
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Gleipnir: Toward Practical Error Analysis for
Quantum Programs

paper #27

Abstract
Practical error analysis is essential for the design, optimiza-
tion, and evaluation of Noisy Intermediate-Scale Quantum
(NISQ) computing. However, bounding errors in quantum
programs is a grand challenge, because the e�ects of quan-
tum errors depend on exponentially large quantum states. In
this work, we present Gleipnir, a novel methodology toward
practically computing veri�ed error bounds in quantum pro-
grams. Gleipnir introduces the (d̂, X)-diamond norm, an error
metric constrained by a quantum predicate consisting of the
approximate state d̂ and its distance X to the ideal state d .
This predicate (d̂, X) can be computed adaptively using ten-
sor networks based on Matrix Product States (MPS). Gleipnir
features a lightweight logic for reasoning about error bounds
in noisy quantum programs, based on the (d̂, X)-diamond
norm metric. Our experimental results show that Gleipnir is
able to e�ciently generate tight error bounds for real-world
quantum programs with 10 to 100 qubits, and can be used
to evaluate the error mitigation performance of quantum
compiler transformations.

1 Introduction
Recent quantum supremacy experiments [4] have heralded
theNoisy Intermediate-Scale Quantum (NISQ) era [40], where
noisy quantum computers with 50-100 qubits are used to
achieve tangible performance gains over classical computers.
While this goal is promising, there remains the engineering
challenge of accounting for erroneous quantum operations
on noisy hardware [3]. Compared to classical bits, quantum
bits (qubits) are much more fragile and error-prone. The the-
ory of Quantum Error Correction (QEC) [9, 15, 30, 38, 39] en-
ables fault tolerant computation [7, 15, 37] using redundant
qubits, but full fault tolerance is still prohibitively expensive
for modern noisy devices—some 103 to 104 physical qubits
are required to encode a single logical qubit [13, 25].

To reconcile quantum computation with NISQ computers,
quantum compilers perform transformations for error miti-
gation [54] and noise-adaptive optimization [29]. To evaluate
these compiler transformations, we must compare the error
bounds of the source and compiled quantum programs.
Analyzing the error of quantum programs, however, is

practically challenging. Although one can naively calculate
the “distance” (i.e., error) between ideal and noisy outputs
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using their matrix representations [30], this approach is im-
practical for real-world quantum programs, whose matrix
representations can be exponentially large—for example, a
20-qubit quantum circuit is represented by a 220⇥220 matrix—
too large to feasibly compute.

Rather than directly calculating the output error using ma-
trix representations, an alternative approach employs error
metrics, which can be computed more e�ciently. A common
error metric for quantum programs is the unconstrained dia-
mond norm [1]. However, this metric only gives a worst-case
error analysis: it is calculated only using quantum gates’
noise models, and does not take into account any informa-
tion about quantum state. In extreme cases, it overestimates
errors by up to two orders of magnitude [55]. A more realis-
tic metric must take input quantum state into account, since
this also a�ects the output error.

The logic of quantum robustness (LQR) [21] was the �rst
technique to use quantum state in the error metrics to com-
pute tighter error bounds. This work introduces the (&, _)-
diamond norm, which analyzes output errors given that the
input quantum state satis�es some quantum predicate & to
degree _. LQR extends the Quantum Hoare Logic [60] with
the (&, _)-diamond norm to produce logical judgments of
the form (&, _) ` e%  n , which deduces the error bound n for
a noisy program e% . While theoretically promising, this work
raises open questions in practice. Consider the following
sequence rule in their logic:

(&1, _) ` e%1  n1 (&2, _) ` e%2  n2 {&1}%1{&2}
(&1, _) ` (e%1; e%2)  n1 + n2

It is unclear how to obtain a quantum predicate &2 that is
both a valid postcondition after executing e%1 while being
strong enough to produce useful error bounds for e%2.
This paper presents Gleipnir, an adaptive error analysis

methodology for quantum programs that addresses the above
challenges and answers the following three open questions:
(1) How to compute suitable constraints for the input quan-
tum state used by the error metrics? (2) How to reason about
error bounds without manually verifying quantum programs
with respect to pre- and postconditions? (3) How practical
is computing veri�ed error bounds for quantum programs,
to evaluate the error mitigation performance of quantum
compiler transformations?
First, in prior work, seaching for a non-trivial postcon-

dition (&, _) for a given quantum program is prohibitively
costly: existing methods either compute postconditions by
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fully simulating quantum programs using matrix representa-
tions [60], or reduce this problem to an SDP (Semi-De�nite
Programming) problemwhose size is exponential to the num-
ber of qubits used in the quantum program [61]. In practice,
for large quantum programs (� 20 qubits), these methods
cannot produce any postconditions other than (� , 0) (i.e., the
identity matrix � to degree 0, analogous to a “true” predicate),
reducing the (&, _)-diamond norm to the unconstrained dia-
mond norm and failing to yield non-trivial error bounds.

To overcome this limitation, Gleipnir introduces the (d̂, X)-
diamond norm, a new error metric for input quantum states
whose distance from some approximated quantum state d̂ is
bounded by X . Given a quantum program and a predicate
(d̂, X), Gleipnir computes its diamond norm by reducing it
to a constant size SDP problem.

To obtain the predicate (d̂, X), Gleipnir uses Matrix Prod-
uct States (MPS), a class of tensor networks, to represent and
approximate quantum states. Rather than fully simulating
the quantum program or producing an exponentially com-
plex SDP problem, our MPS-based tensor network)# (d0, %)
approximates (d̂, X) for some input state d0 and program % ,
taking polynomial time with respect to the size of the MPS
tensor network, the number of qubits, and the number of
quantum gates. In contrast with prior work, our MPS-based
approach is adaptive—one may adjust the approximation pre-
cision by varying the size of the MPS such that tighter error
bounds can be computed using greater computational re-
sources. Gleipnir provides more �exibility between the tight
but ine�cient full simulation and the e�cient but unrealistic
worst-case analysis.

Second, instead of verifying a predicate using Quantum
Hoare Logic, Gleipnir develops a lightweight logic based on
(d̂, X)-diamond norms for reasoning about quantum program
error, using judgments of the form:

(d̂, X) ` e%l  n

This judgement states that the error of the noisy program e%l
under the noise model l is upper-bounded by n when the
input state is constrained by (d̂, X). As shown in the sequence
rule of our quantum error logic:

(d̂, X) ` e%1l  n1 )# (d̂, %1) = (d̂ 0, X 0) (d̂ 0, X + X 0) ` e%2l  n2

(d̂, X) ` e%1l ; e%2l  n1 + n2

the approximated state d̂ 0 and its X 0 are computed using the
MPS-based tensor network )# .
By computing (d̂, X), our sequence rule eliminates the

cost of validating non-trivial postconditions. We prove the
correctness of )# , which ensures that the resulting state of
executing %1 satis�es the predicate (d̂ 0, X + X 0).
Third, we enable the practical error analysis of quantum

programs and transformations, which was previously only
theoretically possible but infeasible due to the limitations of
prior work. To understand the scalability and limitation of
our error analysis methodology, we conducted case studies

using two classes of quantum programs that are expected to
be most useful in the near-term—the Quantum Approximate
Optimization Algorithm [12] and the Ising model [41]—with
qubits ranging from 10 to 100. Our measurements show that,
with 128-wide MPS networks, Gleipnir can always generate
error bounds within 6 minutes. For small programs ( 10
qubits), Gleipnir’s error bounds are as precise as the ones
generated using full simulation. For large programs (� 20
qubits), Gleipnir’s error bounds are 15% to 30% tighter than
those calculated using unconstrained diamond norms, while
full simulation invariably times out after 24 hours.

