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ABSTRACT

Aeroseismometery is a novel, cutting edge capability that involves balloon based systems for
detecting and geolocating sources of infrasound. The incident infrasound from a range of sources
such as volcanos, earthquakes, explosions, supersonic aircraft impinges upon the balloon system
causing it to respond dynamically. The dynamic response is post-processed to locate the
infrasound source. This report documents the derivation of an analytical model that predicts the
balloon dynamics. Governing equations for the system are derived as well as a transfer function
relating the infrasound signal to the net force on the balloon components. Experimental
measurements of the infrasound signals are convolved with the transfer function and the
governing equations numerically time integrated to obtain predictions of the displacement,
velocity and acceleration of the balloon system. The predictions are compared to the experimental
measurements with good agreement observed. The derivation focuses only on the vertical
dynamics of the balloon system. Future work will develop governing equations for the swinging
response of the balloon to the incident infrasound.
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1. INTRODUCTION

Infrasonic waves are generated by natural events such as volcanic eruptions, earthquakes and
bolides (meteors exploding in the atmosphere), as well as anthropogenic events such as
explosions and supersonic vehicles. The infrasound signals (frequencies less than 20 Hz)
propagate in the atmosphere up to tens of thousands of kilometers.

A balloon-based system, termed aeroseismometer, is being developed which uses the dynamic
response of the balloon system to detect and geolocate sources of infrasound. The system consists
of a high altitude balloon, a gondola and an instrumentation package tethered below the gondola.
Within the instrumentation package is a magnetometer, a microbarometer (microphone) and an
inertial measurement unit (IMU) containing a triaxial accelerometer. The global location of the
balloon is obtained from a synthesis of data from the IMU, magnetometer and a global navigation
satellite. The microbarometer and accelerometer measurements recorded during the balloon
response to an incident infrasound signal are used to geolocate the source.

Recently, a methodology based upon principal component analysis has been developed to
post-process the accelerometer data and determine the direction of arrival of the infrasound
signal. Using multiple balloons or a single floating balloon and a repeating stationary infrasound
source, the geolocation can be triangulated.

An understanding of the physics and dynamics of how the aeroseismometer system is excited and
responds to the infrasound is necessary in the development of the capability. This report
documents a theoretical analysis of the balloon system, developing a physics-based method to
predict the response of the system for a given microbarometer measurement. Predictions of the
acceleration response are compared to experimental data. To date only the vertical dynamics of
the system has been modeled. It is hypothesized the system experiences pendulum-like swinging
motion in response to the infrasound. The swinging produces horizontal accelerations which are
used to determine the azimthual direction of arrival. Future work will model the hypothesized
pendulum-like swinging motion of the balloon system.



2. BALLOON SYSTEM AND FLIGHT

On July 10, 2020 a ballon system composed of a Raven Aerostar helium filled superpressure
balloon, gondola and a styrofoam instrumentation box tethered 30 m below the gondola lifted off
from Lemitar, New Mexico at 8:40 local time (14:40 UTC). The styrofoam box contained a
Paroscientific Digiquarts infrasound recorder (microbarometer) and an InertialSense IMU having
a triaxial accelerometer. A photograph of the system moments after launch is shown in Fig. 2-1.

The properties of the balloon system are listed in Table 2-1. The height and diameter of the
inflated balloon envelope were supplied by Raven Aerostar. The density, thickness and Young’s
modulus of the polyethylene film used for the envelope membrane are taken from standard
literature. The diameter and Young’s modulus for the 550 1b Paracord tether was located online.
The length of the Paracord, dimensions and mass of the gondola and styrofoam box were known.

Height of inflated envelope, [m] he 10.0767
Diameter of inflated envelope, [m] d, 10.7137
Density of polyethylene membrane, [kg/m’] Pmem 960
Thickness of polyethylene membrane, [m] Lnem 20x10°°
Young’s modulus of polyethylene, [Pa] Epoly 1.1x10°
Length of Paracord, [m] L, 30
Young’s modulus of Paracord, [Pa] Epara 1.95x10°
Diameter of Paracord, [m] dp 3.96875x 1073
Distance from CG of balloon to CG of gondola, [m] Lpg 4.5
Dimensions of gondola, [m] wg X dg X hg | 0.3302 x 0.3302 x 0.6858
Mass of gondola, [kg] mg 36.2874
Dimensions of styrofoam box, [m] wg X ds X hg | 0.2794 x 0.2286 x 0.3048
Mass of styrofoam box, [kg] My 1.49685
Acceleration of gravity, [m/s’] g 9.80665

Table 2-1. Balloon system properties.

As the balloon floated west toward Arizona three sets of two 1 ton TNT equivalent bottom-lit
surface chemical explosions were detonated at the Energetic Materials Research and Testing
Center (EMRTC) in Socorro, New Mexico. The detonation time and the corresponding altitude of
the balloon for each explosion are listed in Table 2-2. The balloon altitude varied only 73.7 m at
the time of detonation over the four hour window. It is unlikely the balloon experienced
significant variation of atmospheric properties and therefore the same properties are used for all
six detonations. A plot of the balloon altitude during the entire four hour window is shown in
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Figure 2-1. Balloon system as flown on July 10, 2020, moments after launch. The gondola and tethered styro-
foam box are visible.
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Fig. 2-2 with the time of the detonations indicated by vertical blue lines. The two detonations for
each of the three sets were only 30 seconds apart, making the two vertical lines for each set
difficult to distinguish in the the figure.

