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Abstract. In this paper, we propose a hybrid method that uses stochastic and deterministic search to compute
the maximum likelihood estimator of a low-rank count tensor with Poisson loss via state-of-the-
art local methods. Our approach is inspired by Simulated Annealing for global optimization and
allows for fine-grain parameter tuning as well as adaptive updates to algorithm parameters. We
present numerical results that indicate our hybrid approach can compute better approximations
to the maximum likelihood estimator with less computation than the state-of-the-art methods by
themselves.
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1. Introduction. Low-rank tensor decompositions in general, and canonical polyadic (CP)
tensor decompositions specifically, are now ubiquitous in the area of multi-way data analy-
sis. Recent research in developing efficient methods for computing CP tensor decomposi-
tions via maximum likelihood estimation reflects an emergent dichotomy in numerical linear
algebra: deterministic versus randomized algorithms. CP Alternating Poisson Regression
(CPAPR) [17] is a deterministic CP tensor decomposition method that alternates over a se-
quence of convex Poisson loss subproblems iteratively. Generalized CP (GCP) tensor decom-
positions extend previous work on CP decompositions to incorporate general loss functions
and stochastic optimization methods [31, 41]. Previously, in [48], we showed that CPAPR is
performant and can compute accurate maximum likelihood estimator approximations with
a higher probability than GCP. Here we explore a hybrid method for computing CP tensor
decompositions that leverages GCP for scalability and CPAPR for performance and accuracy.

This paper is structured as follows. In Section 2, we introduce notation and formalize
several metrics, some used previously in [48], to compare CP decomposition methods. In Sec-
tion 3, we introduce Cyclic GCP-CPAPR (CGC), a CP decomposition method that alternates
between stochastic and deterministic methods to avoid local minima. We also formally define
parameterizations, strategies, and policies to optimize CGC for precision and accuracy. In
Section 4, we report the results of numerical experiments comparing the hybrid CGC method
with the individual GCP and CPAPR methods on real and synthetic sparse tensor data. These
experiments offer evidence that our hybrid method can reduce maximum likelihood estimator
approximation error and computational cost versus current methods. In Section 5, we discuss
our conclusions and proposed future work including:
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• potential improvements in CGC computational efficiency via the choices of method
parameterizations, strategies, and policies (subsection 5.1); and
• comparisons of CGC with generic optimization methods (subsection 5.2).

2. Background and Related Work.

2.1. Notation and conventions. The field of real numbers and the ring of integers are
denoted as R and Z, respectively. The real numbers and integers restricted to non-negative
values are denoted as R+ and Z+, respectively. The order of a tensor is the number of
dimensions or ways. Each tensor dimension is called a mode. A scalar (tensor of order zero)
is represented by a lowercase letter, e.g., x. A bold lowercase letter denotes a vector (tensor
of order one), e.g., v. A matrix (tensor of order two) is denoted by a bold capital letter, e.g.,
A ∈ Rm×n. Tensors of order three and higher are expressed with a bold capital script letter,
e.g., X ∈ Rm×n×p. Values derived, computed, approximated, or estimated are typically written
with a hat or a tilde—e.g., cM ∈ Rm×n×p may be a tensor model of parameters fit to data andeΣ ∈ Rn×n may be a diagonal matrix containing approximate singular values of a matrix.

The i-th entry of a vector v is denoted vi, the (i, j) entry of a matrix M is denoted mij ,
and the (i, j, k) entry of a three-way tensor T is denoted tijk. Indices are scalar values that
can range from 1 to a value denoted by the capitalized version of the index variable, e.g.,
i = 1, . . . , I. We use MATLAB-style notation for subarrays formed from a subset of indices
of a vector, matrix, or tensor mode. We use the shorthand ij : ik when the subset of indices
forming a subarray is the range ij , . . . , ik. The special case of a colon : by itself indicates all
elements of a mode, e.g., the j-th column of the matrix A is A( : , j) = A(i1 : iI , j). We use
the multi-index

(2.1) i := (i1, i2, . . . , id) with ij ∈ {1, 2, . . . , Ij} for j = 1, . . . , d,

as a convenient shorthand for the (i1, i2, . . . , id) entry of a d-way tensor.
Superscript T denotes non-conjugate matrix transpose. We assume vectors u and v are

column vectors so that uTv is an inner product of vectors and uvT is an outer product of
vectors. We also denote outer products of vectors as u ◦ v = uvT . The number of matrix
or tensor non-zero elements is denoted nnz(·); conversely, the number of zeros in a matrix or
tensor is denoted nz(·).