We explored Gleipnir’s e�ectiveness in evaluating the er-
ror mitigation performance of quantum compiler transforma-
tions. We conducted a case study evaluating qubit mapping
protocols [29], and showed that the performance ranking for
di�erent transformations using the error bounds generated
by our methodology is consistent with the ranking using
errors measured from the real-world experimental data.

Throughout this paper, we address the key practical limi-
tations of error analysis for quantum programs. In summary,
our main contributions are:

• The (d̂, X)-diamond norm, a new error metric con-
strained by input quantum state, that can be e�ciently
computed using constant-size SDPs.

• An MPS-based tensor network approach to adaptively
compute the quatum predicate (d̂, X).

• A lightweight logic for reasoning about quantum error
bounds without the need to verify quantum predicates.

• Case studies using quantum programs and transfor-
mations on real quantum devices, demonstrating the
feasability of adaptive quantum error analysis for com-
puting veri�ed error bounds for quantum programs
and evaluating the error mitigation perforamce of
quantum compilation.

2 Quantum Programming Background
Notation. In this paper, we use Dirac notation, or “bra-ket”
notation, to represent quantum states. The “ket” notation
|k i denotes a column vector, which corresponds to a pure
quantum state; the “bra” notation hk | denotes its conjugate
transpose, a row vector. hq |k i represents the inner prod-
uct of two vectors, and |k i hq | the outer product. We use d
to denote a density matrix, a matrix that represents mixed
quantum state. * usually denotes a unitary matrix which
represents quantum gates while * † denotes its conjugate
transpose; curly letters likeU denote noisy or ideal quantum
operations, represented by maps between density matrices
(superoperators); upper case Greek letters such as � repre-
sent quantum noise as superoperators.

2.1 Quantum computing basics

Quantum states. The simplest quantum state is a quan-
tum bit—a qubit. Unlike a classical bit, a qubit’s state can
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- =

0 1
1 0

�
, / =


1 0
0 �1

�
, � = 1p

2


1 1
1 �1

�
,⇠#$) =

2666664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3777775
Figure 1. Matrix representations of common quantum gates. -
denotes a bit �ip, / denotes a phase �ip, � denotes a Hadamard
gate, and ⇠#$) denotes a controlled NOT gate.

be the superposition of two logical states, |0i and |1i, that
correspond to classical logical states 0 and 1. In general, a
qubit is a unit vector in the 2-dimensional Hilbert space C2,
with |0i := [1, 0]† and |1i := [0, 1]†. In Dirac’s notation, we
represent a qubit as |k i = U |0i + V |1i, where |U |2 + |V |2 = 1.

Generally speaking, the state of a quantum program may
comprise many qubits. An =-qubit state can be represented
by a unit vector in 2=-dimensional Hilbert space C2= . For
example, a 3-qubit state can be described by an 8-dimensional
complex vector, which captures a superposition of 8 basis
states, |000i, |001i, |010i, . . ., |111i.
Besides the pure quantum states described above, there

are also classically mixed quantum states, i.e., noisy states.
An =-qubit mixed state can be represented by a 2= ⇥ 2=
density matrix d =

Õ
8 ?8 |q8i hq8 |, which states that the state

has ?8 probability to be |q8i. For example, a mixed state
with half probability of |0i and |1i can be represented by
|0i h0 |+ |1i h1 |

2 = �/2, where � is the identity matrix.

Quantum gates. Quantum states are manipulated by the
application of quantum gates, described by unitary matrix
representations [30]. Figure 1 shows the matrix representa-
tions of some common gates. Applying an operator* to a
quantum state |qi results in the state * |qi, and applying
it to a density matrix d =

Õ
8 ?8 |q8i hq8 | gives *d* †. For

example, the bit �ip gate - maps |0i to |1i and |1i to |0i,
while the Hadamard gate� maps |0i to |0i+|1ip

2
. There are also

multi-qubit gates, such as ⇠#$) , which does not change
|00i and |01i but maps |10i and |11i to each other. Applying
a gate on a subset of qubits will not change other qubits. For
example, applying the - gate to the �rst qubit of |00i+|11ip

2

will result in |10i+|01ip
2

. This can be seen as an extension - ⌦ �

of the matrix to a larger space using a tensor product.

Quantum measurements. Measurements extract classi-
cal information from quantum states, and collapse the quan-
tum state according to projection matrices "0 and"1. When
we measure some state d , we will obtain the result 0 with
collapsed state"0d"

†
0 /?0 and probability ?0 = tr("0d"

†
0 ),

or the result 1 with collapsed state "1d"
†
1 /?1 and prob-

ability ?1 = tr("1d"
†
1 ). Both quantum gates and quan-

tum measurements act linearly on density matrices, and can
be expressed as superoperators, completely positive trace-
preserving maps E 2 !(H) : H= ! H< where H= is the
density matrix space of dimension = and ! is the space of
linear operators.

|0i
|0i

� |00i+|11ip
2

|0i
|0i
|0i

� |000i+|111ip
2

Figure 2. Two quantum circuits, producing the 2-qubit (left) and
3-qubit (right) GHZ states.

2.2 Quantum programs
Quantum programs comprise a con�guration of quantum
gates and measurements, called a quantum circuit. Graph-
ically, qubits are represented as wires, and gates as boxes
joining the wires; CNOT gates are represented by a dot on
the control qubit linked with an

…
on the other qubit.

Example 2.1 (GHZ circuit). The Greenberger–Horne–
Zeilinger (GHZ) state [16] is a class of important entangled
quantum states, used in many quantum communication pro-
tocols [19]. The simplest GHZ state is the 2-qubit GHZ state,
which is |00i+|11ip

2
in Dirac notation. Figure 2 shows a typical

graphical representation of a quantum circuit that produces
the 2-qubit GHZ state.

Syntax. The syntax of quantum programs is as follows:
% ::= skip | %1; %2 | * (@1, . . . ,@: )
| if @ = |0i then %0 else %1

Each component behaves similarly to its classical coun-
terpart: skip denotes the empty program; %1; %2 sequences
programs; * (@1, . . . ,@: ) applies the :-qubit gate * to the
qubits @1, . . . ,@: ; if @ = |0i then %0 else %1 measures
the qubit @, executes %0 if the result is 0, and executes %1
otherwise. The only di�erence between classical and quan-
tum programs is that the measurement in the if statement
will collapse the state, and the branch is executed on the col-
lapsed state. Using this syntax, the 2-qubit GHZ state circuit
in Fig. 2 is written as:

� (@0);⇠#$) (@0,@1)
Note that this work does not currently consider advanced

quantum program constructs such as quantum loops, as
these are not likely to be supported on near-term quantum
machines.

