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Abstract—As the popularity of quantum computing continues
to grow, efficient quantum machine access over the cloud is
critical to both academic and industry researchers across the
globe. And as cloud quantum computing demands increase
exponentially, the analysis of resource consumption and execution
characteristics are key to efficient management of jobs and
resources at both the vendor-end as well as the client-end. While
the analysis and optimization of job / resource consumption
and management are popular in the classical HPC domain, it
is severely lacking for more nascent technology like quantum
computing.

This paper proposes optimized adaptive job scheduling to the
quantum cloud taking note of primary characteristics such as
queuing times and fidelity trends across machines, as well as
other characteristics such as quality of service guarantees and
machine calibration constraints. Key components of the proposal
include a) a prediction model which predicts fidelity trends
across machine based on compiled circuit features such as circuit
depth and different forms of errors, as well as b) queuing time
prediction for each machine based on execution time estimations.

Overall, this proposal is evaluated on simulated IBM machines
across a diverse set of quantum applications and system loading
scenarios, and is able to reduce wait times by over 3x and improve
fidelity by over 40% on specific usecases, when compared to
traditional job schedulers.

I. INTRODUCTION

Quantum computing is a revolutionary computational model
that leverages quantum mechanical phenomena for solving
intractable problems. Quantum computers (QCs) evaluate
quantum circuits or programs in a manner similar to a clas-
sical computer, but quantum information’s ability to leverage
superposition, interference, and entanglement is projected to
give QCs significant advantage in cryptography [33], chem-
istry [23], optimization [26], and machine learning [14] appli-
cations.

In the current Noisy Intermediate-Scale Quantum (NISQ)
era, we expect to operate with quantum machines comprising
of hundreds or thousands of quantum bits (qubits), which are
acted on by imperfect gates [31]. Further, the connectivity in
these machines will be sparse and qubits will have modest
lifetimes. Given these limitations, NISQ era machines will be
unable to execute large-scale quantum algorithms like Shor
Factoring [33] and Grover Search [22], which rely on error
correction comprised of millions of qubits to create fault-
tolerant quantum systems [28].

With development of these NISQ devices, cloud-based
quantum information processing (QIP) platforms with nearly
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Fig. 1: Users launch quantum programs from their classi-
cal computers onto the vendor’s quantum cloud wherein
the jobs are queued until execution.

100 qubits are currently accessible to the public. Further,
recent quantum hardware roadmaps, such as IBM’s [5], have
announced that devices with as many as 1000 qubits will be
available by 2023. It also has been recently demonstrated
by the Quantum Supremacy experiment on the Sycamore
quantum processor, a 54-qubit quantum computing device
manufactured by Google, that quantum computers can outper-
form current classical supercomputers in certain computational
tasks [12]. These developments suggest that the immediate
future of quantum computing is promising.

Still at a nascent stage, QCs are an extremely scarce and
expensive resource due to their difficulty to design, manufac-
ture, and maintain. Thus, quantum machines and correspond-
ing software stacks are primarily accessed by researchers in
academia and industry world wide via the cloud. Current cloud
vendors with their own quantum hardware include industry
giants like IBM, Google, Microsoft and Honeywell, as well as
startups such as Xanadu, Rigetti, IonQ and D-Wave. Further,
Amazon Braket (AWS) and Microsoft Azure Quantum provide
quantum computing as a service via multiple other quantum
hardware vendors. It is expected that quantum computing as a
cloud service will grow considerably over the next decade and
will continue to be the main access to quantum machines for
research across the globe. Fig.1 provides an overview of how
clients interact with cloud quantum machines - more details
are discussed in Section II.

Currently, the contention for access to quantum devices
in the cloud is steadily growing. While quantum machines
available in the cloud are very limited in number [3], [1],
[8], the number of users and the number of “jobs” submitted
to these machines are drastically growing every day [2]



across multiple vendors. With the increasing popularity of
quantum computing in both industry and academic research,
it is expected that these contention trends will continue to
worsen over the next decade or more - at the very least until
the cost of building large and reliable quantum computers
becomes more easily surmountable. As an example, a first-
order impact of quantum machine scarcity are the long queuing
times [16], [24] experienced while accessing cloud machines.
As discussed in later sections, we observe that there can be
10s-1000s of quantum jobs queued up on quantum machines at
any given time. This results in queuing times of many hours
and sometimes even days. Such accessibility constraints in
using these machines can severely handicap several research
endeavors in terms of: a) the scope of the quantum problems
that can be effectively targeted on these machines, and b)
timely access to the machines irrespective of the quantum
problem.

Thus, as quantum demand continuous to grow, it is imper-
ative to efficiently manage quantum resources. Unfortunately,
the current state of scheduling in the quantum cloud has
not evolved significantly from the early days of quantum
development where access to machines was more essential
than optimum usage; when machines were very few in number,
users were experts with advanced quantum knowledge and ap-
plications were very limited. Today we have a vast diversity in
user expertise, in target applications and in available machines
meaning that optimal usage is essential from the perspectives
of both the user as well as the vendor. Thus, adaptive job and
resource management suitable for the growing quantum cloud
is in need.

