

# Gleipnir: Toward Practical Error Analysis for Quantum Programs

paper #27

## Abstract

Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum (NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the  $(\hat{\rho}, \delta)$ -diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state  $\hat{\rho}$  and its distance  $\delta$  to the ideal state  $\rho$ . This predicate  $(\hat{\rho}, \delta)$  can be computed *adaptively* using tensor networks based on *Matrix Product States* (MPS). Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the  $(\hat{\rho}, \delta)$ -diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.

## 1 Introduction

Recent quantum supremacy experiments [4] have heralded the Noisy Intermediate-Scale Quantum (NISQ) era [40], where noisy quantum computers with 50-100 qubits are used to achieve tangible performance gains over classical computers. While this goal is promising, there remains the engineering challenge of accounting for erroneous quantum operations on noisy hardware [3]. Compared to classical bits, quantum bits (qubits) are much more fragile and error-prone. The theory of Quantum Error Correction (QEC) [9, 15, 30, 38, 39] enables fault tolerant computation [7, 15, 37] using redundant qubits, but full fault tolerance is still prohibitively expensive for modern noisy devices—some  $10^3$  to  $10^4$  physical qubits are required to encode a single logical qubit [13, 25].

To reconcile quantum computation with NISQ computers, quantum compilers perform transformations for error mitigation [54] and noise-adaptive optimization [29]. To evaluate these compiler transformations, we must compare the error bounds of the source and compiled quantum programs.

Analyzing the error of quantum programs, however, is practically challenging. Although one can naively calculate the “distance” (i.e., error) between ideal and noisy outputs

using their matrix representations [30], this approach is impractical for real-world quantum programs, whose matrix representations can be exponentially large—for example, a 20-qubit quantum circuit is represented by a  $2^{20} \times 2^{20}$  matrix—too large to feasibly compute.

Rather than directly calculating the output error using matrix representations, an alternative approach employs *error metrics*, which can be computed more efficiently. A common error metric for quantum programs is the unconstrained diamond norm [1]. However, this metric only gives a *worst-case* error analysis: it is calculated only using quantum gates’ noise models, and does not take into account any information about quantum state. In extreme cases, it overestimates errors by up to two orders of magnitude [55]. A more realistic metric must take input quantum state into account, since this also affects the output error.

The logic of quantum robustness (LQR) [21] was the first technique to use quantum state in the error metrics to compute tighter error bounds. This work introduces the  $(Q, \lambda)$ -diamond norm, which analyzes output errors given that the input quantum state satisfies some quantum predicate  $Q$  to degree  $\lambda$ . LQR extends the Quantum Hoare Logic [60] with the  $(Q, \lambda)$ -diamond norm to produce logical judgments of the form  $(Q, \lambda) \vdash \tilde{P} \leq \epsilon$ , which deduces the error bound  $\epsilon$  for a noisy program  $\tilde{P}$ . While theoretically promising, this work raises open questions in practice. Consider the following sequence rule in their logic:

$$\frac{(Q_1, \lambda) \vdash \tilde{P}_1 \leq \epsilon_1 \quad (Q_2, \lambda) \vdash \tilde{P}_2 \leq \epsilon_2 \quad \{Q_1\}P_1\{Q_2\}}{(Q_1, \lambda) \vdash (\tilde{P}_1; \tilde{P}_2) \leq \epsilon_1 + \epsilon_2}$$

It is unclear how to obtain a quantum predicate  $Q_2$  that is both a valid postcondition after executing  $\tilde{P}_1$  while being strong enough to produce useful error bounds for  $\tilde{P}_2$ .

This paper presents Gleipnir, an adaptive error analysis methodology for quantum programs that addresses the above challenges and answers the following three open questions: (1) How to compute suitable constraints for the input quantum state used by the error metrics? (2) How to reason about error bounds without manually verifying quantum programs with respect to pre- and postconditions? (3) How practical is computing verified error bounds for quantum programs, to evaluate the error mitigation performance of quantum compiler transformations?

First, in prior work, searching for a non-trivial postcondition  $(Q, \lambda)$  for a given quantum program is prohibitively costly: existing methods either compute postconditions by

111 fully simulating quantum programs using matrix representations [60], or reduce this problem to an SDP (Semi-Definite  
 112 Programming) problem whose size is exponential to the number of qubits used in the quantum program [61]. In practice,  
 113 for large quantum programs ( $\geq 20$  qubits), these methods  
 114 cannot produce any postconditions other than  $(I, 0)$  (i.e., the  
 115 identity matrix  $I$  to degree 0, analogous to a “true” predicate),  
 116 reducing the  $(Q, \lambda)$ -diamond norm to the unconstrained dia-  
 117 mond norm and failing to yield non-trivial error bounds.  
 118

119 To overcome this limitation, Gleipnir introduces the  $(\hat{\rho}, \delta)$ -  
 120 diamond norm, a new error metric for input quantum states  
 121 whose distance from some *approximated* quantum state  $\hat{\rho}$  is  
 122 bounded by  $\delta$ . Given a quantum program and a predicate  
 123  $(\hat{\rho}, \delta)$ , Gleipnir computes its diamond norm by reducing it  
 124 to a constant size SDP problem.

125 To obtain the predicate  $(\hat{\rho}, \delta)$ , Gleipnir uses Matrix Prod-  
 126 uct States (MPS), a class of tensor networks, to represent and  
 127 approximate quantum states. Rather than fully simulating  
 128 the quantum program or producing an exponentially com-  
 129 plex SDP problem, our MPS-based tensor network  $TN(\rho_0, P)$   
 130 *approximates*  $(\hat{\rho}, \delta)$  for some input state  $\rho_0$  and program  $P$ ,  
 131 taking polynomial time with respect to the size of the MPS  
 132 tensor network, the number of qubits, and the number of  
 133 quantum gates. In contrast with prior work, our MPS-based  
 134 approach is *adaptive*—one may adjust the approximation pre-  
 135 cision by varying the size of the MPS such that tighter error  
 136 bounds can be computed using greater computational re-  
 137 sources. Gleipnir provides more flexibility between the tight  
 138 but inefficient full simulation and the efficient but unrealistic  
 139 worst-case analysis.

140 Second, instead of verifying a predicate using Quantum  
 141 Hoare Logic, Gleipnir develops a lightweight logic based on  
 142  $(\hat{\rho}, \delta)$ -diamond norms for reasoning about quantum program  
 143 error, using judgments of the form:

$$(\hat{\rho}, \delta) \vdash \tilde{P}_\omega \leq \epsilon$$

144 This judgement states that the error of the noisy program  $\tilde{P}_\omega$   
 145 under the noise model  $\omega$  is upper-bounded by  $\epsilon$  when the  
 146 input state is constrained by  $(\hat{\rho}, \delta)$ . As shown in the sequence  
 147 rule of our quantum error logic:

$$\begin{array}{l} (\hat{\rho}, \delta) \vdash \tilde{P}_{1\omega} \leq \epsilon_1 \quad TN(\hat{\rho}, P_1) = (\hat{\rho}', \delta') \quad (\hat{\rho}', \delta + \delta') \vdash \tilde{P}_{2\omega} \leq \epsilon_2 \\ \hline (\hat{\rho}, \delta) \vdash \tilde{P}_{1\omega}; \tilde{P}_{2\omega} \leq \epsilon_1 + \epsilon_2 \end{array}$$

148 the approximated state  $\hat{\rho}'$  and its  $\delta'$  are computed using the  
 149 MPS-based tensor network  $TN$ .

150 By computing  $(\hat{\rho}, \delta)$ , our sequence rule eliminates the  
 151 cost of validating non-trivial postconditions. We prove the  
 152 correctness of  $TN$ , which ensures that the resulting state of  
 153 executing  $P_1$  satisfies the predicate  $(\hat{\rho}', \delta + \delta')$ .

154 Third, we enable the practical error analysis of quantum  
 155 programs and transformations, which was previously only  
 156 theoretically possible but infeasible due to the limitations of  
 157 prior work. To understand the scalability and limitation of  
 158 our error analysis methodology, we conducted case studies

159 using two classes of quantum programs that are expected to  
 160 be most useful in the near-term—the Quantum Approximate  
 161 Optimization Algorithm [12] and the Ising model [41]—with  
 162 qubits ranging from 10 to 100. Our measurements show that,  
 163 with 128-wide MPS networks, Gleipnir can always generate  
 164 error bounds within 6 minutes. For small programs ( $\leq 10$   
 165 qubits), Gleipnir’s error bounds are as precise as the ones  
 166 generated using full simulation. For large programs ( $\geq 20$   
 167 qubits), Gleipnir’s error bounds are 15% to 30% tighter than  
 168 those calculated using unconstrained diamond norms, while  
 169 full simulation invariably times out after 24 hours.

170 We explored Gleipnir’s effectiveness in evaluating the er-  
 171 ror mitigation performance of quantum compiler transfor-  
 172 mations. We conducted a case study evaluating qubit mapping  
 173 protocols [29], and showed that the performance ranking for  
 174 different transformations using the error bounds generated  
 175 by our methodology is consistent with the ranking using  
 176 errors measured from the real-world experimental data.

177 Throughout this paper, we address the key practical limi-  
 178 tations of error analysis for quantum programs. In summary,  
 179 our main contributions are:

- 180 • The  $(\hat{\rho}, \delta)$ -diamond norm, a new error metric con-  
 181 strained by input quantum state, that can be efficiently  
 182 computed using constant-size SDPs.
- 183 • An MPS-based tensor network approach to adaptively  
 184 compute the quantum predicate  $(\hat{\rho}, \delta)$ .
- 185 • A lightweight logic for reasoning about quantum error  
 186 bounds without the need to verify quantum predicates.
- 187 • Case studies using quantum programs and transfor-  
 188 mations on real quantum devices, demonstrating the  
 189 feasibility of adaptive quantum error analysis for com-  
 190 puting verified error bounds for quantum programs  
 191 and evaluating the error mitigation performance of  
 192 quantum compilation.

## 2 Quantum Programming Background

193 **Notation.** In this paper, we use Dirac notation, or “bra-ket”  
 194 notation, to represent quantum states. The “ket” notation  
 195  $|\psi\rangle$  denotes a column vector, which corresponds to a pure  
 196 quantum state; the “bra” notation  $\langle\psi|$  denotes its conjugate  
 197 transpose, a row vector.  $\langle\phi|\psi\rangle$  represents the inner prod-  
 198 uct of two vectors, and  $|\psi\rangle\langle\phi|$  the outer product. We use  $\rho$   
 199 to denote a density matrix, a matrix that represents mixed  
 200 quantum state.  $U$  usually denotes a unitary matrix which  
 201 represents quantum gates while  $U^\dagger$  denotes its conjugate  
 202 transpose; curly letters like  $\mathcal{U}$  denote noisy or ideal quantum  
 203 operations, represented by maps between density matrices  
 204 (superoperators); upper case Greek letters such as  $\Phi$  repre-  
 205 sent quantum noise as superoperators.

