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Abstract

Interface resolved direct numerical simulations (DNS) of chemical vapor infiltration (CVI) have

been performed over a range of furnace operating conditions (Thiele moduli) and for practical

woven preform geometries. A level-set method is used to resolve the geometry of the initial

preform at tow scale. The interface between the vapor and solid phase is then evolved in time

through the entire CVI densification cycle, fully resolving the time varying topology between the

two phases [1]. In contrast to previous level-set methods for CVI simulation [2, 3], the physical

reaction and diffusion processes govern the level-set movement in the current approach. The

surface deposition kinetics is described by the usual one-step model. In this paper, the DNS data

is used to study the evolving porosity, surface-to-volume ratio, and flow infiltration properties

(permeability and effective diffusivities). Comparisons are made to popularly-assumed structure

functions and the standard, Kozeny-Carmen porous media model commonly employed in modeled

CFD simulations of CVI [4, 5]. The virtual DNS experiments reveal a Thiele modulus and

preform geometry (fabric layup) dependence which the existing microstructural and infiltration

models are not able to describe throughout the entire densification process. The DNS-based,

woven geometry-specific correlations can be applied directly to mean-field, furnace-scale CFD

simulations.
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1 Introduction

Materials processing by chemical vapor deposition/infiltration (CVD/CVI) is fundamental in advancing

materials fabrication for semiconductor, microelectronic, optics, nuclear, friction (brakes), and propulsion

applications [6]. For example, in the gas turbine industry, silicon-carbide (SiC) reinforced ceramic matrix

composites (CMCs) offer higher temperature capability over metallic superalloys at significantly reduced

weight. CMCs are thus currently a key enabling technology to realize the reduced fuel consumption and

greener emissions necessary to sustain the continual, rapid growth in the air transportation industry.

A primary challenge in adopting CMC materials is reducing their high cost of manufacture, due in part

to the long CVI densification times. The long CVI processing times are needed to ensure uniform chemical

deposition of the matrix, which can only occur if the vapor species involved in the deposition processes can

completely infiltrate and egress from the complex evolving network of flow channels. The fluid network is

initially characterized by the preformed geometry of the engineered component. Fibers (each typically of

order 10 µm in diameter) are collected into yarns or tows (∼1 mm in diameter) and woven into fabric-like

plys, e.g., the industry standard, five-harness satin (5HS) weave. The woven plys are used to construct the

preform geometry of the engineering component (∼10 cm or larger). The initial preform is mostly void of

the solid (fiber) material. The desired material properties of the final processed components are governed by

the initial preform geometry and the final porosity, uniformity, and chemical makeup of the densified part.

A simple (one-step, irreversible) representative model of the chemical reaction is

A k- B(s) + C . (1)

This equation represents a precursor vapor A depositing a solid phase B(s), while emitting by-product C. For

example, in the SiC matrix CMC application, B(s) is SiC, species A its reagent (e.g., methyltrichlorosilane)

and C the by-product (e.g., HCl). The rate of this first-order reaction (k) is a strong function of temperature.

The optimisation of the CVI manufacturing process and motivation of this work is illustrated in Fig. 1,

which shows a region near the part boundary. The dark blue circles are the preform geometry (cross-section

of the fibers), the deposited solid matrix material (B) is in grey, and the surrounding colors measure the

concentration of vapor species (A). Highest concentrations are red, lowest in blue. Here, A diffuses into the

preform from above. Figure 1 (a) illustrates an unoptimized process where, for example, the uniform furnace

temperature is too low making reaction Eq. (1) slow with respect to the transport of A. The result is good,

uniform growth in the matrix throughout the part, but at the costly expense of a long manufacturing time.
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In (b), the furnace temperature has been increased, thereby increasing the chemical deposition rate. As a

result, at the same processing time as in (a), the relatively fast matrix growth on the surface of part (b)

creates a large, vacuous region that can no longer be infiltrated by the reagent A.

Optimizing the CVI manufacturing process at practical, production scales is made further challenging by

the necessarily large CVI furnaces. On production furnace scales (∼1 m), maintaining isothermal and isobaric

conditions is challenging, which results in part-to-part densification differences due to the temperature and

gas non-uniformities. Addressing these macroscopic non-uniformities further adds to the time and cost

of CVI manufacturing. Although the Reynolds numbers are low, the range of lengthscales required to

computationally resolve the furnace flow spans six orders-of-magnitude. The chemical reactions further

increase the computational demand. While the present work represents the first time Direct Numerical

Simulation (DNS) has been applied to CVI, current supercomputing capability is still unable to resolve the

full range of scales of practical interest. That is, to optimize the furnace loading of a given set of parts, the

furnace-scale CFD simulations must employ mean-field transport or porous media models at unresolved part

scales. This further requires microstructural evolution properties to be assumed or modeled.