Shot Detonation Time [h:m:s] Balloon Altitude [m]
1-A | 9:39:59.84 MDT (15:39:59.84 UTC) 20486.958
1-B | 9:40:29.98 MDT (15:40:29.98 UTC) 20482.592
2-A | 10:40:00.00 MDT (16:40:00.00 UTC) 20451.235
2-B | 10:40:30.00 MDT (16:40:30.00 UTC) 20451.923
3-A | 13:29:59.94 MDT (19:29:59.94 UTC) 20413.389
3-B | 13:30:29.86 MDT (19:30:29.86 UTC) 20413.261

Table 2-2. Source detonation times on July, 10, 2020 at EMRTC in Socorro, New Mexico.
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Figure 2-2. Balloon altitude variation during the time window of the EMRTC detonations. The vertical lines
indicate the time of the six detonations listed in Table 2-2.
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3. MODELING THE BALLOON SYSTEM DYNAMIC RESPONSE

The dynamic response of the balloon system to an incident infrasound signal will now be
developed. The following assumptions are made

* For determination of the resulting force from the infrasound, the balloon, gondola and
styrofoam box are modeled as spheres

* The mass of the Paracord can be neglected
* The balloon system is in static equilibrium at the float altitude

As a first step, only the vertical motion of the system is considered in this report. It is
hypothesized the balloon system actually swings like a pendulum in response to the infrasound. A
model of the swing is under development, but due to the complexity of that analysis, the vertical
motion was performed first. Also, since not all aspects of the balloon system are known,
especially damping, the vertical model can be used to calibrate unknown quantities.

The development shall proceed in the following steps. First, the governing equation for the at-float
condition of the balloon system will be derived. The unknown mass of the helium in the balloon
envelope will be determined based upon the known properties of the system. The buoyancy
stiffness due to the local vertical variation in atmospheric density will also be derived.

In the next step the governing equations for the vertical motion of the balloon system will be
developed. Added mass due to the motion of the balloon, gondola and styrofoam box will be
included as well as viscous drag due to vertical oscillation of these components. The resonances
and mode shapes of the balloon system will be obtained from the system of governing equations.
The mode shapes provide insight into the behavior of the system and help to calibrate the viscous
damping.

The third step develops a relation between the amplitude of the incident infrasound signal and the
net force applied to the balloon, gondola and styrofoam box. Each of these components will be
represented as appropriately sized rigid spheres, allowing for an analytical derivation. A
frequency domain transfer function will be constructed relating the infrasound to the net force.

In the final step the vertical response of the balloon system to the infrasound signal measured by
the microbarometer will be predicted. The governing equations are expressed as a system of 1%
order differential equations and numerically time-integrated using the Runge-Kutta numerical
method. The predicted acceleration of the styrofoam box is then compared to the experimental
data. The unknown damping coefficients for the balloon-to-gondola connection and the Paracord
are determined by a frequency domain comparison of the prediction to experiment.

13



3.1. At-Float Conditions

In the following a series of equations are developed to determine necessary unknown quantities
for the analysis. The numerical values computed from these equations are listed in a table at the
end of this section.

and V(z) is the volume of the air displaced by the balloon

Let the balloon system at altitude z [m] be represented by a point mass as shown in Fig. 3-1. A
buoyancy force F,(z) [N], equal to the weight of the volume of air V (z) [m?] displaced by the
balloon envelope, offsets the weight W [N] of the system. When Fj(z) > W the balloon ascends
into the atmosphere. The acceleration of gravity g varies with altitude, though for the altitudes of
interest the sea-level value is sufficient.

Fy(2) = pair(2)V (2)g

»~

v W = Miotd

Figure 3-1. Entire balloon system represented as a point mass.

The equation for vertical motion of the balloon system at altitude z is

(mba + mtot)z(t) = g(pair(Z)V(Z) - mtot) (31)

where m;0; = mye + Mypen + mg + my, [kg] is the sum of the mass of the helium, balloon envelope,
gondola, and styrofoam box, pg;, [kg/m3] is the density of the air, V [m3] the volume of air
displaced by the balloon, and m;,, the added mass experienced by the balloon envelope. The
balloon floats at altitude zy when the mass of air displaced by the balloon is equal to the total
mass of the system (i.e. the net force is equal to zero):

pair(zf)v(zf) :mHe+mmem+mg + my. (3.2)

The mass of helium is unknown but can be determined as follows. The mass of the polyethylene
balloon envelope membrane mmep = Pmem(V (2f) — Vit (z¢)) Where Vi is the internal volume of

14



the balloon. Substituting this expression into Eq. (3.2) and solving for the mass of helium mg,
gives

mMye = [pair(zf) - pmem] V(Zf) + PmemVine (Zf) - (mg + ms)- (3.3)
Approximating the balloon shape at float as an ellipsoid, the volume of air displaced by the
balloon is given by

nd>h
V=2 (3.4)
6
and for an envelope membrane thickness ., the volume of helium inside the balloon is
Vint _ Tc(de - 2tmem)2(he - 2tmem) ' (35)

6

Substituting these expressions into Eq. (3.3) gives an expression for the mass of helium in the
balloon envelope:

ndzhe T de - 2tmem 2 he - 2tmem

Assuming the helium is uniformly distributed in the envelope, the helium density at float is given
by

MmMHe
Vint
Finally, assuming the helium is in thermodynamic equilibrium with the air outside the balloon,
the pressure inside the balloon envelope can be obtained from the ideal gas law

PHe(zr) = (3.7)

PHe(2f) = Pre(zf)R Tuir(zf), (3.8)

where Ry, = 2076.9 m?/(s>-K) is the gas constant for helium, 7;;, [K] the atmospheric
temperature and p [Pa] the atmospheric pressure.

Once the balloon is floating at altitude z; the equation of motion (3.1) can be expressed in terms
of the variation Z = z — zy about altitude z¢. The local vertical variation in atmospheric density
Pair can be approximated by a first-order Taylor series

Pair(2) = Pair(zf) + Pair(2) ‘z:zjf (z—zf) (3.9)

Using the atmospheric variation of density from a standard atmosphere model or weather data, the
density at locations Az above and below the float altitude, pgir(zf + Az) and pgir(zf — Az), can be
used to compute the gradient M, := p/,.(z) ‘Z:Zf

Pair (Zf + AZ) — Pair (Zf - AZ)
My = . 1
P 2Az (3.10)

Since the density is smoothly varying at the altitudes of interest Az ~ 10 to 20 m.

