Gleipnir: Toward Practical Error Analysis for
Quantum Programs

paper #27

Abstract

Practical error analysis is essential for the design, optimiza-
tion, and evaluation of Noisy Intermediate-Scale Quantum
(NISQ) computing. However, bounding errors in quantum
programs is a grand challenge, because the effects of quan-
tum errors depend on exponentially large quantum states. In
this work, we present Gleipnir, a novel methodology toward
practically computing verified error bounds in quantum pro-
grams. Gleipnir introduces the (p, §)-diamond norm, an error
metric constrained by a quantum predicate consisting of the
approximate state p and its distance § to the ideal state p.
This predicate (4, §) can be computed adaptively using ten-
sor networks based on Matrix Product States (MPS). Gleipnir
features a lightweight logic for reasoning about error bounds
in noisy quantum programs, based on the (4, §)-diamond
norm metric. Our experimental results show that Gleipnir is
able to efficiently generate tight error bounds for real-world
quantum programs with 10 to 100 qubits, and can be used
to evaluate the error mitigation performance of quantum
compiler transformations.

1 Introduction

Recent quantum supremacy experiments [4] have heralded
the Noisy Intermediate-Scale Quantum (NISQ) era [40], where
noisy quantum computers with 50-100 qubits are used to
achieve tangible performance gains over classical computers.
While this goal is promising, there remains the engineering
challenge of accounting for erroneous quantum operations
on noisy hardware [3]. Compared to classical bits, quantum
bits (qubits) are much more fragile and error-prone. The the-
ory of Quantum Error Correction (QEC) [9, 15, 30, 38, 39] en-
ables fault tolerant computation [7, 15, 37] using redundant
qubits, but full fault tolerance is still prohibitively expensive
for modern noisy devices—some 10* to 10* physical qubits
are required to encode a single logical qubit [13, 25].

To reconcile quantum computation with NISQ computers,
quantum compilers perform transformations for error miti-
gation [54] and noise-adaptive optimization [29]. To evaluate
these compiler transformations, we must compare the error
bounds of the source and compiled quantum programs.

Analyzing the error of quantum programs, however, is
practically challenging. Although one can naively calculate
the “distance” (i.e., error) between ideal and noisy outputs

PL’18, January 01-03, 2018, New York, NY, USA
2018.

using their matrix representations [30], this approach is im-
practical for real-world quantum programs, whose matrix
representations can be exponentially large—for example, a
20-qubit quantum circuit is represented by a 22°x 22° matrix—
too large to feasibly compute.

Rather than directly calculating the output error using ma-
trix representations, an alternative approach employs error
metrics, which can be computed more efficiently. A common
error metric for quantum programs is the unconstrained dia-
mond norm [1]. However, this metric only gives a worst-case
error analysis: it is calculated only using quantum gates’
noise models, and does not take into account any informa-
tion about quantum state. In extreme cases, it overestimates
errors by up to two orders of magnitude [55]. A more realis-
tic metric must take input quantum state into account, since
this also affects the output error.

The logic of quantum robustness (LQR) [21] was the first
technique to use quantum state in the error metrics to com-
pute tighter error bounds. This work introduces the (Q, 4)-
diamond norm, which analyzes output errors given that the
input quantum state satisfies some quantum predicate Q to
degree A. LQR extends the Quantum Hoare Logic [60] with
the (Q, 1)-diamond norm to produce logical judgments of
the form (Q, 1) F P < ¢, which deduces the error bound e for
a noisy program P. While theoretically promising, this work
raises open questions in practice. Consider the following
sequence rule in their logic:

(Ql»l) [}31 < €1 (QZaA) = 13; < €2
(QuA) F (Pi;Py) < €+

{01}P1{Q2}

It is unclear how to obtain a quantum predicate Q, that is
both a valid postcondition after executing P; while being
strong enough to produce useful error bounds for P;.

This paper presents Gleipnir, an adaptive error analysis
methodology for quantum programs that addresses the above
challenges and answers the following three open questions:
(1) How to compute suitable constraints for the input quan-
tum state used by the error metrics? (2) How to reason about
error bounds without manually verifying quantum programs
with respect to pre- and postconditions? (3) How practical
is computing verified error bounds for quantum programs,
to evaluate the error mitigation performance of quantum
compiler transformations?

First, in prior work, seaching for a non-trivial postcon-
dition (Q, A) for a given quantum program is prohibitively
costly: existing methods either compute postconditions by

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PL’18, January 01-03, 2018, New York, NY, USA

fully simulating quantum programs using matrix representa-
tions [60], or reduce this problem to an SDP (Semi-Definite
Programming) problem whose size is exponential to the num-
ber of qubits used in the quantum program [61]. In practice,
for large quantum programs (> 20 qubits), these methods
cannot produce any postconditions other than (I, 0) (i.e., the
identity matrix I to degree 0, analogous to a “true” predicate),
reducing the (Q, A)-diamond norm to the unconstrained dia-
mond norm and failing to yield non-trivial error bounds.

To overcome this limitation, Gleipnir introduces the (9, §)-
diamond norm, a new error metric for input quantum states
whose distance from some approximated quantum state p is
bounded by §. Given a quantum program and a predicate
(p,), Gleipnir computes its diamond norm by reducing it
to a constant size SDP problem.

To obtain the predicate (p, §), Gleipnir uses Matrix Prod-
uct States (MPS), a class of tensor networks, to represent and
approximate quantum states. Rather than fully simulating
the quantum program or producing an exponentially com-
plex SDP problem, our MPS-based tensor network TN (py, P)
approximates (p, §) for some input state po and program P,
taking polynomial time with respect to the size of the MPS
tensor network, the number of qubits, and the number of
quantum gates. In contrast with prior work, our MPS-based
approach is adaptive—one may adjust the approximation pre-
cision by varying the size of the MPS such that tighter error
bounds can be computed using greater computational re-
sources. Gleipnir provides more flexibility between the tight
but inefficient full simulation and the efficient but unrealistic
worst-case analysis.

Second, instead of verifying a predicate using Quantum
Hoare Logic, Gleipnir develops a lightweight logic based on
(p, 8)-diamond norms for reasoning about quantum program
error, using judgments of the form:

(ﬁ’é)'_ﬁw SE

This judgement states that the error of the noisy program P,,
under the noise model w is upper-bounded by € when the
input state is constrained by (4,). As shown in the sequence
rule of our quantum error logic:

(0.8) FPiy <e1 TN(p,Py) = (p.8") (p.6+68)FPa, <2

(ﬁ,5) [ﬁlaﬁﬁZw <€1+e

the approximated state p” and its §” are computed using the
MPS-based tensor network TN.

By computing (p,§), our sequence rule eliminates the
cost of validating non-trivial postconditions. We prove the
correctness of TN, which ensures that the resulting state of
executing P; satisfies the predicate (p’, 5 + §').

Third, we enable the practical error analysis of quantum
programs and transformations, which was previously only
theoretically possible but infeasible due to the limitations of
prior work. To understand the scalability and limitation of
our error analysis methodology, we conducted case studies

paper #27

using two classes of quantum programs that are expected to
be most useful in the near-term—the Quantum Approximate
Optimization Algorithm [12] and the Ising model [41]—with
qubits ranging from 10 to 100. Our measurements show that,
with 128-wide MPS networks, Gleipnir can always generate
error bounds within 6 minutes. For small programs (< 10
qubits), Gleipnir’s error bounds are as precise as the ones
generated using full simulation. For large programs (> 20
qubits), Gleipnir’s error bounds are 15% to 30% tighter than
those calculated using unconstrained diamond norms, while
full simulation invariably times out after 24 hours.

We explored Gleipnir’s effectiveness in evaluating the er-
ror mitigation performance of quantum compiler transforma-
tions. We conducted a case study evaluating qubit mapping
protocols [29], and showed that the performance ranking for
different transformations using the error bounds generated
by our methodology is consistent with the ranking using
errors measured from the real-world experimental data.

Throughout this paper, we address the key practical limi-
tations of error analysis for quantum programs. In summary,
our main contributions are:

e The (p,5)-diamond norm, a new error metric con-
strained by input quantum state, that can be efficiently
computed using constant-size SDPs.

e An MPS-based tensor network approach to adaptively
compute the quatum predicate (p, §).

o A lightweight logic for reasoning about quantum error
bounds without the need to verify quantum predicates.

e Case studies using quantum programs and transfor-
mations on real quantum devices, demonstrating the
feasability of adaptive quantum error analysis for com-
puting verified error bounds for quantum programs
and evaluating the error mitigation perforamce of
quantum compilation.