The standard model characterizing the momentum loss and the effective mass and energy fluxes through

any porous media is

B =
1

C1

φ3

σ2
(2a)

Deff,j =
φ

C2
Dj,mix (2b)

λeff = φλ+ (1− φ)λs . (2c)

Here, B is the permeability, φ is the volume porosity, σ is the surface-to-volume ratio, C1 is the Kozeny-

Carman constant, Deff,j is the effective diffusivity of the j-th species, Dj,mix is the molecular (free) diffusivity,

C2 is the tortuosity parameter, and λeff is the effective conductivity with λ and λs the thermal conductivities

of the gas and solid, respectively. It is currently unknown whether the calibration of the constants C1 and

C2 needed in “post-dicting” densified CVI parts is due to limitations of the infiltration model Eq. (2) or

other modeling assumptions like the assumed chemical kinetics or the modeled microstructural properties.

Numerous models exist to approximate the microstructural properties of woven preforms needed for

Eq. (2) [7, 8, 9, 10]. (Specific examples are described later in the paper.) The goal of these models is to relate

the porosity, surface-to-volume ratio, and one or more lengthscales throughout the preform densification.

A quasi-steady approximation is invoked by assuming analytical expressions or structure functions for the
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interdependence of the microstructural properties, e.g., σ = f(φ,D), where D is some effective lengthscale

of the porous media. Improvements to the models have been made by introducing additional lengthscales

like the tortuosity [11]. However, the tortuosity has been shown to be a function of the flow and not

geometry alone [12], making it difficult to specify the tortuosity with only a given preform geometry. While

impressive advancements have been made to measure the microstructural properties using high-resolution

X-ray tomography [13, 14], characterization of the states throughout the entire CVI densification cycle has

not been achieved.

In this paper, we report on recent direct numerical simulations (DNS) of CVI over the complete densification

cycle, from dry fabric to the final time, when the ultimate porosity is reached [1]. The DNS approach

fully resolves the continuum scales, thus a porous media model is not required. Further, the geometry

evolves due to the fundamental physical processes, and so the microstructural states do not need to be

assumed or modeled. A level-set method tracks the complex topology between the vapor and solid phases.

The one-step deposition model Eq. (1) employed in the DNS, and commonly assumed in CVI furnace-

scale CFD simulations, is an incomplete description of the kinetic processes [15, 16, 17, 18, 19, 20, 21]. A

comprehensive DNS would also require the use of a detailed chemical kinetic model to describe the pyrolysis

of the CVI reagents and surface deposition reactions. However, employing a detailed kinetic model would

have prohibitively increased the cost of the simulations. The one-step kinetic model allowed us to perform

the requisite high resolution simulations and sensitivity studies with the DNS. Future extensions to include

complex (multi-step) chemical kinetics are needed to realize the full potential of DNS. Similarly, only the

diffusive transport of the precursors by Fickian diffusion has been invoked, again leaving more advanced

extensions (e.g., Knudsen diffusion effects) for future work. Despite these approximations, the resulting

“simplest-no-simpler” DNS can be used to study the key fundamental physical interactions between the

transport, chemistry, and evolution of the porous media geometry. The datasets produced by the DNS also

allow the evaluation of porous media models for engineering scale CFD simulations. Due to the high spatial

resolution requirements of DNS, the simulated domain size is usually restricted to small domains, a single

unit cell of the preform in the present case. The size of the unit cell and the DNS domain is on the order

of ∼1 cm3 (the size of a typical, single computational cell of a CVI furnace-scale CFD simulation). Even

at this scale, massively parallel computing resources are required for the DNS. The Titan supercomputer at

the Oak Ridge National Laboratory was used for the DNS cases presented here.

The first application of level-set methods to CVI was made by Jin and co-workers on simplified, two-

dimensional geometries [2, 22, 23]. Guan and co-workers [3, 24] applied a similar level-set method, advancing
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the capability to include practical 3-D woven geometries. In these previous approaches, a calibrated Stefan

velocity is imposed on the moving interfaces or is prescribed a constant value everywhere, thus ignoring local

interactions with the finite-rate chemical kinetic timescale. To further advance these previous approaches,

physical reactive-diffusive processes are used to govern the level-set dynamics in the present work. This

allows local deposition gradients to develop in the part (e.g., as illustrated in Fig. 1) from the flow rather

than from the geometry alone.