2.2. Canonical polyadic decomposition. There is growing interest to extend low-rank
matrix decompositions to multi-way arrays, or tensors. One fundamental low-rank tensor
decomposition is the canonical polyadic (CP) decomposition. The CP tensor decomposition
represents a tensor as a finite sum of rank-one outer products, a generalization of the matrix
singular value decomposition (SVD) to tensors. For example, the rank-k SVD of a matrix
A ∈ RI1×I2 is

(2.2) A ≈ U1ΣUT
2 =

kX
r=1

σru1( : , r) ◦ u2( : , r),

subject to orthogonality constraints UT
1 U1 = UT

2 U2 = Ik, where Ik is the identity matrix
with k rows and columns. Note that with U1 = U and U2 = V we recover the standard
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form of the matrix SVD: A = UΣVT . In the parlance of CP, U1 and U2 are factor matrices
corresponding to the first and second modes of A, respectively. The column vectors of the
factor matrices are referred to as components; for example, U1( : , 1) refers to the first com-
ponent of the factor matrix corresponding to the first mode of A. We will fix this language
in the next section. In contrast to the matrix SVD, there are no orthogonality constraints on
the columns of the factor matrices U1 and U2 of the CP decomposition; thus we treat the
matrix SVD as a special case of CP decomposition. Nonetheless, low-rank CP decomposi-
tions are appealing for reasons similar to those of the low-rank SVD, including dimensionality
reduction, compression, de-noising, and more. Interpretability of CP decompositons on real
problems is well-documented, with applications including exploratory temporal data analysis
and link prediction [18], chemometrics [47], neuroscience [4], and social network and web link
analysis [39,40].

One particular application of interest is when the tensor contains non-negative entries that
are assumed to follow a Poisson distribution. In this case, the low-rank CP tensor model of
Poisson parameters must satisfy certain nonnegativity and stochasticity constraints. In the
next few sections we cover the details of the low-rank CP tensor models of Poisson parameters
and decompositions which are the focus of this work.

2.3. Low-rank CP tensor model. Assume X is an d-way tensor of size I1× · · · × Id. The
tensorX is rank-one if it can be expressed as the outer product of d vectors, each corresponding
to a mode in X, i.e.,

(2.3) X = a1 ◦ a2 ◦ · · · ◦ ad.

More broadly, the rank of a tensor X is the smallest number of rank-one tensors that generate
X as their sum [40] and is the generalization of matrix rank to tensors. We concentrate on
the problem of approximating a tensor of data with a low-rank CP tensor model, i.e., the sum
of relatively few rank-one tensors.

Let λ = [λ1, λ2, . . . , λd] ∈ Rd be a vector of scalars and let A1 ∈ RI1×R, A2 ∈ RI2×R, . . . ,
Ad ∈ RId×R be matrices. The rank-R canonical polyadic (CP) tensor model of X [15, 25] is:

(2.4) X ≈M = Jλ;A1, . . . ,AdK =
RX

r=1

λrA1( : , r) ◦ · · · ◦Ad( : , r).

Each Ak ∈ RIk×R is a factor matrix with Ik rows and R columns, which we refer to as factors.
For example, the j-th component of the mode-k factor matrix is the column vector Ak( : , j).
We refer to the form M = Jλ; A1, . . . ,AdK as a Kruskal tensor.

2.4. Computing the CP decomposition for non-negative tensors. We focus on an ap-
plication where all of the entries in a data tensor are non-negative integers or counts. For the
remainder of this work, let X ∈ ZI1×···×Id

+ be a d-way tensor of non-negative integers, let M

be a CP tensor model of the form (2.4), and assume the following about X:
1. the data in X are sampled from a fixed Poisson distribution,
2. the relationships of entries in X can be represented by a multilinear form,
3. the tensor X has low-rank structure, and
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4. the rank of X is known a priori.
Chi and Kolda showed in [17] that under these assumptions a Poisson CP tensor model is an
effective low-rank approximation of X. The Poisson CP tensor model has shown to be effective
in analyzing latent patterns and relationships in count data across many application areas,
including food production [13], network analysis [11, 19], term-document analysis [16, 28],
email analysis [14], link prediction [18], geosptial analysis [21,27], web page analysis [38], and
phenotyping from electronic health records [26,29,30]

One numerical approach to fit low-rank Poisson CP tensor models to data, tensor maxi-
mum likelihood estimation, has proven to be effective. Computing a Poisson CP tensor model
via tensor maximum likelihood estimation involves minimizing the following non-linear, non-
convex optimization problem:

(2.5) min
M

f (X,M) = min
X
i

mi − xi logmi,

where i is the multi-index (2.1), xi ≥ 0 is an entry in X, and mi > 0 is a parameter in
the Poisson CP tensor model M. The function f(X,M) in (2.5) is the negative of the log-
likelihood of the Poisson distribution (omitting the constant

P
i log (xi!) term). We will refer

to it simply as negative log-likelihood (NLL).
In contrast to linear maximum likelihood estimation [50], where a single parameter is

estimated using multiple data instances, tensor maximum likelihood estimation fits a single
parameter in an approximate low-rank model to a single data instance. Within this context,
low-rank structure means that multiple instances in the data are linked via the low-rank
structure to a single model parameter, a sort of multilinear maximum likelihood estimation.
This distinction is not made anywhere else in the literature, to the best of our knowledge. One
additional clarification is that we estimate the Poisson parameters that most likely generate
the data by minimizing (2.5), rather than the Poisson parameters used to sample the data.
To see this, consider the univariate case of the Poisson distribution, whose probability mass
function is

(2.6) Pµ(X = x) =
µxe−µ

x!
.

If µ = 1.5 then there is a high likelihood of drawing a sample that is 1 or 2. In either case,
maximum likelihood estimation tends to find the parameter that generates the sample (say
µ = 1.95 if the observation is 2) than of computing the natural parameter that generated the
underlying distribution of the sampled model (namely µ = 1.5).