2 Quantum Programming Background

Notation. In this paper, we use Dirac notation, or “bra-ket”
notation, to represent quantum states. The “ket” notation
|¢) denotes a column vector, which corresponds to a pure
quantum state; the “bra” notation (¢| denotes its conjugate
transpose, a row vector. (¢|i/) represents the inner prod-
uct of two vectors, and |¢) (¢| the outer product. We use p
to denote a density matrix, a matrix that represents mixed
quantum state. U usually denotes a unitary matrix which
represents quantum gates while UT denotes its conjugate
transpose; curly letters like ¢ denote noisy or ideal quantum
operations, represented by maps between density matrices
(superoperators); upper case Greek letters such as ® repre-
sent quantum noise as superoperators.

2.1 Quantum computing basics

Quantum states. The simplest quantum state is a quan-
tum bit—a qubit. Unlike a classical bit, a qubit’s state can

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Gleipnir: Toward Practical Error Analysis for Quantum Programs

0 1 1 0 1|1
X_[l 0}’2'[0 —1]’H_%[1
Figure 1. Matrix representations of common quantum gates. X

denotes a bit flip, Z denotes a phase flip, H denotes a Hadamard
gate, and CNOT denotes a controlled NOT gate.

1 00

_ 00
1],CNOT 0
10

0
1
0
0

be the superposition of two logical states, |0) and |1), that
correspond to classical logical states 0 and 1. In general, a
qubit is a unit vector in the 2-dimensional Hilbert space C?,
with [0) := [1,0] and [1) := [0, 1]7. In Dirac’s notation, we
represent a qubit as |/) = a |0) + B|1), where |a|? + |B]? = 1.

Generally speaking, the state of a quantum program may
comprise many qubits. An n-qubit state can be represented
by a unit vector in 2"-dimensional Hilbert space C2". For
example, a 3-qubit state can be described by an 8-dimensional
complex vector, which captures a superposition of 8 basis
states, |000), |001), |010), ..., |111).

Besides the pure quantum states described above, there
are also classically mixed quantum states, i.e., noisy states.
An n-qubit mixed state can be represented by a 2" x 2"
density matrix p = ; pi |¢i) (¢i|, which states that the state
has p; probability to be |§;). For example, a mixed state
with half probability of |0) and |1) can be represented by
w = I/2, where I is the identity matrix.

Quantum gates. Quantum states are manipulated by the
application of quantum gates, described by unitary matrix
representations [30]. Figure 1 shows the matrix representa-
tions of some common gates. Applying an operator U to a
quantum state |¢) results in the state U |@), and applying
it to a density matrix p = X, p; |¢;) (¢:| gives UpUT. For
example, the bit flip gate X maps |0) to |[1) and |1) to |0),
while the Hadamard gate H maps |0) to %. There are also
multi-qubit gates, such as CNOT, which does not change
|00) and |01) but maps |10) and |11) to each other. Applying
a gate on a subset of qubits will not change other qubits. For

example, applying the X gate to the first qubit of %

will result in w. This can be seen as an extension X ® I

of the matrix to a larger space using a tensor product.

Quantum measurements. Measurements extract classi-
cal information from quantum states, and collapse the quan-
tum state according to projection matrices My and M;. When
we measure some state p, we will obtain the result 0 with
collapsed state M, ng /po and probability py = tr(M, ng),
or the result 1 with collapsed state M; pMj /p1 and prob-
ability p; = tr(M; pr). Both quantum gates and quan-
tum measurements act linearly on density matrices, and can
be expressed as superoperators, completely positive trace-
preserving maps & € L(H) : H, — H,, where H,, is the
density matrix space of dimension n and L is the space of
linear operators.

PL’18, January 01-03, 2018, New York, NY, USA

. o) [
10) ‘ loo)+[11) |0) A 1000)+[111)
|0y —DH— V2 |0> V2

Figure 2. Two quantum circuits, producing the 2-qubit (left) and
3-qubit (right) GHZ states.

2.2 Quantum programs

Quantum programs comprise a configuration of quantum
gates and measurements, called a quantum circuit. Graph-
ically, qubits are represented as wires, and gates as boxes
joining the wires; CNOT gates are represented by a dot on
the control qubit linked with an € on the other qubit.

Example 2.1 (GHZ circuit). The Greenberger—-Horne—

Zeilinger (GHZ) state [16] is a class of important entangled
quantum states, used in many quantum communication pro-
tocols [19]. The simplest GHZ state is the 2-qubit GHZ state,

which is 2212 ip Dirac notation. Figure 2 shows a typical
graphical representation of a quantum circuit that produces

the 2-qubit GHZ state.

Syntax. The syntax of quantum programs is as follows:
P = skip | Pi;Py | U(qy,.-.,qk)
| if g =0)then Py else P

Each component behaves similarly to its classical coun-
terpart: skip denotes the empty program; P;; P, sequences
programs; U(qy, ..., qk) applies the k-qubit gate U to the
qubits g1, ...,qk; if g = |0) then Py else P; measures
the qubit g, executes Py if the result is 0, and executes P;
otherwise. The only difference between classical and quan-
tum programs is that the measurement in the if statement
will collapse the state, and the branch is executed on the col-
lapsed state. Using this syntax, the 2-qubit GHZ state circuit
in Fig. 2 is written as:

H(qo); CNOT(qo, q1)

Note that this work does not currently consider advanced
quantum program constructs such as quantum loops, as
these are not likely to be supported on near-term quantum
machines.

Denotational semantics. The denotationl semantics of
quantum programs are defined as superoperators acting on
density matrices p, and are shown in Fig. 3. An empty pro-
gram keeps the state unchanged; a sequence of operations
are applied to the state one by one; a single quantum gate is
directly applied as a superoperator; a measurement branch
statement maps the state into a classical mix of the two
results from executing the two branches.

2.3 Quantum errors

Quantum programs are always noisy, and that noise may
(undesirably) perturb the quantum state. For example, the

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

PL’18, January 01-03, 2018, New York, NY, USA

[[skip]l(p) =p
[[P1; P211(p) =[P ([[P111(p))
[U(q1.--..q0)]1(p) =UpU*
[[if g =10)then Py else Pi]|(p) :=[[Po]] (MopM;) +
([P]} (MapM])

Figure 3. Denotational semantics of quantum programs.

bit flip noise flips the state of a qubit with probability p. This
noise can be represented by a superoperator ® such that:

®(p) = (1 -p)p+pXpX
i.e., the state remains the same with probability 1 — p and
changes to XpX with probability p, where X is the matrix
representation of the bit flip gate (Fig. 1). Generally, all effects
from quantum noise can be represented by superoperators.

Noisy quantum programs. The noise model w specifies
the noisy version U, of each gate U on the targeting noisy
device and can then specify noisy quantum programs P,,.The
noisy semantics [[P]],, of program P can be defined as the
semantics [[P,]] of the noisy program P,,, whose semantics
are similar to that of a noiseless program. The rules of skip,
sequence, and measurement statements remain the same,
while for gate application, the noisy version of each gate is
applied as follows:

U (g1 g1 (p) = [Ua(qs, -, g1 (p) = U (p)

where U,, is the superoperator representation of U,.

Metrics for quantum errors. To quantitatively evaluate
the effect of noise, we need to measure some notion of “dis-
tance” between quantum states. The trace distance T mea-
sures the distance between the noisy state p, and the ideal,
noiseless state pig:

1 1
T(pn, pra) = §||Pn —pudlh = 5 max P(pn — pra)

where P is a positive semidefinite matrix with trace 1, and
[| - ||y is the Schatten-p norm, defined as:

1
-1l == (e 8)7
The trace distance is the maximum statistical distance over
all possible measurements of two quantum states. Note that
trace distance cannot be directly calculated without infor-
mation about the entire two quantum states.
The diamond norm metric is typically used to obtain a
worst case error bound. The diamond norm between two
superoperators U and & is defined as:

1
U -&ll. = max T(UeLip), E& Li(p))
2 p:tr(p)=1
= max [[UILy(p)-ELi(p)lh
p:tr(p)=1

paper #27

[Input State pg] [Quantum Program P] [Noise Model w]

Y Y
MPS Apprixmiator (§ 5)
Step (1)
TN(ps, P) P
A
(p,9) .| (p, 6)—Diamond Norm
SDP Solver (§ 6)
Step (2)
Y Y

Quantum Error Logic (§ 4)

Step) (5,0)F B < e

Y
[Verified Error Bound €]

Figure 4. Gleipnir workflow.