The paper is organized as follows. Section 2 gives a description of the CVI model. Section 3 presents the

results from the virtual DNS experiments, which are performed under isobaric and isothermal processing

conditions. The suite of testcases include varying the initial preform geometry and the Thiele modulus

(related to the CVI model in Sec. 2). The initial preform geometries considered here include three different

layup strategies of 5HS woven plys. The flow infiltration properties are quantified and their scaling behavior

compared to the standard model, Eq. (2). The microstructural properties from the DNS are compared to the

quasi-steady microstructural models of Sheldon & Besmann [8] and Ofori & Sotirchos [7]. These structure

functions have been chosen with hindsight, having approximately bound the DNS data. Concluding remarks

are given in Sec. 4.

2 Model

The level-set method is a general mathematical treatment to handle implicit geometries [25]. The method

is particularly well-suited to describe the movement of complex topologies but generally requires specialized

numerical treatments depending upon the particular physical application [26]. The level-set captures the

interface implicitly without the need for time consuming body fitted mesh generation. The level-set function,

ϕ, is defined as a continuous function such that it satisfies the distance property

|∇ϕ| = 1. (3)

For the CVI application, the level-set ϕ(x, t) = ϕ0 represents the interface between the vapor and solid

phases, which is the deposition front. Values greater than or less than ϕ0 represent the vapor and solid

phases respectively. Motion of the front is modelled by transporting the level-set in time. In the formulation

here, care is taken to assign a physical basis for the movement of the level-set. Although novel advancements

have also been made in the numerical treatment as part of this work [27], this section only summarizes the

governing equations used in the DNS. A complete description of the model, including the detailed numerical
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solution procedure, can be found in [1, 27].

2.1 Physical Model

The general level-set equation is

∂ϕ

∂t
+ us · ∇ϕ = 0 (4a)

with us ≡ us
∇ϕ
|∇ϕ|

, (4b)

where us is the level-set velocity. For the CVI application, the chemical vapor deposition of B(s) in Eq. (1)

defines the physical velocity for the ϕ0 level-set. The magnitude of this velocity is the growth rate of the

deposit, which Eq. (1) gives as

us =
ω̇s

ρs
=
A

ρs
exp

(
−Ta
T

)
Y . (5)

Here, ω̇s (kg/m2/s) is the surface chemistry deposition rate, ρs is the constant density of B(s) the bulk phase,

A is the pre-exponential factor, T is the temperature, Ta is the activation temperature, and Y is the mass

fraction of vapor A. The direction of growth is always normal to the ϕ0 level-set and thus, us is normal to

the local level-set, ϕ(x, t). Note that the growth rate in the above expression can also be extended to include

multi-step deposition kinetics.

The mass fraction is normalized as C ≡ Y/Yref , where Yref is its far-field value away from the preform.

C is then unity at the far-field and zero when all of the reactant has been consumed. A mass balance for

the scalar mass fraction of the gaseous reactant on the deposition front is

D
lref

∂C

∂n

∣∣∣∣
ϕ=ϕ0

=
ω̇s

ρ
, (6)

where D is the mass diffusivity of the gaseous reactant, n is the non-dimensional normal coordinate on

the interface, ρ is the gas density, and lref is a reference length scale. The DNS experiments here assume

isothermal and isobaric conditions, so D and ρ are constant.

The non-dimensional Thiele modulus can be derived as the ratio of the diffusive time scale to the chemical

time scale as

K =
A exp (−TA/T ) lref

ρD
. (7)
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Then Eq. (6) becomes

∂C

∂n

∣∣∣∣
ϕ=ϕ0

= KC|ϕ=ϕ0
. (8)

With the constant D for the present DNS experiments, the governing equation for the diffusive transport of

the scalar C in the domain is

∇2C = 0 , (9)

subject to the boundary condition Eq. (8) on the interface and the farfield boundary condition C = 1.

The fluid and solid phase interface is defined as the ϕ(x, t) ≡ 0 contour and its movement is captured by

advancing the level-set function in time. The velocity with which the interface moves is determined by the

chemical deposition rate and the density of the solid matrix. Define a reference velocity scale by taking the

reference, far-field value of the mass fraction in Eq. (5), or

uref =
A

ρs
exp

(
−Ta
T

)
Yref . (10)

Then the non-dimensional velocity at the interface is S ≡ us/uref = C acting normal to the interface ϕ0 ≡ 0.