Denotational semantics. The denotationl semantics of
quantum programs are de�ned as superoperators acting on
density matrices d , and are shown in Fig. 3. An empty pro-
gram keeps the state unchanged; a sequence of operations
are applied to the state one by one; a single quantum gate is
directly applied as a superoperator; a measurement branch
statement maps the state into a classical mix of the two
results from executing the two branches.

2.3 Quantum errors
Quantum programs are always noisy, and that noise may
(undesirably) perturb the quantum state. For example, the

3
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[[skip]] (d) :=d
[[%1; %2]] (d) :=[[%2]] ( [[%1]] (d))

[[* (@1, . . . ,@: )]] (d) :=*d* †

[[if @ = |0i then %0 else %1]] (d) :=[[%0]] ("0d"
†
0 ) +

[[%1]] ("1d"
†
1 )

Figure 3. Denotational semantics of quantum programs.

bit �ip noise �ips the state of a qubit with probability ? . This
noise can be represented by a superoperator � such that:

�(d) = (1 � ?)d + ?-d-

i.e., the state remains the same with probability 1 � ? and
changes to -d- with probability ? , where - is the matrix
representation of the bit �ip gate (Fig. 1). Generally, all e�ects
from quantum noise can be represented by superoperators.

Noisy quantum programs. The noise model l speci�es
the noisy version e*l of each gate * on the targeting noisy
device and can then specify noisy quantum programs e%l . The
noisy semantics [[%]]l of program % can be de�ned as the
semantics [[e%l ]] of the noisy program e%l , whose semantics
are similar to that of a noiseless program. The rules of skip,
sequence, and measurement statements remain the same,
while for gate application, the noisy version of each gate is
applied as follows:

[[* (@1, . . . ,@: )]]l (d) = [[e*l (@1, . . . ,@: )]] (d) = eUl (d)
where eUl is the superoperator representation of e*l .

Metrics for quantum errors. To quantitatively evaluate
the e�ect of noise, we need to measure some notion of “dis-
tance” between quantum states. The trace distance T mea-
sures the distance between the noisy state d= and the ideal,
noiseless state dId:

T(d=, dId) :=
1
2
kd= � dIdk1 =

1
2
max
%

% (d= � dId)

where % is a positive semide�nite matrix with trace 1, and
| | · | |? is the Schatten-? norm, de�ned as:

| | · | |? :=
⇣
tr(·†·)

?
2

⌘ 1
?

The trace distance is the maximum statistical distance over
all possible measurements of two quantum states. Note that
trace distance cannot be directly calculated without infor-
mation about the entire two quantum states.
The diamond norm metric is typically used to obtain a

worst case error bound. The diamond norm between two
superoperators U and E is de�ned as:

| |U � E||⇧ :=
1
2

max
d : tr(d)=1

T
⇣
U ⌦ I� (d), E ⌦ I� (d)

⌘
= max

d : tr(d)=1
| |U ⌦ I� (d) � E ⌦ I� (d) | |1

InSXW�SWaWe� QXanWXm�PUogUam� NoiVe�Model�

MPS�ASSUi[miaWoU�( �5)

Diamond�NoUm
SDP�SolYeU�( �6)

QXanWXm�EUUoU�Logic�( �4)

SWeS�(1)

SWeS�(2)

SWeS�(3)

VeUified�EUUoU�BoXnd�

Figure 4. Gleipnir work�ow.

Intuitively, this formula calculates the maximum trace dis-
tance between the output state after applying the erroneous
operation versus applying the noiseless operation, for any
arbitrary input state. Diamond norms can be e�ciently com-
puted by simple Semi-De�nite Programs (SDP)[57].

However, as shown by the Wallman-Flammia bound [55],
diamond norms may overestimate errors by up to two orders
of magnitude, precluding its application in more precise
analyses of noisy quantum programs. The diamond norm
metric fails to incorporate information about the quantum
state of the circuit that may help tighten the error bound.
For example, a bit �ip error (- gate) does nothing to the
state

p
2
2
�
|0i + |1i

�
(the state is unchanged after �ipping

|0i and |1i), but �ips the |1i state to |0i. However, both
trace distance and diamond norm are agnostic to the input
state, and thus limit our ability to tightly bound the errors
of quantum circuits.

(&, _)�diamond norm [21] is a more �ne-grained metric:

| |U � E||⇧ := max
d : tr(d)=1,tr(&d)�_

| |U ⌦ I� (d) � E ⌦ I� (d) | |1

Unlike the unconstrained diamond norm, the (&, _)�diamond
norm constrains the input state to satisfy the predicate & to
degree _; speci�cally, the input state d must satisfy tr(&d) �
_. The (&, _)�diamond norm may produce tighter error
bounds than the unconstrained diamond norm by utilizing
quantum state information, but leaves open the problem of
practically computing a non-trivial predicate & .

3 Gleipnir Work�ow
To use the input quantum state to tighten the computed
error bound, Gleipnir introduces a new constrained diamond
norm, (d̂, X)-diamond norm, and a judgment (d̂, X) ` e%l  n
to reason about the error of quantum circuits. Gleipnir uses
Matrix Product State (MPS) tensor networks to approximate
quantum state and compute the predicate (d̂, X).

4
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(d̂, X) ` e%l  0
S���

k eUl �Uk(d̂,X)  n

(d̂, X) ` e*l (@1, . . .)  n
G���

(d̂, X) ` e%1l  n1 )# (d̂, %1) = (d̂ 0, X 0) (d̂ 0, X + X 0) ` e%2l  n2

(d̂, X) ` e%1l ; e%2l  n1 + n2
S��

(d̂, X 0) ` e%l  n 0 n 0  n X 0 � X

(d̂, X) ` e%l  n
W�����

(d̂0, X) ` e%0l  n (d̂1, X) ` e%1l  n

(d̂, X) `
⇣
if @ = |0i then e%0l else e%1l ⌘  (1 � X)n + X

M���

Figure 5. Inference rules of the quantum error logic.

Figure 4 illustrates Gleipnir’s work�ow for reasoning about
the error bound of some quantum program % with input state
d0 and noise model l of quantum gates on the target device:

1. Gleipnir �rst approximates the quantum state d̂ and
its distance X to the ideal state d using MPS tensor
networks )# (d0, %) = (d̂, X) (see §5).

2. Gleipnir then uses the constrained (d̂, X)-diamond norm
metric to bound errors of noisy quantum gates given
a noise model l of the target device. Gleipnir con-
verts the problem of e�ciently computing the (d̂, X)-
diamond norm to solving a polynomial-size SDP prob-
lem, given (d̂, X) computed in step 1 (see §6).

3. Gleipnir employs a lightweight quantum error logic
to compute the error bound of e%l using the predicate
(d̂, X) computed in step 1 and the error bounds for all
used quantum gates generated by the SDP solver in
step 2 (see §4).