Intuitively, this formula calculates the maximum trace dis-
tance between the output state after applying the erroneous
operation versus applying the noiseless operation, for any
arbitrary input state. Diamond norms can be efficiently com-
puted by simple Semi-Definite Programs (SDP)[57].
However, as shown by the Wallman-Flammia bound [55],
diamond norms may overestimate errors by up to two orders
of magnitude, precluding its application in more precise
analyses of noisy quantum programs. The diamond norm
metric fails to incorporate information about the quantum
state of the circuit that may help tighten the error bound.
For example, a bit flip error (X gate) does nothing to the

state g(|0y + [1)) (the state is unchanged after flipping
|0) and |1)), but flips the |1) state to |0). However, both
trace distance and diamond norm are agnostic to the input
state, and thus limit our ability to tightly bound the errors
of quantum circuits.

(Q, A)—diamond norm [21] is a more fine-grained metric:

|U - &lls == max

) -&E® 1,
p: tlr(p)zl,tr(Qp)Z/l||7/[® A(p) ® A(p)“l

Unlike the unconstrained diamond norm, the (Q, A)—diamond
norm constrains the input state to satisfy the predicate Q to

degree A; specifically, the input state p must satisfy tr(Qp) >

A. The (Q, A)—diamond norm may produce tighter error
bounds than the unconstrained diamond norm by utilizing

quantum state information, but leaves open the problem of
practically computing a non-trivial predicate Q.

3 Gleipnir Workflow

To use the input quantum state to tighten the computed
error bound, Gleipnir introduces a new constrained diamond
norm, (p, §)-diamond norm, and a judgment (p, §) + P,<e
to reason about the error of quantum circuits. Gleipnir uses
Matrix Product State (MPS) tensor networks to approximate
quantum state and compute the predicate (5,).

387
388
389
390
391
392
393

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

426
427
428
429
430
431
432
433
434
435
436
437
438

440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Gleipnir: Toward Practical Error Analysis for Quantum Programs

U, —Ullps) < €

PL’18, January 01-03, 2018, New York, NY, USA

(p.0) F Py et TN(pPy) = (§.8) (p',6+8)F P < &

—— SKIP —
(p,6)rP, <0 (P, 0) +F Uy(qr,...) <€

(0,8 FP, <€ €<e §>6

—— SEQ
(ﬁ,5)" Pla);PZ(u <€ t+ée

(P, 8) F Py <€ (PO F P, <€

MEAS

WEAKEN

(p,8) FP, <€

(5,5) - (if g = |0) then Py, else Flw) <(1-8)e+6

Figure 5. Inference rules of the quantum error logic.

Figure 4 illustrates Gleipnir’s workflow for reasoning about
the error bound of some quantum program P with input state
po and noise model w of quantum gates on the target device:

1. Gleipnir first approximates the quantum state p and
its distance ¢ to the ideal state p using MPS tensor
networks TN (po, P) = (p, 5) (see §5).

2. Gleipnir then uses the constrained (p, §)-diamond norm
metric to bound errors of noisy quantum gates given
a noise model w of the target device. Gleipnir con-
verts the problem of efficiently computing the (p, §)-
diamond norm to solving a polynomial-size SDP prob-
lem, given (4, §) computed in step 1 (see §6).

3. Gleipnir employs a lightweight quantum error logic
to compute the error bound of P, using the predicate
(p, §) computed in step 1 and the error bounds for all
used quantum gates generated by the SDP solver in
step 2 (see §4).

Throughout this paper, we will return to the GHZ state
circuit (Example 2.1) as our running example. We will use
the program H(qo); CNOT(qo, 1), the input state |00) (00],
and the noise model w, describing the noisy gates H, and
CNOT,,. Following the steps described above, we will use
Gleipnir to obtain the final judgment of:

(100) (001, 0) + (Ho () : CNOT(0,41)) < €

where € is the total error bound of the noisy program.

4 Quantum Error Logic

We first introduce our lightweight logic for reasoning about
quantum program error bounds. In this section, we treat MPS
tensor networks and the algorithm to compute the(p, §)-
diamond norm as black boxes, deferring their discussion to
later sections (§5 and §6, respectively).

The (p, §)-diamond norm is defined as follows:

1
U =Ellips) =5 max T(UeLu(p). E@ La(p))

2 pte(p) =1,
T(p.p) <8

That is, a diamond norm with the additional constraint that

the ideal input density matrix of p needs to be within distance
dof p,ie,T(p,p) <4.

We use the judgment (4, 5) F P, <eto convey that when

running the noisy program P, onan input state whose trace

distance is at most é from p, the trace distance between the

noisy and noiseless outputs of program P is at most € under
the noise model w of the underline device.

The five inference rules of our quantum error logic are
shown in Fig. 5. The Ski1p rule states that an empty program
does not produce any noise. The GATE rule states that we can
bound the error of a gate step by calculating the gate’s (4, §)-
diamond norm under the noise model w. The WEAKEN rule
states that the same error bound holds when we strengthen
the precondition with a smaller approximation bound §’. The
SEQ rule states that the errors of a sequence can be summed
together with the help of the tensor network approximator
TN.The MEas rule bounds the error in an if statement, with
d probability that the result of measuring the noisy input
differs from measuring state p, causing the wrong branch to
executed. Otherwise, the probability that the correct branch
is executed is 1 — §. We multiply this probability by the error
incurred by the correct branch, and add it to the probability
of taking the incorrect branch, to obtain the error incurred
by executing a quantum conditional statement.

Our error logic contains two external components: (1)
TN(p,P) = (p,0) uses the tensor network approximator
to approximate [[P]](p), obtaining p and an approximation
error bound &; and (2) || - ||(5,s) is the (p, §)-diamond norm,
which characterizes the error bound generated by a single
gate under the noise model w. The algorithms used to com-
pute these components are explained in §5 and §6, respec-
tively, while the soundness proof of our inference rules is
given in supplementary material A.

We demonstrate how these rules can be applied to the
GHZ circuit of Example 2.1 as follows. The input state is
p = |00) (00|, and the program is Hw(qo);me(qo, q1)-
We first compute the constrained diamond norm ¢; = ||(}~{m -
H]l(p,0)» and apply the GATE rule to obtain:

(p,0) F ﬁw(qo) <e

Then, we use the tensor network approximator to compute
TN(p,H(qo)), whose result is (p, §). Using such a predicate,

we compute the (g, §)-diamond norm ¢; = ||CNOT,, —
CNOT ||(p,5)- Applying the GATE rule again, we obtain:

(ﬁ, 5) F CNOTa,(q(), ql) <é€
Finally, we apply the SEQ rule:

(p,0) F (ﬁw(CIo);CNOTw(CIo, Q1)) <ete

504

509

520

542

544
545
546
547
548
549
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

PL’18, January 01-03, 2018, New York, NY, USA

—> &

a) Vector b) Matrix c) Superoperator
perop
(rank 1) (rank 2) (rank 4)

Figure 6. Tensor network representation of various tensors.

which gives the error bound of the noisy program, €, + €.

5 Quantum State Approximation

Gleipnir uses tensor networks to adaptively compute the
contraints of input quantum state using an approximate
state p and its distance J from the ideal state p. We provide
the background of tensor networks in §5.1, present how to
use tensor networks to approximate quantum states in §5.2,
and then give an example in §5.3.

5.1 Tensor network

Tensors. Tensors describe the the multilinear relationship
between sets of objects in vector spaces, and can be repre-
sented by multi-dimensional arrays. The rank of a tensor
indicates the dimensionality of its array representation: vec-
tors have rank 1, matrices rank 2, and superoperators rank 4
(since they operate over rank 2 density matrices).

Contraction. Tensor contraction generalizes vector inner
products and matrix multiplication. A contraction between
two tensors specifies an index for each tensor, sums over
these indices and produces a new tensor. The contraction of
two tensors with ranks g and b will have rank a + b — 2; for
example, if we contract the first index in 3-tensor A and the
second index in 2-tensor B, the output will be a 3-tensor:

(A X2 B)jki = Z At jiBie
t

Tensor product. The tensor product is calculated like an
outer product; if two tensors have ranks a and b respectively,
their tensor product is a rank a + b tensor. For example, the
tensor product of 2-tensor A and 2-tensor B is a 4-tensor:

(A ® B)jjk1 = AijB

Tensor networks. Tensor network (TN) representation is
a graphical calculus for reasoning about tensors, with an
intuitive representation of various quantum objects. Intro-
duced in the 1970s by Penrose [33], this notation is used in
quantum information theory [11, 43, 51-53, 59], as well as
in other such fields as machine learning [10, 44, 45].

As depicted in Fig. 6, tensor networks consist of nodes
and edges. ! Each node represents a tensor, and each edge
out of the node represents an index of the tensor. As illus-
trated in Fig. 7, the resulting network will itself constitute a

INote that the shape of the nodes does not have any mathematical meaning;
it is merely used to distinguish different types of tensors.

paper #27

N h

(b) Outer product |¢) (/|

Figure 7. Tensor network representation for two matrix operations.
In general, tensor contractions are represented by linking edges,
and tensor products by juxtaposition.