Much of the research associated with computing low-rank Poisson CP tensor models via
tensor maximum likelihood estimation has focused on local methods [17, 24, 31, 41], particu-
larly with respect to computational performance [7, 8, 10, 44, 49, 52, 57]. Many of the current
methods for Poisson CP tensor decomposition can be broadly classified as either an alter-
nating [15, 25] or an all-at-once optimization method [1, 2, 51]. Alternating local methods
iteratively solve a series of subproblems by fitting each factor matrix sequentially, with the
remaining factor matrices held fixed. Alternating tensor decomposition methods are a form of
coordinate descent (CD) [61], where each factor matrix is a block of components that are fit
sequentially while the remaining factor matrices (i.e., component blocks) are held fixed. Since
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each block corresponds to a lower-dimensional problem, alternating tensor methods employ
block CD iteratively to solve a series of easier problems. CP Alternating Poisson Regression
(CPAPR) was introduced by Chi and Kolda in [17] as a non-linear Gauss-Seidel approach
to block CD that uses a fixed-point majorization-minimization algorithm called Multiplica-
tive Updates (CPAPR-MU). Hansen et al. in [24] presented two Newton-based, active set
gradient projection methods using up to second-order information, Projected Damped New-
ton (CPAPR-PDN) and Projected Quasi-Newton (CPAPR-PQN). Moreover, they provided
extensions to these methods where each component block of the CPAPR minimization can be
further separated into independent, highly-parallelizable row-wise subproblems; these meth-
ods are Projected Damped Newton for the Row subproblem (CPAPR-PDNR) and Projected
Quasi-Newton for the Row subproblem (CPAPR-PQNR).

All-at-once optimization methods update all optimization variables simultaneously. Gen-
eralized Canonical Polyadic decomposition (GCP) [31] is a meta-method: an all-at-once opti-
mization approach where an approximate CP tensor model is fit with arbitrary loss function
via tensor maximum likelihood estimation. The original GCP method has two variants: 1)
deterministic, which uses quasi-Newton optimization L-BFGS; and 2) stochastic, which uses
either gradient descent (SGD) or Adam [36] optimization. We focus here on GCP-Adam [41],
which applies Adam for scalability.

More generally, we focus on the GCP and CPAPR families of tensor maximum likelihood-
based local methods for Poisson CP tensor decomposition for the following reasons:

1. Theory : Method convergence, computational costs, and memory demands are well-
understood.

2. Software: High-level MATLAB code implementing both families is available in MAT-
LAB Tensor Toolbox12 [5,6]. High-performance C++ code that leverages the Kokkos
hardware abstraction library [20] to provide parallel computation on diverse computer
architectures (e.g., x86-multicore, ARM, GPU, etc.) is available with SparTen3 for
CPAPR [57] and Genten4 for GCP [52]. Additional open-source software for MAT-
LAB includes N-Way Toolbox [3] and Tensorlab [60]. Commercial software includes
ENSIGN Tensor Toolbox [9].

There are other approaches in the literature that seek to fit models with other distributions
in the exponential family or that use other algorithms to estimate parameters. Alternating
least squares methods are relatively easy to implement and effective when used with LASSO-
type regularization [12, 22]. The method of Ranadive et al. [54], CP-POPT-DGN, is an all-
at-once active set trust-region gradient-projection method. CP-POPT-DGN is functionally
very similar to CPAPR-PDN. Whereas CP-POPT-DGN computes the search direction via
preconditioned conjugate gradient (PCG), CPAPR-PDNR computes the search direction via
Cholesky factorization. The most significant differences are: 1) CP-POPT-DGN is all-at-once
whereas all CPAPR methods are alternating and 2) CPAPR can take advantage of the sepa-
rable row subproblem formulation to achieve more fine-grained parallelism. The Generalized

1https://gitlab.com/tensors/tensor toolbox.
2See functions cp apr for CPAPR-MU, PQNR, and PDNR and gcp opt for GCP-SGD and Adam.
3https://gitlab.com/tensors/sparten.
4https://gitlab.com/tensors/genten.

https://gitlab.com/tensors/tensor_toolbox
https://gitlab.com/tensors/tensor_toolbox/-/blob/master/cp_apr.m
https://gitlab.com/tensors/tensor_toolbox/-/blob/master/gcp_opt.m
https://gitlab.com/tensors/sparten
https://gitlab.com/tensors/genten
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Gauss-Newton method of Vandecapelle et al. [59] follows the GCP framework to fit arbitrary
non-least squares loss via an all-at-once optimization and trust-region-based Gauss-Newton
approach. Hu et al. [32,33] re-parameterized the Poisson regression problem to leverage Gibbs
sampling and variational Bayesian inference to account for the inability of CPAPR to han-
dle missing data. Other problem transformations include probabilistic likelihood extensions
via Expectation Maximization [34, 53] and a Legendre decomposition [56] instead of a CP
decomposition.

Our final consideration is how we run CPAPR and GCP. These local methods tend to
converge to local minima. We mitigate this by using a multi-start strategy [23, 46] to com-
pute a set of approximations from many random starting points in the feasible domain of
the optimization problem. From this set, we choose the “best” local minimizer—i.e., the ap-
proximation that minimizes (2.5)—as the approximation to the global optimizer. In turn, the
effectiveness of a given method is determined in part by the probability it will converge to a
solution approximating the global optimizer.