Substituting z = z¢ + 7 and the Taylor series in Eq. (3.9) into Eq. (3.1), the equation of motion can
be expressed in terms of Z:

(mba‘l‘mtot)f_gMpVZ:g(pairv_mtot)» (3.11)

15



where pg;, 1s the value of the atmospheric density at zy. It has been assumed the perturbation in
balloon volume about the float altitude can be neglected.

An uncompressed mass of air around the balloon is accelerated by the motion of the balloon (see
Sec. 9-21. of [7]) thereby increasing the apparent mass of the balloon. This additional mass m, is
termed added or hydrodynamic mass and for a sphere the expression for it is well known:

2 airV
Mpg = pairgnr?, =P 2’ : (3.12)

The governing equation for the free vertical motion of the balloon system about the float
condition is then

iV .
(p“’z’ o ) £ gMpVE =0, (3.13)
From this equation an expression for the undamped bobbing frequency about the float altitude can
be obtained:
1 —gM,V
Foob =51 | 5w : : (3.14)
T =5 My + Mpem + Mg + M

This expression is similar to that developed by Anderson [2] for a zero-pressure balloon, however
here the perturbation of the balloon volume with altitude has not been included.

The acoustic impedance py.age of the helium inside the balloon envelope is of importance. The
helium density is given by Eq. (3.7). The speed of sound in the helium is obtained from the ideal

gas law and adiabatic compression
AHe = \/ YHeRHeT (315)

where Yy, = 1.667 is the ratio of specific heats for helium, and temperature 7 is measured in
Kelvin. Assuming the helium is in thermodynamic equilibrium with the air outside the balloon
T= Tair-

Given the balloon system properties listed in Table 2-1, the float altitude zy = 20486.96 m of the
ballon at the time of arrival of the first detonation, and the atmospheric variation of density,
pressure and temperature from the NCAP G2S Archive (http://g2s.ncpa.olemiss.edu) for the day
of the balloon flight, the above equations are used to determine the properties of the balloon
system at float. These properties are presented in Table 3-1. Note the slope of the atmospheric
density M, is negative due to the decrease in density with altitude and the predicted bobbing
frequency fpop 1s slightly less than the value predicted in [2].

3.2 Governing Equations for Vertical Motion

The governing equations for the vertical motion of the balloon system at the float altitude will
now be derived. The balloon, gondola and styrofoam box are treated as point masses connected
by springs and dampers. Additional damping due to the viscosity of the air is also included. The
system is assumed to be at static equilibrium at the float altitude z (the over-bar has been
removed). The balloon system and the equivalent spring-mass-damper model is shown in

16
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Mass of helium in envelope, [kg] MHe 9.589150
Density of helium in envelope, [kg/m3 1| PHe 1.583391e-02
Speed of sound in the helium, [m/s] age 855.9669

Helium pressure, [Pa] PHe 6959.314
Volume of balloon envelope, [m3] 1% 605.6156
Volume of balloon interior, [m°] Vit 605.6086

Volume of balloon membrane, [m’] Viem | 6.926168e-03
Mass of balloon membrane, [kg] Mynem 6.649121

Density of air, [kg/m3] Pair | 8.920266e-02
Speed of sound in air, [m/s] Auir 291.6234
Atmospheric pressure, [Pa] Dair 5417.677

Temperature of air, [K] Toir 211.6189

Gradient of air density, [kg/m”] M, | -1.576262¢-05
Balloon added mass, [kg] Mpg 27.01126
Bobbing frequency, [Hz] frob | 5.394984e-03

Table 3-1. Predicted properties of the balloon system at float altitude zy = 20486.96 m.

10.7 m

|
| \
o my = MHge + Mmem

EL L § o k
— : . =16.2 kg Fy b
9; Helium : % I oy
| T_ mp
C
Gondola mg = 36.3 kg F, —
T LT | T
L
Paracord g . Cp
i P
1 R, 2 H
Styrofoam s I m s
s — 1 k S
Box m 50 kg T_ °
(a) Balloon system (b) Three degree of freedom model

Figure 3-2. Balloon system at float and the corresponding spring-mass-damper model.

Fig. 3-2b. Application of Newton’s second law of motion to each mass gives the system of
equations [&]

(mp 4 mpa)Zp + (Chp +Cg)2p — Cglg + (kg — 8MpV )z — kgzg = Fp(2)
(ms +msa)Zs — cglg + (Csp +Cp)is — kpzg +kpzs = Fi(1),

17



where k;, = —gM,V [N/m] is the buoyancy stiffness. The time argument for z;, z, and z; has been
omitted for clarity.

The stiffness of the Paracord is approximated using the stiffness of an equivalent length rod under
axial load [8]
. Eparandlzy
P 4L,
The stiffness of the balloon-gondola connection is approximated in the same manner using the
Young’s modulus for polyethylene E )y, the distance between the center of gravity of the balloon
and gondola L, and the diameter of the Paracord dp:

(3.17)

E (,lyﬂ;dz
k, = _L2P 3.18
& 4L, (3.18)

To first order the gondola and styrofoam box are approximated as spheres. The added mass for
each can then be computed using Eq. (3.12):

iWodgh
g = P Cele W;' £t (3.19)
Wsdsh
g = Py, (3.20)
2
The effective radius for the gondola and styrofoam box is then
B3wgdghy \ '/?
rg = (%) (3.21)
and 3
3wydhy
= 3.22
s ( e ) ) ( )

respectively, the radius of a sphere having the same volume.