(a) Matrix multiplication AB

| | | ,_l | | |
) Al
100 1 ? —D—
(a) Quantum circuit.
0 [H] —
: o; = CNOT|

(b) Tensor network.
Figure 8. The GHZ state, represented as a quantum circuit (a) and
a tensor network (b). When we evaluate the output of the circuit,
we can see that the input state |00) (enclosed in the blue box), the
H gate H ® I (enclosed in the middle red box), and the CNOT gate
(enclosed in the brown box. When evaluating the tensor network in
(b), the output is the same as the program output, (|00) +|11))/ V2.

whole tensor, with each open-ended edge representing one
index for the final tensor. The graphical representation of
a quantum program can be directly interpreted as a tensor
network. For example, the 2-qubit GHZ state circuit in Fig. 2
can be represented by a tensor network, as shown in Fig. 8.

Transforming tensor networks. To speed up the evalua-
tion of a large tensor network, we can apply reduction rules
to transform and simplify the network structure. In Table 1,
we summarize some common reduction rules we use. The
GATE CONTRACTION rule transforms a vector i and a matrix
U connected to it into a new vector ¢ that is the product of U
and 1. The SUPEROPERATOR APPLICATION rule transforms a
superoperator & and a matrix p connected to it into a matrix
p that represents the application of the superoperator & to p.
The SINGULAR VALUE DECOMPOSITION (SVD) rule transforms
a matrix M into the product of three matrices: U, %, and
V. The special matrix 3 = j 05 17) (jl is a diagonal matrix,
often represented by a diamond in graph. By dropping small
singular values in the diagonal matrix ¥, we obtain a simpler
tensor network which closely approximates the original one.

5.2 Approximate quantum states

In this section, we describe our tensor network approximator
algorithm computing TN (p, P) = (p,), such that the trace
distance between our approximation p and the perfect output
[[PTl(p) satisfies T(p, [[PTl(p)) < 6. At each stage of the al-
gorithm, we use Matrix Product State (MPS) tensor networks,
a special class of tensor networks, to approximate quantum
states. MPS uses 2n matrices to represent a 2"-length vec-
tor, which greatly reduces the computational cost. The MPS

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Gleipnir: Toward Practical Error Analysis for Quantum Programs

PL’18, January 01-03, 2018, New York, NY, USA

GATE SUPEROPERATOR SINGULAR VALUE
CONTRACTION APPLICATION DECOMPOSITION
& x
Tensor network w —>_>—> @
Dirac notation Uly) =|¢) Elp)=p M =3;0;U|j) Gl yt
Rank 1 2 2

Table 1. Examples of tensor network transformations for basic quantum operations.

[[[[[
i1 i i3 Iy s i

Figure 9. An example of matrix product state of six qubits.

tensor networks take a size w as an argument, which deter-
mines the space of representable states. When w is not big
enough to represent all possible quantum states, the MPS is
just an approximation to quantum states, whose approxima-
tion bound depends on w. The MPS representation with size
w of a quantum state ¢/ (represented as a vector) is:

[¥)mps = Z Aiil)AéiZ) e A iy i)
iy

----- In

where Aiil) is a row vector of dimension w, Aém, .. .,Aff_"{l)
are w X w matrices, and A,(l'") is a column vector of dimension
w. ij is the value of a basis |i1iy - - - i) at position j, which
can be 0 or 1. For example, to represent the 3-qubit state
(1000) +[010) +[001)) /3 in MPS, we should find matrices

AL AW AD AN A ALY such that

1

3
while A A A = 0 for all (iy, iz, i5) # (0,0,0), (0, 1,0),
or (0,0,1).

Afo) and Al(l) can be seen together as a 3-tensor A; (Ag
and A, are 2-tensors) where the superscript is taken as the
third index besides the two indices of the matrix. The MPS
in total can be seen as a tensor network in Fig. 9. A;,..., A,
are linked together in a line, while iy, . . ., i, are open wires.

Our approximation algorithm works by initializing the
MPS to the input state in vector form, and applying each
gate from the quantum program to the MPS, approximating
the intermediate state at each step as an MPS and computing
the distance between MPS and the ideal state. Since MPS
only needs to maintain 2n tensors, i.e., Ago), Ail), AEO), A;l),

(0) 4(0) 4(0) _ 2(0) (1) 4(0) _ 4(0) 4(0) 4 (1) _
Al A2 A3 _Al A2 A3 _Al A2 A3 -

cee Aﬁlo), AS), this procedure can be done efficiently with
a polynomial time complexity. After applying all quantum
gates, we obtain an MPS that approximates the output state
of the quantum program, as well as an approximation bound
by summing together all accumulated approximation errors
incurred by the approximation process. Our approximation
algorithm consists of the following stages:

EAAR

Figure 10. Applying a one-qubit gate to an MPS. We contract the
MPS node for the qubit and the gate (in the dashed box), resulting
in another 3-tensor MPS node.

Initialization. Let |s;s; - - - s,) be the input state for an n-
qubit quantum circuit. For all k € [1, n], we initialize A](:") =

E and A](cl_s") = 0, where E is the matrix that E;; = 1 and
Ejj=0foralli#1,j#1

Applying one-qubit gates. Applying a one-qubit gate on
an MPS always results in an MPS, and thus does not incur
any approximation error. For a single-qubit gate G on qubit
i, we update the tensor A; to Al’. as follows:

() _ (s
AP = Y GuwAl

s’e{0,1}

fors=0or1

In the tensor network representation, such application amounts
to contracting the tensor for the gate with A; (see Fig. 10).

Applying two-qubit gates. If we are applying a two-qubit
gate G on two adjacent qubits i and i + 1, we only need
to modify A; and A;y;. We first contract A;, A;11 to get an
2w X 2w matrix M:

(0) (1)] _ Moo Mo| _
A A = =M
[[Mlo My,

i+1 i+1

Al
Then, we apply the two-qubit gate to it.

M = Z GijkiM
Kl

We then need to decompose this new matrix M’ back into two
tensors. We first apply the SINGULAR VALUE DECOMPOSITION
rule on the contracted matrix:

M =UxvT

When w is not big enough to represent all possible quan-
tum states, M’ introduces approximation errors and may
not be a contraction of two tensors. Thus, we truncate the
lower half of the singular values in ¥, enabling the tensor

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

PL’18, January 01-03, 2018, New York, NY, USA

paper #27

iy O @E-O
—

Figure 11. Applying a two-qubit gate on two adjacent qubits to the MPS, via (i) node contraction, (ii) singular value decomposition, and (iii)

singular value truncation with re-normalization.

A)—@)—@y—A)—)&
B)—B)—By—By)—B)—Bo

Figure 12. Tensor network representation of the inner product of
two MPSs. An open wire of one MPS is linked with an open wire
of another, which denotes the summation over iy, ..., iy.

decomposition while reducing the error:
20

Therefore, we arrive at a new MPS whose new tensors A;
and A!, | are calculated as follows:

where * is part of that we drop. After truncation, we renor-
malize the state to a norm-1 vector.

Figure 11 shows the above procedure in tensor network
form by (1) first applying GATE CONTRACTING rule for A;,
Ait1 and G, (2) using SINGULAR VALUE DECOMPOSITION rule
to decompose the contracted tensor, (3) truncating the inter-
nal edge to w width, and finally (4) calculating the updated
Al and A}, . If we want to apply a two-qubit gate to non-
adjacent qubits, we add swap gates to move the two qubits
together, and apply the gate on the two adjacent qubits.

Bounding approximation errors. When applying 2-qubit
gates, we compute an MPS to approximate the gate applica-
tion. Each time we do so, we must estimate the error due to
this approximation. Since the truncated values themselves
comprise an MPS state, we may determine the error by sim-
ply calculating the trace distance between the states before
and after truncation.

The trace distance of two MPS states can be calculated
from the inner product of these two MPS:

6 :=T(Ip) (. 1) (1) = V1= [{gl¥) >

The inner product of two states |¢/) and |¢) (represented
using A and B in their MPS forms) is defined as follows:

(Yl¢) = Z <A§i1) .- 'ASzi"),Biil) .. .Bflin)>

Figure 12 shows its tensor network graphical representation.

In our approximation algorithm, we can iteratively calcu-
late the distance from qubit 1 to qubit n by first determining:
Dy = AVBOT 4 A BT

Then, we repeatedly apply tensors to the rest of qubits:
D;=A"Di B + AV D, BT

leading us to the final result of D,, = (¥/|¢). In the tensor

network graphical representation, this algorithm is a left-to-

right contraction, as shown in Fig. 13.