Throughout this paper, we will return to the GHZ state
circuit (Example 2.1) as our running example. We will use
the program � (@0);⇠#$) (@0,@1), the input state |00i h00|,
and the noise model l , describing the noisy gates e�l andû⇠#$)l . Following the steps described above, we will use
Gleipnir to obtain the �nal judgment of:

( |00i h00| , 0) `
⇣e�l (@0) ; û⇠#$)l (@0,@1)

⌘
 n

where n is the total error bound of the noisy program.

4 Quantum Error Logic
We �rst introduce our lightweight logic for reasoning about
quantum program error bounds. In this section, we treat MPS
tensor networks and the algorithm to compute the(d̂, X)-
diamond norm as black boxes, deferring their discussion to
later sections (§5 and §6, respectively).

The (d̂, X)-diamond norm is de�ned as follows:

| |U � E||(d̂,X) :=
1
2

max
d : tr(d) = 1,
) (d,d̂)X

T
⇣
U ⌦ I� (d), E ⌦ I� (d)

⌘

That is, a diamond norm with the additional constraint that
the ideal input densitymatrix of d needs to bewithin distance
X of d̂ , i.e., ) (d, d̂)  X .

We use the judgment (d̂, X) ` e%l  n to convey that when
running the noisy program e%l on an input state whose trace
distance is at most X from d̂ , the trace distance between the

noisy and noiseless outputs of program % is at most n under
the noise model l of the underline device.
The �ve inference rules of our quantum error logic are

shown in Fig. 5. The S��� rule states that an empty program
does not produce any noise. TheG��� rule states that we can
bound the error of a gate step by calculating the gate’s (d̂, X)-
diamond norm under the noise model l . TheW����� rule
states that the same error bound holds when we strengthen
the precondition with a smaller approximation bound X 0. The
S�� rule states that the errors of a sequence can be summed
together with the help of the tensor network approximator
)# . TheM��� rule bounds the error in an if statement, with
X probability that the result of measuring the noisy input
di�ers from measuring state d , causing the wrong branch to
executed. Otherwise, the probability that the correct branch
is executed is 1�X . We multiply this probability by the error
incurred by the correct branch, and add it to the probability
of taking the incorrect branch, to obtain the error incurred
by executing a quantum conditional statement.
Our error logic contains two external components: (1)

)# (d, %) = (d̂, X) uses the tensor network approximator
to approximate [[%]] (d), obtaining d̂ and an approximation
error bound X ; and (2) k · k(d̂,X) is the (d̂, X)-diamond norm,
which characterizes the error bound generated by a single
gate under the noise model l . The algorithms used to com-
pute these components are explained in §5 and §6, respec-
tively, while the soundness proof of our inference rules is
given in supplementary material A.
We demonstrate how these rules can be applied to the

GHZ circuit of Example 2.1 as follows. The input state is
d = |00i h00|, and the program is e�l (@0); û⇠#$)l (@0,@1).
We �rst compute the constrained diamond norm n1 = k eHl �
H k(d,0) , and apply the G��� rule to obtain:

(d, 0) ` e�l (@0)  n1

Then, we use the tensor network approximator to compute
)# (d,� (@0)), whose result is (d̂, X). Using such a predicate,
we compute the (d̂, X)-diamond norm n2 = küCNOTl �
CNOT k(d̂,X) . Applying the G��� rule again, we obtain:

(d̂, X) ` û⇠#$)l (@0,@1)  n2

Finally, we apply the S�� rule:

(d, 0) `
⇣e�l (@0); û⇠#$)l (@0,@1)

⌘
 n1 + n2

5
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Figure 6. Tensor network representation of various tensors.

which gives the error bound of the noisy program, n1 + n2.

5 Quantum State Approximation
Gleipnir uses tensor networks to adaptively compute the
contraints of input quantum state using an approximate
state d̂ and its distance X from the ideal state d . We provide
the background of tensor networks in §5.1, present how to
use tensor networks to approximate quantum states in §5.2,
and then give an example in §5.3.

5.1 Tensor network

Tensors. Tensors describe the the multilinear relationship
between sets of objects in vector spaces, and can be repre-
sented by multi-dimensional arrays. The rank of a tensor
indicates the dimensionality of its array representation: vec-
tors have rank 1, matrices rank 2, and superoperators rank 4
(since they operate over rank 2 density matrices).

Contraction. Tensor contraction generalizes vector inner
products and matrix multiplication. A contraction between
two tensors speci�es an index for each tensor, sums over
these indices and produces a new tensor. The contraction of
two tensors with ranks 0 and 1 will have rank 0 + 1 � 2; for
example, if we contract the �rst index in 3-tensor � and the
second index in 2-tensor ⌫, the output will be a 3-tensor:

(� ⇥1,2 ⌫)9:; =
’
C

�C 9:⌫;C

Tensor product. The tensor product is calculated like an
outer product; if two tensors have ranks a and b respectively,
their tensor product is a rank 0 + 1 tensor. For example, the
tensor product of 2-tensor � and 2-tensor ⌫ is a 4-tensor:

(� ⌦ ⌫)8 9:; = �8 9⌫:;

Tensor networks. Tensor network (TN) representation is
a graphical calculus for reasoning about tensors, with an
intuitive representation of various quantum objects. Intro-
duced in the 1970s by Penrose [33], this notation is used in
quantum information theory [11, 43, 51–53, 59], as well as
in other such �elds as machine learning [10, 44, 45].
As depicted in Fig. 6, tensor networks consist of nodes

and edges. 1 Each node represents a tensor, and each edge
out of the node represents an index of the tensor. As illus-
trated in Fig. 7, the resulting network will itself constitute a

1Note that the shape of the nodes does not have any mathematical meaning;
it is merely used to distinguish di�erent types of tensors.

� ⌫

(a) Matrix multiplication �⌫

k k

(b) Outer product |k i hk |
Figure 7. Tensor network representation for two matrix operations.
In general, tensor contractions are represented by linking edges,
and tensor products by juxtaposition.

|0i
|0i

�

(a) Quantum circuit.

|0i
|0i

�
⇠#$)

(b) Tensor network.
Figure 8. The GHZ state, represented as a quantum circuit (a) and
a tensor network (b). When we evaluate the output of the circuit,
we can see that the input state |00i (enclosed in the blue box), the
� gate � ⌦ � (enclosed in the middle red box), and the ⇠#$) gate
(enclosed in the brown box. When evaluating the tensor network in
(b), the output is the same as the program output,

�
|00i + |11i

�
/
p
2.

whole tensor, with each open-ended edge representing one
index for the �nal tensor. The graphical representation of
a quantum program can be directly interpreted as a tensor
network. For example, the 2-qubit GHZ state circuit in Fig. 2
can be represented by a tensor network, as shown in Fig. 8.