The damping ¢y ¢, cgr and c5¢ [N*s/m] accounts for the viscous drag experienced by the balloon,
gondola and styrofoam box, respectively, during vertical oscillation about the float altitude. If the
amplitude of the oscillations are small relative to the height of each component, the damping
constant is given by [5]

¢ =6mur(1+5) (3.23)

where r is the effective radius, ® [rad/s] the radial frequency, u the dynamic viscosity [Pa*s]
and
2
5=
Pair®

(3.24)

the radial depth into the fluid adjacent to the component where the viscous effects occur. At an
altitude of 20 km and oscillation frequency of 2 Hz, d =~ 5 mm. The oscillation of the components
also contributes to the added mass, however this contribution is insignificant relative to

Egs. (3.19) and (3.20). The damping constant ¢, for the Paracord and c, for the balloon-gondola

18



connection are unknown. These are determined later in Ch. 4 when comparing predictions to
experimental data.

The governing equations (3.19) and (3.20) can be expressed in matrix form:

(M]{Z() } + [CHz(0)} + [K]{z() } ={F (1)} (3.25)
where
mp, + Mpg 0 0
M] = 0 Mg ~+ Mgy 0 , (3.26)
0 0 my + My,
Cpft+Cg —Cg 0
IC] = —Ccg  Cgptcgtcep,  —cp |, (3.27)
0 —Cg Csftcp
ko —gMpV  —k, 0
K] = —kg ke+ks —kp |, (3.28)
0 —k,  kp
and
2 (t) Fy(t)
{z()} = q 2z(1) {F()} =< Fgt) ». (3.29)
z5(1) Fi(t)

The undamped resonances of the system are determined from the homogenous form of these
equations. Letting [C] = [0], {F'} = {0} and substituting a time-harmonic response
{z(t)} = {Z} "™ gives the generalized eigenvalue problem

K] = {0’} [M]. (3.30)

Using the parameters in Tables 2-1 and 3-1, the eigenvalue problem is solved using the MATLAB
[6] function eig to obtain the vertical resonance frequencies

Jf1=5.391760e-03 Hz f2=1.940965 Hz f3 =3.776354 Hz. (3.31)

The lowest resonance is the bobbing frequency of the system previously given by Eq. (3.14). The
corresponding mode shapes are shown in Fig. 3-3. The unperturbed location of the balloon,
gondola and styrofoam box are indicated by the unfilled circles, the filled circles are the locations
at one quarter cycle at the resonance frequency. Mode 1 is effectively a rigid body mode with all
three masses moving in phase with constant separation distance. In mode 2 the balloon is out of
phase with the gondola and styrofoam box, and in mode 3 the predominant movement is the
styrofoam box with very slight out of phase motion of the gondola.

The resonance frequencies and mode shapes are used to determine the damping constants. The
viscous damping associated with oscillatory motion, Eq. (3.23), is frequency dependent. The
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Mode 1 Mode 2 Mode 3

® |
Balloon C) d) ‘

®

¢ °
Gondola C) O .
. . o
Styr;f)c;am ‘ O O

Figure 3-3. Modes shapes corresponding to resonance frequencies fi, f> and f3. The unperturbed location of
the balloon, gondola and styrofoam box are indicated by the unfilled circles. The filled circles are
their locations during a quarter cycle of the oscillation.

relative motion of the balloon and gondola is greatest for mode 2 and therefore a good assumption
of their damping coefficients are

oy = 6y (i 1/ 1P (3.32)
Cof = 67U’g <‘u+ AV, :upairnf2> ) (3.33)

respectively, where ry, is the effective radius of the balloon given by Eq. (3.35). As frequency
increases, so does the damping coefficient. Considering the motion of the styrofoam box in
modes 2 and 3, an appropriate choice for the damping coefficient is

Cof = 6T, (,u + rg\/UPairT f3> . (3.34)

3.3. Infrasound to Net Force Relation

With the governing equations (3.16) for vertical motion developed, the next step is to derive a
relation between the incident infrasound signal and the resulting forces on the balloon, gondola
and styrofoam box. The infrasound signal will be modeled as a propagating plane wave. Each of
the three components of the balloon system are approximated as a sphere of appropriate radius.
The effective radius for the gondola and styrofoam box is given by Eq. (3.21) and (3.22),
respectively. For the balloon envelope, the effective radius is obtained by equating the volume of
the balloon in Eq. (3.4) with that of a sphere, giving

rp= %(dﬁhe)l/ ’. (3.35)

The total pressure, incident plus scattered, on the surface of a rigid, immoveable sphere due to an
incident time-harmonic plane wave will now be derived. The corresponding net force is obtained
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by integrating over the surface of the sphere. Since the balloon is filled with helium, the rigid
assumption is not correct but is a sufficient result for the current developments. In future work,
the correct pressure loading will be derived, taking into account the transmission of the
infrasound through the balloon.

_H_.

Dine (w, t) — Pinc(w)ei [ut—k'r' cos(ﬂ):|

Figure 3-4. Propagating plane wave incident on rigid sphere.

Consider a time-harmonic plane wave incident upon a rigid sphere of radius a as shown in
Fig. 3-4. The plane wave propagates along the z-axis from —z to 4z with frequency dependent
amplitude P;,.(®). In Cartesian coordinates the incident plane wave is expressed

Pine(@,1,0,1) = Py (@)e! 01— H7e0s®)] (3.36)

where (r,0) locates a point relative to the center of the sphere and k = ®/ag;, [1/m] is the
wavenumber.

Applying Eq. (10.1.47),

[e )

£i2¢0s(8) Z (2n+ 1)e%”mjn (z)Py(cos(8)), (3.37)
n=0
and Eq. (10.1.34), ,
jn(Zemm) _ emnm]n( ), (3.38)

in Abramowitz and Stegun [ 1], the incident plane wave in Eq. (3.36) can be expressed in the
spherical coordinate system:

Pinc(®,r,0) = Pipe () i (2n+41)(—i)" ju(kr)P,(cos(0)) (3.39)
n=0

where j,(kr) = /5], ! 1 (kr) is the spherical Bessel function of the first kind and P,(cos(0)) is

the Legendre polynomial. The time-harmonic multiplier ¢/’ has been omitted.