Given the calculated distance of each step, we must com-
bine them to obtain the overall approximation error. For some
arbitrary quantum program with ¢ 2-qubit gates, let the trun-
cation errors be 81, 8z, . . ., §; when applying the 2-qubit gates
91,92, ---» 9r- The final approximation error is § = Y.!_, &;. To
show this, we consider the approximation of one 2-qubit gate.
Let |/) denote some quantum state, and |psi) its approxima-
tion with bounded error . After applying a 2-qubit gate G
to the approximate MPS state, we obtain the truncated result
|¢) with bounded error §;. We now have:

IG1YY =19 1| < IIG 1) = GIY Il + IG [¢) = [9) |l

=y =) I + IG1) — 1) |
=8y + 1. (1)

where |||} — [} || = T(|¢) (¢l.|¢) (4]). The inequality

holds because of the triangular inequality of quantum state
distance, and the fact that G is unitary, thus preserving the
norm. Repeating this for each step, we know that the total
approximation error is bounded by the sum of all approx-
imation errors. The local density operator also has an ap-
proximation error, which is also bound by the sum because
partial traces do not increase trace distance.

Complexity analysis. The time complexity of all the op-
erations above scales polynomially with respect to the MPS
size w, number of qubits n, and number of gates m in the
program. To be precise, applying a one-qubit gate requires
only matrix addition, with O(w?) time. Applying a two-qubit
gate requires matrix multiplication and SVD, in O(w?) time.
Computing inner product of two MPS (e.g. for contraction)
requires O(n) of matrix multiplications, incurring an overall
time complexity of O(nw?). Since the algorithm scanning all
m gates in the program, the total complexity is O(mnw?).
Although a perfect approximation (i.e., a full simulation)
requires an MPS size that scales exponentially with respect
to the number of qubits, our approximation algorithm allows
Gleipnir to be configured with smaller MPS sizes, sacrificing

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

925
926
927
928
929
930
931
932
933
934
935

Gleipnir: Toward Practical Error Analysis for Quantum Programs

PL’18, January 01-03, 2018, New York, NY, USA

.t ﬁ

Figure 13. Contraction of the inner product of two MPS. We first contract A; and By to get Dy. Then contract D1, Az and By to Dy. And
then D, A3 and B3 to Ds. Repeating this process will result a single tensor node Dy, i.e., the final answer.

some precision in favor of efficiency and enabling its practical
use for real-world quantum programs.

Correctness. From the quantum program semantics de-
fined in Fig. 3, we know that we can compute the output
state by applying all gates in the program in sequence. Fol-
lowing Eq. (1), we know the total error bound for our ap-
proximation algorithm is bounded by sum of the bounds of
each step. Thus, we can conclude that our algorithm cor-
rectly approximates the output state, and correctly bounds
the approximation error in doing so:

Theorem 5.1. Let the output of our approximation algorithm
be (p,) = TN(p, P). The trace distance between the approxi-
mation and perfect output is bound by §:

T(p. [PI(p)) <.

5.3 Example: GHZ circuit

We revisit the GHZ circuit in Fig. 2 to walk through how
we approximate quantum states with tensor networks. This
same technique can be applied to larger and more complex
quantum circuits, discussed in §7.

Approximation using 2-wide MPS. Since the program
only contains two qubits, an MPS with size w = 2 can already
perfectly represent all possible quantum states such that no
approximation error will be introduced. Assume the input
state is |00). First, we initialize all the tensors based on the
input state |00):

A = (1,01, AY = [0,0], AL = [1,017, ALY = [0,0]"

Then, we apply the first H gate to qubit 1, changing only
Aio) and Ail):

A = [1,0]/v2, A =1[1,01/v2

To apply the CNOT gate on qubit 1 and 2, we first compute
matrix M and M":

115 4 1 2

We then decompose M’ using SVD to get the new MPS:
A = [1,0], AY = 0,1],
(0) _ T m_
Ay =[1/¥2,0]7, Ay =10,1/v2]"

We can see that the output will be p = % and 6 =0,

since AgO)Aéo) = Ail)Agl) = 1/4/2 while other values of i, iy
result 0.

Approximation using 1-wide MPS. To show how we cal-
culate the approximation error, we use the simplest form of

MPS with size w = 1. All Agj) will become numbers.
We first initialize the MPS to represent [00):

AV =1, a0 =0, A” =1, A} =0

Then, we apply the H gate to qubit 1:
AQ =1/v2, AV =142, A” =1, A =0
After that, we apply the CNOT gate. We compute M and M":

4 3 e

We decompose M’ using SVD:

N RN

Since there are 2 non-zero singular values, we need to drop
the lower half. Finally, we obtain A] and A;:

0 _ 1 4® _ (1 _
AY =1, Al =1/V2, A} =0

_ (0)
=0, A2
We renormalize the MPS:

0 _ (1 _ 0) _ (1 _
AV =1A7"=0A"=1 A, =0.
Thus, the output approximate state is |00).

To calculate the approximation error bound, we represent
the part we drop as an MPS B:

0 _ (1) _ (0) _ (1) _
B =0, Bl =1, B{"” =0, B{" = 2.

Let the unnormalized final state be |A), the dropped state be
|B). Then, the final output is V2 |A) and the ideal output is
|A) + |B). The trace distance between the state is

5:\/1—|<«/§A|A+B>2|=1/«/§.

Therefore, the final output is = [00) (00| and § = 1/V2.

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

PL’18, January 01-03, 2018, New York, NY, USA

6 Computing the (p, §)-Diamond Norm

In §4, we introduced our quantum error logic using the (g, §)-
diamond norm, while treating its computation algorithm as
a black box. In this section, we describe how to efficiently cal-
culate the (4, §)-diamond norm given (p, §, U, E). We show
that (p, d) can be transformed into (Q, 1) in supplementary
material B.

Constrained diamond norm. In (4, §)-diamond norm, the
input state pj, is constrained by

T(;b> pin) <4

We first compute the local density matrix of p whichis p’, and
since trace distance does not increase, we have T(p’, p) < 6.
Recall for any matrix p, we have ||p||[r < T(p), where || - ||F
is the Frobenius norm which is the square root of the sum
of all elements in a matrix. Therefore, from T(p’, p) < &,
we know that |[p” — p|lr < §, which means that tr(p’p) >
Lo’ Il (llp’ |lF—8). Then, to compute the (4, §)-diamond norm,
we extend the result of Watrous [57] by adding the constraint
of tr(p’p) = |lp’llr(llp’llF = 8), such that (4, §)-diamond
norm can be computed by the following SDP:

Theorem 6.1. The (p, 5)-diamond norm ||®|| (s 5) can be solved
by SDP in Eq. (2).

tr(J(®)W)

I®p>W

tr(p’p) = |lp’llr(llp"llF — 6)
W20 p=0 tr(p)=1
where] is the Choi-Jamiolkowski isomorphism [8] and ® =
U — &E. Let the optimal value of SDP in Eq. (2) be €. We
conclude that:

maximize
subject to

)

1®ll(s8) < €

SDP size. The size of SDP in Eq. (2) is exponential with
respect to the number of qubits of any quantum gate, rather
than of the whole program. Since near-term (NISQ) quan-
tum computers are unlikely to support quantum gates with
greater than 2 qubits, we can treat the size of the SDP prob-
lem as a constant, for the purposes of discussing its time
complexity.

Computing local density matrix. The local density ma-
trix represents the local information of a quantum state.
It is defined using a partial trace on the (global) density
for the part of the state we want to observe. For example,

the local density operator on the first qubit of w is

[[0.5,0.5], [0.5,0.5]], meaning that the first qubit of the state
is half |0) and half |1).

In Eq. (2), we need to compute the local density matrix
p’ of p about the qubit(s) Q that the noise represented by
® acts on. p is represented by an MPS. The calculation of
a local density operator of a MPS works similarly to how

10

paper #27

we calculate inner products, except the wire i where k is a
qubit that we want to observe.

7 Evaluation

In this section, we evaluate Gleipnir on using a set of realistic
near-term quantum programs. We compare the bounds given
by Gleipnir to the bounds given by other methods, as well
as the error we experimentally measured from a IBM’s real
quantum device. All simulations and our approximations are
performed on an Intel Xeon W-2175 (28 cores @ 4.3 GHz) 62
GB memory, and a 512 GB Intel SSD Pro 600p.

7.1 Simulation

We evaluated Gleipnir on several important quantum pro-
grams, under a sample noise model containing the most
common type of quantum noises. We compared the bound
produced by Gleipnir with the worse-case bound given by
the unconstrained diamond norm.

