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@ Bayesian inverse problems
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Inverse problems

Find parameters (z,0) such that
F(z,0) = O(u(z,0)) ~d

where
e d are sparse and noisy observations of a state variable u(z,6).

e u(z,0) is the solution of a PDE and Q is the observation operator.

F(z,0)

Forward PDE solve

(z,0)

F~1(z,0)

Inverse problem
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The joint Bayesian formulation

e Assume a prior distribution for (z,8) ~ N ((Zprior; Oprior); [prior) -
e Assume that d = F(z*,0%) + ¢ where € ~ N (0, INoise)-
e The joint posterior probability density function (PDF) is

Wpost(zv 0) X 7T|ike(d|zy e)ﬂprior(za 0)

where
e Tiike IS the likelihood function,
® Torior 1S the prior PDF.

Analyzing properties of mpest(2,8) provide a wealth of information, but may be
computationally intractable.
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The conditional Bayesian

o The posterior probability density function (PDF) for z given 8 = Oiq is
7Tpost(zlaprior) X 7Tlike(d|za eprior)ﬂ'prior(z, eprior)-

o Fixing @ = Bpior to its prior mean simplifies the analysis.
e How does Oy influence the posterior distribution for z7

7"'post Zz, 01 | 92
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Leveraging PDE-constrained optimization

o The maximum a posteriori probability (MAP) point(s) for mpost(Z|@prior) are
local minima of

nE]JIRI)n J(2; Oprior) := M(z, Oprior) + R(Z, Oprior)

where M(z, Opyior) and R(z, Orior) are the negative log likelihood and prior.
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Leveraging PDE-constrained optimization

o The maximum a posteriori probability (MAP) point(s) for mpost(Z|@prior) are
local minima of

ne]ﬁgr)n J(2; Oprior) := M(z, Oprior) + R(Z, Oprior)

where M(z, Opyior) and R(z, Orior) are the negative log likelihood and prior.

Benefit of PDE-constrained optimization
e Leverages computationally scalable, matrix free, and parallel algorithms.
Limitation of PDE-constrained optimization

e Only provides a limited characterization of the posterior distribution.
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Leveraging PDE-constrained optimization

o The maximum a posteriori probability (MAP) point(s) for mpost(Z|@prior) are
local minima of

ne]ﬁgr)n J(2; Oprior) := M(z, Oprior) + R(Z, Oprior)

where M(z, Opyior) and R(z, Orior) are the negative log likelihood and prior.

Benefit of PDE-constrained optimization

e Leverages computationally scalable, matrix free, and parallel algorithms.
Limitation of PDE-constrained optimization

e Only provides a limited characterization of the posterior distribution.

This work focuses using hyper-differential sensitivity analysis (HDSA) to analyze
the influence of @yrior on the MAP point for z|@pyior.
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© Hyper-differential sensitivity analysis (HDSA)
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Post optimality sensitivity analysis

@]'Rr:'" J(Z; 0prior) = M(27 Bprior) S R(Zu aprior)

o Let z* denote a local minimum when 8 = 8, is fixed,

V,J(2*, Oprior) =0 and V2,2d(2*, Opior) = 0
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Post optimality sensitivity analysis

ng]er)" J(Z; 0prior) = M(27 eprior) S R(Zu aprior)

o Let z* denote a local minimum when 8 = 8, is fixed,

V,J(2*, Oprior) =0 and V2,2d(2*, Opior) = 0

e The implicit function theorem gives
G : N(Oprior) = N(27),
defined on neighborhoods of ,ior and z*, such that

V.J(G(6),0) =0 VO € N(Oprior)
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Post optimality sensitivity analysis

G : N(Oprior) = N(2¥)

e G associates parameters 6 with the corresponding MAP points for z given 6

Further, G is differentiable at Opior and its Jacobian is given by

g/(eprior) =S _HilB S R

H =V, ,J is the Hessian of J and,
e B=V,gJ is the Jacobian of V,J with respect to 6
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Post optimality sensitivity analysis