As is customary in the level-set methods, the interface velocity is then propagated throughout the domain

such that it satisfies

∇S · ∇ϕ = 0 , (11)

subject to the condition S = C at ϕ = 0. The computed velocity S is used to advance the level-set function

using

∂ϕ

∂τ
+ S|∇ϕ| = 0 , (12)

where τ is the non-dimensional time. Periodic reinitialization of the level set function is necessary to ensure

its signed distance property is retained. Here, the reference time scale, tref is defined using lref and uref as

tref ≡
lref

uref
=

lrefρs

A exp (−TA/T )Yref
=
l2ref

D
ρs

ρYrefK
, (13)

a function of the Thiele modulus K.

The Thiele modulus does not appear in the previous CVI applications of the level-set method. In the

approach by Guan and co-workers [3, 24], the level-set velocity is taken as a global constant. In this case, the

densification is only a function of the geometry. In reality, the in-part densification gradients and inaccessible

pores develop due to the flow (Thiele modulus effects) and not geometry alone. These fundamental physical
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effects are described by the present DNS model. In the approach by Jin and co-workers [2, 22, 23], the

level-set velocity is prescribed as

us ≡ p(t,x)K1

(
1 +K2

∂c

∂n
+K3F (κ)

)
, (14)

where K1, K2, and K3 are calibration constants, κ is the local curvature of ϕ, and p(t,x) is a binary

“switch” used during the calculations to stop the local level-set movement when an inaccessible void has

been detected. The calibration constants and F (κ) are not known a priori, but must be calibrated for each

individual preform geometry and CVI processing condition. In contrast, for us defined by (5), no calibration

constants are required. Only the fundamental flow and chemical kinetic properties are needed, which do

not depend on any preform geometry or CVI processing condition. An artificial p(t,x) parameter to handle

inaccessible voids is not needed in the DNS due to the diffusive-reactive transport of reactant.

2.2 Implementation

Equation 4b is discretized in space using a third order (High Order) Upstream Central (HOUC3) scheme

and is integrated in time using a fourth order explicit Runge-Kutta method. As the speed is a function of

the local concentration, advection of the level-set does not guarantee that Eq. 3 will be satisfied. Periodic

reinitialization is necessary, which often creates artificial movement of the interface leading to unphysical

mass loss/gain. Mass conservation has remained a challenge in the implementation of the level-set method.

In the current work, a high order accurate anchoring and fast sweeping method has been applied to improve

the mass conservation property [27]. The method solves Eq. 3 away from the interface with a second order

upwind discretization. The grid points adjacent to the interface are initialized with a second order accurate

algebraic anchor. Detailed formulation of the anchoring and fast sweeping method can be found in Ref. [27].

Transport equation for C is solved in the void spaces (vapor phase) by applying the non-linear boundary

condition given in Eq. 8 on the deposition front and farfield Dirichlet conditions. Standard second order

central discretization is used to solve Eq. 9. The discretization stencil at a point close to the interface may

include neighboring grid points belonging to a different domain (ghost domain) where physical value of the

concerned variable is not available. A ghost fluid based immersed boundary method outlined in Ref. [28] is

used to populate the grid points across the front. The transport equation is solved using an under-relaxed
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Jacobi iterative solver. Expansion of C in the ghost (solid) domain around the interface can be written as

Cghost = C|0ϕ=ϕ0
+
∂C

∂n

∣∣∣∣
ϕ=ϕ0

ϕghost , (15)

where quantities on the interface are interpolated from the real (void) domain. Concentration value on the

front from previous iteration C|0ϕ=ϕ0
, is used in Eq. (8) to compute the normal gradient on the deposition

front ∂C/∂n|ϕ=ϕ0 , which is imposed as a Neumann condition for the solution of Eq. (9). Upon convergence,

the transport equation is satisfied along with the non-linear boundary condition on the front. The front

propagation speed at grid points adjacent to the interface (including ghost points) is calculated as a function

of C|ϕ=ϕ0
. The speed is then propagated to grid locations away from the interface using a fast sweeping

method similar to the one used for the level-set reinitializaiton.

The formulation and model described here is implemented in the code Quilt, which is an interface resolved

finite difference solver being developed at Oak Ridge National Laboratory. The code uses the level-set method

to capture dynamic multi-material interfaces. All the physics capabilites in the code (incompressible flow,

heat and mass transfer) use the level-set based embedded boundary formulation to account for interfacial

physics (e.g. surface tension, phase transformation, heterogeneous kinetics, etc.) and to apply complex

boundary conditions on the interface. The approach enables computationally efficient representation of

resolved interfaces by avoiding expensive surface mesh based approaches. Explicit Euler as well as second

order implicit time integration methods are available. Spatial discretization is second order in space for

all transport equations. Level-set is solved using a third order upstream central scheme and is reinitialized

using the second order anchoring and fast sweeping scheme. The code is written in C++ and uses MPI and

Kokkos [29] to enable distributed memory parallelism and portability to modern computational facilities

with GPU architectures. The code has been ported to various supercomputers including Summit at Oak

Ridge Leadership Computing Facility (OLCF). The computational performance of Quilt for the present

application is mainly determined by the performance and scalability of the level set solver (Eqs. 11 and 12).