Noise model. In our experiments, our quantum circuits are
configured such that, with probability p = 107*, each noisy
one-qubit gate has either a bit flip (X):

®(p) = (1 - p)p +pXpX
or a phase flip (2):

®(p) = (1-p)p+pZpZ

Each two qubit gate also has a bit flip or phase flip on its first
qubit.

Framework configuration. For the approximator, we can
adjust the size of the MPS network, depending on available
computational resources; the larger the size, the tighter error
bound. In all experiments, we use an MPS of size 128.

Baseline. To evaluate the performance of the error bound
given by Gleipnir, we compared it with a worst-case bound
calculated using the unconstrained diamond norm (see §2.3).
For each noisy quantum gate, we first compute its uncon-
strained diamond norm distance to the perfect gate, and
obtain the worst-case bound by summing all unconstrained
diamond norms. The unconstrained diamond norm distance
of a bit-flipped gate and a perfect gate is given by:

(pX o X + (1 =p)D) = Ilfo
plIX o X 1|,
= p

HCI) _I”o

where X o X denotes the function that maps p to XpX. The
diamond norm of a phase-flipped gate is derived similarly.
Therefore, the total noise is bounded by np, where n is the
number of noisy gates, due to additivity of diamond norms.
Because every gate has a noise, the worst case bound is
simply proportional to the number of gates in the program.

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Gleipnir: Toward Practical Error Analysis for Quantum Programs

PL’18, January 01-03, 2018, New York, NY, USA

Qubit Gate | Gleipnir bound Running LOR [21] with Running Worst-case
Benchmark |number number (x107%) time (s) | full simulator (x10™%) time (s) | bound (x107%)

QAOA_line_10 10 27 0.05 2.77 0.05 215.2 27
Isingmodel1@ 10 480 335.6 31.6 335.6 4701.8 480
QAOARandom20 20 160 136.6 19.8 - (timed out) 160
QAOA4reg_20 20 160 138.8 12.5 - (timed out) 160
QAOA4reg_30 30 240 207.0 25.8 - (timed out) 240
Isingmodel45 45 2265 1739.4 338.0 - (timed out) 2265

QAOA50Q 50 399 344.1 58.7 - (timed out) 399

QAOA75 75 597 517.2 113.7 - (timed out) 597

QAOA100 100 677 576.7 191.9 - (timed out) 677

Table 2. Simulation results of our model (w = 128) and the baseline on different quantum programs, showing the bounds given by Gleipnir’s
(p, 8)-diamond norm, the (Q, A)-diamond norm with full simulation, and the unconstrained diamond norm. Simulations time out if they run
for longer than 24 hours. Note that the worst case bound is directly proportional to the number of gates.

2200 >
300
T
o 2100 250
— —
X 0
o 2000 200 ¢
< —
3 150 £
<2 1900 2
o 100
£
(]
1800 50
0
1 2 4 8 16 32 64 128

MPS size

Figure 14. Simulation results of our model on
Isingmodel45 using different MPS size.

program

We also compared our error bound with what we obtain
from LQR [21], using a full quantum program simulator to
generate best quantum predicate. This approach’s running
time is exponential to the number of qubits, and times out

(runs for longer than 24 hours) on programs with > 20 qubits.

Programs. We analyzed two classes of quantum programs

that are expected to be most useful in the near-term, namely:

e The Quantum Approximate Optimization Algorithm
(QAOA) [12], which can be used to solve combinatorial
optimization problems. We use it to find the max-cut
for various graphs, with qubit sizes from 10 to 100.

o The Ising model [41], which is a thermodynamic model
for magnets widely used in quantum mechanics. We
run the Ising model with sizes 10 and 45.

Evaluation. Results are shown in Table 2. Gleipnir’s bounds
are 15% ~ 30% tighter than what the unconstrained diamond

norm gives, on large quantum circuits with qubit sizes > 20.

On small qubit size circuits, our bound is as strong as the
exponential time method with full simulation.

We also evaluated how MPS size impacts the performance
of Gleipnir. As we can see for the Isingmodel45 program
(Fig. 14), larger MPS sizes result in tighter error bounds, at

11

Figure 15. The coupling map of the IBM Boeblingen quantum
computer, where each node represents a qubit. Only qubit pairs
with a connecting edge can be used to implement a 2-qubit gate.

the cost of longer run times, with marginal returns beyond a
certain size. We found that a size of 128 seemed to perform
best for our candidate programs, though in general, this pa-
rameter can be adjusted according to precision requirements
and the availability of computational resources. Note that
one cannot feasibly compute the precise error bound of the
Isingmodel45 program, since that requires computing the
2% x 2% matrix representation of the program’s output.

7.2 Evaluating quantum compilation error
mitigation

To demonstrate that Gleipnir can be used to evaluate the
error mitigation performance of quantum compilers for real
quantum computers today, we designed a small experiment
based on the noise-adaptive qubit mapping problem [5, 29].
When executing a quantum program on a real quantum com-
puter, a quantum compiler must decide which physical qubit
that each logical qubit should be mapped to, in accordance
with the quantum computer’s coupling map (e.g., Fig. 15).
Since quantum devices do not have uniform noise across
qubits, a quantum compiler’s mapping protocol should aim
to map qubits such that the quantum program is executed
with as little noise as possible.

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

PL’18, January 01-03, 2018, New York, NY, USA

Mapping Gleipnir bound Measured error
0-1-2 0.211 0.160
1-2-3 0.128 0.073
2-3-4 0.162 0.092

Table 3. Error bounds generated by Gleipnir on different mappings
compared with the noise we observed experimentally.

Experiment design. We compared three different qubit
mappings of the 3-qubit GHZ circuit (see Fig. 2), go — q1 — qa,
g1 —q2 — g3, and g2 — q3 — q4, Where g; represents ith physical
qubit. We ran our circuit on our quantum computer with each
qubit mapping, and measured the output to obtain a classical
probability distribution. We computed the measured error
by taking the statistical distance of this distribution from
the distribution of the ideal output state (]000) + |111))/V2.
We also used Gleipnir to compute the noise bound for each
mapping, based on our quantum computer’s noise model.
Because the trace distance represents the maximum possible
statistical distance of any measurement on two quantum
states (see §2.3), the statistical distance we computed should
be bounded by the trace distance computed by Gleipnir.

Experiment setup. We conducted our experiment using
the IBM Quantum Experience[22] platform, using the IBM
Boeblingen 20-qubit device to run our quantum programs
(Fig. 15). Because Gleipnir needs a noise model to compute
its error bound, we constructed a model for the device using
publicly available data from IBM [22] in addition to measure-
ments from tests we ran on the device. We identified two
different types of noise:

1. Gate errors occur because gate operations cannot be
performed perfectly. We used quantum process to-
mography [31, 36] to test each individual gate (H and
CNOT in our case) and reconstruct their noisy super-
operator representation.

2. Qubit decoherence errors occur because qubits are not
perfectly isolated, and may interact with their envi-
ronment. We obtained the device’s decoherence errors
from the IBMQ database’s T1 and T2 device data [22].

Results. Our experimental results are shown in Table 3.
Gleipnir’s bounds are consistent with the real noise level, and
successfully predicts the noise levels of different mapping:
1—2 -3 has the least noise, while 0 — 1 — 2 has the most. This
illustrates how Gleipnir can be used to inform the design of
noise-adaptive mapping protocols.

8 Related Work

Error bounding quantum programs. Robust projective
quantum Hoare logic [62] is an extension of Quantum Hoare
Logic that supports error bounding using the worst-case dia-
mond norm. In contrast, Gleipnir uses the more fine-grained
(p, 6)—diamond norm to provide tighter error bounding.

12

paper #27

Like Gleipnir, LQR [21] is a framework for formally reason-
ing about quantum program errors, using the (Q, 1)-diamond
norm as its error metric. LQR supports reasoning about pro-
grams that use more advanced quantum computing features,
such as quantum loops. However, it does not specify any
practical method for obtaining non-trivial predicates. In con-
trast, Gleipnir can automatically compute (4, §) predicates
using its TN algorithm. We further show these computed
predicates can be reduced to (Q,) predicates (see supple-
mentary material B). In other words, our quantum error logic
can be understood as an implementation refining LQR: (5, §)
predicates computed using Gleipnir can be used to obtain
non-trivial postconditions for the quantum Hoare triples
required by LQR’s sequence rule, which, by the soundness
of our TN algorithm, are guaranteed to be valid.