Transforming tensor networks. To speed up the evalua-
tion of a large tensor network, we can apply reduction rules
to transform and simplify the network structure. In Table 1,
we summarize some common reduction rules we use. The
G��� C���������� rule transforms a vectork and a matrix
* connected to it into a new vector q that is the product of*
andk . The S������������ A���������� rule transforms a
superoperator E and a matrix d connected to it into a matrix
d̂ that represents the application of the superoperator E to d .
The S������� V���� D������������ (SVD) rule transforms
a matrix " into the product of three matrices: * , ⌃, and
+ †. The special matrix ⌃ =

Õ
9 f 9 | 9i h 9 | is a diagonal matrix,

often represented by a diamond in graph. By dropping small
singular values in the diagonal matrix ⌃, we obtain a simpler
tensor network which closely approximates the original one.

5.2 Approximate quantum states
In this section, we describe our tensor network approximator
algorithm computing )# (d, %) = (d̂, X), such that the trace
distance between our approximation d̂ and the perfect output
[[%]] (d) satis�es )

�
d̂, [[%]] (d)

�
 X . At each stage of the al-

gorithm, we use Matrix Product State (MPS) tensor networks,
a special class of tensor networks, to approximate quantum
states. MPS uses 2= matrices to represent a 2=-length vec-
tor, which greatly reduces the computational cost. The MPS
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Tensor network * k ! q
E
d

! d̂ " ! * f ++ †

Dirac notation * |k i = |qi E(d) = d̂ " =
Õ

9 f 9* | 9i h 9 |+ †

Rank 1 2 2

Table 1. Examples of tensor network transformations for basic quantum operations.

�1 �2 �3 �4 �5 �6

81 82 83 84 85 86
Figure 9. An example of matrix product state of six qubits.

tensor networks take a sizeF as an argument, which deter-
mines the space of representable states. WhenF is not big
enough to represent all possible quantum states, the MPS is
just an approximation to quantum states, whose approxima-
tion bound depends onF . The MPS representation with size
F of a quantum statek (represented as a vector) is:

|k iMPS :=
’

81,...,8=

� (81)
1 � (82)

2 · · ·� (8=)
= |8182 · · · 8=i

where � (81)
1 is a row vector of dimensionF , � (82)

2 , . . . ,� (8=�1)
=�1

areF⇥F matrices, and� (8=)
= is a column vector of dimension

F . 8 9 is the value of a basis |8182 · · · 8=i at position 9 , which
can be 0 or 1. For example, to represent the 3-qubit state�
|000i + |010i + |001i

�
/3 in MPS, we should �nd matrices

� (0)
1 ,� (1)

1 ,� (0)
2 ,� (1)

2 ,� (0)
3 ,� (1)

3 such that

� (0)
1 � (0)

2 � (0)
3 = � (0)

1 � (1)
2 � (0)

3 = � (0)
1 � (0)

2 � (1)
3 =

1
3
,

while � (81)
1 � (82)

2 � (83)
3 = 0 for all (81, 82, 83) < (0, 0, 0), (0, 1, 0),

or (0, 0, 1).
� (0)
8 and � (1)

8 can be seen together as a 3-tensor �8 (�0
and �= are 2-tensors) where the superscript is taken as the
third index besides the two indices of the matrix. The MPS
in total can be seen as a tensor network in Fig. 9. �1, . . . ,�=

are linked together in a line, while 81, . . . , 8= are open wires.
Our approximation algorithm works by initializing the

MPS to the input state in vector form, and applying each
gate from the quantum program to the MPS, approximating
the intermediate state at each step as an MPS and computing
the distance between MPS and the ideal state. Since MPS
only needs to maintain 2= tensors, i.e., � (0)

1 , � (1)
1 , � (0)

2 , � (1)
2 ,

· · · , � (0)
= , � (1)

= , this procedure can be done e�ciently with
a polynomial time complexity. After applying all quantum
gates, we obtain an MPS that approximates the output state
of the quantum program, as well as an approximation bound
by summing together all accumulated approximation errors
incurred by the approximation process. Our approximation
algorithm consists of the following stages:

�8

⌧

�0
8

Figure 10. Applying a one-qubit gate to an MPS. We contract the
MPS node for the qubit and the gate (in the dashed box), resulting
in another 3-tensor MPS node.

Initialization. Let |B1B2 · · · B=i be the input state for an =-
qubit quantum circuit. For all : 2 [1,=], we initialize� (B: )

: =

⇢ and � (1�B: )
: = 0, where ⇢ is the matrix that ⇢1,1 = 1 and

⇢8, 9 = 0 for all 8 < 1, 9 < 1.

Applying one-qubit gates. Applying a one-qubit gate on
an MPS always results in an MPS, and thus does not incur
any approximation error. For a single-qubit gate ⌧ on qubit
8 , we update the tensor �8 to �0

8 as follows:

�0 (B)
8 =

’
B0 2{0,1}

⌧BB0�
(B0)
8 for B = 0 or 1

In the tensor network representation, such application amounts
to contracting the tensor for the gate with �8 (see Fig. 10).

Applying two-qubit gates. If we are applying a two-qubit
gate ⌧ on two adjacent qubits 8 and 8 + 1, we only need
to modify �8 and �8+1. We �rst contract �8 , �8+1 to get an
2F ⇥ 2F matrix" :"

� (0)
8

� (1)
8

# h
� (0)
8+1 � (1)

8+1

i
=

"00 "01
"10 "11

�
= "

Then, we apply the two-qubit gate to it.

" 0
8 9 =

’
:,;

⌧8 9:;":;

We then need to decompose this newmatrix" 0 back into two
tensors. We �rst apply the S������� V���� D������������
rule on the contracted matrix:

" 0 = * ⌃+ †

When F is not big enough to represent all possible quan-
tum states, " 0 introduces approximation errors and may
not be a contraction of two tensors. Thus, we truncate the
lower half of the singular values in ⌃, enabling the tensor
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Figure 11. Applying a two-qubit gate on two adjacent qubits to the MPS, via (i) node contraction, (ii) singular value decomposition, and (iii)
singular value truncation with re-normalization.

�1 �2 �3 �4 �5 �6

⌫1 ⌫2 ⌫3 ⌫4 ⌫5 ⌫6

Figure 12. Tensor network representation of the inner product of
two MPSs. An open wire of one MPS is linked with an open wire
of another, which denotes the summation over 81, . . . , 8= .

decomposition while reducing the error:

⌃ ⇡

⌃0 0
0 0

�

Therefore, we arrive at a new MPS whose new tensors �0
8

and �0
8+1 are calculated as follows:"

� (0)0
8 ⇤

� (1)0
8 ⇤

#
= * ,


� (0)0
8+1 � (1)0

8+1
⇤ ⇤

�
= ⌃0+

where ⇤ is part of that we drop. After truncation, we renor-
malize the state to a norm-1 vector.
Figure 11 shows the above procedure in tensor network

form by (1) �rst applying G��� C���������� rule for �8 ,
�8+1 and ⌧ , (2) using S������� V���� D������������ rule
to decompose the contracted tensor, (3) truncating the inter-
nal edge toF width, and �nally (4) calculating the updated
�0
8 and �0

8+1. If we want to apply a two-qubit gate to non-
adjacent qubits, we add swap gates to move the two qubits
together, and apply the gate on the two adjacent qubits.