G : N(Oprior) = N(2¥)

e G associates parameters 6 with the corresponding MAP points for z given 6
e Further, G is differentiable at pior and its Jacobian is given by

g/(eprior) =S _HilB S R

e H =V, ,Jis the Hessian of J and,
e B=V,gJ is the Jacobian of V,J with respect to 6

G'(Bprior) is like a Newton step to update the MAP point given a perturbation of 6.
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Hyper-differential sensitivity analysis

Compute properties of
g/(oprior) = _H_IB & Rmxn7

a large dense matrix which is only accessible through matrix vector products.
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Hyper-differential sensitivity analysis

Compute properties of
g/(oprior) = _H_IB & Rmxn,

a large dense matrix which is only accessible through matrix vector products.

o Compute matrix-vector products with H and B using

- adjoint-based derivative computations,
- matrix free linear algebra.

o Approximation G'(@prior) via a randomized generalized SVD

- efficiently expose low rank structure,
- embarrassingly parallel,
- appropriate inner products to facilitate the interpretation.
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Hyper-differential sensitivity analysis: Previous work

Has been used in the context of:

Parameter uncertainty in o
PDE-constrained control

Nuisance parameter uncertainty in
deterministic inverse problems o

Data sensitivity to augment
optimal experimental design

Feedback controller robustness Has been applied in:
Model form error in e Aerospace vehicle trajectory
PDE-constrained optimization planning
‘ Sensiivites for ON 1 e Thermal fluid system control
08 08 e Subsurface source inversion
Zos os e |ce sheet bedrock topography
Zos o inversion
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Pulling it all together

e State-of-the-art tools enables efficient analysis for the sensitivity of z's MAP
point with respect to perturbations of Opyior.

e Scalability in the parameter dimension is achieved through adjoint
calculations and low rank approximation.

There are two questions we must address to facilitate this analysis:
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Pulling it all together

e State-of-the-art tools enables efficient analysis for the sensitivity of z's MAP
point with respect to perturbations of Opyior.

e Scalability in the parameter dimension is achieved through adjoint
calculations and low rank approximation.

There are two questions we must address to facilitate this analysis:

1. What is the Bayesian interpretation of G'(Bprior)?
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Pulling it all together

e State-of-the-art tools enables efficient analysis for the sensitivity of z's MAP
point with respect to perturbations of Opyior.

e Scalability in the parameter dimension is achieved through adjoint
calculations and low rank approximation.

There are two questions we must address to facilitate this analysis:

1. What is the Bayesian interpretation of G'(Bprior)?
2. Can I still compute/interpret G'(@pior) for ill-posed problems where:

- An ill-conditioned Hessian introduces theoretical and computational challenges,
- The optimizer may struggle to solve the MAP point estimation problem to
optimality (satisfaction of the first order optimality condition)?
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© The Bayesian interpretation of HDSA
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The linear case

If F(z,0) = Az + B@ then the posterior is Gaussian with covariance
s _ zz,z zz,B
e Yo, Yo,
and the post-optimality sensitivity is given by

gl(epn’or) - Z27925710 .

e The post-optimality sensitivity is a correlation between z and 6.
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The linear case

If F(z,0) = Az + B0 then the posterior is Gaussian with covariance

5 _ Zz,z Zz,t9
e 292 20,0

and the post-optimality sensitivity is given by

g/(eprior) = zz,eza}g .

e The post-optimality sensitivity is a correlation between z and 6.
e Connection between optimization/analysis and Bayesian statistics.
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The linear case

If F(z,0) = Az + B0 then the posterior is Gaussian with covariance

5 _ Zz,z Zz,t9
e 292 20,0

and the post-optimality sensitivity is given by

g/(eprior) = zz,eza}g .

e The post-optimality sensitivity is a correlation between z and 6.
e Connection between optimization/analysis and Bayesian statistics.

e Local correlation for nonlinear inverse problems (Laplace approximation).
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An illustrative example