### 2.1 Quantum computing basics

206 **Quantum states.** The simplest quantum state is a quan-  
 207 tum bit—a *qubit*. Unlike a classical bit, a qubit’s state can  
 208

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

**Figure 1.** Matrix representations of common quantum gates.  $X$  denotes a bit flip,  $Z$  denotes a phase flip,  $H$  denotes a Hadamard gate, and  $CNOT$  denotes a controlled NOT gate.

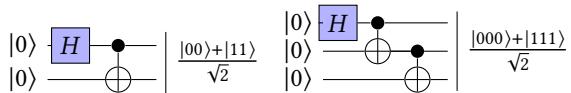
be the superposition of two logical states,  $|0\rangle$  and  $|1\rangle$ , that correspond to classical logical states 0 and 1. In general, a qubit is a unit vector in the 2-dimensional Hilbert space  $\mathbb{C}^2$ , with  $|0\rangle := [1, 0]^\dagger$  and  $|1\rangle := [0, 1]^\dagger$ . In Dirac's notation, we represent a qubit as  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ , where  $|\alpha|^2 + |\beta|^2 = 1$ .

Generally speaking, the state of a quantum program may comprise many qubits. An  $n$ -qubit state can be represented by a unit vector in  $2^n$ -dimensional Hilbert space  $\mathbb{C}^{2^n}$ . For example, a 3-qubit state can be described by an 8-dimensional complex vector, which captures a superposition of 8 basis states,  $|000\rangle, |001\rangle, |010\rangle, \dots, |111\rangle$ .

Besides the pure quantum states described above, there are also *classically mixed* quantum states, i.e., noisy states. An  $n$ -qubit mixed state can be represented by a  $2^n \times 2^n$  density matrix  $\rho = \sum_i p_i |\phi_i\rangle \langle \phi_i|$ , which states that the state has  $p_i$  probability to be  $|\phi_i\rangle$ . For example, a mixed state with half probability of  $|0\rangle$  and  $|1\rangle$  can be represented by  $\frac{|0\rangle\langle 0|+|1\rangle\langle 1|}{2} = I/2$ , where  $I$  is the identity matrix.

**Quantum gates.** Quantum states are manipulated by the application of *quantum gates*, described by unitary matrix representations [30]. Figure 1 shows the matrix representations of some common gates. Applying an operator  $U$  to a quantum state  $|\phi\rangle$  results in the state  $U|\phi\rangle$ , and applying it to a density matrix  $\rho = \sum_i p_i |\phi_i\rangle \langle \phi_i|$  gives  $U\rho U^\dagger$ . For example, the bit flip gate  $X$  maps  $|0\rangle$  to  $|1\rangle$  and  $|1\rangle$  to  $|0\rangle$ , while the Hadamard gate  $H$  maps  $|0\rangle$  to  $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ . There are also multi-qubit gates, such as  $CNOT$ , which does not change  $|00\rangle$  and  $|01\rangle$  but maps  $|10\rangle$  and  $|11\rangle$  to each other. Applying a gate on a subset of qubits will not change other qubits. For example, applying the  $X$  gate to the first qubit of  $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$  will result in  $\frac{|10\rangle+|01\rangle}{\sqrt{2}}$ . This can be seen as an extension  $X \otimes I$  of the matrix to a larger space using a tensor product.

**Quantum measurements.** Measurements extract classical information from quantum states, and collapse the quantum state according to *projection matrices*  $M_0$  and  $M_1$ . When we measure some state  $\rho$ , we will obtain the result 0 with collapsed state  $M_0\rho M_0^\dagger/p_0$  and probability  $p_0 = \text{tr}(M_0\rho M_0^\dagger)$ , or the result 1 with collapsed state  $M_1\rho M_1^\dagger/p_1$  and probability  $p_1 = \text{tr}(M_1\rho M_1^\dagger)$ . Both quantum gates and quantum measurements act linearly on density matrices, and can be expressed as *superoperators*, completely positive trace-preserving maps  $\mathcal{E} \in L(\mathcal{H}) : \mathcal{H}_n \rightarrow \mathcal{H}_m$  where  $\mathcal{H}_n$  is the density matrix space of dimension  $n$  and  $L$  is the space of linear operators.



**Figure 2.** Two quantum circuits, producing the 2-qubit (left) and 3-qubit (right) GHZ states.

## 2.2 Quantum programs

Quantum programs comprise a configuration of quantum gates and measurements, called a quantum circuit. Graphically, qubits are represented as wires, and gates as boxes joining the wires; CNOT gates are represented by a dot on the control qubit linked with an  $\oplus$  on the other qubit.

**Example 2.1** (GHZ circuit). The Greenberger–Horne–Zeilinger (GHZ) state [16] is a class of important entangled quantum states, used in many quantum communication protocols [19]. The simplest GHZ state is the 2-qubit GHZ state, which is  $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$  in Dirac notation. Figure 2 shows a typical graphical representation of a quantum circuit that produces the 2-qubit GHZ state.

**Syntax.** The syntax of quantum programs is as follows:

```
P ::= skip | P1; P2 | U(q1, ..., qk)
      | if q = |0> then P0 else P1
```

Each component behaves similarly to its classical counterpart: `skip` denotes the empty program;  $P_1; P_2$  sequences programs;  $U(q_1, \dots, q_k)$  applies the  $k$ -qubit gate  $U$  to the qubits  $q_1, \dots, q_k$ ; `if  $q = |0\rangle$  then  $P_0$  else  $P_1$`  measures the qubit  $q$ , executes  $P_0$  if the result is 0, and executes  $P_1$  otherwise. The only difference between classical and quantum programs is that the measurement in the `if` statement will collapse the state, and the branch is executed on the collapsed state. Using this syntax, the 2-qubit GHZ state circuit in Fig. 2 is written as:

$H(q_0); CNOT(q_0, q_1)$

Note that this work does not currently consider advanced quantum program constructs such as quantum loops, as these are not likely to be supported on near-term quantum machines.

**Denotational semantics.** The denotational semantics of quantum programs are defined as superoperators acting on density matrices  $\rho$ , and are shown in Fig. 3. An empty program keeps the state unchanged; a sequence of operations are applied to the state one by one; a single quantum gate is directly applied as a superoperator; a measurement branch statement maps the state into a classical mix of the two results from executing the two branches.

## 2.3 Quantum errors

Quantum programs are always noisy, and that noise may (undesirably) perturb the quantum state. For example, the

$$\begin{aligned}
331 \quad & \llbracket \text{skip} \rrbracket(\rho) := \rho \\
332 \quad & \llbracket [P_1; P_2] \rrbracket(\rho) := \llbracket P_2 \rrbracket(\llbracket P_1 \rrbracket(\rho)) \\
333 \quad & \llbracket U(q_1, \dots, q_k) \rrbracket(\rho) := U\rho U^\dagger \\
334 \quad & \llbracket \text{if } q = |0\rangle \text{ then } P_0 \text{ else } P_1 \rrbracket(\rho) := \llbracket P_0 \rrbracket(M_0\rho M_0^\dagger) + \\
335 \quad & \quad \llbracket P_1 \rrbracket(M_1\rho M_1^\dagger) \\
336 \quad & \quad \dots \\
337 \quad & \quad \dots \\
338 \quad & \quad \dots \\
339 \quad & \quad \dots
\end{aligned}$$

**Figure 3.** Denotational semantics of quantum programs.

bit flip noise flips the state of a qubit with probability  $p$ . This noise can be represented by a superoperator  $\Phi$  such that:

$$\Phi(\rho) = (1 - p)\rho + pX\rho X$$

i.e., the state remains the same with probability  $1 - p$  and changes to  $X\rho X$  with probability  $p$ , where  $X$  is the matrix representation of the bit flip gate (Fig. 1). Generally, all effects from quantum noise can be represented by superoperators.

**Noisy quantum programs.** The noise model  $\omega$  specifies the noisy version  $\tilde{U}_\omega$  of each gate  $U$  on the targeting noisy device and can then specify noisy quantum programs  $\tilde{P}_\omega$ . The noisy semantics  $\llbracket P \rrbracket_\omega$  of program  $P$  can be defined as the semantics  $\llbracket \tilde{P}_\omega \rrbracket$  of the noisy program  $\tilde{P}_\omega$ , whose semantics are similar to that of a noiseless program. The rules of skip, sequence, and measurement statements remain the same, while for gate application, the noisy version of each gate is applied as follows:

$$\begin{aligned}
358 \quad & \llbracket U(q_1, \dots, q_k) \rrbracket_\omega(\rho) = \llbracket \tilde{U}_\omega(q_1, \dots, q_k) \rrbracket(\rho) = \tilde{U}_\omega(\rho) \\
359 \quad & \text{where } \tilde{U}_\omega \text{ is the superoperator representation of } \tilde{U}_\omega.
\end{aligned}$$

**Metrics for quantum errors.** To quantitatively evaluate the effect of noise, we need to measure some notion of “distance” between quantum states. The *trace distance*  $T$  measures the distance between the noisy state  $\rho_n$  and the ideal, noiseless state  $\rho_{\text{Id}}$ :

$$T(\rho_n, \rho_{\text{Id}}) := \frac{1}{2} \|\rho_n - \rho_{\text{Id}}\|_1 = \frac{1}{2} \max_p P(\rho_n - \rho_{\text{Id}})$$

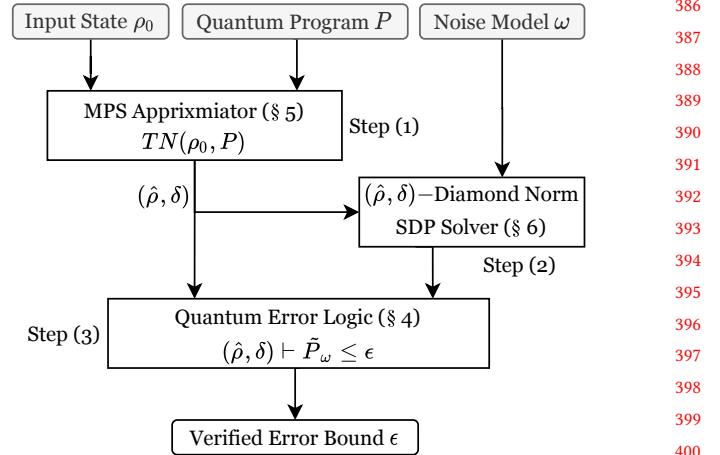
where  $P$  is a positive semidefinite matrix with trace 1, and  $\|\cdot\|_p$  is the Schatten- $p$  norm, defined as:

$$\|\cdot\|_p := \left( \text{tr}(\cdot^\dagger \cdot) \right)^{\frac{1}{p}}$$

The trace distance is the maximum statistical distance over all possible measurements of two quantum states. Note that trace distance cannot be directly calculated without information about the entire two quantum states.

The *diamond norm* metric is typically used to obtain a *worst case* error bound. The diamond norm between two superoperators  $\mathcal{U}$  and  $\mathcal{E}$  is defined as:

$$\begin{aligned}
381 \quad & \|\mathcal{U} - \mathcal{E}\|_\diamond := \frac{1}{2} \max_{\rho: \text{tr}(\rho)=1} T(\mathcal{U} \otimes \mathcal{I}_A(\rho), \mathcal{E} \otimes \mathcal{I}_A(\rho)) \\
382 \quad & = \max_{\rho: \text{tr}(\rho)=1} \|\mathcal{U} \otimes \mathcal{I}_A(\rho) - \mathcal{E} \otimes \mathcal{I}_A(\rho)\|_1
\end{aligned}$$



**Figure 4.** Gleipnir workflow.

Intuitively, this formula calculates the maximum trace distance between the output state after applying the erroneous operation versus applying the noiseless operation, for any *arbitrary* input state. Diamond norms can be efficiently computed by simple Semi-Definite Programs (SDP)[57].