In an earlier work [27], we have presented details on the numerical treatment and implementation of the

level set solver and its parallel performance. A weak scaling study of the level set algorithm was performed

using a periodic array of spheres and the scalability of the method was demonstrated on 4000 nodes of the

Titan supercomputing system. Furthermore, the performance studies showed that the computational time

was reduced by a factor of 2.5 when utilizing the GPU accelerators on Titan.

The initial geometry of the multi-layered weave preform is modeled using the TexGen software. The unit
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cell pattern of the 5HS weave is created with tow scale resolution without resolving the individual fibers

that constitute a tow. The weave geometry is then exported in the stereolithography (STL) file format for

input to Quilt. Quilt reads a single layer of the 5HS weave and applies further geometric transformations to

create multiple layers with specified or random offsets. The initial interface is represented implicitly on the

structured mesh using the level set function, which allows the interface to be evolved in time on the same

structured mesh without requiring remeshing. To resolve the unit cell of a 5HS woven preform required 840

cells in each dimension, or 592.7 million cells total.

3 Results and discussion

Simulations are performed for a specified non-dimensional Thiele modulus,

K ≡ τdiff

τchem
. (16)

Equation (7) gives the Thiele modulus in terms of the constant physical parameters of the present DNS

experiments. Here, the Thiele modulus can be interpreted as the CVI processing operating condition (the

fixed pressure and isothermal temperature determining the diffusivity and chemical kinetic rate), or as the

local one at the pressure and temperature of a single computational cell in a furnace scale CFD simulation.

Figure 2 shows partially-densified weaves from the simulations for two representative, constant Thiele

moduli of (b) K = 0.001 and (c) K = 0.1. The ultimate porosity has been reached in both cases. In Fig. 2

(a), the initial unit-cell 5HS woven preform that was used in both CVI simulations is shown. Here, the

reactants diffuse into the preform from both the top and bottom, the vertical or through-thickness direction.

For K = 0.001, τdiff << τchem and the ultimate porosity is low due to the relatively fast diffusive

transport as compared to the chemistry. For K = 0.1, the chemistry is sufficiently fast as compared to

diffusive transport and the ultimate porosity is relatively high due to the pore closures at the outer plys.

Figures 3 and 4 show cross-sections for the K = 0.001 and and K = 0.1 cases, respectively, at the (a) initial

and (b) near the final times. Subplots (b) qualitatively illustrates the pore closures for the K = 0.001 case

(Fig. 3) and K = 0.1 case (Fig. 4).

The virtual DNS experiments can also be used to understand residual porosity (manufacturing quality)

trends for different preform geometries, as well as trends in the densification times (manufacturing times)

as a function of a preforming strategy. Continuing the precedence established by Guan and co-workers in

their level-set studies [3, 24], impermeable tows are used for the geometric model of the 3-D woven fabric
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geometry. Here, three ply layup geometries are considered:

� The Baseline case, shown above in Fig. 2 (a), is defined by the random layup of the individual woven

plys. This is the common method of preforming.

� In the Aligned configuration, all the plys are vertically aligned and therefore this preform geometry

is characterized by the lowest geometric tortuosity.

� In the Overlap case, each ply is offest from its adjacent ply such that all even and odd numbered plys

are vertically aligned. A fixed offset of half a tow is used to yield the maximum geometric tortuosity

through this weave.

In all three configurations, the individual 5HS woven plys are identical, the total number of plys are the same,

and the total preform volume is the same. That is, the bulk porosity, surface area, and surface-to-volume

ratio are the same initially. Since each idealized ply consists of identical tow sizes and tow spacings, all

three preform geometries above (Baseline, Aligned, and Overlap) are characterized by the same geometric

lengthscale. The choice of this lengthscale varies with the particular microstructural property model assumed

by the manufacturing engineer [7, 8, 9, 10], but generally depends only upon the preform geometry (examples

are given below in Sec. 3.1) and not on the flow (CVI operating conditions or Thiele modulus).

In the remainder of this section, the microstructural and infiltration properties are presented for only the

idealized preform geometries above (Baseline, Aligned, and Overlap), and for a Thiele modulus of K = 0.001,

0.1, and an intermediate value of K = 0.01.