Error simulation. Current error simulation methods can
be roughly divided into two classes: (1) direct simulation
methods based on solving the Schrodinger’s equation or
the master equation [27], which do not scale beyond a few
qubits [32]; and (2) approximate methods, based on either
Clifford circuit approximation [6, 17, 18, 26] or classical sam-
pling methods with Monte-Carlo simulations [28, 42, 48, 50].
These methods are efficient, but only work on specific classes
of quantum circuits. In contrast, Gleipnir can be applied to
general quantum circuits, and scales well beyond 20 qubits.

Resource estimation beyond error. Quantum compilers
such as Qiskit Terra [2] and ScaffCC [23] perform entangle-
ment analysis for quantum programs. The QuRE [47] tool-
box provides coarse-grained resource estimation for fault-
tolerant implementations of quantum algorithms. On the
theoretical side, quantum resource theories also consider the
estimation of coherence [46, 58], entanglement [34, 35], and
magic state stability [20, 49, 56]. However, these frameworks
are still based on the matrix representation of quantum states
and are only applicable to very small quantum programs.

Tensor network approximation. Multi-dimensional ten-
sor networks such as PEPS [24] and MERA [14] may model
quantum states more precisely than MPS. However, they are
computationally impractical: contracting higher-dimensional
tensor networks involves tensors with orders greater than 4,
which are prohibitively expensive to manipulate.

9 Conclusion

We have presented Gleipnir, a methodology for computing
verified error bounds of quantum programs and evaluat-
ing the error mitigation performance of quantum compiler
transformations. Our simulation results show that Gleipnir
provides up to 33% tighter error bounds in quantum circuits
with qubits ranging from 10 to 100 and the generated error
bounds are consistent with the ones measured using real
quantum devices.

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

Gleipnir: Toward Practical Error Analysis for Quantum Programs

References

[1] Dorit Aharonov, Alexei Kitaev, and Noam Nisan. 1998. Quantum

—

—

[l

[

—

circuits with mixed states. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 20-30.

Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Lu-
ciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-
Hernandez, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen,
Jerry M. Chow, Antonio D. Cércoles-Gonzales, Abigail J. Cross, An-
drew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente
Gonzalez, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan
Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert
Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-
Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe
Hellmers, Lukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi,
Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev,
Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques,
Francisco Jose Martin-Fernandez, Douglas T. McClure, David McKay,
Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Ro-
driguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James
O’Riordan, Hanhee Paik, Jestis Pérez, Anna Phan, Marco Pistoia, Vik-
tor Prutyanov, Max Reuter, Julia Rice, Abdén Rodriguez Davila, Ray-
mond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel,
Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Sir-
aichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Taka-
hashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing,
Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot,
Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher
Wood, Stephen Wood, Stefan Worner, Ismail Yunus Akhalwaya, and
Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum
Computing. https://doi.org/10.5281/zenod0.2562110

C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S.
Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H.
Bluhm, and K. Bertels. 2017. The engineering challenges in quantum
computing. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017. 836—845. https://doi.org/10.23919/DATE.2017.7927104
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Bran-
dao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro,
Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi,
Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob
Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J.
Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Hum-
ble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyan-
tyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexan-
der Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik
Lucero, Dmitry Lyakh, Salvatore Mandra, Jarrod R. McClean, Matthew
McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill,
Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt,
Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C.
Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J.
Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga,
Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut
Neven, and John M. Martinis. 2019. Quantum supremacy using a
programmable superconducting processor. Nature 574, 7779 (2019),
505-510. https://doi.org/TOA1038/541586—019— 1666-5

D. Bhattacharjee, A. A. Saki, M. Alam, A. Chattopadhyay, and S. Ghosh.
2019. MUQUT: Multi-Constraint Quantum Circuit Mapping on NISQ
Computers: Invited Paper. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 1-7.

Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David
Gosset, and Mark Howard. 2019. Simulation of quantum circuits
by low-rank stabilizer decompositions. Quantum 3 (Sept. 2019), 181.
https://doi.org/10.22331/q-2019-09-02-181

13

(7]

8

[}

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

PL’18, January 01-03, 2018, New York, NY, USA

Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. 2017.
Roads towards fault-tolerant universal quantum computation. Nature
549, 7671 (2017), 172-179. https://doi.org/10.1038/nature23460
Man-Duen Choi. 1975. Completely positive linear maps on complex
matrices. Linear Algebra Appl. 10, 3 (1975), 285 — 290. https://doi.org/
10.1016/0024-3795(75)90075-0

Simon J Devitt, William] Munro, and Kae Nemoto. 2013. Quantum
error correction for beginners. Reports on Progress in Physics 76, 7 (Jun
2013), 076001. https://doi.org/10.1088/0034-4885/76/7/076001
Stavros Efthymiou, Jack Hidary, and Stefan Leichenauer. 2019. Ten-
sorNetwork for Machine Learning. ArXiv abs/1906.06329 (2019).

G. Evenbly and G. Vidal. 2009. Algorithms for entanglement renor-
malization. Physical Review B 79, 14 (Apr 2009). https://doi.org/10.
1103/physrevb.79.144108

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum
approximate optimization algorithm. arXiv preprint arXiv:1411.4028
(2014).

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N.
Cleland. 2012. Surface codes: Towards practical large-scale quantum
computation. Physical Review A 86, 3 (Sep 2012). https://doi.org/10.
1103/physreva.86.032324

Vittorio Giovannetti, Simone Montangero, and Rosario Fazio. 2008.
Quantum multiscale entanglement renormalization ansatz channels.
Physical review letters 101, 18 (2008), 180503.

Daniel Gottesman. 2009. An Introduction to Quantum Error Correction
and Fault-Tolerant Quantum Computation. arXiv:0904.2557 [quant-
ph]

Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. 1989.
Going beyond Bell’s theorem. In Bell’s theorem, quantum theory and
conceptions of the universe. Springer, 69-72.

Mauricio Gutiérrez, Conor Smith, Livia Lulushi, Smitha Janardan, and
Kenneth R. Brown. 2016. Errors and pseudothresholds for incoherent
and coherent noise. Phys. Rev. A 94 (Oct 2016), 042338. Issue 4. https:
//doi.org/10.1103/PhysRevA.94.042338

Mauricio Gutiérrez, Lukas Svec, Alexander Vargo, and Kenneth R.
Brown. 2013. Approximation of realistic errors by Clifford channels
and Pauli measurements. Physical Review A 87, 3 (Mar 2013). https:
//doi.org/10.1103/physreva.87.030302

Mark Hillery, Vladimir Buzek, and André Berthiaume. 1999. Quantum
secret sharing. Physical Review A 59, 3 (1999), 1829.

Mark Howard and Earl Campbell. 2017. Application of a Resource The-
ory for Magic States to Fault-Tolerant Quantum Computing. Physical
Review Letters 118, 9 (Mar 2017). https://doi.org/10.1103/physrevlett.
118.090501

Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying,
Michael Hicks, and Xiaodi Wu. 2019. Quantitative Robustness Analy-
sis of Quantum Programs. Proc. ACM Program. Lang. 3, POPL, Article
31 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290344

IBMQ 2016. IBM-Q Experience. https://www.research.ibm.com/ibm-
q/

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey
Lvov, Frederic T. Chong, and Margaret Martonosi. 2015. ScaffCC:
Scalable compilation and analysis of quantum programs. Parallel
Comput. 45 (2015), 2-17.

[24] Jacob Jordan, Roman Orus, Guifre Vidal, Frank Verstraete, and J Igna-

[25]

[26]

cio Cirac. 2008. Classical simulation of infinite-size quantum lattice
systems in two spatial dimensions. Physical review letters 101, 25 (2008),
250602.

E. Knill. 2005. Quantum computing with realistically noisy devices. Na-
ture 434, 7029 (Mar 2005), 39-44. https://doi.org/10.1038/nature03350
Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and
David G. Cory. 2013. Modeling quantum noise for efficient test-
ing of fault-tolerant circuits. Physical Review A 87, 1 (Jan 2013).
https://doi.org/10.1103/physreva.87.012324

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.23919/DATE.2017.7927104
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.1038/nature23460
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1103/physrevb.79.144108
https://doi.org/10.1103/physrevb.79.144108
https://doi.org/10.1103/physreva.86.032324
https://doi.org/10.1103/physreva.86.032324
https://arxiv.org/abs/0904.2557
https://doi.org/10.1103/PhysRevA.94.042338
https://doi.org/10.1103/PhysRevA.94.042338
https://doi.org/10.1103/physreva.87.030302
https://doi.org/10.1103/physreva.87.030302
https://doi.org/10.1103/physrevlett.118.090501
https://doi.org/10.1103/physrevlett.118.090501
https://doi.org/10.1145/3290344
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/physreva.87.012324

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

PL’18, January 01-03, 2018, New York, NY, USA

[27]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

(45]

[46]

(47]

Nancy Makri and Dmitrii E. Makarov. 1995. Tensor propagator for
iterative quantum time evolution of reduced density matrices. I. Theory.
The Journal of Chemical Physics 102, 11 (2019/11/13 1995), 4600-4610.
https://doi.org/10.1063/1.469508

A. Mari and J. Eisert. 2012. Positive Wigner Functions Render Classical
Simulation of Quantum Computation Efficient. Physical Review Letters
109, 23 (Dec 2012). https://doi.org/10.1103/physrevlett.109.230503
Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T.
Chong, and Margaret Martonosi. 2019. Noise-Adaptive Com-
piler Mappings for Noisy Intermediate-Scale Quantum Computers.
arXiv:1901.11054 [quant-ph]

Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition (10th ed.).
Cambridge University Press, New York, NY, USA.