However, as shown by the Wallman-Flammia bound [55], diamond norms may overestimate errors by up to two orders of magnitude, precluding its application in more precise analyses of noisy quantum programs. The diamond norm metric fails to incorporate information about the quantum state of the circuit that may help tighten the error bound. For example, a bit flip error ( $X$  gate) does nothing to the state  $\frac{\sqrt{2}}{2}(|0\rangle + |1\rangle)$  (the state is unchanged after flipping  $|0\rangle$  and  $|1\rangle$ ), but flips the  $|1\rangle$  state to  $|0\rangle$ . However, both trace distance and diamond norm are agnostic to the input state, and thus limit our ability to tightly bound the errors of quantum circuits.

$(Q, \lambda)$ -diamond norm [21] is a more fine-grained metric:

$$\|\mathcal{U} - \mathcal{E}\|_\diamond := \max_{\rho: \text{tr}(\rho)=1, \text{tr}(Q\rho) \geq \lambda} \|\mathcal{U} \otimes \mathcal{I}_A(\rho) - \mathcal{E} \otimes \mathcal{I}_A(\rho)\|_1$$

Unlike the unconstrained diamond norm, the  $(Q, \lambda)$ -diamond norm constrains the input state to satisfy the predicate  $Q$  to degree  $\lambda$ ; specifically, the input state  $\rho$  must satisfy  $\text{tr}(Q\rho) \geq \lambda$ . The  $(Q, \lambda)$ -diamond norm may produce tighter error bounds than the unconstrained diamond norm by utilizing quantum state information, but leaves open the problem of practically computing a non-trivial predicate  $Q$ .

### 3 Gleipnir Workflow

To use the input quantum state to tighten the computed error bound, Gleipnir introduces a new constrained diamond norm,  $(\hat{\rho}, \delta)$ -diamond norm, and a judgment  $(\hat{\rho}, \delta) \vdash \tilde{P}_\omega \leq \epsilon$  to reason about the error of quantum circuits. Gleipnir uses Matrix Product State (MPS) tensor networks to approximate quantum state and compute the predicate  $(\hat{\rho}, \delta)$ .

$$\frac{(\hat{\rho}, \delta) \vdash \tilde{P}_\omega \leq 0}{\| \tilde{\mathcal{U}}_\omega - \mathcal{U} \|_{(\hat{\rho}, \delta)} \leq \epsilon} \text{ SKIP} \quad \frac{(\hat{\rho}, \delta) \vdash \tilde{U}_\omega(q_1, \dots) \leq \epsilon}{\| \tilde{\mathcal{U}}_\omega - \mathcal{U} \|_{(\hat{\rho}, \delta)} \leq \epsilon} \text{ GATE} \quad \frac{(\hat{\rho}, \delta) \vdash \tilde{P}_{1\omega} \leq \epsilon_1 \quad TN(\hat{\rho}, P_1) = (\hat{\rho}', \delta') \quad (\hat{\rho}', \delta + \delta') \vdash \tilde{P}_{2\omega} \leq \epsilon_2}{(\hat{\rho}, \delta) \vdash \tilde{P}_{1\omega}; \tilde{P}_{2\omega} \leq \epsilon_1 + \epsilon_2} \text{ SEQ}$$

$$\frac{(\hat{\rho}, \delta') \vdash \tilde{P}_\omega \leq \epsilon' \quad \epsilon' \leq \epsilon \quad \delta' \geq \delta}{(\hat{\rho}, \delta) \vdash \tilde{P}_\omega \leq \epsilon} \text{ WEAKEN} \quad \frac{(\hat{\rho}_0, \delta) \vdash \tilde{P}_{0\omega} \leq \epsilon \quad (\hat{\rho}_1, \delta) \vdash \tilde{P}_{1\omega} \leq \epsilon}{(\hat{\rho}, \delta) \vdash \left( \text{if } q = |0\rangle \text{ then } \tilde{P}_{0\omega} \text{ else } \tilde{P}_{1\omega} \right) \leq (1 - \delta)\epsilon + \delta} \text{ MEAS}$$

**Figure 5.** Inference rules of the quantum error logic.

Figure 4 illustrates Gleipnir’s workflow for reasoning about the error bound of some quantum program  $P$  with input state  $\rho_0$  and noise model  $\omega$  of quantum gates on the target device:

1. Gleipnir first approximates the quantum state  $\hat{\rho}$  and its distance  $\delta$  to the ideal state  $\rho$  using MPS tensor networks  $TN(\rho_0, P) = (\hat{\rho}, \delta)$  (see §5).
2. Gleipnir then uses the constrained  $(\hat{\rho}, \delta)$ -diamond norm metric to bound errors of noisy quantum gates given a noise model  $\omega$  of the target device. Gleipnir converts the problem of efficiently computing the  $(\hat{\rho}, \delta)$ -diamond norm to solving a polynomial-size SDP problem, given  $(\hat{\rho}, \delta)$  computed in step 1 (see §6).
3. Gleipnir employs a lightweight quantum error logic to compute the error bound of  $\tilde{P}_\omega$  using the predicate  $(\hat{\rho}, \delta)$  computed in step 1 and the error bounds for all used quantum gates generated by the SDP solver in step 2 (see §4).

Throughout this paper, we will return to the GHZ state circuit (Example 2.1) as our running example. We will use the program  $H(q_0); CNOT(q_0, q_1)$ , the input state  $|00\rangle\langle 00|$ , and the noise model  $\omega$ , describing the noisy gates  $\tilde{H}_\omega$  and  $\widetilde{CNOT}_\omega$ . Following the steps described above, we will use Gleipnir to obtain the final judgment of:

$$(|00\rangle\langle 00|, 0) \vdash \left( \widetilde{H}_\omega(q_0) ; \widetilde{CNOT}_\omega(q_0, q_1) \right) \leq \epsilon$$

where  $\epsilon$  is the total error bound of the noisy program.

## 4 Quantum Error Logic

We first introduce our lightweight logic for reasoning about quantum program error bounds. In this section, we treat MPS tensor networks and the algorithm to compute the  $(\hat{\rho}, \delta)$ -diamond norm as black boxes, deferring their discussion to later sections (§5 and §6, respectively).

The  $(\hat{\rho}, \delta)$ -diamond norm is defined as follows:

$$\|\mathcal{U} - \mathcal{E}\|_{(\hat{\rho}, \delta)} := \frac{1}{2} \max_{\substack{\rho: \text{tr}(\rho) = 1, \\ T(\rho, \hat{\rho}) \leq \delta}} \text{Tr} \left( \mathcal{U} \otimes \mathcal{I}_A(\rho), \mathcal{E} \otimes \mathcal{I}_A(\rho) \right)$$

That is, a diamond norm with the additional constraint that the ideal input density matrix of  $\rho$  needs to be within distance  $\delta$  of  $\hat{\rho}$ , i.e.,  $T(\rho, \hat{\rho}) \leq \delta$ .

We use the judgment  $(\hat{\rho}, \delta) \vdash \tilde{P}_\omega \leq \epsilon$  to convey that when running the noisy program  $\tilde{P}_\omega$  on an input state whose trace distance is at most  $\delta$  from  $\hat{\rho}$ , the trace distance between the

noisy and noiseless outputs of program  $P$  is at most  $\epsilon$  under the noise model  $\omega$  of the underline device.

The five inference rules of our quantum error logic are shown in Fig. 5. The **SKIP** rule states that an empty program does not produce any noise. The **GATE** rule states that we can bound the error of a gate step by calculating the gate's  $(\hat{\rho}, \delta)$ -diamond norm under the noise model  $\omega$ . The **WEAKEN** rule states that the same error bound holds when we strengthen the precondition with a smaller approximation bound  $\delta'$ . The **SEQ** rule states that the errors of a sequence can be summed together with the help of the tensor network approximator  $TN$ . The **MEAS** rule bounds the error in an **if** statement, with  $\delta$  probability that the result of measuring the noisy input differs from measuring state  $\rho$ , causing the wrong branch to be executed. Otherwise, the probability that the correct branch is executed is  $1 - \delta$ . We multiply this probability by the error incurred by the correct branch, and add it to the probability of taking the incorrect branch, to obtain the error incurred by executing a quantum conditional statement.

Our error logic contains two external components: (1)  $TN(\rho, P) = (\hat{\rho}, \delta)$  uses the tensor network approximator to approximate  $[[P]](\rho)$ , obtaining  $\hat{\rho}$  and an approximation error bound  $\delta$ ; and (2)  $\|\cdot\|_{(\hat{\rho}, \delta)}$  is the  $(\hat{\rho}, \delta)$ -diamond norm, which characterizes the error bound generated by a single gate under the noise model  $\omega$ . The algorithms used to compute these components are explained in §5 and §6, respectively, while the soundness proof of our inference rules is given in supplementary material A.

We demonstrate how these rules can be applied to the GHZ circuit of Example 2.1 as follows. The input state is  $\rho = |00\rangle\langle 00|$ , and the program is  $\widetilde{H}_\omega(q_0); \widetilde{CNOT}_\omega(q_0, q_1)$ . We first compute the constrained diamond norm  $\epsilon_1 = \|\widetilde{H}_\omega - \mathcal{H}\|_{(\rho, 0)}$ , and apply the GATE rule to obtain:

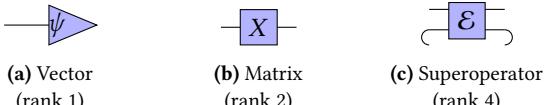
$$(\rho, 0) \vdash \widetilde{H}_\omega(q_0) \leq \epsilon_1$$

Then, we use the tensor network approximator to compute  $TN(\rho, H(q_0))$ , whose result is  $(\hat{\rho}, \delta)$ . Using such a predicate, we compute the  $(\hat{\rho}, \delta)$ -diamond norm  $\epsilon_2 = \|\overline{CNOT}_\omega - CNOT\|_{(\hat{\rho}, \delta)}$ . Applying the GATE rule again, we obtain:

$$(\hat{\rho}, \delta) \vdash \widetilde{CNOT}_\omega(q_0, q_1) \leq \epsilon_2$$

Finally, we apply the SEQ rule:

$$(\rho, 0) \vdash \left( \widetilde{H}_\omega(q_0); \widetilde{CNOT}_\omega(q_0, q_1) \right) \leq \epsilon_1 + \epsilon_2$$



**Figure 6.** Tensor network representation of various tensors.

which gives the error bound of the noisy program,  $\epsilon_1 + \epsilon_2$ .

## 5 Quantum State Approximation

Gleipnir uses tensor networks to adaptively compute the constraints of input quantum state using an approximate state  $\hat{\rho}$  and its distance  $\delta$  from the ideal state  $\rho$ . We provide the background of tensor networks in §5.1, present how to use tensor networks to approximate quantum states in §5.2, and then give an example in §5.3.