F(z,91,02) = 61710291 + 92

7Tpost(za 01 |02)
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e High sensitivity (left panel) corresponds to stronger correlations

e Approximately Gaussian distribution (right panel) has nearly constant
sensitivity (local correlations = global correlations for Gaussians)
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@ Enabling HDSA for ill-posed problems

Joseph Hart (joshart@sandia.gov) HDSA for Bayesian Inversion



Handling ill-conditioning

g/(oprior) = _H_IB

e For ill-posed inverse problems, H may be ill-conditioned.
e Can yield high sensitivity as a result of lacking information/data.

e Analyzing G'(@prior) will be numerically troublesome and the resulting
sensitivities may be dominated by what the data does not tell you.

2T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini,
Likelihood-informed dimension reduction for nonlinear inverse problems, _—

Inverse Problems, 30 (2014), pp. 1- 28. 3 Natona,_ ¢~
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Handling ill-conditioning

g/(oprior) = _H_IB

e For ill-posed inverse problems, H may be ill-conditioned.
e Can yield high sensitivity as a result of lacking information/data.

e Analyzing G'(@prior) will be numerically troublesome and the resulting
sensitivities may be dominated by what the data does not tell you.

Proposed Approach: Compute sensitivities
Pg/(aprior) -3 _PH_lB

where P projects onto the likelihood informed subspace 2.

2T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini,
Likelihood-informed dimension reduction for nonlinear inverse problems,
Inverse Problems, 30 (2014), pp. 1- 28. Natopal_
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Likelihood informed subspaces (LIS)

HMVJ' = /\jHRVj

The eigenvalue
il )

AL

T v HRy;

i ndied;

measures the ratio of the likelihood and
prior in the direction of v;.

PG (Bprior) = —PH B

Project the sensitivities onto the span of
{v1, v2,..., v, }, the subspace
which is most informed by the likelihood.

Joseph Hart (joshart@sandia.gov) HDSA for Bayesian Inversion
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Computing LIS sensitivities

The LIS sensitivity is given by

_ i " [v'B6 v B
S©) = [[PHT'BO|, = | D> <1J+Aj> <1k+Ak> e W

k=1 j=1

e Need the leading eigenpairs
HMvj = )\jHRVj

rather than H 1.
e Sensitivities inherit the likelihood to prior ratio interpretation.

e W7 measures the inner products in the original function space.
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Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem

ngﬁ@r’rl" J(Z; aprior) e M(Z, eprior) + R(Z, eprior)

to optimality if ill-conditioning yields slow convergence.

e Early iterations refine features which are well informed by the data.
o |ll-conditioning may yield slow convergence in the uniformed subspace.
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Failure to satisfy the first order optimality condition?

It may not be practical to solve the MAP point estimation problem
znglger)n J(z: Oprior) := M(2, Oprior) + R(2, Bprior)

to optimality if ill-conditioning yields slow convergence.

e Early iterations refine features which are well informed by the data.

o |ll-conditioning may yield slow convergence in the uniformed subspace.

Question: HDSA assume satisfaction of the optimality criteria. What can | do
when converging the optimization is impractical /unnecessary?
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.

e Assume that z* is an approximation of the MAP point but
VJ(Z*, Oprior) # 0.
e Find a minimum norm perturbation R so that V,J(2*; Oprior) —I—sz\’(z*) =0,
min [|R|| 1
Beo || ||L (n)

s.t. Vzﬁ(z*) = —VZJ(Z*; 0prior)
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Failure to satisfy the first order optimality condition?