The unknown scattered pressure is expressed in the general form

Pscar(0,1,0) = Z Z Apnh$? (kr) P (cos(8)) ™ (3.40)

n=0m=

where P"(cos(8)) is the associated Legendre function for m # 0,

W2 (kr) = ju(kr) -+ iyn(kr) (3.41)
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T

is the spherical Bessel function of the third kind, and y, (kr) = Y. ! (kr) the spherical Bessel

function of the second kind. Equation (3.40) describes spherically spreading waves radiating
away from the center of the sphere in Fig. 3-4.

The total pressure and total particle velocity at any point in the fluid is the sum of the incident and
scattered fields

Pmt((!), r7e) = pinc( 9) +pscat((‘) I, e) (3.42)
Utor (0,7,0) = Uipe (0, 7,0) + liseq (0,1,0). (3.43)

With the sphere assumed to be rigid and unmovable, the radial component of the total particle
velocity at the surface, r = a, must equal zero and therefore

ur,scal(w7 r e)’ = _Mr,inc(u)7 r e)’

r=a

(3.44)

Hence the amplitude of the scattered field can be easily determined from that of the incident
field.

The incident and scattered radial particle velocity is obtained from Egs. (3.39) and (3.40) by
applying the momentum equation

du,  dp
pazr? - _g (345)
giving
- ’Poi)";("’) Y (20 1)(=i)" j,(kr)y(cos(8)) (3.46)
air  p—0
Hrsear = Z Z Apnh? (kr)P™ (cos(8))e™® (3.47)
alrn Om=

where the derivative of the Bessel functions with respect to their argument is indicated by the
superscript /.

Substitution of these expressions into Eq. (3.44) and invoking the orthogonality of the complex
exponential and the Legendre polynomial [3] finds m = 0 and

—Piye(2n+1)(—i)" ji (ka) '

Aop = (3.48)
" n2 (ka)
Substituting this result into Eq. (3.40) gives for the scattered pressure
- T g P (k)
pscat(w: r 9) = _Pinc(w) Z (2}’1 + 1)(_1) ]n(ka)TPn(cos(e))' (3.49)
n=0 /’ln (ka)
The total surface pressure is the sum of this result and the incident pressure in Eq. (3.39)
evaluated at the surface of the sphere r = a
- g n(ka)i? (ka)  jy (ka)hi?) (ka)
Pror(0,8,8) = Pinc(®) Y (2n+1)(—i)"Pa(cos(8)) ol (3.50)
n=0 hn (k(l)
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The bracketed term can be simplified by first expanding it using Eq. (3.41):
n(ka)ts”" (ka) = jy (ka) ) (ka) = i, (ka)yu(ka) — ju(ka)y, (ka)|. (3:51)

Applying the recurrence relation Eq. (10.1.20),
n —|— 1

n
fald) =3 ~1(2) =5, a1 (2), (3.52)
n
and Eq. (10.1.31),
: , 1
In(@yn=1(2) = jn=1(2)yn(2) = 5, (3.53)
in [1] finds .
l
n(ka) B (ka) — jl.(ka)h® (ka) = e (3.54)
The total pressure on the surface of the sphere is then finally
Pine(®) ¥ (2n+1)(=0)"*!
Pror(®,0,6) = =55 ;O Py (cos(8)). (3.55)

h? (ka)

The total pressure on the surface of the sphere produces a net force causing the sphere to move.
This force is obtained by integrating over the spherical surface. The differential force directed
into the sphere at surface location (0,¢) is given by the product of the total pressure, the unit
vector, and the solid angle a?sin(0)d08d¢. The unit vector directed outward from the center of the
sphere can be described in spherical coordinates as

é,(0,0) = cos()sin(0)é, +sin(d)cos(8)é, + cos(0)é;. (3.56)

Integrating over the entire surface gives the net force

Fret = /21t/ Prot(0,a,0)8.(0,0)a’ sin(0)d0do. (3.57)

Since the total surface pressure is axially symmetric about the z-axis, integration over ¢ is
straightforward giving

-  2TPine
Fpet = —¢; 2

(2n+ 1)(=i)! |
,Zb W k) /OP(cos(e))sm(e)cos(e)de. (3.58)

To evaluate the integral, substitute v = cos(0) giving

1
/ P,(v)vdv. (3.59)
~1
This is evaluated using the orthogonality of the Legendre polynomials
0
/ Py dv—{ e (3.60)
nF1 m=n
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By definition P;(v) = v and therefore

/11 Pu(v)Py (v)dv — {O n71 (3.61)

n=1

W[

Therefore only the n = 1 term contributes to the net force on the sphere. For all other values of n
the variation of total pressure over the surface produces a net force of zero. Substituting the result
of Eq. (3.61) for the integral in Eq. (3.58) gives the net force

S _AnPy ()

Fret(0) = ———¢ (3.62)
S en® (ka)

A vector transfer function H (®) [m?] relating the amplitude of the incident plane wave to the
force is constructed from this result

F 4
ner () T 5. (3.63)

H(o®) = =
( ) Pinc(w) kzhgz)/(ka) z

The real and imaginary components of the transfer function for the balloon, gondola and
styrofoam box are plotted in Fig. 3-5 for the frequency bandwidth of the recorded infrasound
signals. Considering a unit amplitude infrasound signal at each frequency, the resulting force for
all three is predominately in phase quadrature with the pressure. Further, due to their small size
relative to the range of wavelengths of the infrasound, the resulting force on the gondola and
styrofoam box are orders of magnitude smaller than that of the balloon.