2.5. Assessing approximation error. We define several tools that we will use to compare
the effectiveness of a given method in computing a model that minimizes (2.5). Let X be

a d-way data tensor with dimensions I1, . . . , Id. Let KN = {cM1, . . . ,cMN} be a set of rank-
R Poisson CP tensor approximations computed from N random starting points by some
process, e.g., CPAPR. Let M∗ denote the maximum likelihood estimator (MLE), i.e., the
global minimizer of (2.5). In general, the MLE is not known. As a result, we compute

approximations of M∗. Let cM∗
KN

denote the current approximate MLE, i.e. the rank-R
Poisson CP tensor model that is the best approximation to M∗ from KN computed using one
of the local numerical optimization methods described above:

(2.7) cM∗
KN

= {cMj | f(X,cMj) ≤ f(X,cMk), k = 1, . . . , N, j < k}.

The condition that j < k guarantees that the set is nonempty in the case of a tie. If a Poisson

CP tensor model is found that is a better approximation to M∗ than cM∗
KN

, then we denote

it as cM∗
+.

1. The signed relative difference in NLL between cMn and cM∗
KN

is

(2.8) ∆(n)
r :=

f(X,cMn)− f(X,cM∗
KN

)

|f(X,cM∗
KN

)|
.

In our experiments in Section 4, along with our specific choices for the data tensor X,

∆
(n)
r < 0 means cMn has lower NLL than cM∗

KN
and that cMn = cM∗

+. That is, it is a

better minimizer of (2.5) than cM∗
KN

. The opposite holds when ∆
(n)
r > 0.

2. The probability that a given Poisson CP tensor method M converges to cMn ∈ KN

such that f(X,cMn) is within a ball of radius ϵ > 0 of f(X,cM∗
KN

) from any starting
point in the feasible region of (2.5) is defined as

PM

�
|f(X,cMn)− f(X,cM∗

KN
)| < ϵ

�
, n = 1, . . . , N.
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We estimate PM over the set of models KN = {cM1, . . . ,cMN} as

(2.9) bPM (KN , ϵ) =
#cMn ∈ KN for which |f(X,cMn)− f(X,cM∗

KN
)| < ϵ

N
.

3. We will frequently use a measure describing similarity between two Kruskal tensors
based on their algebraic properties called factor match score (FMS) [17,41–43]. FMS
is the maximum sum of cosine similarities over all permutations of the column vectors
of all the factor matrices between two Kruskal tensors, cM = Jλ̂; Â1, . . . , ÂdK andfM = Jλ̃; Ã1, . . . , ÃdK:
(2.10)

FMS(cM,fM) = max
π̂(·), π̃(·)

1

R

RX
r=1

1−

���ξ̂r − ξ̃r���
max{ξ̂r, ξ̃r}

 dY
n=1

Ân( : , π̂(j))
T Ãn( : , π̃(j))


Ân( : , π̂(j))






Ãn( : , π̃(j))




 ,
where ξ̂r = λ̂r

dY
n=1




Ân( : , r)



 and ξ̃r = λ̃r

dY
n=1




Ãn( : , r)



.

An FMS score of 1 indicates collinearity among the columns of all factor matrices and
thus a perfect match between the two Kruskal tensors. As in [45], we say cM andfM are similar if FMS(cM,fM) ≥ 0.85 and equal if FMS(cM,fM) ≥ 0.95, which are
common values used to define acceptable matches in recent work [17, 24, 41]. FMS is
a particularly useful measure of the effectiveness of a method in relating the low-rank
structure of an approximation to that of a known model. One approach that we take
in Section 4 is to take the current approximate MLE from a very large set of computed
models. Using FMS, we estimate the probability that a method computes models that
have the same algebraic structure as the approximate MLE. We formalize this now.
For each computed solution cMn ∈ KN , n = 1, . . . , N , define an indicator function

ψn(cM∗
KN
,cMn, t) that is 1 when the n-th model has FMS(cM∗

KN
,cMn) ≥ t and 0 other-

wise; i.e.,

(2.11) ψn(cM∗
KN
,cMn, t) =

(
1, if FMS(cM∗

KN
,cMn) ≥ t

0, otherwise.

We use (2.11) in our discussions below to quantify the fraction over N solves with
FMS greater than t,

(2.12) Ψ(cM∗
KN
,KN , t) =

1

N

nX
n=1

ψn(cM∗
KN
,cMn, t), cMn ∈ KN , ∀n ∈ {1, . . . , N}.

The area under the curve (AUC) associated with this proportion, i.e., FMS when t is
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greater than a threshold τ ∈ [0, 1], is

(2.13)

AUCFMS(cM∗
KN
,KN , τ) =

Z t=1

t=τ
Ψ(cM∗

KN
,KN , t)dt

=
1

N

Z t=1

t=τ

NX
n=1

ψn(cM∗
KN
,cMn, t)dt,

cMn ∈ KN , ∀n ∈ {1, . . . , N}.

AUC takes real values in [0, 1]. It can be visualized as the unit square with area 0
when the fraction of N solves with FMS greater than t = 0 is 0. We define the edge
case to be AUC with area 1, which includes the fraction of N solves with FMS equal
to 1.