## 5.1 Tensor network

**Tensors.** Tensors describe the the multilinear relationship between sets of objects in vector spaces, and can be represented by multi-dimensional arrays. The *rank* of a tensor indicates the dimensionality of its array representation: vectors have rank 1, matrices rank 2, and superoperators rank 4 (since they operate over rank 2 density matrices).

**Contraction.** Tensor contraction generalizes vector inner products and matrix multiplication. A contraction between two tensors specifies an index for each tensor, sums over these indices and produces a new tensor. The contraction of two tensors with ranks  $a$  and  $b$  will have rank  $a + b - 2$ ; for example, if we contract the first index in 3-tensor  $A$  and the second index in 2-tensor  $B$ , the output will be a 3-tensor:

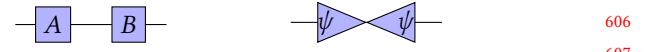
$$(A \times_{1,2} B)_{jkl} = \sum_t A_{tjk} B_{lt}$$

**Tensor product.** The tensor product is calculated like an outer product; if two tensors have ranks  $a$  and  $b$  respectively, their tensor product is a rank  $a + b$  tensor. For example, the tensor product of 2-tensor  $A$  and 2-tensor  $B$  is a 4-tensor:

$$(A \otimes B)_{ijkl} = A_{ij} B_{kl}$$

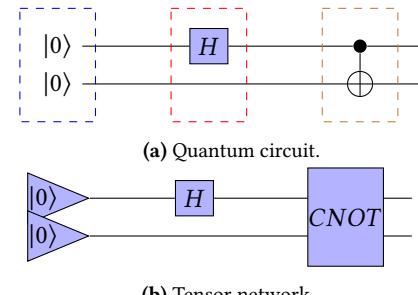
**Tensor networks.** Tensor network (TN) representation is a graphical calculus for reasoning about tensors, with an intuitive representation of various quantum objects. Introduced in the 1970s by Penrose [33], this notation is used in quantum information theory [11, 43, 51–53, 59], as well as in other such fields as machine learning [10, 44, 45].

As depicted in Fig. 6, tensor networks consist of nodes and edges.<sup>1</sup> Each node represents a tensor, and each edge out of the node represents an index of the tensor. As illustrated in Fig. 7, the resulting network will itself constitute a



**(a)** Matrix multiplication  $AB$       **(b)** Outer product  $|\psi\rangle\langle\psi|$

**Figure 7.** Tensor network representation for two matrix operations. In general, tensor contractions are represented by linking edges, and tensor products by juxtaposition.



**Figure 8.** The GHZ state, represented as a quantum circuit (a) and a tensor network (b). When we evaluate the output of the circuit, we can see that the input state  $|00\rangle$  (enclosed in the blue box), the  $H$  gate  $H \otimes I$  (enclosed in the middle red box), and the  $CNOT$  gate (enclosed in the brown box). When evaluating the tensor network in (b), the output is the same as the program output,  $(|00\rangle + |11\rangle)/\sqrt{2}$ .

whole tensor, with each open-ended edge representing one index for the final tensor. The graphical representation of a quantum program can be directly interpreted as a tensor network. For example, the 2-qubit GHZ state circuit in Fig. 2 can be represented by a tensor network, as shown in Fig. 8.

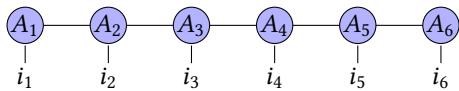
**Transforming tensor networks.** To speed up the evaluation of a large tensor network, we can apply reduction rules to transform and simplify the network structure. In Table 1, we summarize some common reduction rules we use. The GATE CONTRACTION rule transforms a vector  $\psi$  and a matrix  $U$  connected to it into a new vector  $\phi$  that is the product of  $U$  and  $\psi$ . The SUPEROPERATOR APPLICATION rule transforms a superoperator  $\mathcal{E}$  and a matrix  $\rho$  connected to it into a matrix  $\hat{\rho}$  that represents the application of the superoperator  $\mathcal{E}$  to  $\rho$ . The SINGULAR VALUE DECOMPOSITION (SVD) rule transforms a matrix  $M$  into the product of three matrices:  $U$ ,  $\Sigma$ , and  $V^\dagger$ . The special matrix  $\Sigma = \sum_j \sigma_j |j\rangle\langle j|$  is a diagonal matrix, often represented by a diamond in graph. By dropping small singular values in the diagonal matrix  $\Sigma$ , we obtain a simpler tensor network which closely approximates the original one.

## 5.2 Approximate quantum states

In this section, we describe our tensor network approximator algorithm computing  $TN(\rho, P) = (\hat{\rho}, \delta)$ , such that the trace distance between our approximation  $\hat{\rho}$  and the perfect output  $\|P\|(\rho)$  satisfies  $T(\hat{\rho}, \|P\|(\rho)) \leq \delta$ . At each stage of the algorithm, we use Matrix Product State (MPS) tensor networks, a special class of tensor networks, to approximate quantum states. MPS uses  $2n$  matrices to represent a  $2^n$ -length vector, which greatly reduces the computational cost. The MPS

<sup>1</sup>Note that the shape of the nodes does not have any mathematical meaning; it is merely used to distinguish different types of tensors.

|                | GATE CONTRACTION                | SUPEROPERATOR APPLICATION                  | SINGULAR VALUE DECOMPOSITION                           |
|----------------|---------------------------------|--------------------------------------------|--------------------------------------------------------|
| Tensor network | $U \xrightarrow{\psi} \phi$     | $\mathcal{E}(\rho) \rightarrow \hat{\rho}$ | $M \rightarrow U \diamond \sigma V^\dagger$            |
| Dirac notation | $U  \psi\rangle =  \phi\rangle$ | $\mathcal{E}(\rho) = \hat{\rho}$           | $M = \sum_j \sigma_j U  j\rangle \langle j  V^\dagger$ |
| Rank           | 1                               | 2                                          | 2                                                      |

**Table 1.** Examples of tensor network transformations for basic quantum operations.**Figure 9.** An example of matrix product state of six qubits.

tensor networks take a size  $w$  as an argument, which determines the space of representable states. When  $w$  is not big enough to represent all possible quantum states, the MPS is just an *approximation* to quantum states, whose approximation bound depends on  $w$ . The MPS representation with size  $w$  of a quantum state  $\psi$  (represented as a vector) is:

$$|\psi\rangle_{\text{MPS}} := \sum_{i_1, \dots, i_n} A_1^{(i_1)} A_2^{(i_2)} \cdots A_n^{(i_n)} |i_1 i_2 \cdots i_n\rangle$$

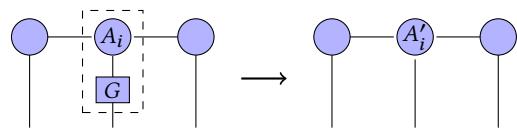
where  $A_1^{(i_1)}$  is a row vector of dimension  $w$ ,  $A_2^{(i_2)}, \dots, A_{n-1}^{(i_{n-1})}$  are  $w \times w$  matrices, and  $A_n^{(i_n)}$  is a column vector of dimension  $w$ .  $i_j$  is the value of a basis  $|i_1 i_2 \cdots i_n\rangle$  at position  $j$ , which can be 0 or 1. For example, to represent the 3-qubit state  $(|000\rangle + |010\rangle + |001\rangle)/\sqrt{3}$  in MPS, we should find matrices  $A_1^{(0)}, A_1^{(1)}, A_2^{(0)}, A_2^{(1)}, A_3^{(0)}, A_3^{(1)}$  such that

$$A_1^{(0)} A_2^{(0)} A_3^{(0)} = A_1^{(0)} A_2^{(1)} A_3^{(0)} = A_1^{(0)} A_2^{(0)} A_3^{(1)} = \frac{1}{\sqrt{3}},$$

while  $A_1^{(i_1)} A_2^{(i_2)} A_3^{(i_3)} = 0$  for all  $(i_1, i_2, i_3) \neq (0, 0, 0), (0, 1, 0), (0, 0, 1)$ .

$A_i^{(0)}$  and  $A_i^{(1)}$  can be seen together as a 3-tensor  $A_i$  ( $A_0$  and  $A_n$  are 2-tensors) where the superscript is taken as the third index besides the two indices of the matrix. The MPS in total can be seen as a tensor network in Fig. 9.  $A_1, \dots, A_n$  are linked together in a line, while  $i_1, \dots, i_n$  are open wires.

Our approximation algorithm works by initializing the MPS to the input state in vector form, and applying each gate from the quantum program to the MPS, approximating the intermediate state at each step as an MPS and computing the distance between MPS and the ideal state. Since MPS only needs to maintain  $2n$  tensors, i.e.,  $A_1^{(0)}, A_1^{(1)}, A_2^{(0)}, A_2^{(1)}, \dots, A_n^{(0)}, A_n^{(1)}$ , this procedure can be done efficiently with a polynomial time complexity. After applying all quantum gates, we obtain an MPS that approximates the output state of the quantum program, as well as an approximation bound by summing together all accumulated approximation errors incurred by the approximation process. Our approximation algorithm consists of the following stages:

**Figure 10.** Applying a one-qubit gate to an MPS. We contract the MPS node for the qubit and the gate (in the dashed box), resulting in another 3-tensor MPS node.

**Initialization.** Let  $|s_1 s_2 \cdots s_n\rangle$  be the input state for an  $n$ -qubit quantum circuit. For all  $k \in [1, n]$ , we initialize  $A_k^{(s_k)} = E$  and  $A_k^{(1-s_k)} = 0$ , where  $E$  is the matrix that  $E_{1,1} = 1$  and  $E_{i,j} = 0$  for all  $i \neq 1, j \neq 1$ .

**Applying one-qubit gates.** Applying a one-qubit gate on an MPS always results in an MPS, and thus does not incur any approximation error. For a single-qubit gate  $G$  on qubit  $i$ , we update the tensor  $A_i$  to  $A'_i$  as follows:

$$A'^{(s)}_i = \sum_{s' \in \{0,1\}} G_{ss'} A_i^{(s')} \quad \text{for } s = 0 \text{ or } 1$$

In the tensor network representation, such application amounts to contracting the tensor for the gate with  $A_i$  (see Fig. 10).