3.4. Estimating Vertical Forces

The resulting force on each balloon component is estimated by convolving the infrasound signal
measured by the microbarometer with the transfer function in Eq. (3.63). The convolution is
performed in the frequency domain using the fast Fourier transform and the resulting force is
inverse transformed back to the time domain.

The infrasound signal measured by the microbarometer for each subevent is shown in Fig. 3-6.
An overall window of 30 seconds in length as well as a zoom of the main infrasound signal is
provided. The data shown is the result of detrending the measured data using a least-squares fit of
a quartic polynomial to remove the slow variation of atmospheric pressure over time. Events 1
and 2 shown a strong N-wave associated with the shock wave from the ground explosion followed
by decaying reverberation. The auto-spectral density of the overall microbarometer signals in
Figs. 3-6 are shown in Fig. 3-7. For all four events there is a peak in the infrasound signal at
approximately 3 Hz.

The vertical component of the force applied to the balloon, gondola and styrofoam box is obtained
by convolution. The transfer functions in Fig. 3-5 are multiplied by the microbarometer signals
for each event in Fig. 3-7 and the vertical component obtained using the incidence angle:

F () = H(0)Pinc () cos(Bere); (3.64)
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Figure 3-5. Real (red) and imaginary (blue) components of the transfer function for the (a) balloon, (b) gondola
and (c) styrofoam box.

where 0., is angle of arrival of the infrasound signal, measured from vertical (4z). As this is a
proof of concept investigation, the arrival angle was determined from ray tracing analysis using
the known location of the source and location of the balloon.

The resulting vertical forces are inverse Fourier transformed back to the time domain. The
estimated forces on the ballon (red), gondola (green) and styrofoam instrumentation box(blue) for
Events 1 and 2 are plotted in Fig. 3-8. As expected from the transfer functions in Fig. 3-5, the
force on the balloon is significantly larger relative to the force on the gondola and styrofoam box.
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Figure 3-6. Detrended infrasound signal measured by the microbarometer in the styrofoam instrumentation
box. The overall signal is 30 seconds long and the zoom shows the specific detail of the infrasound

signal.
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Figure 3-7. Auto-spectral density of the 30 second of microbarometer time histories in Fig. 3-6.
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28



4. PREDICTION OF VERTICAL RESPONSE

The vertical response of the balloon, gondola and styrofoam box is obtained by integrating the
governing equations (3.16) using the corresponding forces in Fig. 3-8. The governing equations
are numerically integrated in MATLAB using the function ode89 which uses 8/ and 9" order

Runge-Kutta formulas.

To apply Runge-Kutta integration, the system of second-order governing equations are converted

to an equivalent system of first-order equations. This is accomplished by making the
substitution

21(t) =z (1)
22(t) = (1)
23(t) = z(1)
z4(t) = 2,(1)
z5(t) = z(1)
Z6(t) :Zs(t)

into Egs. (3.16) giving

(mp +mpg)22 + (be + Cg)Zz —CgZ4+ (kg — gMpV)Zl —kgz3 = Fy(t)
(mg +mga)ia — cgza + (Cgf + g +cp)za — cpze — kgz1 + (kg +ks)z3 — kpzs = Fy(t)
(my+mgq)z6 — cgza+ (s +¢p)zs — kpz3 +kpzs = Fi(t).

Dividing through by the mass coefficient and rearranging gives

21(t) = za(t)
k, — gM,V Ccpr+c k c Fy(t
()= e 8MV oyt Kk R b(?)
mp 4 Mpg mp + Mpy mp +Mpg mp 4 Mpg mp 4 Mpg
z3(t) = z4(2)
k c k,+k Coftc,+c k
24(t) = £ 71+ £ - —E " R Paa+ P75+
Mg + Mgq g + Mgq Mg + Mgq Mg + Mgq Mg + Mgq
Cp Fg(t)
Mg + Mgq Mg + Mgqy
Z5(I)ZZ6(I)
k c k csf+c F(t
26(t) = Poopb— S gy P SR (1) .
mg + mygy, mg + mygy, mg + mygy, mg + mygy, mg + myg,

4.1)

4.2)

4.3)



with initial conditions z1(0) = z3(0) = z5(0) = 0 for zero initial displacement and
22(0) = z4(0) = z6(0) = 0 for zero initial velocity. This is the form used in MATLAB.

The infrasound signal does not arrive at the balloon, gondola and styrofoam box simultaneously
unless the angle of arrival 0,;, = /2 (i.e. the infrasound is propagating parallel to the horizon).
Since the microbarometer was located in the styrofoam box, the forces F;, and Fyg for the ballon
and gondola must be time-shifted to account for the vertical travel time and for time-alignment
between the predicted acceleration response and the experimental measurement. It is assumed the
variations in sound speed between the location of the styrofoam box and balloon are negligible.
For arrival angle 6,;,, the propagation speed in the vertical direction is a, = cos(0,;¢) /aqir Where
agir 1s the propagation speed of the infrasound signal. The arrival time at the balloon #;, and the
gondola 7, are then

L cos(0,e) (4.4)

alr

to =15+

ng —I—Lp

Ip =15+ Cos(eele) 4.5)

Aaijr
where 7, is the arrival time at the styrofoam box which is assumed to be #; = 0, time of the onset of
response. Therefore in Eqgs. (4.3)

Fo(t) =F,(t)H(t —t,) (4.6)
Fb(t) = Fb(l‘)H(t — l‘b) “4.7)

where H is the Heaviside unit step function.

4.1. Event 1

The time-domain acceleration of the styrofoam box was predicted using the estimated forces
plotted in Fig. 3-6a with damping coefficients ¢, = ¢, = 0. The values for the damping
coefficients ¢, and ¢, were determined by visual inspection. The experimental and the predicted
accelerations were converted to the frequency domain and their normalized auto-spectral density
compared in Fig. 4-1. The second and third resonances of the balloon system at approximately
f>=1.9and f3 = 3.7 Hz are clearly visible in the predicted acceleration, with good agreement
with the two dominant peaks in the experimental acceleration. This indicates the spring constants
kq and k, are sufficiently accurate.