3. GCP-CPAPR Hybrid Method. We develop Cyclic GCP-CPAPR (CGC), a hybrid
Poisson CP tensor method that cycles between a stochastic method to compute a model
approximation and a deterministic method to resolve the model to the best accuracy possible
at scale. We define parameterizations and cycle strategies in Section 3, which prescribe how
CGC iterates in each cycle. In Subsection 3.1 we introduce the concept of policies, automated
updates to strategies.

For simplicity of exposition, we assume access to a wrapper function cp poisson() as an
interface to different Poisson CP solvers with the following usage:

• M = cp poisson( X, R, Minit, METHOD, OPTS ) is a Poisson CP tensor model M
with R components,
• Minit is an initial guess to M,
• METHOD specifies the Poisson CP tensor algorithm,
• OPTS specifies parameters used by METHOD.

Let L ∈ N be a number of cycles. Define strategy to be the L-length array of structures,
strat, specifying the following for each cycle l ∈ {1, . . . , L}:

• S method: stochastic search method, e.g. GCP-Adam.
• D method: deterministic search method, e.g. CPAPR-MU.
• S opts: stochastic search parameterization, including stochastic search budget, j,
measured in epochs.
• D opts: deterministic search parameterization, including deterministic search budget,
k, measured in iterations.

CGC iterates from an initial guess cM(0)
via a two-stage alternation between stochastic and

deterministic search for L cycles to return a Poisson CP tensor approximation cM(L)
. In the

first stage of the l-th cycle, stochastic search method strat(l).S method is run starting fromcM(l−1)
for j epochs, parameterized by strat(l).S opts to return an intermediate solution,fM(l)

. In the second stage, deterministic search method strat(l).D method is run to refinefM(l)
for k iterations, parameterized by strat(l).D opts, to return the l-th iterate, cM(l)

. The
details of CGC are given below in Algorithm 3.1. We only consider stochastic search followed
by deterministic search in each cycle and not the opposite. Since stochastic search directions
are found using estimates of the objective function from sample points, it is possible that
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the algorithm converges to a minimum yet remains marked as not converged if the objective
function value is only coarsely estimated. Subsequently, it is likely that stochastic search will
move away from the optimum.

Algorithm 3.1 Cyclic GCP-CPAPR (CGC)

1: function CGC(Sparse tensor of count data X ∈ RI1×···×Id , number of components R,
number of cycles L, L-array of structures strat defining L strategies, initial guess for

R-component Kruskal tensor model cM(0)
.)

2: for l = 1, . . . , L do

3: fM(l)
← cp poisson(X, R, cM(l−1)

, strat(l).S method, strat(l).S opts );

4: cM(l)
← cp poisson(X, R, fM(l)

, strat(l).D method, strat(l).D opts );

5: return Kruskal tensor model cM(L)
.

3.1. Cycle policies. A static policy prescribes the cycle strategies before runtime. How-
ever, we also are interested in developing a strategy that changes dynamically based on conver-
gence metrics collected at runtime, which we call an adaptive policy. We leave a comprehensive
investigation of their impact on CGC performance to future work.

4. Numerical Experiments. In this section we present the results of preliminary numerical
experiments with CGC. Subsection 4.1 compares GCP-Adam and CPAPR-MU, both using
out-of-the-box parameter settings on a real-world dataset, which motivates our inquiry into
CGC. The experiments in Subsection 4.2 use parameters for GCP-Adam and CPAPR-MU
taken from prior work [48], also on real-data. The experiments in Subsection 4.3 reflect
controlled experiments of CGC on synthetic data.

Each experiment assumes access to either the CGC solver (i.e. Algorithm 3.1) or cp poisson

mentioned in Section 3. Additionally, each experiment assumes access to a function K =

create guess([I1, . . . , Id], R) that generates a random initial guess Kruskal tensor according
to the process described in [17, §6.1] taking inputs: 1) the row dimensions of the factor
matrices, [I1, . . . , Id], and 2) number of components, R, i.e., the column dimension for all factor
matrices in the Kruskal tensor. A reference implementation can be found in MATLAB Tensor
Toolbox [6].5 We provide the experimental setups in MATLAB-style syntax throughout.

4.1. Default parameterization. Our first experiment establishes baseline results for GCP-
Adam and CPAPR-MU using only default parameters. Briefly, both methods are called to
compute a rank-10 CP decomposition provided the same initial guess. The stochastic search
method is set to “GCP-Adam” and the deterministic search method is set to “CPAPR-MU”;
no other method options are specified. The results are reported in Table 1 as 1) the fraction
of solves with FMS greater than 0.95 and 2) runtime. We note that CPAPR-MU converges
to the approximate MLE a higher fraction of times than GCP-Adam. We caution that the
dismal performance of GCP-Adam compared to CPAPR-MU is directly attributable to the
use of default software parameters. In private correspondence,6 the authors of GCP-Adam

5See https://gitlab.com/tensors/tensor toolbox/-/blob/master/create guess.m.
6T.G. Kolda, email to author, March 8, 2021 .

https://gitlab .com/tensors/tensor_toolbox/-/blob/master/create_guess.m
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recommended against the use of default parameters.