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford,
T. C. Ralph, and A. G. White. 2004. Quantum Process Tomography of
a Controlled-NOT Gate. Phys. Rev. Lett. 93 (Aug 2004), 080502. Issue 8.
https://doi.org/10.1103/PhysRevLett.93.080502

Hakop Pashayan, Stephen D. Bartlett, and David W. Gross. 2017. From
estimation of quantum probabilities to simulation of quantum circuits.
Roger Penrose. 1971. Applications of negative dimensional tensors.
Combinatorial mathematics and its applications 1 (1971), 221-244.

M. Piani, M. Horodecki, P. Horodecki, and R. Horodecki. 2006. Proper-
ties of quantum nonsignaling boxes. Phys. Rev. A 74 (Jul 2006), 012305.
Issue 1. https://doi.org/10.1103/PhysRevA.74.012305

Martin B. Plenio and S. Virmani. 2005. An introduction to entangle-
ment measures. arXiv:quant-ph/0504163 [quant-ph]

J. E. Poyatos,]. L. Cirac, and P. Zoller. 1997. Complete Characterization
of a Quantum Process: The Two-Bit Quantum Gate. Phys. Rev. Lett. 78
(Jan 1997), 390-393. Issue 2. https://doi.org/10.1103/PhysRevLett.78.
390

John Preskill. 1997. Fault-tolerant quantum computation. arXiv:quant-
ph/9712048 [quant-ph]

John Preskill. 1998. Lecture notes for physics 229: Quantum informa-
tion and computation. (1998).

John Preskill. 1998. Reliable quantum computers. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineer-
ing Sciences 454, 1969 (Jan 1998), 385-410. https://doi.org/10.1098/
rspa.1998.0167

John Preskill. 2018. Quantum Computing in the NISQ era and beyond.
ArXiv e-prints (jan 2018). https://doi.org/10.22331/q-2018-08-06-79
arXiv:1801.00862

Google Al Quantum et al. 2020. Hartree-Fock on a superconducting
qubit quantum computer. Science 369, 6507 (2020), 1084-1089.
Robert Raufiendorf, Juani Bermejo-Vega, E. Tyhurst, Cihan Okay, and
Michael Zurel. 2019. Phase space simulation method for quantum
computation with magic states on qubits.

U. Schollwdck. 2005. The density-matrix renormalization group. Re-
views of Modern Physics 77, 1 (Apr 2005), 259-315. https://doi.org/10.
1103/revmodphys.77.259

Edwin Stoudenmire and David J Schwab. 2016. Supervised Learning
with Tensor Networks. In Advances in Neural Information Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 4799-4807. http://papers.
nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf
Edwin Stoudenmire and David J Schwab. 2016. Supervised learning
with tensor networks. In Advances in Neural Information Processing
Systems. 4799-4807.

Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. 2017. Col-
loquium: quantum coherence as a resource.

Martin Suchara, John Kubiatowicz, Arvin I. Faruque, Frederic T. Chong,
Ching-Yi Lai, and Gerardo Paz. 2013. QuRE: The Quantum Resource
Estimator toolbox. In 2013 IEEE 31st International Conference on Com-
puter Design, ICCD 2013, Asheville, NC, USA, October 6-9, 2013. 419-426.

14

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]
[58]

[59]

[60]

[61]

[62]

paper #27

https://doi.org/10.1109/ICCD.2013.6657074

Victor Veitch, Christopher Ferrie, David W. Gross, and Joseph Emerson.
2012. Negative quasi-probability as a resource for quantum computa-
tion.

Victor Veitch, S A Hamed Mousavian, Daniel Gottesman, and Joseph
Emerson. 2014. The resource theory of stabilizer quantum computation.
New Journal of Physics 16, 1 (jan 2014), 013009. https://doi.org/10.
1088/1367-2630/16/1/013009

Victor Veitch, Nathan Wiebe, Christopher Ferrie, and Joseph Emer-
son. 2013. Efficient simulation scheme for a class of quantum optics
experiments with non-negative Wigner representation.

F. Verstraete, V. Murg, and J.I. Cirac. 2008. Matrix product states,
projected entangled pair states, and variational renormalization group
methods for quantum spin systems. Advances in Physics 57, 2 (Mar
2008), 143-224. https://doi.org/10.1080/14789940801912366

Guifré Vidal. 2003. Efficient Classical Simulation of Slightly Entangled
Quantum Computations. Physical Review Letters 91, 14 (Oct 2003).
https://doi.org/10.1103/physrevlett.91.147902

G. Vidal. 2008. Class of Quantum Many-Body States That Can Be
Efficiently Simulated. Physical Review Letters 101, 11 (Sep 2008). https:
//doi.org/10.1103/physrevlett.101.110501

Joel J. Wallman and Joseph Emerson. 2016. Noise tailoring for scalable
quantum computation via randomized compiling. Physical Review A
94, 5 (Nov 2016). https://doi.org/10.1103/physreva.94.052325

Joel] Wallman and Steven T Flammia. 2014. Randomized benchmark-
ing with confidence. New Journal of Physics 16, 10 (Oct 2014), 103032.
https://doi.org/10.1088/1367-2630/16/10/103032

Xin Wang, Mark M Wilde, and Yuan Su. 2019. Quantifying the magic
of quantum channels. arXiv preprint arXiv:1903.04483 (2019).

John Watrous. 2012. Simpler semidefinite programs for completely
bounded norms. arXiv:1207.5726 [quant-ph]

Andreas J. Winter and Dong Yuan Yang. 2016. Operational Resource
Theory of Coherence. Physical review letters 116 12 (2016), 120404.
Christopher J. Wood, Jacob D. Biamonte, and David G. Cory. 2011.
Tensor networks and graphical calculus for open quantum systems.
arXiv:1111.6950 [quant-ph]

Mingsheng Ying. 2016. Foundations of Quantum Programming. Morgan
Kaufmann.

Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. 2017. Invariants of
quantum programs: characterisations and generation. ACM SIGPLAN
Notices 52, 1 (2017), 818-832.

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied
Quantum Hoare Logic. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 1149-
1162. https://doi.org/10.1145/3314221.3314584

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

https://doi.org/10.1063/1.469508
https://doi.org/10.1103/physrevlett.109.230503
https://arxiv.org/abs/1901.11054
https://doi.org/10.1103/PhysRevLett.93.080502
https://doi.org/10.1103/PhysRevA.74.012305
https://arxiv.org/abs/quant-ph/0504163
https://doi.org/10.1103/PhysRevLett.78.390
https://doi.org/10.1103/PhysRevLett.78.390
https://arxiv.org/abs/quant-ph/9712048
https://arxiv.org/abs/quant-ph/9712048
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1801.00862
https://doi.org/10.1103/revmodphys.77.259
https://doi.org/10.1103/revmodphys.77.259
http://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf
http://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf
https://doi.org/10.1109/ICCD.2013.6657074
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/physrevlett.91.147902
https://doi.org/10.1103/physrevlett.101.110501
https://doi.org/10.1103/physrevlett.101.110501
https://doi.org/10.1103/physreva.94.052325
https://doi.org/10.1088/1367-2630/16/10/103032
https://arxiv.org/abs/1207.5726
https://arxiv.org/abs/1111.6950
https://doi.org/10.1145/3314221.3314584

	Abstract
	1 Introduction
	2 Quantum Programming Background
	2.1 Quantum computing basics
	2.2 Quantum programs
	2.3 Quantum errors

	3 Gleipnir Workflow
	4 Quantum Error Logic
	5 Quantum State Approximation
	5.1 Tensor network
	5.2 Approximate quantum states
	5.3 Example: GHZ circuit

	6 Computing the (,)-Diamond Norm
	7 Evaluation
	7.1 Simulation
	7.2 Evaluating quantum compilation error mitigation

	8 Related Work
	9 Conclusion
	References
	A Soundness Proof of Quantum Error Logic
	B Relation Between (,) and (Q,)