Bounding approximation errors. When applying 2-qubit
gates, we compute an MPS to approximate the gate applica-
tion. Each time we do so, we must estimate the error due to
this approximation. Since the truncated values themselves
comprise an MPS state, we may determine the error by sim-
ply calculating the trace distance between the states before
and after truncation.
The trace distance of two MPS states can be calculated

from the inner product of these two MPS:

X := T
�
|qi hq | , |k i hk |

�
=
p
1 � | hq |k i |2.

The inner product of two states |k i and |qi (represented
using � and ⌫ in their MPS forms) is de�ned as follows:

hk |qi =
’

81,...,8=

D
� (81)
1 · · ·� (8=)

= ,⌫ (81)
1 · · ·⌫ (8=)

=

E

Figure 12 shows its tensor network graphical representation.

In our approximation algorithm, we can iteratively calcu-
late the distance from qubit 1 to qubit = by �rst determining:

⇡1 = � (0)
1 ⌫ (0)†

1 +� (1)
1 ⌫ (1)†

1

Then, we repeatedly apply tensors to the rest of qubits:

⇡8 = � (0)
8 ⇡8�1⌫

(0)†
8 +� (1)

8 ⇡8�1⌫
(1)†
8

leading us to the �nal result of ⇡= = hk |qi. In the tensor
network graphical representation, this algorithm is a left-to-
right contraction, as shown in Fig. 13.

Given the calculated distance of each step, we must com-
bine them to obtain the overall approximation error. For some
arbitrary quantum program with C 2-qubit gates, let the trun-
cation errors be X1, X2, . . . , XC when applying the 2-qubit gates
61,62, ...,6C . The �nal approximation error is X =

ÕC
8=1 X8 . To

show this, we consider the approximation of one 2-qubit gate.
Let |k i denote some quantum state, and | ˆ?B8i its approxima-
tion with bounded error X0. After applying a 2-qubit gate ⌧
to the approximate MPS state, we obtain the truncated result
|qi with bounded error X1. We now have:

k⌧ |k i � |qi k  k⌧ |k i �⌧ |k̂ i k + k⌧ |k̂ i � |qi k
= k |k i � |k̂ i k + k⌧ |k̂ i � |qi k
= X0 + X1 . (1)

where k |k i � |qi k = ) ( |k i hk | , |qi hq |). The inequality
holds because of the triangular inequality of quantum state
distance, and the fact that ⌧ is unitary, thus preserving the
norm. Repeating this for each step, we know that the total
approximation error is bounded by the sum of all approx-
imation errors. The local density operator also has an ap-
proximation error, which is also bound by the sum because
partial traces do not increase trace distance.

Complexity analysis. The time complexity of all the op-
erations above scales polynomially with respect to the MPS
size F , number of qubits =, and number of gates< in the
program. To be precise, applying a one-qubit gate requires
only matrix addition, with$ (F2) time. Applying a two-qubit
gate requires matrix multiplication and SVD, in $ (F3) time.
Computing inner product of two MPS (e.g. for contraction)
requires$ (=) of matrix multiplications, incurring an overall
time complexity of$ (=F3). Since the algorithm scanning all
< gates in the program, the total complexity is $ (<=F3).

Although a perfect approximation (i.e., a full simulation)
requires an MPS size that scales exponentially with respect
to the number of qubits, our approximation algorithm allows
Gleipnir to be con�gured with smaller MPS sizes, sacri�cing
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Figure 13. Contraction of the inner product of two MPS. We �rst contract �1 and ⌫1 to get ⇡1. Then contract ⇡1, �2 and ⌫2 to ⇡2. And
then ⇡2,�3 and ⌫3 to ⇡3. Repeating this process will result a single tensor node ⇡= , i.e., the �nal answer.

some precision in favor of e�ciency and enabling its practical
use for real-world quantum programs.

Correctness. From the quantum program semantics de-
�ned in Fig. 3, we know that we can compute the output
state by applying all gates in the program in sequence. Fol-
lowing Eq. (1), we know the total error bound for our ap-
proximation algorithm is bounded by sum of the bounds of
each step. Thus, we can conclude that our algorithm cor-
rectly approximates the output state, and correctly bounds
the approximation error in doing so:

Theorem 5.1. Let the output of our approximation algorithm
be (d̂, X) = TN(d, %). The trace distance between the approxi-
mation and perfect output is bound by X :

T
⇣
d̂, [[%]] (d)

⌘
 X .

5.3 Example: GHZ circuit
We revisit the GHZ circuit in Fig. 2 to walk through how
we approximate quantum states with tensor networks. This
same technique can be applied to larger and more complex
quantum circuits, discussed in §7.

Approximation using 2-wide MPS. Since the program
only contains two qubits, an MPS with sizeF = 2 can already
perfectly represent all possible quantum states such that no
approximation error will be introduced. Assume the input
state is |00i. First, we initialize all the tensors based on the
input state |00i:

� (0)
1 = [1, 0], � (1)

1 = [0, 0], � (0)
2 = [1, 0]) , � (1)

2 = [0, 0])

Then, we apply the �rst � gate to qubit 1, changing only
� (0)
1 and � (1)

1 :

� (0)
1 = [1, 0]/

p
2, � (1)

1 = [1, 0]/
p
2

To apply the CNOT gate on qubit 1 and 2, we �rst compute
matrix" and" 0:

" =

1/
p
2 0

1/
p
2 0

�
, " 0 =


1/
p
2 0

0 1/
p
2

�

We then decompose" 0 using SVD to get the new MPS:

� (0)
1 = [1, 0], � (1)

1 = [0, 1],

� (0)
2 = [1/

p
2, 0]) , � (1)

2 = [0, 1/
p
2])

We can see that the output will be d̂ = |00i+|11ip
2

and X = 0,

since � (0)
1 � (0)

2 = � (1)
1 � (1)

2 = 1/
p
2 while other values of 80, 81

result 0.

Approximation using 1-wide MPS. To show how we cal-
culate the approximation error, we use the simplest form of
MPS with sizeF = 1. All � ( 9)

8 will become numbers.
We �rst initialize the MPS to represent |00i:

� (0)
1 = 1, � (1)

1 = 0, � (0)
2 = 1, � (1)

2 = 0.

Then, we apply the � gate to qubit 1:

� (0)
1 = 1/

p
2, � (1)

1 = 1/
p
2, � (0)

2 = 1, � (1)
2 = 0.

After that, we apply the CNOT gate. We compute" and" 0:

" =

1/
p
2 0

1/
p
2 0

�
, " 0 =


1/
p
2 0

0 1/
p
2

�

We decompose" 0 using SVD:

* = + † =

1 0
0 1

�
, ⌃ =


1/
p
2 0

0 1/
p
2

�
.

Since there are 2 non-zero singular values, we need to drop
the lower half. Finally, we obtain �0

1 and �
0
2:

� (0)
1 = 1, � (1)

1 = 0, � (0)
2 = 1/

p
2, � (1)

2 = 0.