3.1 Microstructural properties

The goal of microstructural modeling is to provide a geometric description of the unresolved deposition fronts

over the entire CVI densification cycle for a given mesoscopic scale, e.g., the computational cell size in a

furnace-scale CFD simulation.

In furnace-scale CFD simulations, the local porosity is known from the concurrent solution of

d

dt
φ = −σkY , (17)

given here for the present simplified, one-step deposition chemistry case Eq. (1). The simplest closure is

obtained with a model for the surface-to-volume ratio (σ), which introduces additional modeling requirements

for at least one lengthscale.
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A model which is well-suited for CFD application is given by Ofori & Sotirchos [7]. In their approach, a

flow network of random overlapping capillary tubes is used to model σ in terms of any φ as

σ =
4

D0

√
− log(1− φ0)(1− φ)

√
− log(1− φ) , (18a)

where φ0 is the initial porosity and D0 is the constant lengthscale of the open (flow) channels, characterized

by the fiber diameter in practice. Since the actual woven fiber geometry is modeled by a surrogate flow

network, Eq. (18a) does not satisfy the actual initial surface area of woven fiber preforms. Examples of

modeled CFD applications of Eq. (18a) can be found in [4, 5]. For the woven fabric preform cases considered

here, predictions from this popular CFD model of σ computed directly from the DNS can be made using

the normalized quantity σ/σ0, where σ0 is the initial surface-to-volume ratio of the preform. In the CFD

model, σ0 is given by Eq. (18a) with φ = φ0, which upon normalizing σ(φ) of (18a), results in

σ

σ0
=

1− φ
1− φ0

√
log(1− φ)

log(1− φ0)
, (18b)

a relation now independent of D0. (In the DNS results, σ0 in its normalized surface-to-volume ratio is

specified directly by the initial surface-to-volume ratio of the preform geometries, which is the same for all

layup configurations considered here.) The values of the Thiele modulus for which Eq. (18) is valid, i.e.,

accurately predicts the surface-to-volume ratio in an actual growing fiber geometry, is unknown.

Microstructural models have also been developed specifically for woven fiber preform geometries, but

assume non-interacting deposition fronts or slow chemistry (K << 1). A representative example here is the

model of Sheldon & Besmann [8]:

σ

σ0
=

φ

φ0
exp

[
−
(

1− φ0

φ0

)(
D2

D2
0

− 1

)]
(19a)

D

D0
=

√
1−

(
φ0

1− φ0

)
log

(
φ

φ0

)
, (19b)

where subscript “0” refers to the initial value of the property. Since the deposition fronts cannot merge, a

single, effective lengthscale D characterizes the densifying preform at all times.

Figure 5 compares models Eq. (18) and Eq. (19) to the DNS data. Symbols show the nondimensional

surface-to-volume ratio (σ/σ0) against the normalized porosity (φ/φ0) at regular time intervals from the

DNS experiments. Black circles represent the Baseline preform geometry case. Figure 5 shows that a
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lower ultimate porosity is reached at the lower Thiele modulus, as physically described in the discussion

surrounding Figs. 2–4. Magenta lines in Fig. 5 are the analytical functions: The upper (dash-dot) line is

Eq. (18) and the lower (dash-dash) line is Eq. (19). Equation (18) predicts that σ/σ0 exceeds unity, while

Eq. (19) shows that σ/σ0 always decreases with porosity for the preform geometries considered here.

The DNS results from the other two preform geometries are also shown in Fig. 5: Blue squares represent

the Overlap case and red triangles represent the Aligned case. Focusing first on the results from the Baseline

preform (black circles) of Fig. 5, a clear Thiele modulus depedence is observed. At relatively high Thiele

modulus (K = 0.1), the surface area initially increases, then decreases just before the ultimate porosity is

reached. This trend is captured by model Eq. (18), although some discrepency arguably exists in the exact

magnitudes. At low Thiele modulus (K = 0.001), the surface area of the Baseline preform monotonically

decreases for all CVI densification times. In this limit, both trends and magnitudes are not described

well by Eq. (18), while Eq. (19) predicts a qualtatively similar behavior to the DNS simulation results.

Quantitatively, Eq. (19) overpredicts the partially-densified surface areas. An increase in the Thiele modulus

to an intermediate value K = 0.01 seems to alleviate some of the discrepency.

Models given by Eq. (18) and Eq. (19) seem to roughly represent the limiting behavior with respect to

Thiele modulus for all densified preform geometries shown in Fig. 5. Perhaps an exception is the Aligned

case, where at K = 0.1, Eq. (19) does a better job of describing the densified surface area dependence on

porosity. No DNS simulations were performed for K > 0.1.