**Applying two-qubit gates.** If we are applying a two-qubit gate  $G$  on two adjacent qubits  $i$  and  $i+1$ , we only need to modify  $A_i$  and  $A_{i+1}$ . We first contract  $A_i, A_{i+1}$  to get an  $2w \times 2w$  matrix  $M$ :

$$\begin{bmatrix} A_i^{(0)} \\ A_i^{(1)} \end{bmatrix} \begin{bmatrix} A_{i+1}^{(0)} & A_{i+1}^{(1)} \end{bmatrix} = \begin{bmatrix} M_{00} & M_{01} \\ M_{10} & M_{11} \end{bmatrix} = M$$

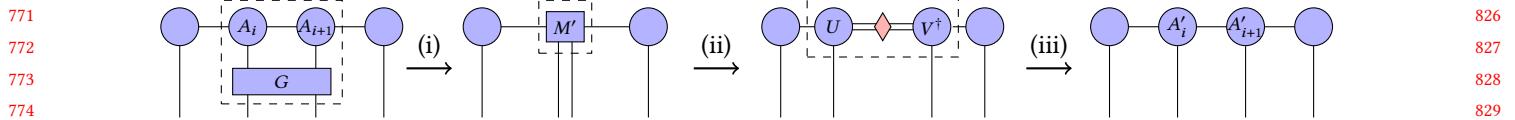
Then, we apply the two-qubit gate to it.

$$M'_{ij} = \sum_{k,l} G_{ijk} M_{kl}$$

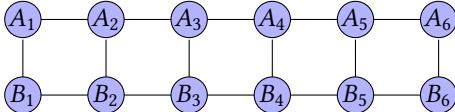
We then need to decompose this new matrix  $M'$  back into two tensors. We first apply the SINGULAR VALUE DECOMPOSITION rule on the contracted matrix:

$$M' = U \Sigma V^\dagger$$

When  $w$  is not big enough to represent all possible quantum states,  $M'$  introduces approximation errors and may not be a contraction of two tensors. Thus, we *truncate* the lower half of the singular values in  $\Sigma$ , enabling the tensor



**Figure 11.** Applying a two-qubit gate on two adjacent qubits to the MPS, via (i) node contraction, (ii) singular value decomposition, and (iii) singular value truncation with re-normalization.



**Figure 12.** Tensor network representation of the inner product of two MPSs. An open wire of one MPS is linked with an open wire of another, which denotes the summation over  $i_1, \dots, i_n$ .

decomposition while reducing the error:

$$\Sigma \approx \begin{bmatrix} \Sigma' & 0 \\ 0 & 0 \end{bmatrix}$$

Therefore, we arrive at a new MPS whose new tensors  $A'_i$  and  $A'_{i+1}$  are calculated as follows:

$$\begin{bmatrix} A_i^{(0)'} & * \\ A_i^{(1)'} & * \end{bmatrix} = U, \begin{bmatrix} A_{i+1}^{(0)'} & A_{i+1}^{(1)'} \\ * & * \end{bmatrix} = \Sigma' V$$

where \* is part of that we drop. After truncation, we renormalize the state to a norm-1 vector.

Figure 11 shows the above procedure in tensor network form by (1) first applying GATE CONTRACTING rule for  $A_i$ ,  $A_{i+1}$  and  $G$ , (2) using SINGULAR VALUE DECOMPOSITION rule to decompose the contracted tensor, (3) truncating the internal edge to  $w$  width, and finally (4) calculating the updated  $A'_i$  and  $A'_{i+1}$ . If we want to apply a two-qubit gate to non-adjacent qubits, we add swap gates to move the two qubits together, and apply the gate on the two adjacent qubits.

**Bounding approximation errors.** When applying 2-qubit gates, we compute an MPS to approximate the gate application. Each time we do so, we must estimate the error due to this approximation. Since the truncated values themselves comprise an MPS state, we may determine the error by simply calculating the trace distance between the states before and after truncation.

The trace distance of two MPS states can be calculated from the inner product of these two MPS:

$$\delta := T(|\phi\rangle\langle\phi|, |\psi\rangle\langle\psi|) = \sqrt{1 - |\langle\phi|\psi\rangle|^2}.$$

The inner product of two states  $|\psi\rangle$  and  $|\phi\rangle$  (represented using  $A$  and  $B$  in their MPS forms) is defined as follows:

$$\langle\psi|\phi\rangle = \sum_{i_1, \dots, i_n} \langle A_1^{(i_1)} \dots A_n^{(i_n)}, B_1^{(i_1)} \dots B_n^{(i_n)} \rangle$$

Figure 12 shows its tensor network graphical representation.

In our approximation algorithm, we can iteratively calculate the distance from qubit 1 to qubit  $n$  by first determining:

$$D_1 = A_1^{(0)} B_1^{(0)\dagger} + A_1^{(1)} B_1^{(1)\dagger}$$

Then, we repeatedly apply tensors to the rest of qubits:

$$D_i = A_i^{(0)} D_{i-1} B_i^{(0)\dagger} + A_i^{(1)} D_{i-1} B_i^{(1)\dagger}$$

leading us to the final result of  $D_n = \langle\psi|\phi\rangle$ . In the tensor network graphical representation, this algorithm is a left-to-right contraction, as shown in Fig. 13.

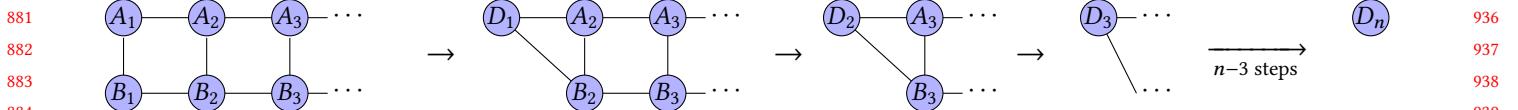
Given the calculated distance of each step, we must combine them to obtain the overall approximation error. For some arbitrary quantum program with  $t$  2-qubit gates, let the truncation errors be  $\delta_1, \delta_2, \dots, \delta_t$  when applying the 2-qubit gates  $g_1, g_2, \dots, g_t$ . The final approximation error is  $\delta = \sum_{i=1}^t \delta_i$ . To show this, we consider the approximation of one 2-qubit gate. Let  $|\psi\rangle$  denote some quantum state, and  $|\hat{\psi}\rangle$  its approximation with bounded error  $\delta_0$ . After applying a 2-qubit gate  $G$  to the approximate MPS state, we obtain the truncated result  $|\phi\rangle$  with bounded error  $\delta_1$ . We now have:

$$\begin{aligned} \|G|\psi\rangle - |\phi\rangle\| &\leq \|G|\psi\rangle - G|\hat{\psi}\rangle\| + \|G|\hat{\psi}\rangle - |\phi\rangle\| \\ &= \||\psi\rangle - |\hat{\psi}\rangle\| + \|G|\hat{\psi}\rangle - |\phi\rangle\| \\ &= \delta_0 + \delta_1. \end{aligned} \tag{1}$$

where  $\||\psi\rangle - |\phi\rangle\| = T(|\psi\rangle\langle\psi|, |\phi\rangle\langle\phi|)$ . The inequality holds because of the triangular inequality of quantum state distance, and the fact that  $G$  is unitary, thus preserving the norm. Repeating this for each step, we know that the total approximation error is bounded by the sum of all approximation errors. The local density operator also has an approximation error, which is also bound by the sum because partial traces do not increase trace distance.

**Complexity analysis.** The time complexity of all the operations above scales polynomially with respect to the MPS size  $w$ , number of qubits  $n$ , and number of gates  $m$  in the program. To be precise, applying a one-qubit gate requires only matrix addition, with  $O(w^2)$  time. Applying a two-qubit gate requires matrix multiplication and SVD, in  $O(w^3)$  time. Computing inner product of two MPS (e.g. for contraction) requires  $O(n)$  of matrix multiplications, incurring an overall time complexity of  $O(nw^3)$ . Since the algorithm scanning all  $m$  gates in the program, the total complexity is  $O(mnw^3)$ .

Although a *perfect* approximation (i.e., a full simulation) requires an MPS size that scales exponentially with respect to the number of qubits, our approximation algorithm allows Gleipnir to be configured with smaller MPS sizes, sacrificing



**Figure 13.** Contraction of the inner product of two MPS. We first contract  $A_1$  and  $B_1$  to get  $D_1$ . Then contract  $D_1, A_2$  and  $B_2$  to  $D_2$ . And then  $D_2, A_3$  and  $B_3$  to  $D_3$ . Repeating this process will result a single tensor node  $D_n$ , i.e., the final answer.

some precision in favor of efficiency and enabling its practical use for real-world quantum programs.

**Correctness.** From the quantum program semantics defined in Fig. 3, we know that we can compute the output state by applying all gates in the program in sequence. Following Eq. (1), we know the total error bound for our approximation algorithm is bounded by sum of the bounds of each step. Thus, we can conclude that our algorithm correctly approximates the output state, and correctly bounds the approximation error in doing so:

**Theorem 5.1.** *Let the output of our approximation algorithm be  $(\hat{\rho}, \delta) = \text{TN}(\rho, P)$ . The trace distance between the approximation and perfect output is bound by  $\delta$ :*

$$T(\hat{\rho}, \text{[P]}(\rho)) \leq \delta.$$

### 5.3 Example: GHZ circuit

We revisit the GHZ circuit in Fig. 2 to walk through how we approximate quantum states with tensor networks. This same technique can be applied to larger and more complex quantum circuits, discussed in §7.

**Approximation using 2-wide MPS.** Since the program only contains two qubits, an MPS with size  $w = 2$  can already perfectly represent all possible quantum states such that no approximation error will be introduced. Assume the input state is  $|00\rangle$ . First, we initialize all the tensors based on the input state  $|00\rangle$ :

$$A_1^{(0)} = [1, 0], A_1^{(1)} = [0, 0], A_2^{(0)} = [1, 0]^T, A_2^{(1)} = [0, 0]^T$$

Then, we apply the first  $H$  gate to qubit 1, changing only  $A_1^{(0)}$  and  $A_1^{(1)}$ :

$$A_1^{(0)} = [1, 0]/\sqrt{2}, \quad A_1^{(1)} = [1, 0]/\sqrt{2}$$

To apply the CNOT gate on qubit 1 and 2, we first compute matrix  $M$  and  $M'$ :

$$M = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 \end{bmatrix}, \quad M' = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix}$$

We then decompose  $M'$  using SVD to get the new MPS:

$$A_1^{(0)} = [1, 0], \quad A_1^{(1)} = [0, 1], \\ A_2^{(0)} = [1/\sqrt{2}, 0]^T, \quad A_2^{(1)} = [0, 1/\sqrt{2}]^T$$

We can see that the output will be  $\hat{\rho} = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$  and  $\delta = 0$ , since  $A_1^{(0)} A_2^{(0)} = A_1^{(1)} A_2^{(1)} = 1/\sqrt{2}$  while other values of  $i_0, i_1$  result 0.

**Approximation using 1-wide MPS.** To show how we calculate the approximation error, we use the simplest form of MPS with size  $w = 1$ . All  $A_i^{(j)}$  will become numbers.

We first initialize the MPS to represent  $|00\rangle$ :

$$A_1^{(0)} = 1, A_1^{(1)} = 0, A_2^{(0)} = 1, A_2^{(1)} = 0.$$

Then, we apply the  $H$  gate to qubit 1:

$$A_1^{(0)} = 1/\sqrt{2}, A_1^{(1)} = 1/\sqrt{2}, A_2^{(0)} = 1, A_2^{(1)} = 0.$$

After that, we apply the CNOT gate. We compute  $M$  and  $M'$ :

$$M = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 \end{bmatrix}, \quad M' = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix}$$

We decompose  $M'$  using SVD:

$$U = V^\dagger = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix}.$$

Since there are 2 non-zero singular values, we need to drop the lower half. Finally, we obtain  $A'_1$  and  $A'_2$ :

$$A_1^{(0)} = 1, A_1^{(1)} = 0, A_2^{(0)} = 1/\sqrt{2}, A_2^{(1)} = 0.$$

We renormalize the MPS:

$$A_1^{(0)} = 1, A_1^{(1)} = 0, A_2^{(0)} = 1, A_2^{(1)} = 0.$$

Thus, the output approximate state is  $|00\rangle$ .