Table 1: Baseline results using GCP-Adam and CPAPR-MU on Chicago Crime data ten-

sor [55]. Ψ(cM∗
KN
,K20, 0.95) is the fraction of solves “equal” to the MLE from 20 random

initial guesses. Time (sec) is the median time in seconds to solution across all random starts.

GCP-Adam CPAPR-MU

Ψ(cM∗
KN
,K20, 0.95) 0.00 0.35

Time (sec) 1837 842

4.2. GCP→CPAPR. In this section, we show that computing an initial approximation
with GCP-Adam and refining it with CPAPR-MU, which we refer to simply as GCP→CPAPR,
produces good approximations more efficiently than GCP-Adam alone. We compute rank-10
Poisson tensor approximations of the Chicago Crime [55] sparse data tensor from 20 random
starting points. The parameterizations of stochastic and deterministic search are specified as
fields in the structure strat, following the conventions provided in Section 3. The parame-
terizations for both stochastic and deterministic search methods were taken from [48]. In the
first stage, GCP-Adam is run with initial learning rate α0 = 10−3 rate until final learning rate
αf = 10−15. Solutions are checkpointed after the last iteration using learning rates α0 and
αf , as well as the midpoint learning rate, αm = 10−9.

The fraction of solves equal to the approximate MLE, Ψ(cM∗
KN
,K20, 0.95) column in Ta-

ble 2, increases as GCP performs more work. This is expected behavior; see the Stage 1
column. Since the α0 is fixed across all experiments and since the stochastic learning rate is
reduced monotonically, smaller final learning rate αf means more GCP-Adam epochs, i.e.,
more GCP-Adam work. In the second stage, we pass each approximation from the first stage
to CPAPR-MU as an initial guess and iterate until KKT-based convergence, which was set to
the default tolerance 10−4.

The fraction of solves equal to the approximate MLE after the second stage are reported
in the Stage 2 column. Beginning with a small amount of first stage computation (learning
= 10−3), second stage CPAPR-MU computes additional equal approximations, from 0.25 to
0.30 of solves. To achieve the 0.30 level, first stage GCP-Adam must be run to learning rate
10−9, which requires more wall clock time (see: Stage 1 with learning rate 10−9 versus Stage 2
with learning rate 10−3). Second stage CPAPR-MU computes additional equal approximations
with first stage initial guesses computed to this learning rate, increasing from 0.30 to 0.45
fraction of solves. Similarly, to achieve the 0.45 level, first stage GCP-Adam must be run
to learning rate 10−15, which again requires more wall clock time than the second stage
with learning rate 10−9. Second stage CPAPR-MU finds that all first stage approximations
computed to learning rate 10−15 have converged in its termination criterion.

The Time Ratio Stage 2/Stage 1 column reports the ratio of median wall clock times of
Stage 2 over Stage 1. As the learning rate becomes smaller, the second stage requires less
work. This scaling is promising because it is indicative of a computational cost-approximation
error trade-off that can be optimized for with a less naive parameterization. At the lowest



A HYBRID METHOD FOR TENSOR DECOMPOSITIONS 11

Table 2: Quality of GCP→CPAPR as a function of stochastic learning rate on Chicago Crime
data tensor [55] from 20 random starting points. Stage 1 refers to GCP-Adam computations;

Stage 2 refers to CPAPR-MU computations. Ψ(cM∗
KN
,K20, 0.95) is the fraction of random

starts converging to solutions “equal” to the numerical Kruskal tensor with the lowest NLL.
Time (sec.) is the median time to solution across all random starts. We note that in these
experiments the GCP-Adam solver used tuned stochastic sampling values to compute better
model approximations than those in Table 1, hence the discrepancy.

Ψ(cM∗
KN
,K20, 0.95) Time (sec.) Time ratio

learning rate Stage 1 Stage 2 Stage 1 Stage 2 Stage 2/Stage 1

α0 = 10−03 0.25 0.30 556 1342 2.4
αm = 10−09 0.30 0.45 1841 2643 1.4
αf = 10−15 0.45 0.45 2850 3649 1.3

learning rate, 10−15, the second stage incurs computational overhead to verify the first stage
approximations converged in its criterion, even if no CPAPR-MU iterations take place. This,
coupled with the discussion above regarding wall clock time, demonstrates a diminishing
return of performing too much GCP work in the first stage followed by second stage CPAPR-
MU. We conclude from the above discussion that two-stage GCP→CPAPR can achieve the
same quality of solution with less work than GCP-Adam alone on real-world data with proper
parameterization.

4.3. Single-cycle, constant-work unit parameterization. The experiments in Subsec-
tion 4.2 provide cursory evidence that GCP→CPAPR can produce better results than CPAPR-
MU or GCP-Adam alone. However, we must view those experiments as purely anecdotal since
real-world data can be only hypothesized to follow the assumptions in subsection 2.4. In this
section, we report on preliminary controlled experiments with the full CGC method described
in section 3 using synthetic low-rank Poisson multilinear data.

The experiments that follow are restricted to Algorithm 3.1 with L = 1 cycles and a
static strategy, detailed below. The study of Algorithm 3.1 with L > 1 cycles and adaptive
strategies is left to future work. We first describe the data in Subsection 4.3.1 and methodology
in Subsection 4.3.2. We report numerical results in Subsection 4.3.3.