We renormalize the MPS:

� (0)
1 = 1, � (1)

1 = 0, � (0)
2 = 1, � (1)

2 = 0.

Thus, the output approximate state is |00i.
To calculate the approximation error bound, we represent

the part we drop as an MPS ⌫:

⌫ (0)
1 = 0, ⌫ (1)

1 = 1, ⌫ (0)
2 = 0, ⌫ (1)

2 =
p
2.

Let the unnormalized �nal state be |�i, the dropped state be
|⌫i. Then, the �nal output is

p
2 |�i and the ideal output is

|�i + |⌫i. The trace distance between the state is

X =
q
1 � | h

p
2�|� + ⌫i2 | = 1/

p
2.

Therefore, the �nal output is d̂ = |00i h00| and X = 1/
p
2.

9
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6 Computing the (d̂, X)-Diamond Norm
In §4, we introduced our quantum error logic using the (d̂, X)-
diamond norm, while treating its computation algorithm as
a black box. In this section, we describe how to e�ciently cal-
culate the (d̂, X)-diamond norm given (d̂, X,U, E). We show
that (d̂, X) can be transformed into (&, _) in supplementary
material B.

Constrained diamondnorm. In (d̂, X)-diamond norm, the
input state din is constrained by

) (d̂, din)  X

We �rst compute the local densitymatrix of d̂ which is d 0, and
since trace distance does not increase, we have ) (d 0, d)  X .
Recall for any matrix d , we have kd k�  ) (d), where k · k�
is the Frobenius norm which is the square root of the sum
of all elements in a matrix. Therefore, from ) (d 0, d)  X ,
we know that kd 0 � d kF < X , which means that tr(d 0d) �
kd 0k� (kd 0k��X). Then, to compute the (d̂, X)-diamond norm,
we extend the result ofWatrous [57] by adding the constraint
of tr(d 0d) � kd 0k� (kd 0k� � X), such that (d̂, X)-diamond
norm can be computed by the following SDP:

Theorem6.1. The (d̂, X)-diamond norm | |�| |(d̂,X) can be solved
by SDP in Eq. (2).

maximize tr(� (�), )
subject to � ⌦ d <,

tr(d 0d) � kd 0k� (kd 0k� � X)
, < 0, d < 0, tr(d) = 1

(2)

where � is the Choi-Jamiolkowski isomorphism [8] and � =
U � E . Let the optimal value of SDP in Eq. (2) be n . We
conclude that:

k�k(d̂,X)  n

SDP size. The size of SDP in Eq. (2) is exponential with
respect to the number of qubits of any quantum gate, rather
than of the whole program. Since near-term (NISQ) quan-
tum computers are unlikely to support quantum gates with
greater than 2 qubits, we can treat the size of the SDP prob-
lem as a constant, for the purposes of discussing its time
complexity.

Computing local density matrix. The local density ma-
trix represents the local information of a quantum state.
It is de�ned using a partial trace on the (global) density
for the part of the state we want to observe. For example,
the local density operator on the �rst qubit of |00i+|11ip

2
is

[[0.5, 0.5], [0.5, 0.5]], meaning that the �rst qubit of the state
is half |0i and half |1i.
In Eq. (2), we need to compute the local density matrix

d 0 of d̂ about the qubit(s) & that the noise represented by
� acts on. d̂ is represented by an MPS. The calculation of
a local density operator of a MPS works similarly to how

we calculate inner products, except the wire 8: where : is a
qubit that we want to observe.

7 Evaluation
In this section, we evaluate Gleipnir on using a set of realistic
near-term quantum programs.We compare the bounds given
by Gleipnir to the bounds given by other methods, as well
as the error we experimentally measured from a IBM’s real
quantum device. All simulations and our approximations are
performed on an Intel Xeon W-2175 (28 cores @ 4.3 GHz) 62
GB memory, and a 512 GB Intel SSD Pro 600p.

7.1 Simulation
We evaluated Gleipnir on several important quantum pro-
grams, under a sample noise model containing the most
common type of quantum noises. We compared the bound
produced by Gleipnir with the worse-case bound given by
the unconstrained diamond norm.

Noise model. In our experiments, our quantum circuits are
con�gured such that, with probability ? = 10�4, each noisy
one-qubit gate has either a bit �ip (- ):

�(d) = (1 � ?)d + ?-d-

or a phase �ip (/ ):

�(d) = (1 � ?)d + ?/d/

Each two qubit gate also has a bit �ip or phase �ip on its �rst
qubit.

Framework con�guration. For the approximator, we can
adjust the size of the MPS network, depending on available
computational resources; the larger the size, the tighter error
bound. In all experiments, we use an MPS of size 128.

Baseline. To evaluate the performance of the error bound
given by Gleipnir, we compared it with a worst-case bound
calculated using the unconstrained diamond norm (see §2.3).
For each noisy quantum gate, we �rst compute its uncon-
strained diamond norm distance to the perfect gate, and
obtain the worst-case bound by summing all unconstrained
diamond norms. The unconstrained diamond norm distance
of a bit-�ipped gate and a perfect gate is given by:

k� � � k⇧ = k (?- � - + (1 � ?)� ) � � k⇧
= ? k- � - � � k⇧
= ?

where - � - denotes the function that maps d to -d- . The
diamond norm of a phase-�ipped gate is derived similarly.
Therefore, the total noise is bounded by =? , where = is the
number of noisy gates, due to additivity of diamond norms.
Because every gate has a noise, the worst case bound is
simply proportional to the number of gates in the program.

10
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Qubit Gate Gleipnir bound Running LQR [21] with Running Worst-case
Benchmark number number (⇥10�4) time (s) full simulator (⇥10�4) time (s) bound (⇥10�4)

QAOA_line_10 10 27 0.05 2.77 0.05 215.2 27
Isingmodel10 10 480 335.6 31.6 335.6 4701.8 480
QAOARandom20 20 160 136.6 19.8 - (timed out) 160
QAOA4reg_20 20 160 138.8 12.5 - (timed out) 160
QAOA4reg_30 30 240 207.0 25.8 - (timed out) 240
Isingmodel45 45 2265 1739.4 338.0 - (timed out) 2265

QAOA50 50 399 344.1 58.7 - (timed out) 399
QAOA75 75 597 517.2 113.7 - (timed out) 597
QAOA100 100 677 576.7 191.9 - (timed out) 677

Table 2. Simulation results of our model (F = 128) and the baseline on di�erent quantum programs, showing the bounds given by Gleipnir’s
(d̂, X)-diamond norm, the (&, _)-diamond norm with full simulation, and the unconstrained diamond norm. Simulations time out if they run
for longer than 24 hours. Note that the worst case bound is directly proportional to the number of gates.

Figure 14. Simulation results of our model on program
Isingmodel45 using di�erent MPS size.

We also compared our error bound with what we obtain
from LQR [21], using a full quantum program simulator to
generate best quantum predicate. This approach’s running
time is exponential to the number of qubits, and times out
(runs for longer than 24 hours) on programs with � 20 qubits.