The main conclusion from Fig. 5 is that the microstructural properties depend upon finite Thiele modulus

effects. This means microstructural models which either implicitly assume slow chemistry, like Eq. (19), or

do not explicitly account for finite Thiele modulus effects, like Eq. (18), are not able to generally describe

the microstructural properties during CVI densification. The DNS-based correlations of Fig. 5 can be used

directly in the mean-field CFD simulations of fiber-woven porous media.

3.2 Flow infiltration properties

The flow infiltration properties, B and Deff,j in Eq. (2), can be characterized by laboratory experiments. This

is accomplished by partially densifying the preform of interest via CVI processing, then employing an inert

gas apparatus to flow test the partially-densified specimens. This approach can obviously become costly given

the diversity of preform geometries and variety of partially-densified states. The number of experimental

trials becomes particularly large if the scaling of the infiltration characteristics is to be accurately quantified.

The present DNS simulations provide a relatively inexpensive method to supplement such experimental
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investigations at a small fraction of the cost. Since the densified geometry is available at any given time

from the level-set field, the partially-densified preform can be treated as any generic solid model for CFD

simulations conventionally employed by industry, i.e., using basic laminar flow calculations.

Employing the conventional CFD simulations, the permeability is computed from Darcy’s law:

∆p

L
= − 1

B
µu0 , (20)

where ∆p is the pressure loss across distance L due to the viscous fluid. The fluid has constant absolute

viscosity µ and constant density. The massflow rate is fixed with initial velocity u0 set in the through-

thickness direction at the inflow boundary. Figure 6 shows an illustrative pressure field from such a calculation

for a fixed preform geometry characterized by D, σ, and φ. Varying a fluid property or u0 in Eq. (20) while

keeping the geometry fixed, yields a linear relationship to directly compute the inverse of the permeability,

1/B. The Reynolds number must be low in the CFD simulations to avoid the inertial losses neglected by

Eq. (20).

Similarly, the effective diffusivity is computed by solving, for a fixed geometry, the binary Fickian diffusion

problem illustrated in Fig. 7. At steady-state, the averaged concentration gradients in the through-thickness

direction (dY1/dz) of either inert gas becomes approximately constant. Fick’s first law, used to model the

diffusive gas transport in the CFD, describes the mass flux as

Jj = −D12
dYj
dz

, (21)

where D12 is the constant binary diffusion coefficient. Write Fick’s law inside of the porous media as

Jj,inside = Deff(dYj/dz)inside and outside as Jj,outside = D12(dYj/dz)outside. From continuity, the mass fluxes

can be equated to yield the ratio of the effective diffusivity to bulk diffusivity as

Deff,j

D12
=

(dYj/dz)outside

(dYj/dz)inside
. (22)

The CFD calculations are repeated for different partially-densified preform geometries to develop the scaling

relationships.

Figure 8 shows the permeabilities and effective diffusivities of the densified preforms at regular CVI

processing time intervals up to the completion time, when the ultimate porosity has been reached. The

three preform designs (Baseline, Overlap, and Aligned preform geometry configurations) are the same as
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those described in the discussion surrounding Fig. 5. In all cases shown in Fig. 8, the Thiele modulus is

fixed at K = 0.001. For reference, the magenta dash-dash lines show φ scaling dependencies: ∼ φ3 and φ4

in Fig. 8 (a), and ∼ φ1 and φ2 in (b).

The commonly accepted scaling of the infiltration properties are

σ2B ∼ φ3 and
Deff,j

D12
∼ φ . (23)

These relationships represent the well-known Kozeny-Carman scaling and form the basis of Eq. (2).

Focusing first on results from the Baseline preform (black circles in Fig. 8), an approximate scaling of

σ2B ∼ φm and Deff,j/D12 ∼ φn are observed with exponents m and n approximately independent of CVI

processing time. However, the commonly accepted scaling exponents given by Eq. (23) underpredict the

sensitivity to φ in both infiltration properties.

For the other preform geometries (Overlap and Aligned preform geometries), the standard scaling Eq. (23)

is not valid across the entire range of φ. Recall, the Overlap preform design represents a geometry with

a higher geometric tortuosity with respect to the Baseline, while the Aligned preform a lower geometric

tortuosity. The results of Fig. 8 say that a simple tortuosity correction (via parameters C1 and C2 in

Eq. (2)) could not be characterized by an additional φ dependence alone, as is commonly resorted to in

practice.