4.3.1. Data. We limit our numerical experiments to a single synthetic dataset that is
sufficiently challenging for our methods—in terms of size, sparsity, and low-rank structure—
yet small enough to support reasonable solution times. We generated a 1000 × 1000 × 1000
rank-20 tensor of non-negative integers drawn from a Poisson distribution with 98,026 non-
zero entries (approximately 0.01% dense) using the function create problem7 in MATLAB
Tensor Toolbox. The function create problem generates a “true” solution Poisson CP tensor
model, which is sampled to generate the synthetic sparse count tensor. In our experiments
below, we do not attempt to recover this model. See subsection 2.4 for further discussion.

7See https://gitlab.com/tensors/tensor toolbox/-/blob/master/create problem.m.

https://gitlab.com/tensors/tensor_toolbox/-/blob/master/create_problem.m
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4.3.2. Methodology.
Out-of-sample test set. For our experiments, we first generated 10,000 random Poisson

CP tensor models as initial guesses using create problem. Starting from each random ini-
tial guess, we computed a rank-R Poisson CP tensor approximation using GCP-Adam and
CPAPR-MU, which were both run to the smallest reasonable tolerance of each method: final
learning rate αf = 10−15 for GCP-Adam and KKT violation τ = 10−15 for CPAPR-MU. We
refer to this collection of S = 20, 000 Poisson CP tensor approximations as the out-of-sample
test set, TS . From these 20,000 Poisson CP tensor approximations, we chose the model with

the lowest NLL as the current approximate MLE, denoted cM∗
TS , with objective function value

f∗.
CGC run. In these experiments, we fix W = 100 so that the number of GCP-Adam epochs

and CPAPR-MU iterations sum to W in the first (and only) cycle. Starting from a random
initial guess, we run Algorithm 3.1 for j GCP-Adam epochs and k CPAPR-MU iterations,
with j ∈ {0, . . . ,W} and k =W − j. We refer to the combination of GCP-Adam epochs and
CPAPR-MU iterations as the CGC (j, k) pair for convenience. Note that when j = 0, CGC
with L = 1 cycles is equivalent to a single run of 100 CPAPR iterations; conversely, when
j = 100 so that k = 0, CGC with L = 1 cycles is equivalent to a single run of 100 GCP
epochs. We generated N = 100 random initial guesses, which were different from the random
initial guesses chosen to compute the 20,000 models in TS . We believe this aids the statistical
interpretability of our results. The set of these 10,100 CGC model approximations is denoted
KN .

4.3.3. Numerical results. We contrast CGC with GCP-Adam and CPAPR-MU alone
using the tools in Subsection 2.5. Figure 1 plots the minimum signed relative difference (2.8)
of the approximations for each CGC (j, k). Negative values (in blue) are models from KN that

are closer to M∗ than cM∗
TS ; positive values (in red) are the opposite. We see three regimes.

In the first, the best CGC approximation is worse than the approximate MLE for CGC with
little to no work budget allocation to CPAPR. The second regime demonstrates that some
amount of stochastic search followed by deterministic search can compute Poisson CP tensor
approximations that are better minimizers of (2.5) than the approximate MLE. This holds
for stochastic work budget allocations between 4–36%. There is no clear pattern in the third
regime, where the stochastic work budget is above 36%.

Our second result considers whether CGC finds a good approximation to the global opti-
mizer with the same accuracy or better than GCP-Adam or CPAPR-MU. In Table 3 we report
the fraction of model approximations near to the approximate global optimizer, computed us-
ing (2.9). For CGC results, we compute bPCGC(cM, ϵ) for each combination of GCP-Adam
epochs j and CPAPR-MU iterations k across N = 100 random initializations, but report
only the maximum of (2.9) among all combinations. The rightmost column lists the corre-
sponding best (j, k) pair. Within radius ϵ = 10−2, CPAPR-MU has the highest probability

of computing solutions with NLL close to the f(X,cM∗
TS ). Note that the best CGC result for

this level of ϵ is equivalent to CPAPR-MU since the GCP-Adam work allocation is zero, i.e.,
(j, k) = (0, 100). The lower CGC proportion in Table 3 (0.65 versus 0.69) is likely attributed
to either 1) smaller computational budget of the CGC run versus CPAPR-MU run in the out-
of-sample test (100 vs. 1000 iterations) or 2) higher variance from fewer multi-starts in the
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Figure 1: Best signed relative difference in NLL (2.8) of CGC model approximations cMn ∈
KN for various (j, k) versus the approximate MLE, cM∗

TS . The data points along the x-axis

correspond to the minimum signed relative difference in NLL ∆
(n)
r among all n = 1, . . . , 100

random initial guesses for each CGC (j, k) pair. Negative (blue) values indicate the bestcMn for a given (j, k) pair is a better minimizer than cM∗
TS ; positive (red) values indicate the

opposite.

CGC run versus the out-of-sample test (100 vs. 10000 multi-starts). With radius ϵ ≤ 10−3,

CGC computes Poisson CP tensor approximations with NLL closest to f(X,cM∗
TS ) with the

highest probability. An interesting trend is that as the radius ϵ gets smaller, the best CGC
parameterization corresponds to increasing the allocation to GCP steps. We will see similar
patterns in the analyses that follow.