Idea: Compute sensitivities of a nearby problem which is solved to optimality.

e Assume that z* is an approximation of the MAP point but
VZJ(Z*, Hprior) 7& 0.

e Find a minimum norm perturbation R so that V,J(2*; Oprior) —I—sz\’(z*) =0,

min ||R|| 1
min R
s.t. V,R(2*) = =V, J(2"; Oprior)
where
e Q={R:R™" = R|R >0, Ris quadratic, R is convex}
o L(1) is defined by a Gaussian measure i with mean z* and covariance a2/

e « is a user defined length scale parameter (will revisit it later)
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First order a posteriori update

Can solve
min ||R 11
F?EQH || (n)

s.t. Vzﬁ(z*) = —VZJ(Z*; aprior)
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First order a posteriori update

Can solve
min [|R|[,1
il IRl 12(y)
st. V,R(2*) = =V, J(2"; Oprior)

in closed form (with judicious algebraic manipulations) to find the update

D - * il * *
R(z) = Sllglla = (2 -2 Whizgelr s =) gg’(z - 2"),

2 allgll2

where g = V,J(z2*; Oprior).
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First order a posteriori update

Can solve
min [|R|[,1
il IRl 12(y)
st. V,R(2*) = =V, J(2"; Oprior)

in closed form (with judicious algebraic manipulations) to find the update

D - * il * *
R(z) = Sllglla = (2 -2 Whizgelr s =) gg’(z - 2"),

2 allgll2

where g = V,J(z2*; Oprior).

e Risa “nice” function.
e The length scale parameter « dictates the curvature.

e Computational cost is negligible since a closed form expression is available
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The perturbed MAP point problem

zne]lg)" J(Z; eprior) + R(Z)

e Zz* satisfies the first order optimality condition.

e Post-optimality sensitivities are well defined for this perturbed problem.
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The perturbed MAP point problem

Z"g]g)" J(Z; eprior) + R(Z)

e Zz* satisfies the first order optimality condition.

e Post-optimality sensitivities are well defined for this perturbed problem.

Some important questions:
o What is the Bayesian interpretation of R?
e How does the perturbation influence the sensitivities?

e How do the sensitivities depend on « (the length scale parameter)?
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A perturbed Gaussian prior

e What is the Bayesian interpretation of R?
e How does the perturbation influence the sensitivities?
e How do the sensitivities depend on « (the length scale parameter)?

Theorem

The perturbed inverse problem has a Gaussian prior with mean

o — (Z* - Zprior) Ts

Zprior = Zprior +

a—v's
and covariance
- 1 1
_ N S
rprior - rprlor ||g||2 @ — VTS vv
where
—V,J(z":6 S— d v=r
8 = Vz (Z ’ prior)y s = an V =1 prior§-

llgll’

The perturbation shifts the mean and reduces uncertainty in the direction v.
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Difference in sensitivities

o What is the Bayesian interpretation of R?
e How does the perturbation influence the sensitivities?

e How do the sensitivities depend on « (the length scale parameter)?

Theorem

The quantities
S0) = ||PH 59|, and  5(9) = ||PH B8,

satisfy
15(8) — S(0)| _ [IPnllw,
#7286, — sTa+o’

where

8 = VJ(Z%; Bprior), s= —i, and n=—-Hlg.
|lgll2

U2 Laboratories
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Robustness with respect to «

e What is the Bayesian interpretation of R?
e How does the perturbation influence the sensitivities?

e How do the sensitivities depend on « (the length scale parameter)?

Theorem

Letting 5,(8) be the sensitivity as a function of «,

|Sa+a6(8) — 5(6)| [Pnl|w,

< |8l —m—m—mMF— for —1<B8<1
#-Bell,, P Tarairp <P
where
g = VJ(Z%; 0prior), s=— ||gg|| , and n=—-Hlg
2
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First order a posteriori update

o What is the Bayesian interpretation of R?
e How does the perturbation influence the sensitivities?

e How do the sensitivities depend on « (the length scale parameter)?
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First order a posteriori update

What is the Bayesian interpretation of R?

How does the perturbation influence the sensitivities?

How do the sensitivities depend on « (the length scale parameter)?

R shifts the prior mean and reduces the variance in the direction v = I iorg.

The change in the sensitivity indices and their robustness with respect to «
are bounded by quantities proportional to ||Pnl|.