An important trend to observe in Fig. 8 is the large range in infiltration characteristics of woven fiber

preforms. At a fixed porosity, the permeability can vary by multiple orders-of-magnitude, with the Aligned

geometry showing the highest permeability. A relatively large variation is observed in the effective diffusivity

as well, with again the Aligned ply preform exhibiting the largest effective diffusivity. Further, while both

infiltration characteristics appear to have complex scaling properties, the trends between the two are similar.

Figure 9 highlights this latter observation, which shows the direct proportionality between B and Deff,j as

σ2B ∼
(
Deff,j

D12

)p

. (24)

Here, p = 2.40 (computed in the least-squares sense for the Aligned case), p = 2.16 (Baseline), and p =

1.70 (Overlap). The sensitivity decreases with increasing geometric tortuosity of the preform geometries

considered here.
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4 Conclusions

Direct numerical simulations have been performed with the goal of improving CFD modeling of CVI-based

manufacturing processes. To simulate the CVI densification process, the competition between the finite-rate

chemistry and diffusion processes must be described. With DNS, the Thiele modulus is a fundamental non-

dimensional parameter of the governing equations. The virtual DNS experiments performed here show a

rich complexity in densification characteristics even for preform geometries with the same initial porosity,

surface area, and surface-to-volume ratio. For example, the ultimate porosity and surface-to-volume ratio

at any given densified state show a strong dependence on the Thiele modulus and preforming layup strategy

(Fig. 5). Further, the different preforming layup strategies can result in different flow infiltration scaling

dependencies with porosity, while their magnitudes can differ by an order-of-magnitude (or more) at the

same porosity (Fig. 8). The DNS-derived correlations of Figs. 5 and 8 can be used directly in modeled CFD

simulations.

The present work represents the first time DNS has been applied to develop CFD porous media models

for practical CVI application, i.e., using fit-for-purpose, woven preformed geometries. The DNS allows the

densification characteristics to be quantified, also for the first time, throughout the entire CVI densification

cycle. However, the present DNS is not without limitations. Convection effects have not been considered

in the virtual CVI processing experiments. The seminal CVI work by Besmann et al. [30] have shown

that forced-flow CVI can reduce the CVI manufacturing time from days to minutes. In the present DNS,

only a one-step chemical kinetic model was assumed. Extensive research [15, 16, 17, 18, 19, 20, 21] has

established the importance of accounting for both homogeneous and heterogeneous reaction timescales. The

continuum first-principles DNS formulation here can readily be extended to include both convective effects

and multi-step kinetics, developments which will be made in future work.
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(a)
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(b)

y

x

Figure 1: Two limiting (unoptimized) chemical vapor infiltration processes. In (a), the chemical timescale is
much larger than the transport of vapor. In this case, there is good uniformity in the growth of the matrix
material (grey), but at the costly expense of a long manufacturing time. In (b), the chemical timescale is
relatively much smaller, which does not allow matrix growth to occur inside the preform due to blockage of
vapor infiltration. Red contour colors are highest vapor concentrations. At the same total matrix weight
gain as in (a), large “inaccessible” pores make parts from process (b) poor quality and therefore costly.
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(a) Preformed geometry

(b) Densified weave at K = 0.001

(c) Densified weave at K = 0.1

Figure 2: Initial (a) and partially-densified woven preforms from the DNS simulations. Figures (b) and (c)
show the densified weave after processing. In (b), the Thiele modulus is K = 0.001 and the chemical time
scale is much larger than transport of vapor. In (c), K = 0.01 and the chemical timescale is relatively much
smaller.
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(a)

(b)

Figure 3: Cross-section of (a) the initial and (b) processed weave for the K = 0.001 case shown in Fig. 2.
Black region represents the solid phase. Also shown is the scalar transported through the porous matrix as
pseudocolor in the rainbow color scale.
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(a)

(b)

Figure 4: Cross-section of (a) the initial and (b) processed weave for the K = 0.1 case shown in Fig. 2.
Black region represents the solid phase. Also shown is the scalar transported through the porous matrix as
pseudocolor in the rainbow color scale.
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Figure 5: Deposited surface area dependence on porosity for decreasing Thiele moduli: (a) K = 0.1, (b)
K = 0.01, and (c) K = 0.001.
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Figure 6: Steady-state pressure field (high: red and low: blue) used to compute weave permeability.
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Figure 7: Inert species concentrations used to compute effective diffusivity through the weave. The domain
is subject to N2 diffusion from the left and He from the right. Color scale (high: red and low: blue) and the
black line show the steady-state He concentraion.
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Figure 8: Permeability (a) and effective diffusivity (b) scaling with porosity for the three different preform
geometries.
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Figure 9: Proportionality of permeability to effective diffusivity.
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