To calculate the approximation error bound, we represent the part we drop as an MPS  $B$ :

$$B_1^{(0)} = 0, B_1^{(1)} = 1, B_2^{(0)} = 0, B_2^{(1)} = \sqrt{2}.$$

Let the unnormalized final state be  $|A\rangle$ , the dropped state be  $|B\rangle$ . Then, the final output is  $\sqrt{2}|A\rangle$  and the ideal output is  $|A\rangle + |B\rangle$ . The trace distance between the state is

$$\delta = \sqrt{1 - |\langle \sqrt{2}A | A + B \rangle|^2} = 1/\sqrt{2}.$$

Therefore, the final output is  $\hat{\rho} = |00\rangle \langle 00|$  and  $\delta = 1/\sqrt{2}$ .

## 991 6 Computing the $(\hat{\rho}, \delta)$ -Diamond Norm

992 In §4, we introduced our quantum error logic using the  $(\hat{\rho}, \delta)$ -  
 993 diamond norm, while treating its computation algorithm as  
 994 a black box. In this section, we describe how to efficiently cal-  
 995 culate the  $(\hat{\rho}, \delta)$ -diamond norm given  $(\hat{\rho}, \delta, \mathcal{U}, \mathcal{E})$ . We show  
 996 that  $(\hat{\rho}, \delta)$  can be transformed into  $(Q, \lambda)$  in supplementary  
 997 material B.

998 **Constrained diamond norm.** In  $(\hat{\rho}, \delta)$ -diamond norm, the  
 1000 input state  $\rho_{\text{in}}$  is constrained by

$$1001 1002 T(\hat{\rho}, \rho_{\text{in}}) \leq \delta$$

1003 We first compute the local density matrix of  $\hat{\rho}$  which is  $\rho'$ , and  
 1004 since trace distance does not increase, we have  $T(\rho', \rho) \leq \delta$ .  
 1005 Recall for any matrix  $\rho$ , we have  $\|\rho\|_F \leq T(\rho)$ , where  $\|\cdot\|_F$   
 1006 is the Frobenius norm which is the square root of the sum  
 1007 of all elements in a matrix. Therefore, from  $T(\rho', \rho) \leq \delta$ ,  
 1008 we know that  $\|\rho' - \rho\|_F < \delta$ , which means that  $\text{tr}(\rho' \rho) \geq$   
 1009  $\|\rho'\|_F (\|\rho'\|_F - \delta)$ . Then, to compute the  $(\hat{\rho}, \delta)$ -diamond norm,  
 1010 we extend the result of Watrous [57] by adding the constraint  
 1011 of  $\text{tr}(\rho' \rho) \geq \|\rho'\|_F (\|\rho'\|_F - \delta)$ , such that  $(\hat{\rho}, \delta)$ -diamond  
 1012 norm can be computed by the following SDP:

1013 **Theorem 6.1.** *The  $(\hat{\rho}, \delta)$ -diamond norm  $\|\Phi\|_{(\hat{\rho}, \delta)}$  can be solved  
 1014 by SDP in Eq. (2).*

$$1015 \begin{aligned} & \text{maximize} && \text{tr}(J(\Phi)W) \\ & \text{subject to} && I \otimes \rho \geq W \\ & && \text{tr}(\rho' \rho) \geq \|\rho'\|_F (\|\rho'\|_F - \delta) \\ & && W \geq 0, \rho \geq 0, \text{tr}(\rho) = 1 \end{aligned} \quad (2)$$

1016 where  $J$  is the Choi-Jamiolkowski isomorphism [8] and  $\Phi =$   
 1017  $\mathcal{U} - \mathcal{E}$ . Let the optimal value of SDP in Eq. (2) be  $\epsilon$ . We  
 1018 conclude that:

$$1019 \|\Phi\|_{(\hat{\rho}, \delta)} \leq \epsilon$$

1020 **SDP size.** The size of SDP in Eq. (2) is exponential with  
 1021 respect to the number of qubits of any *quantum gate*, rather  
 1022 than of the whole program. Since near-term (NISQ) quant-  
 1023 um computers are unlikely to support quantum gates with  
 1024 greater than 2 qubits, we can treat the size of the SDP prob-  
 1025 lem as a constant, for the purposes of discussing its time  
 1026 complexity.

1027 **Computing local density matrix.** The local density ma-  
 1028 trix represents the local information of a quantum state.  
 1029 It is defined using a partial trace on the (global) density  
 1030 for the part of the state we want to observe. For example,  
 1031 the local density operator on the first qubit of  $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$  is  
 1032  $[|0.5, 0.5], [|0.5, 0.5]]$ , meaning that the first qubit of the state  
 1033 is half  $|0\rangle$  and half  $|1\rangle$ .

1034 In Eq. (2), we need to compute the local density matrix  
 1035  $\rho'$  of  $\hat{\rho}$  about the qubit(s)  $Q$  that the noise represented by  
 1036  $\Phi$  acts on.  $\hat{\rho}$  is represented by an MPS. The calculation of  
 1037 a local density operator of a MPS works similarly to how

1038 we calculate inner products, except the wire  $i_k$  where  $k$  is a  
 1039 qubit that we want to observe.

## 1040 7 Evaluation

1041 In this section, we evaluate Gleipnir on using a set of realistic  
 1042 near-term quantum programs. We compare the bounds given  
 1043 by Gleipnir to the bounds given by other methods, as well  
 1044 as the error we experimentally measured from a IBM's real  
 1045 quantum device. All simulations and our approximations are  
 1046 performed on an Intel Xeon W-2175 (28 cores @ 4.3 GHz) 62  
 1047 GB memory, and a 512 GB Intel SSD Pro 600p.

### 1048 7.1 Simulation

1049 We evaluated Gleipnir on several important quantum pro-  
 1050 grams, under a sample noise model containing the most  
 1051 common type of quantum noises. We compared the bound  
 1052 produced by Gleipnir with the worse-case bound given by  
 1053 the unconstrained diamond norm.

1054 **Noise model.** In our experiments, our quantum circuits are  
 1055 configured such that, with probability  $p = 10^{-4}$ , each noisy  
 1056 one-qubit gate has either a bit flip ( $X$ ):

$$1057 \Phi(\rho) = (1 - p)\rho + pX\rho X$$

1058 or a phase flip ( $Z$ ):

$$1059 \Phi(\rho) = (1 - p)\rho + pZ\rho Z$$

1060 Each two qubit gate also has a bit flip or phase flip on its first  
 1061 qubit.

1062 **Framework configuration.** For the approximator, we can  
 1063 adjust the size of the MPS network, depending on available  
 1064 computational resources; the larger the size, the tighter error  
 1065 bound. In all experiments, we use an MPS of size 128.

1066 **Baseline.** To evaluate the performance of the error bound  
 1067 given by Gleipnir, we compared it with a worst-case bound  
 1068 calculated using the unconstrained diamond norm (see §2.3).  
 1069 For each noisy quantum gate, we first compute its uncon-  
 1070 strained diamond norm distance to the perfect gate, and  
 1071 obtain the worst-case bound by summing all unconstrained  
 1072 diamond norms. The unconstrained diamond norm distance  
 1073 of a bit-flipped gate and a perfect gate is given by:

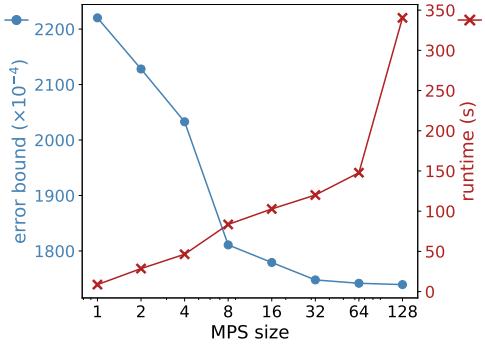
$$1074 \begin{aligned} \|\Phi - I\|_{\diamond} &= \|(pX \circ X + (1 - p)I) - I\|_{\diamond} \\ &= p\|X \circ X - I\|_{\diamond} \\ &= p \end{aligned}$$

1075 where  $X \circ X$  denotes the function that maps  $\rho$  to  $X\rho X$ . The  
 1076 diamond norm of a phase-flipped gate is derived similarly.  
 1077 Therefore, the total noise is bounded by  $np$ , where  $n$  is the  
 1078 number of noisy gates, due to additivity of diamond norms.  
 1079 Because every gate has a noise, the worst case bound is  
 1080 simply proportional to the number of gates in the program.

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

| 1101 | Benchmark    | Qubit number | Gate number | Gleipnir bound ( $\times 10^{-4}$ ) | Running time (s) | LQR [21] with full simulator ( $\times 10^{-4}$ ) | Running time (s) | Worst-case bound ( $\times 10^{-4}$ ) | 1156 |
|------|--------------|--------------|-------------|-------------------------------------|------------------|---------------------------------------------------|------------------|---------------------------------------|------|
| 1102 | QAOA_line_10 | 10           | 27          | 0.05                                | 2.77             | 0.05                                              | 215.2            | 27                                    | 1158 |
| 1103 | Isingmodel10 | 10           | 480         | 335.6                               | 31.6             | 335.6                                             | 4701.8           | 480                                   | 1159 |
| 1104 | QAOARandom20 | 20           | 160         | 136.6                               | 19.8             | -                                                 | (timed out)      | 160                                   | 1160 |
| 1105 | QAOA4reg_20  | 20           | 160         | 138.8                               | 12.5             | -                                                 | (timed out)      | 160                                   | 1161 |
| 1106 | QAOA4reg_30  | 30           | 240         | 207.0                               | 25.8             | -                                                 | (timed out)      | 240                                   | 1162 |
| 1107 | Isingmodel45 | 45           | 2265        | 1739.4                              | 338.0            | -                                                 | (timed out)      | 2265                                  | 1163 |
| 1108 | QAOA50       | 50           | 399         | 344.1                               | 58.7             | -                                                 | (timed out)      | 399                                   | 1164 |
| 1109 | QAOA75       | 75           | 597         | 517.2                               | 113.7            | -                                                 | (timed out)      | 597                                   | 1165 |
| 1110 | QAOA100      | 100          | 677         | 576.7                               | 191.9            | -                                                 | (timed out)      | 677                                   | 1166 |
| 1111 |              |              |             |                                     |                  |                                                   |                  |                                       |      |

**Table 2.** Simulation results of our model ( $w = 128$ ) and the baseline on different quantum programs, showing the bounds given by Gleipnir's  $(\hat{\rho}, \delta)$ -diamond norm, the  $(Q, \lambda)$ -diamond norm with full simulation, and the unconstrained diamond norm. Simulations time out if they run for longer than 24 hours. Note that the worst case bound is directly proportional to the number of gates.