Take away message: If the optimizer has converged in the likelihood informed

subspace, then HDSA is a robust, interpretable, scalable, and efficient (RISE) way
to assess correlations in the joint Bayesian posterior distribution.
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An illustrative example

J
6
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“ 1000
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2

Figure: The solid cyan arrow indicates the likelihood informed subspace and the broken
red arrow indicates the uninformed subspace.

Prior PDF Updated Prior PDF
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1. What is the Bayesian interpretation of G'(Bprior)?
The local correlation between z and 8 in the Bayesian posterior.
2. Can | still compute/interpret G'(Oprior) for ill-posed problems where:

- An ill-conditioned Hessian introduces theoretical and computational challenges,
Project on likelihood informed subspaces.

- The optimizer may struggle to solve the MAP point estimation problem to
optimality (satisfaction of the first optimality condition)?
A posteriori update.
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© Numerical Results
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Subsurface permeability inversion

Cpncentration at time t = 0.1 Cqneentration at time t = 0.25
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Cqncentration at time t = 0.01
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—V-(e"Vp)=0 in Q
¢~V (6)Ve) + V- (- e"Vpc) = g(6) in [0, T] x ©

p = pi(0) on '
p = p2(0) on I3
e"Vp-n=0 on QU
Ve-n=0 on [0, T] x {ToUT; UM U3}
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Subsurface permeability inversion

Cqncentration at time t = 0.01 Cpncentration at time t = 0.1 Cqneentration at time t = 0.25

c 1
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> 4 >
0.4 004 . 0.4
02 0.02 . 02 ‘
o

o 0
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—V-(e"Vp)=0 in Q
&—V- (e(O)VC) + V- (—€"Vpc) = g(0) in [0, T] xQ
p = pi(0) on I
p = p2(6) on s
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Subsurface permeability inversion

min D we(Qec(r) — dl)* + Y wp(Qpp(x) — d})? + ml|V|[* + 2|l

i=1

Initial Iterate MAP Point Estimate

2
. 15
1
g 05
0
05
g 1
15

0
0020406081 0 02 04 06 08 1
x

True Log Permeability Field

0
0 02 04 06 08 1
x

Iteration | Objective | Gradient Norm | Step Size

0 17.2 1.33 N/A

4 9.59 .697 15.6
10 3.29 .676 2.38
41 .897 113 2.02
65 578 331 115
75 571 .102 .109
125 .529 .081 .034

Significant computational efforts gives little improvement. Nl

lahtfralul}rie%
Joseph Hart (joshart@sandia.gov) HDSA for Bayesian Inversion 35/38



Computing the likelihood informed subspace

4 ! v.TBe,- T :
S; = ||rPrH—lBei|| _ J (Vk Bel> VkTWZVj
j k

k=1 j=1 J
108 Spectrum N, to Ei T
@ ['e3 fsed < 0 2
o b 2 % 2 10 s |2 2
=] 4 =3 =3 = o =
@ 10 ] ] [ [l [
z =< =< =< 8 -~
g g 2
i 192 ; 6 2
" i
% T g 5
N S »n 4 n
S 100 s .
e %00y frocg,
S oo 2
S h%
102 0
0 20 40 60 0 20 40 60 60
Informed Subspace Dimension r Informed Subspace Dimension r Informed Subspace Dimension r

Automatically check for robustness with respect to rank truncation choice.
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Sensitivities

Right Boun nsitiviti
Left y Sensitivities 8 ight Boundary §e sitivities
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Pressure MAP Point Estimate
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Established the Bayesian interpretation of post-optimality sensitivity analysis.

Addressed ill-conditioning by projecting on likelihood informed subspaces.

Theoretically justified HDSA when optimization fails to converge.

Provided strong error bounds establishing the robust of the analysis.

HDSA gives a robust, interpretable, scalable, and efficient (RISE) way to
assess correlations in the joint Bayesian posterior distribution.

Joseph Hart, Sandia National Laboratories
joshart@sandia.gov
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