Programs. We analyzed two classes of quantum programs
that are expected to be most useful in the near-term, namely:

• The Quantum Approximate Optimization Algorithm
(QAOA) [12], which can be used to solve combinatorial
optimization problems. We use it to �nd the max-cut
for various graphs, with qubit sizes from 10 to 100.

• The Ising model [41], which is a thermodynamic model
for magnets widely used in quantum mechanics. We
run the Ising model with sizes 10 and 45.

Evaluation. Results are shown in Table 2. Gleipnir’s bounds
are 15% ⇠ 30% tighter than what the unconstrained diamond
norm gives, on large quantum circuits with qubit sizes � 20.
On small qubit size circuits, our bound is as strong as the
exponential time method with full simulation.

We also evaluated how MPS size impacts the performance
of Gleipnir. As we can see for the Isingmodel45 program
(Fig. 14), larger MPS sizes result in tighter error bounds, at

0 1 2 3 4

5 6 7 �

10 11 12 13

15 16 17 1�

�

14

1�

Figure 15. The coupling map of the IBM Boeblingen quantum
computer, where each node represents a qubit. Only qubit pairs
with a connecting edge can be used to implement a 2-qubit gate.

the cost of longer run times, with marginal returns beyond a
certain size. We found that a size of 128 seemed to perform
best for our candidate programs, though in general, this pa-
rameter can be adjusted according to precision requirements
and the availability of computational resources. Note that
one cannot feasibly compute the precise error bound of the
Isingmodel45 program, since that requires computing the
245 ⇥ 245 matrix representation of the program’s output.

7.2 Evaluating quantum compilation error
mitigation

To demonstrate that Gleipnir can be used to evaluate the
error mitigation performance of quantum compilers for real
quantum computers today, we designed a small experiment
based on the noise-adaptive qubit mapping problem [5, 29].
When executing a quantum program on a real quantum com-
puter, a quantum compiler must decide which physical qubit
that each logical qubit should be mapped to, in accordance
with the quantum computer’s coupling map (e.g., Fig. 15).
Since quantum devices do not have uniform noise across
qubits, a quantum compiler’s mapping protocol should aim
to map qubits such that the quantum program is executed
with as little noise as possible.
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Mapping Gleipnir bound Measured error
0-1-2 0.211 0.160
1-2-3 0.128 0.073
2-3-4 0.162 0.092

Table 3. Error bounds generated by Gleipnir on di�erent mappings
compared with the noise we observed experimentally.

Experiment design. We compared three di�erent qubit
mappings of the 3-qubit GHZ circuit (see Fig. 2), @0 �@1 �@2,
@1�@2�@3, and @2�@3�@4, where @8 represents 8th physical
qubit.We ran our circuit on our quantum computer with each
qubit mapping, and measured the output to obtain a classical
probability distribution. We computed the measured error
by taking the statistical distance of this distribution from
the distribution of the ideal output state ( |000i + |111i)/

p
2.

We also used Gleipnir to compute the noise bound for each
mapping, based on our quantum computer’s noise model.
Because the trace distance represents the maximum possible
statistical distance of any measurement on two quantum
states (see §2.3), the statistical distance we computed should
be bounded by the trace distance computed by Gleipnir.

Experiment setup. We conducted our experiment using
the IBM Quantum Experience[22] platform, using the IBM
Boeblingen 20-qubit device to run our quantum programs
(Fig. 15). Because Gleipnir needs a noise model to compute
its error bound, we constructed a model for the device using
publicly available data from IBM [22] in addition to measure-
ments from tests we ran on the device. We identi�ed two
di�erent types of noise:

1. Gate errors occur because gate operations cannot be
performed perfectly. We used quantum process to-
mography [31, 36] to test each individual gate (� and
⇠#$) in our case) and reconstruct their noisy super-
operator representation.

2. Qubit decoherence errors occur because qubits are not
perfectly isolated, and may interact with their envi-
ronment. We obtained the device’s decoherence errors
from the IBMQ database’s ) 1 and ) 2 device data [22].

Results. Our experimental results are shown in Table 3.
Gleipnir’s bounds are consistent with the real noise level, and
successfully predicts the noise levels of di�erent mapping:
1�2�3 has the least noise, while 0�1�2 has the most. This
illustrates how Gleipnir can be used to inform the design of
noise-adaptive mapping protocols.

8 Related Work

Error bounding quantum programs. Robust projective
quantum Hoare logic [62] is an extension of Quantum Hoare
Logic that supports error bounding using the worst-case dia-
mond norm. In contrast, Gleipnir uses the more �ne-grained
(d̂, X)�diamond norm to provide tighter error bounding.

Like Gleipnir, LQR [21] is a framework for formally reason-
ing about quantum program errors, using the (&, _)-diamond
norm as its error metric. LQR supports reasoning about pro-
grams that use more advanced quantum computing features,
such as quantum loops. However, it does not specify any
practical method for obtaining non-trivial predicates. In con-
trast, Gleipnir can automatically compute (d̂, X) predicates
using its )# algorithm. We further show these computed
predicates can be reduced to (&, _) predicates (see supple-
mentary material B). In other words, our quantum error logic
can be understood as an implementation re�ning LQR: (d̂, X)
predicates computed using Gleipnir can be used to obtain
non-trivial postconditions for the quantum Hoare triples
required by LQR’s sequence rule, which, by the soundness
of our )# algorithm, are guaranteed to be valid.

Error simulation. Current error simulation methods can
be roughly divided into two classes: (1) direct simulation
methods based on solving the Schrödinger’s equation or
the master equation [27], which do not scale beyond a few
qubits [32]; and (2) approximate methods, based on either
Cli�ord circuit approximation [6, 17, 18, 26] or classical sam-
pling methods with Monte-Carlo simulations [28, 42, 48, 50].
These methods are e�cient, but only work on speci�c classes
of quantum circuits. In contrast, Gleipnir can be applied to
general quantum circuits, and scales well beyond 20 qubits.

Resource estimation beyond error. Quantum compilers
such as Qiskit Terra [2] and Sca�CC [23] perform entangle-
ment analysis for quantum programs. The QuRE [47] tool-
box provides coarse-grained resource estimation for fault-
tolerant implementations of quantum algorithms. On the
theoretical side, quantum resource theories also consider the
estimation of coherence [46, 58], entanglement [34, 35], and
magic state stability [20, 49, 56]. However, these frameworks
are still based on the matrix representation of quantum states
and are only applicable to very small quantum programs.

Tensor network approximation. Multi-dimensional ten-
sor networks such as PEPS [24] and MERA [14] may model
quantum states more precisely than MPS. However, they are
computationally impractical: contracting higher-dimensional
tensor networks involves tensors with orders greater than 4,
which are prohibitively expensive to manipulate.

9 Conclusion
We have presented Gleipnir, a methodology for computing
veri�ed error bounds of quantum programs and evaluat-
ing the error mitigation performance of quantum compiler
transformations. Our simulation results show that Gleipnir
provides up to 33% tighter error bounds in quantum circuits
with qubits ranging from 10 to 100 and the generated error
bounds are consistent with the ones measured using real
quantum devices.
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