**Figure 14.** Simulation results of our model on program Isingmodel45 using different MPS size.

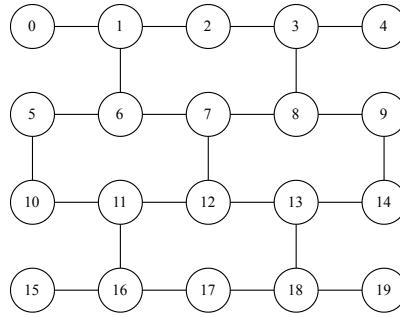
We also compared our error bound with what we obtain from LQR [21], using a full quantum program simulator to generate best quantum predicate. This approach's running time is exponential to the number of qubits, and times out (runs for longer than 24 hours) on programs with  $\geq 20$  qubits.

**Programs.** We analyzed two classes of quantum programs that are expected to be most useful in the near-term, namely:

- The *Quantum Approximate Optimization Algorithm* (QAOA) [12], which can be used to solve combinatorial optimization problems. We use it to find the max-cut for various graphs, with qubit sizes from 10 to 100.
- The *Ising model* [41], which is a thermodynamic model for magnets widely used in quantum mechanics. We run the Ising model with sizes 10 and 45.

**Evaluation.** Results are shown in Table 2. Gleipnir's bounds are 15% ~ 30% tighter than what the unconstrained diamond norm gives, on large quantum circuits with qubit sizes  $\geq 20$ . On small qubit size circuits, our bound is as strong as the exponential time method with full simulation.

We also evaluated how MPS size impacts the performance of Gleipnir. As we can see for the Isingmodel45 program (Fig. 14), larger MPS sizes result in tighter error bounds, at



**Figure 15.** The coupling map of the IBM Boeblingen quantum computer, where each node represents a qubit. Only qubit pairs with a connecting edge can be used to implement a 2-qubit gate.

the cost of longer run times, with marginal returns beyond a certain size. We found that a size of 128 seemed to perform best for our candidate programs, though in general, this parameter can be adjusted according to precision requirements and the availability of computational resources. Note that one cannot feasibly compute the precise error bound of the Isingmodel45 program, since that requires computing the  $2^{45} \times 2^{45}$  matrix representation of the program's output.

## 7.2 Evaluating quantum compilation error mitigation

To demonstrate that Gleipnir can be used to evaluate the error mitigation performance of quantum compilers for real quantum computers today, we designed a small experiment based on the noise-adaptive qubit mapping problem [5, 29]. When executing a quantum program on a real quantum computer, a quantum compiler must decide which physical qubit that each logical qubit should be mapped to, in accordance with the quantum computer's coupling map (e.g., Fig. 15). Since quantum devices do not have uniform noise across qubits, a quantum compiler's mapping protocol should aim to map qubits such that the quantum program is executed with as little noise as possible.

1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210

| 1211 | Mapping | Gleipnir bound | Measured error |
|------|---------|----------------|----------------|
| 1212 | 0-1-2   | 0.211          | 0.160          |
| 1213 | 1-2-3   | 0.128          | 0.073          |
| 1214 | 2-3-4   | 0.162          | 0.092          |

1215 **Table 3.** Error bounds generated by Gleipnir on different mappings  
1216 compared with the noise we observed experimentally.  
1217

1218 **Experiment design.** We compared three different qubit  
1219 mappings of the 3-qubit GHZ circuit (see Fig. 2),  $q_0 - q_1 - q_2$ ,  
1220  $q_1 - q_2 - q_3$ , and  $q_2 - q_3 - q_4$ , where  $q_i$  represents  $i$ th physical  
1221 qubit. We ran our circuit on our quantum computer with each  
1222 qubit mapping, and measured the output to obtain a classical  
1223 probability distribution. We computed the measured error  
1224 by taking the statistical distance of this distribution from  
1225 the distribution of the ideal output state  $(|000\rangle + |111\rangle)/\sqrt{2}$ .  
1226 We also used Gleipnir to compute the noise bound for each  
1227 mapping, based on our quantum computer’s noise model.  
1228 Because the trace distance represents the maximum possible  
1229 statistical distance of any measurement on two quantum  
1230 states (see §2.3), the statistical distance we computed should  
1231 be bounded by the trace distance computed by Gleipnir.  
1232

1233 **Experiment setup.** We conducted our experiment using  
1234 the IBM Quantum Experience[22] platform, using the IBM  
1235 Boeblingen 20-qubit device to run our quantum programs  
1236 (Fig. 15). Because Gleipnir needs a noise model to compute  
1237 its error bound, we constructed a model for the device using  
1238 publicly available data from IBM [22] in addition to measure-  
1239 ments from tests we ran on the device. We identified two  
1240 different types of noise:

- 1241 1. *Gate errors* occur because gate operations cannot be  
1242 performed perfectly. We used quantum process to-  
1243 mography [31, 36] to test each individual gate ( $H$  and  
1244  $CNOT$  in our case) and reconstruct their noisy super-  
1245 operator representation.
- 1246 2. *Qubit decoherence errors* occur because qubits are not  
1247 perfectly isolated, and may interact with their envi-  
1248 ronment. We obtained the device’s decoherence errors  
1249 from the IBMQ database’s  $T1$  and  $T2$  device data [22].  
1250

1251 **Results.** Our experimental results are shown in Table 3.  
1252 Gleipnir’s bounds are consistent with the real noise level, and  
1253 successfully predicts the noise levels of different mapping:  
1254 1 – 2 – 3 has the least noise, while 0 – 1 – 2 has the most. This  
1255 illustrates how Gleipnir can be used to inform the design of  
1256 noise-adaptive mapping protocols.  
1257

## 8 Related Work

1258 **Error bounding quantum programs.** Robust projective  
1259 quantum Hoare logic [62] is an extension of Quantum Hoare  
1260 Logic that supports error bounding using the worst-case dia-  
1261 mond norm. In contrast, Gleipnir uses the more fine-grained  
1262  $(\hat{\rho}, \delta)$ –diamond norm to provide tighter error bounding.  
1263

1264 Like Gleipnir, LQR [21] is a framework for formally reason-  
1265 ing about quantum program errors, using the  $(Q, \lambda)$ -diamond  
1266 norm as its error metric. LQR supports reasoning about pro-  
1267 grams that use more advanced quantum computing features,  
1268 such as quantum loops. However, it does not specify any  
1269 practical method for obtaining non-trivial predicates. In con-  
1270 trast, Gleipnir can automatically compute  $(\hat{\rho}, \delta)$  predicates  
1271 using its  $TN$  algorithm. We further show these computed  
1272 predicates can be reduced to  $(Q, \lambda)$  predicates (see supple-  
1273 mentary material B). In other words, our quantum error logic  
1274 can be understood as an implementation refining LQR:  $(\hat{\rho}, \delta)$   
1275 predicates computed using Gleipnir can be used to obtain  
1276 non-trivial postconditions for the quantum Hoare triples  
1277 required by LQR’s sequence rule, which, by the soundness  
1278 of our  $TN$  algorithm, are guaranteed to be valid.  
1279

1280 **Error simulation.** Current error simulation methods can  
1281 be roughly divided into two classes: (1) direct simulation  
1282 methods based on solving the Schrödinger’s equation or  
1283 the master equation [27], which do not scale beyond a few  
1284 qubits [32]; and (2) approximate methods, based on either  
1285 Clifford circuit approximation [6, 17, 18, 26] or classical sam-  
1286 pling methods with Monte-Carlo simulations [28, 42, 48, 50].  
1287 These methods are efficient, but only work on specific classes  
1288 of quantum circuits. In contrast, Gleipnir can be applied to  
1289 general quantum circuits, and scales well beyond 20 qubits.  
1290

1291 **Resource estimation beyond error.** Quantum compilers  
1292 such as Qiskit Terra [2] and ScaffCC [23] perform entangle-  
1293 ment analysis for quantum programs. The QURE [47] tool-  
1294 box provides coarse-grained resource estimation for fault-  
1295 tolerant implementations of quantum algorithms. On the  
1296 theoretical side, quantum resource theories also consider the  
1297 estimation of coherence [46, 58], entanglement [34, 35], and  
1298 magic state stability [20, 49, 56]. However, these frameworks  
1299 are still based on the matrix representation of quantum states  
1300 and are only applicable to very small quantum programs.  
1301

1302 **Tensor network approximation.** Multi-dimensional ten-  
1303 sor networks such as PEPS [24] and MERA [14] may model  
1304 quantum states more precisely than MPS. However, they are  
1305 computationally impractical: contracting higher-dimensional  
1306 tensor networks involves tensors with orders greater than 4,  
1307 which are prohibitively expensive to manipulate.  
1308

## 9 Conclusion

1309 We have presented Gleipnir, a methodology for computing  
1310 verified error bounds of quantum programs and evaluat-  
1311 ing the error mitigation performance of quantum compiler  
1312 transformations. Our simulation results show that Gleipnir  
1313 provides up to 33% tighter error bounds in quantum circuits  
1314 with qubits ranging from 10 to 100 and the generated error  
1315 bounds are consistent with the ones measured using real  
1316 quantum devices.  
1317

## 1321 References

1322 [1] Dorit Aharonov, Alexei Kitaev, and Noam Nisan. 1998. Quantum  
 1323 circuits with mixed states. In *Proceedings of the thirtieth annual ACM*  
 1324 *symposium on Theory of computing*. 20–30.

1325 [2] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Lu-  
 1326 ciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-  
 1327 Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen,  
 1328 Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, An-  
 1329 drew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente  
 1330 González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan  
 1331 Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert  
 1332 Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-  
 1333 Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe  
 1334 Hellmers, Lukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi,  
 1335 Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev,  
 1336 Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques,  
 1337 Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay,  
 1338 Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreira Ro-  
 1339 dríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James  
 1340 O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Vik-  
 1341 tor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Ray-  
 1342 mond Harry Putra Rudy, Mungi Ryu, Ninad Sathaye, Chris Schnabel,  
 1343 Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Sir-  
 1344 aichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Taka-  
 1345 hashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing,  
 1346 Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot,  
 1347 Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher  
 1348 Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and  
 1349 Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum  
 1350 Computing. <https://doi.org/10.5281/zenodo.2562110>

1351 [3] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S.  
 1352 Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H.  
 1353 Bluhm, and K. Bertels. 2017. The engineering challenges in quantum  
 1354 computing. In *Design, Automation Test in Europe Conference Exhibition*  
 1355 (*DATE*), 2017. 836–845. <https://doi.org/10.23919/DATE.2017.7927104>

1356 [4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,  
 1357 Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brando-  
 1358 dao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro,  
 1359 Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi,  
 1360 Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob  
 1361 Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J.  
 1362 Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Hum-  
 1363 ble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyan-  
 1364 tyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexan-  
 1365 der Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik  
 1366 Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew  
 1367 McEwen, Anthony Megrant, Xiao Mi, Kristel Michelsen, Masoud  
 1368 Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill,  
 1369 Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt,  
 1370 Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C.  
 1371 Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J.  
 1372 Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga,  
 1373 Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut  
 1374 Neven, and John M. Martinis. 2019. Quantum supremacy using a  
 1375 programmable superconducting processor. *Nature* 574, 7779 (2019),  
 505–510. <https://doi.org/10.1038/s41586-019-1666-5>

1376 [5] D. Bhattacharjee, A. A. Saki, M. Alam, A. Chattopadhyay, and S. Ghosh.  
 1377 2019. MUQUT: Multi-Constraint Quantum Circuit Mapping on NISQ  
 1378 Computers: Invited Paper. In *2019 IEEE/ACM International Conference*  
 1379 *on Computer-Aided Design (ICCAD)*. 1–7.