The value of the damping coefficients ¢, and ¢, were adjusted until agreement with the
experimental acceleration was achieved. In Fig. 4-2 is shown the experimental and predicted
accelerations with ¢, = 15 and ¢, = 2.3 [N*s/m]. Good agreement is achieved in the frequency
region around the two resonances of the system. These values for ¢, and ¢, were used for all
predictions of balloon system response for Event 1.

The predicted time-domain acceleration of the styrofoam box is compared to the experimental
acceleration for Event 1-A in Fig. 4-3. The predicted acceleration is plotted with the amplitude
inverted (multiplied by -1) to overlay the experimental data. The cause of the inversion in the
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Figure 4-1. Auto-spectral density of experimental (black) and predicted (red) acceleration of styrofoam box for
Event 1-A. The damping coefficients ¢, and c, are zero for the predicted acceleration.
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Figure 4-2. Auto-spectral density of experimental (black) and predicted (red) acceleration of styrofoam box for
Event 1-A. The damping coefficients ¢, = 15 and ¢, = 2.3 [N*s/m] for the predicted acceleration.

experimental data is unknown, and would imply the initial displacement of the styrofoam box was
downward, toward the incident infrasound signal which seems counterintuitive. In Fig. 4-3a the
amplitude of both accelerations are normalized by the maximum value of acceleration during the
time window. There is good agreement with the experimental data with alignment in the
dominant frequency of oscillation. There is a slight excess of attenuation in the predicted
acceleration in the 1 to 3 sec. region.

In Fig. 4-3b the actual acceleration is plotted. The amplitude of the forcing on the balloon was
adjusted to 0.73F, to achieve good agreement; F, and Fy were not adjusted. This adjustment was
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expected as the balloon was assumed perfectly rigid which is not the case since it is filled with
helium. Based upon the phase speed and density of the helium and the air at float altitude as listed
in Table 3-1 the reflection coefficient of the balloon envelope (neglecting the influence of the
membrane) is

R — pHeaHe - pairaair
PHeAHe + PairQair
=—-0.3149169 4.9)

(4.8)

where the negative value is due to the impedance of the helium being less than that of the air.
Therefore an incident plane wave would reflect out of phase with the amplitude reduced by 31.5%
and the total pressure at the surface would be 69.5% relative to a rigid sphere. This agrees well
with the adjusted forcing of 0.73F;, used for Fig. 4-3b.

Event 1-A Normalized Vertical Response Comparison Event 1-A Vertical Response Comparison
T T T T T T T T T T T T T T T T

T T T T T T
= Experimental = Experimental
0.8+ Predicted 4 al Predicted |

Normalized Vertical Acceleration
Vertical Acceleration, m/s;2

. . . . . | . . . I . . I . . | . . . I .
-1 0 1 2 3 4 5 6 7 8 9 10 -1 0 1 2 3 4 5 6 7 8 9 10
Time after response onset, sec Time after response onset, sec

(a) Normalized Acceleration (b) Actual Acceleration

Figure 4-3. Comparison of experimental (black) and predicted (red) acceleration of the styrofoam box for Event
1-A. The amplitude in (a) is normalized by the maximum value, (b) the force on the ballon is 0.73F;,.

The predicted vertical displacement, velocity and acceleration of the balloon (red), gondola
(green) and styrofoam box (blue) are shown in Fig. 4-4. The maximum displacement of the three
components are small, in the 10 to 20 mm range. The initial displacement of each is upward, in
the direction of the infrasound propagation. Notice the displacement of the balloon leads the
gondola which leads the styrofoam box, resulting from the time required for the balloon impulse
to travel to the styrofoam box. The acceleration is shown as predicted (not inverted). The
acceleration of the balloon follows closely the applied force in Fig. 3-8a.

The predicted acceleration of the styrofoam box for Event 1-B is compared to the experimental

acceleration in Fig. 4-5. The damping coefficients ¢, and ¢, are those determined for Event 1-A
and the predicted force on the ballon is 0.73F;,. There is good agreement with the experimental

data though again there is slight excess attenuation in the 1.5 to 3.5 sec. region.

The predicted vertical displacement, velocity and acceleration of the balloon (red), gondola
(green) and styrofoam box (blue) for Event 1-B are shown in Fig. 4-6. The first resonance
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Figure 4-4. Predicted response of the balloon, gondola and styrofoam box for Event 1-A: (a) displacement (in
mm), (b) velocity and (c) acceleration.

(bobbing) mode is visible in the displacement. The velocity and acceleration are similar to those
predicted for Event 1-A. This is expected as the microbarometer measurements for Event 1-A and
1-B in Fig. 3-7 are very similar.

4.2. Event 2

The normalized predicted and experimental acceleration auto-spectral densities for Event 2-A are
shown in Fig. 4-7. The damping coefficients ¢, = ¢, = 0. Comparing the location of the second
and third resonances, it appears the balloon system has become stiffer relative to Event 1.
Increasing the Young’s modulus of the Paracord by 20% to Ep4rq = 2.39 X 10° Pa and the

33



Event 1-B Normalized Vertical Response Comparison Event 1-B Vertical Response Comparison
T T T T T T T T T T T T T T T T T

T T T T
—— Experimental —— Experimental
0.8 Predicted 41 Predicted 4

Vertical Acceleration, m/s2

Normalized Vertical Acceleration
. . .

