,

|S̃α+αβ(θ)− S̃α(θ)|
||H−1Bei ||WZ

< |β| · ||Pn||WZ

sTn + α(1 + β)
for − 1 < β < 1

where

g = ∇zJ(z?;θprior), s = − g
||g ||2

, and n = −H−1g .
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First order a posteriori update

• What is the Bayesian interpretation of R̃?

• How does the perturbation influence the sensitivities?

• How do the sensitivities depend on α (the length scale parameter)?

• R̃ shifts the prior mean and reduces the variance in the direction v = Γpriorg .
• The change in the sensitivity indices and their robustness with respect to α

are bounded by quantities proportional to ||Pn||.

Take away message: If the optimizer has converged in the likelihood informed
subspace, then HDSA is a robust, interpretable, scalable, and efficient (RISE) way
to assess correlations in the joint Bayesian posterior distribution.
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An illustrative example

Figure: The solid cyan arrow indicates the likelihood informed subspace and the broken
red arrow indicates the uninformed subspace.

Figure: The magenta arrow indicates the direction of v = Γpriorg .
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The two questions

1. What is the Bayesian interpretation of G′(θprior)?

The local correlation between z and θ in the Bayesian posterior.

2. Can I still compute/interpret G′(θprior) for ill-posed problems where:

- An ill-conditioned Hessian introduces theoretical and computational challenges,
Project on likelihood informed subspaces.

- The optimizer may struggle to solve the MAP point estimation problem to
optimality (satisfaction of the first optimality condition)?
A posteriori update.
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Subsurface permeability inversion

−∇ · (eκ∇p) = 0 in Ω

ct −∇ ·
(
ε(θ)∇c

)
+∇ ·

(
− eκ∇pc

)
= g(θ) in [0,T ]× Ω

p = p1(θ) on Γ1

p = p2(θ) on Γ3

eκ∇p · n = 0 on Γ0 ∪ Γ2

∇c · n = 0 on [0,T ]× {Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3}
c(0, x) = 0 in Ω
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Subsurface permeability inversion

−∇ · (eκ∇p) = 0 in Ω

ct −∇ ·
(
ε(θ)∇c

)
+∇ ·

(
− eκ∇pc

)
= g(θ) in [0,T ]× Ω

p = p1(θ) on Γ1

p = p2(θ) on Γ3

eκ∇p · n = 0 on Γ0 ∪ Γ2

∇c · n = 0 on [0,T ]× {Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3}
c(0, x) = 0 in Ω
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Subsurface permeability inversion

min
κ

nc∑
i=1

wc(Qi
cc(κ)− d i

c)2 +

np∑
i=1

wp(Qi
pp(κ)− d i

p)2 + γ1||∇κ||2 + γ2||κ||2

Iteration Objective Gradient Norm Step Size
0 17.2 1.33 N/A
4 9.59 .697 15.6

10 3.29 .676 2.38
41 .897 .113 2.02
65 .578 .331 .115
75 .571 .102 .109

125 .529 .081 .034

Significant computational efforts gives little improvement.
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Computing the likelihood informed subspace

Si = ||PH−1Bei || =

√√√√ r∑
k=1

r∑
j=1

(
vT
j Bei

1 + λj

)(
vT
k Bei

1 + λk

)
vT
k WZvj

0 20 40 60

Informed Subspace Dimension r

10 -2

10 0

10 2

10 4

10 6

G
e

n
e

ra
liz

e
d

 E
ig

e
n

v
a

lu
e

Spectrum

 =
 0

.9
8
8

 =
 0

.4
5
5

 =
 0

.0
9
3

0 20 40 60

Informed Subspace Dimension r

0

2

4

6

8

10

12
S

e
n

s
it
iv

it
y

Robustness to Eigenvalue Threshold

 =
 0

.9
8
8

 =
 0

.4
5
5

 =
 0

.0
9
3

0 20 40 60

Informed Subspace Dimension r

0

0.05

0.1

0.15

S
e
n
s
it
iv

it
y

Robustness to Eigenvalue Threshold

Automatically check for robustness with respect to rank truncation choice.
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Sensitivities
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Summary

• Established the Bayesian interpretation of post-optimality sensitivity analysis.

• Addressed ill-conditioning by projecting on likelihood informed subspaces.

• Theoretically justified HDSA when optimization fails to converge.

• Provided strong error bounds establishing the robust of the analysis.

• HDSA gives a robust, interpretable, scalable, and efficient (RISE) way to
assess correlations in the joint Bayesian posterior distribution.

Joseph Hart, Sandia National Laboratories
joshart@sandia.gov
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