1380 [6] Sergey Bravyi, Dan Browne, Padraig Calpin, Earl Campbell, David  
 1381 Gosset, and Mark Howard. 2019. Simulation of quantum circuits  
 1382 by low-rank stabilizer decompositions. *Quantum* 3 (Sept. 2019), 181.  
 1383 <https://doi.org/10.22331/q-2019-09-02-181>

1384 [7] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. 2017.  
 1385 Roads towards fault-tolerant universal quantum computation. *Nature*  
 1386 549, 7671 (2017), 172–179. <https://doi.org/10.1038/nature23460>

1387 [8] Man-Duen Choi. 1975. Completely positive linear maps on complex  
 1388 matrices. *Linear Algebra Appl.* 10, 3 (1975), 285 – 290. [https://doi.org/10.1016/0024-3795\(75\)90075-0](https://doi.org/10.1016/0024-3795(75)90075-0)

1389 [9] Simon J Devitt, William J Munro, and Kae Nemoto. 2013. Quantum  
 1390 error correction for beginners. *Reports on Progress in Physics* 76, 7 (Jun  
 1391 2013), 076001. <https://doi.org/10.1088/0034-4885/76/7/076001>

1392 [10] Stavros Eftymiou, Jack Hidary, and Stefan Leichenauer. 2019. Ten-  
 1393 sorNetwork for Machine Learning. *ArXiv* abs/1906.06329 (2019).

1394 [11] G. Evenbly and G. Vidal. 2009. Algorithms for entanglement renor-  
 1395 malization. *Physical Review B* 79, 14 (Apr 2009). <https://doi.org/10.1103/physrevb.79.144108>

1396 [12] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum  
 1397 approximate optimization algorithm. *arXiv preprint arXiv:1411.4028* (2014).

1398 [13] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N.  
 1399 Cleland. 2012. Surface codes: Towards practical large-scale quantum  
 1400 computation. *Physical Review A* 86, 3 (Sep 2012). <https://doi.org/10.1103/physreva.86.032324>

1401 [14] Vittorio Giovannetti, Simone Montangero, and Rosario Fazio. 2008.  
 1402 Quantum multiscale entanglement renormalization ansatz channels.  
 1403 *Physical review letters* 101, 18 (2008), 180503.

1404 [15] Daniel Gottesman. 2009. An Introduction to Quantum Error Correction  
 1405 and Fault-Tolerant Quantum Computation. *arXiv:0904.2557* [quant-  
 1406 ph]

1407 [16] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. 1989.  
 1408 Going beyond Bell’s theorem. In *Bell’s theorem, quantum theory and  
 1409 conceptions of the universe*. Springer, 69–72.

1410 [17] Mauricio Gutiérrez, Conor Smith, Livia Lulushi, Smitha Janardan, and  
 1411 Kenneth R. Brown. 2016. Errors and pseudothresholds for incoherent  
 1412 and coherent noise. *Phys. Rev. A* 94 (Oct 2016), 042338. Issue 4. <https://doi.org/10.1103/PhysRevA.94.042338>

1413 [18] Mauricio Gutiérrez, Lukas Svec, Alexander Vargo, and Kenneth R.  
 1414 Brown. 2013. Approximation of realistic errors by Clifford channels  
 1415 and Pauli measurements. *Physical Review A* 87, 3 (Mar 2013). <https://doi.org/10.1103/physreva.87.030302>

1416 [19] Mark Hillery, Vladimír Bužek, and André Berthiaume. 1999. Quantum  
 1417 secret sharing. *Physical Review A* 59, 3 (1999), 1829.

1418 [20] Mark Howard and Earl Campbell. 2017. Application of a Resource The-  
 1419 ory for Magic States to Fault-Tolerant Quantum Computing. *Physical*  
 1420 *Review Letters* 118, 9 (Mar 2017). <https://doi.org/10.1103/physrevlett.118.090501>

1421 [21] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying,  
 1422 Michael Hicks, and Xiaodi Wu. 2019. Quantitative Robustness Analy-  
 1423 sis of Quantum Programs. *Proc. ACM Program. Lang.* 3, POPL, Article  
 1424 31 (Jan. 2019), 29 pages. <https://doi.org/10.1145/3290344>

1425 [22] IBMQ 2016. IBM-Q Experience. <https://www.research.ibm.com/ibmq/>

1426 [23] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey  
 1427 Lvov, Frederic T. Chong, and Margaret Martonosi. 2015. ScaffCC:  
 1428 Scalable compilation and analysis of quantum programs. *Parallel*  
 1429 *Comput.* 45 (2015), 2–17.

1430 [24] Jacob Jordan, Roman Orús, Guifré Vidal, Frank Verstraete, and J Ignacio Cirac. 2008. Classical simulation of infinite-size quantum lattice  
 1431 systems in two spatial dimensions. *Physical review letters* 101, 25 (2008),  
 250602.

1432 [25] E. Knill. 2005. Quantum computing with realistically noisy devices. *Nature* 434, 7029 (Mar 2005), 39–44. <https://doi.org/10.1038/nature03350>

1433 [26] Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and  
 1434 David G. Cory. 2013. Modeling quantum noise for efficient test-  
 1435 ing of fault-tolerant circuits. *Physical Review A* 87, 1 (Jan 2013).  
 1436 <https://doi.org/10.1103/physreva.87.012324>

1431 [27] Nancy Makri and Dmitrii E. Makarov. 1995. Tensor propagator for 1486  
 1432 iterative quantum time evolution of reduced density matrices. I. Theory. 1487  
 1433 *The Journal of Chemical Physics* 102, 11 (2019/11/13 1995), 4600–4610. 1488  
 1434 <https://doi.org/10.1063/1.469508> 1489  
 1435 [28] A. Mari and J. Eisert. 2012. Positive Wigner Functions Render Classical 1490  
 1436 Simulation of Quantum Computation Efficient. *Physical Review Letters* 1491  
 1437 109, 23 (Dec 2012). <https://doi.org/10.1103/physrevlett.109.230503>  
 1438 [29] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. 1492  
 1439 Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler 1493  
 1440 Mappings for Noisy Intermediate-Scale Quantum Computers. 1494  
 1441 [arXiv:1901.11054](https://arxiv.org/abs/1901.11054) [quant-ph] 1495  
 1442 [30] Michael A. Nielsen and Isaac L. Chuang. 2011. *Quantum Computation 1496  
 1443 and Quantum Information: 10th Anniversary Edition* (10th ed.). Cambridge 1497  
 1444 University Press, New York, NY, USA. 1498  
 1445 [31] J. L. O'Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, 1499  
 1446 T. C. Ralph, and A. G. White. 2004. Quantum Process Tomography of 1500  
 1447 a Controlled-NOT Gate. *Phys. Rev. Lett.* 93 (Aug 2004), 080502. Issue 8. 1501  
 1448 <https://doi.org/10.1103/PhysRevLett.93.080502> 1502  
 1449 [32] Hakop Pashayan, Stephen D. Bartlett, and David W. Gross. 2017. From 1503  
 1450 estimation of quantum probabilities to simulation of quantum circuits. 1504  
 1451 [33] Roger Penrose. 1971. Applications of negative dimensional tensors. 1505  
 1452 *Combinatorial mathematics and its applications* 1 (1971), 221–244. 1506  
 1453 [34] M. Piani, M. Horodecki, P. Horodecki, and R. Horodecki. 2006. Proper- 1507  
 1454 ties of quantum nonsignaling boxes. *Phys. Rev. A* 74 (Jul 2006), 012305. 1508  
 1455 Issue 1. <https://doi.org/10.1103/PhysRevA.74.012305> 1509  
 1456 [35] Martin B. Plenio and S. Virmani. 2005. An introduction to entangle- 1510  
 1457 ment measures. [arXiv:quant-ph/0504163](https://arxiv.org/abs/quant-ph/0504163) [quant-ph] 1511  
 1458 [36] J. F. Poyatos, J. I. Cirac, and P. Zoller. 1997. Complete Characterization 1512  
 1459 of a Quantum Process: The Two-Bit Quantum Gate. *Phys. Rev. Lett.* 78 1513  
 1460 (Jan 1997), 390–393. Issue 2. <https://doi.org/10.1103/PhysRevLett.78.390> 1514  
 1461 [37] John Preskill. 1997. Fault-tolerant quantum computation. [arXiv:quant-ph/9712048](https://arxiv.org/abs/quant-ph/9712048) [quant-ph] 1515  
 1462 [38] John Preskill. 1998. Lecture notes for physics 229: Quantum information 1516  
 1463 and computation. (1998). 1517  
 1464 [39] John Preskill. 1998. Reliable quantum computers. *Proceedings of the 1518  
 1465 Royal Society of London. Series A: Mathematical, Physical and Engineering 1519  
 1466 Sciences* 454, 1969 (Jan 1998), 385–410. <https://doi.org/10.1098/rspa.1998.0167> 1520  
 1467 [40] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. 1521  
 1468 *ArXiv e-prints* (jan 2018). <https://doi.org/10.22331/q-2018-08-06-79> 1522  
 1469 arXiv:1801.00862 1523  
 1470 [41] Google AI Quantum et al. 2020. Hartree-Fock on a superconducting 1524  
 1471 qubit quantum computer. *Science* 369, 6507 (2020), 1084–1089. 1525  
 1472 [42] Robert Raubendorf, Juani Bermejo-Vega, E. Tyhurst, Cihan Okay, and 1526  
 1473 Michael Zurel. 2019. Phase space simulation method for quantum 1527  
 1474 computation with magic states on qubits. 1528  
 1475 [43] U. Schollwöck. 2005. The density-matrix renormalization group. 1529  
 1476 *Reviews of Modern Physics* 77, 1 (Apr 2005), 259–315. <https://doi.org/10.1103/revmodphys.77.259> 1530  
 1477 [44] Edwin Stoudenmire and David J Schwab. 2016. Supervised Learning 1531  
 1478 with Tensor Networks. In *Advances in Neural Information Processing Systems* 1532  
 1479 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 4799–4807. <http://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf> 1533  
 1480 [45] Edwin Stoudenmire and David J Schwab. 2016. Supervised learning 1534  
 1481 with tensor networks. In *Advances in Neural Information Processing Systems*. 4799–4807. 1535  
 1482 [46] Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. 2017. Col- 1536  
 1483 loquium: quantum coherence as a resource. 1537  
 1484 [47] Martin Suchara, John Kubiatowicz, Arvin I. Faruque, Frederic T. Chong, 1538  
 1485 Ching-Yi Lai, and Gerardo Paz. 2013. QuRE: The Quantum Resource 1539  
 1486 Estimator toolbox. In *2013 IEEE 31st International Conference on Computer Design, ICCD 2013, Asheville, NC, USA, October 6–9, 2013*. 419–426. 1540