) -1 0 1 2 3 4 5 6 7 8 9 10 -1 0 1 2 3 4 5 6 7 8 9 10
Time after response onset, sec Time after response onset, sec

(a) Normalized Acceleration (b) Actual Acceleration

Figure 4-5. Comparison of experimental (black) and predicted (red) acceleration of the styrofoam box for Event
1-B. The amplitude in (a) is normalized by the maximum value, (b) the force on the ballon is 0.73F},.

modulus for the polyethylene balloon envelope 15% to Ej,;, = 1.265 X 10° Pa gives better
alignment with the experimental acceleration as shown in Fig. 4-8. To align the predicted with the
experimental acceleration in the region around the two resonances, the damping coefficient values
cg = 15 and ¢, = 3.0 were used. The Paracord is 30% more lossy compared to Event 1. The
atmospheric conditions for Event 1 and 2 are nearly identical and the source of the increased
stiffness and damping the system is unknown. Perhaps the solar radiation has modified the
material properties.

The predicted time-domain acceleration of the styrofoam box is compared to the experimental
measurement in Fig. 4-9. The predicted acceleration is again inverted to align with the
experimental data. The normalized acceleration shown in Fig. 4-9a agrees well with the
experimental data with an overshoot in response around 1.5 sec. The acceleration in Fig. 4-9b was
predicted for a scaled balloon force of 0.73F;, as was done for Event 1. Fairly good agreement is
achieved.

The predicted displacement, velocity and acceleration of the balloon (red), gondola (green) and
styrofoam box (blue) for Event 2-A are shown in Fig. 4-10. As with Event 1-B, the displacement
indicates the lowest mode (bobbing) is excited.

The predicted time-domain acceleration of the styrofoam box for Event 2-B is compared to the
experimental measurement in Fig. 4-9. The predicted acceleration is again inverted to align with
the experimental data. Good agreement is observed similar to Event 2-A.

The predicted displacement, velocity and acceleration of the balloon (red), gondola (green) and
styrofoam box (blue) for Event 2-B are shown in Fig. 4-12. The displacement, velocity and
acceleration response are similar to Event 2-A.
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Figure 4-6. Predicted response of the balloon, gondola and styrofoam box for Event 1-B: (a) displacement (in
mm), (b) velocity and (c) acceleration.
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Figure 4-7. Auto-spectral density of experimental (black) and predicted (red) acceleration of styrofoam box for
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Event 2-A Normalized Vertical Response Comparison
i | T T T T T T T T

T
— Experimental
Predicted 4

0.8 -

0.6

0.4

0.2

-0.2

04}

Normalized Vertical Acceleration
o

-0.6 |-

-0.8

. . | . L . . . . . |
-1 0 1 2 3 4 5 6 7 8 9 10
Time after response onset, sec

(a) Normalized Acceleration

Event 2-A Vertical Response Comparison
T T T T T T T

Vertical Acceleration, m/s?

— Experimental
Predicted T

Time after response onset, sec

(b) Actual Acceleration

I I ! I 1 I I I I
1 2 3 4 5 6 7 8 9 10

Figure 4-9. Comparison of experimental (black) and predicted (red) acceleration of the styrofoam box for Event
2-A. The amplitude in (a) is normalized by the maximum value, (b) the force on the ballon is 0.73F}.
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Figure 4-10. Predicted response of the balloon, gondola and styrofoam box for Event 2-A: (a) displacement (in
mm), (b) velocity and (c) acceleration.
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Figure 4-11. Comparison of experimental (black) and predicted (red) acceleration of the styrofoam box for Event
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Figure 4-12. Predicted response of the balloon, gondola and styrofoam box for Event 2-B: (a) displacement (in
mm), (b) velocity and (c) acceleration.
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5. CONCLUSIONS

The first steps have been completed in gaining an understanding of how balloon systems respond
to incident infrasound signals. Starting from first principles, governing equations for the dynamic
vertical motion of a balloon system have been developed. The dynamics was captured in a three
degree of freedom lumped parameter model. By representing the balloon, gondola and styrofoam
instrumentation box as rigid spheres, an analytical transfer function was developed relating the
frequency dependent amplitude of the infrasound signal to the net force applied to the spheres.
Further, this allowed the viscous damping associated with oscillatory motion and the added mass
to be easily included, improving the physical accuracy of the model. The detrended experimental
microbarometer data was convolved with the transfer function to give a prediction of the
time-varying force on the balloon components. The predicted force on the balloon was scaled to
account for the impedance mismatch between the helium in the envelope and the outside air.
Expressing the governing equations as a system of first-order differential equations, the
Runge-Kutta method was used to numerically time integrate the equations with the predicted
forces. The numerical integration produced predictions of the vertical displacement, velocity and
acceleration of each of the balloon components.

The predicted vertical acceleration of the styrofoam instrumentation box was compared to the
measured accelerations for Events 1 and 2. Unknown damping coefficients for the
balloon-gondola connection and the tether Paracord were estimated by comparing the normalized
accelerations in the frequency domain. Excellent agreement was observed between the predicted
and experimental accelerations. The dominant resonances of the balloon system aligned with the
experimental data, indicating the stiffnesses were sufficiently accurate. The decay of the predicted
acceleration followed the experimental trend giving support to the degree of damping in the
model. A slight increase in the stiffness was needed for Event 2. It is postulated that solar
radiation at the high altitude may have changed the material properties of the Paracord and
strappings. With the updated stiffness, excellent agreement was observed with the measured
acceleration for Event 2.

Overall the results suggest the vertical model of the balloon system captures the necessary
physics. The agreement with the experimental data indicates the mass, stiffness and damping in
the model is correct. The next step will be to implement the governing equations for a double
pendulum to capture the swinging motion of the balloon system. The double pendulum
formulation will predict the acceleration in the horizontal plane as well as the vertical. The
horizontal accelerations are used in the direction of arrival and geolocation post-processing
algorithms developed elsewhere for the experimental data. Once the full motion of the balloon
system is understood, the governing equations will be used to guide improvements in the
sensitivity and accuracy of the aeroseismometer system.
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