Lastly, we evaluate CGC as a method to approximate the global optimizer in terms of the
algebraic fit of CGC models to the MLE using measures defined by equations (2.11)–(2.13).
For each constant work unit allocation (j, k), we compute the fraction over N solves with FMS
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Table 3: Estimate of probability each method computes a solution within ϵ-radius of approx-
imate global optimizer. CPAPR is short for CPAPR-MU; GCP is short for GCP-Adam.

ϵ bPCPAPR(TS , ϵ) bPGCP (TS , ϵ) bPCGC(KN , ϵ) best CGC (j, k) pair

10−1 1.00 1.00 1.00 all
10−2 0.69 0.27 0.65 (0, 100)
10−3 0.05 0 0.16 (1, 99)
10−4 < 0.01 0 0.13 (4, 96)
10−5 0 0 0.03 (8, 92)
10−6 0 0 0.01 (8, 92)

greater than t, Ψ(cM∗
TS ,KN , t), with t ∈ [0, 1]. Since all curves showed the same behavior for

t < 0.5, we plot values for t ∈ [0.5, 1] in Figure 2, together with the same values computed for
GCP-Adam and CPAPR-MU. A detailed view of the same data is presented in Figure 3, which
partitions the data by the first 11 (j, k) pairs (Figure 3a), the 79 middle pairs (Figure 3b),
and the last 11 pairs (Figure 3c). As described earlier, the differences in the plots Figure 2–
Figure 3 between CGC with (j, k) = (0, 100) and CPAPR-MU (blue triangles) and CGC with
(j, k) = (100, 0) and GCP-Adam (green circles) is mainly a function of the work constraint
of CGC. CGC was constrained to 100 work units in both cases, whereas in the out-of-sample
test that generated the GCP-Adam and CPAPR-MU results, GCP-Adam ran for a maximum
of 10,000 epochs and CPAPR-MU ran for a maximum of 1000 iterations. We call out this
distinction to highlight the results in these figures. Especially in Figure 3a and Figure 3b, we
see a higher proportion of CGC solutions equal to the approximate MLE than GCP-Adam
or CPAPR-MU despite the computational constraint. Thus, these figures provide evidence
that some amount of stochastic search followed by deterministic search can find models with
superior fit and higher accuracy than GCP-Adam and CPAPR-MU by themselves. This
conclusion is particularly clear for scores in the range ≥ 0.95.

We also compute the area under each curve (2.13) in Figure 2 as a metric that estimates
the probability of finding a model with good algebraic fit to the MLE from the out-of-sample
test set. Figure 4 summarizes model accuracy as the area under the curves in Figure 2–
Figure 3 for “similar” and “equal” fits. We can conclude that CGC has a higher probability
of computing approximations that are equal to the MLE for a range of GCP-CPAPR work
budget allocations than GCP-Adam or CPAPR-MU alone.

5. Conclusions and Future Work. The results in section 4 beg for further inquiry into
CGC. Our primary conclusion is CGC can minimize low-rank approximation error while re-
ducing computational costs. We saw that CGC can reduce approximation error with high
accuracy relative to GCP-Adam and CPAPR-MU. Additionally, since CGC was run in our
experiments with a far stricter computational budget than GCP-Adam and CPAPR-MU—
CGC was constrained to 100 total CGC work units whereas GCP-Adam and CPAPR-MU
runs were allowed for far longer to run to very low convergence tolerance—we argue that
CGC is more computationally efficient. The implication is that the performance gain allows
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Figure 2: Factor match scores between CP models computed with CGC, CPAPR-MU, and

GCP-Adam and the approximate global optimizer, cM∗
TS . The dash-dot gray vertical lines and

dotted black vertical lines denote the levels of “similar” and “equal” described in [45].

even more multi-starts, and subsequently, a greater number of high accuracy approximations.
Motivated by these observations, we propose to explore the following ideas.

5.1. Parameterizing CGC. How to parameterize CGC in such a way that model ap-
proximation error be reduced and computational cost be optimized further? Our numerical
experiments showed promising results despite a naive strategy. We will extend our ideas to
running CGC with L > 1 cycles to study the effect of adaptive versus static per-cycle strate-
gies. A goal is to condition the strategy updates on convergence metrics, which will require
deeper understanding of both stochastic search and deterministic refinement.

5.2. Comparison with other black-box methods. CGC is similar in spirit to Simulated
Annealing [37]: stochastic search “heats” the iterative path away from local minima and
deterministic search “cools” the iterative path towards the global optimum. In addition to
comparisons with GCP-Adam and CPAPR-MU, we believe a direct comparison to Simulated
Annealing, and potentially other global optimization methods, is necessary. This can be done
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(c) Last 11 pairs.

Figure 3: Detail of curves in Figure 2. Colormaps scaled for clarity.
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Figure 4: For each CGC (j, k) pair, areas under the curve AUCFMS(cM∗
TS ,KN , 0.85) (left)

and AUCFMS(cM∗
TS ,KN , 0.95) (right). The area under the CPAPR and GCP curves across all

10,000 random starts are displayed as horizontal lines. All curves in both plots are normalized
by the area of the fit level (0.15 and 0.05, respectively).

easily using the standard Simulated Annealing method from MATLAB Global Optimization
Toolbox [58] which is an implementation of Adaptive Simulated Annealing [35].
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