Similar to classical HPC, vendors should attempt allocating
machine resources as efficiently as possible so as to improve
system throughput, while clients should try to make efficient
use of job deployment strategies to maximize their allocated
time and resources. However there are some key differences
between computing in the classical cloud and computing in the
quantum cloud. (D) First, quantum machines are error prone.
Thus maximizing execution fidelity is a first-order constraint
unlike classical machines which are primarily focused on per-
formance and energy efficiency. 2) Second, the execution of
quantum applications are heavily dependent on, and sensitive
to, the target quantum machine with its varying characteristics,
meaning that any optimum scheduling in the cloud needs up
to date machine information. (3) Third, in the near future
quantum jobs / circuits are expected to be on the lower
end of the complexity spectrum, meaning that their execution
characteristics can be more easily predictable.

This paper proposes to automate, adapt and improve
scheduling quantum jobs to the growing quantum cloud. The
improved scheduling targets a number of goals: (1) Maxi-
mizing execution fidelity at low system load, (2) Minimizing
wait times at high system load, 3) A balanced approach
otherwise, (4) Accounting for user’s QOS (Quality of Service)
requirements, in terms of maximum acceptable wait times, @)
Accounting for the effects of machine recalibration, and (6)
Optimizing calibration schedules for better overall fidelity /

lower wait times.
Overall, we make the following contributions:

1) This work shows, both qualitatively and quantitatively,
that there is a need to improve the existing quantum job
schedulers as the quantum cloud continues to grow.

2) To the best of our knowledge, this is the first proposal
to explore quantum job scheduling optimizations. We
build an automated adaptive job scheduler which can be
integrated into the quantum cloud, to schedule quantum
jobs onto machines, which optimizes for both fidelity
and wait times, as well as accounts for the different
objectives described earlier.

3) We build a novel prediction model to predict correlation
between compiled quantum circuit features and their ma-
chine execution fidelity, across a diverse set of quantum
applications and quantum machines.

4) We build a simple queuing time prediction model by
estimating the execution times of jobs on quantum
machines.

5) We incorporate these prediction models into our pro-
posed scheduler, and use them to balance different goals,
meet QOS requirements and avoid stale compilation for
machines.

6) We further avoid stale machine compilation by exploring
the relation between machine calibration cycles and job
schedules and propose simple improvements to calibra-
tion schedules through the approach of “staggering”.

7) We study the benefits of our proposal across a diverse set
of quantum applications, a wide range of IBM quantum
machines and different scenarios of system loading.

II. BACKGROUND AND MOTIVATION

A. Traditional execution of quantum circuits

We explain some key terminology in quantum circuit exe-
cution in the cloud below:

(D Circuit: A single quantum circuit with a list of instruc-
tions bound to some registers. It has a number of gates and is
spread out over a number of qubits.

Q) Compilation: Tnvolves a sequence of steps to enable
the quantum circuit to be executed on a specified quantum
machine in a valid and efficient manner.

() Job: Encapsulates a single circuit or a batch of circuits
that execute on an quantum machine. The circuits within a
batched job are treated as a single task such that all quantum
circuits are executed successively. Further, each circuit in the
job will be rapidly re-executed for a specified number of shots.

(@ Queue: When a job is submitted to a quantum machine
on the cloud, it enters a queue (for that particular machine)
with jobs from other users before eventual execution. The
order which these jobs are executed is, by default, determined
by some fair sharing based queuing algorithm.

B. Long queuing times in today’s quantum systems

Long queuing times experienced while accessing cloud
machines come as a direct result of quantum machine scarcity.

Fig. 2 plots the cloud queuing time experienced by the
executed circuits in an in-house study we conducted over a
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Fig. 2: Queuing time experienced by circuits run on the
IBM Quantum machines (sorted) over two years. Green
lines correspond to times of 1 minute and 2 hours.
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Fig. 3: Average pending jobs across different quantum
machines, averaged over a week in March and May 2021

two year period, in ascending order. Note that these executed
circuits are through a mix of public and privileged (i.e. paid)
access to these quantum machines. Only around 20% of the
total circuits experience ideal queuing times of, say, less than
a minute. The median queuing time is around 60 minutes
which is not insignificant. Further, more than 30% of the
jobs experienced queuing times of greater than 2 hours, and
around 10% of the jobs were queued up for as long as a
day or even longer! The classical HPC systems analyzed
in [29] estimated that the average queuing times on their
supercomputers increase from 0.1 hours to 1.2 hours over a
decade. The current queuing times for quantum clouds, even
at this stage of relative infancy, are already comparable to
the higher side of the classical queuing times. A similar 10x
increase in quantum waiting times over the next decade would
be detrimental to quantum research and development. The
higher queuing times are especially concerning, considering
that the actual quantum execution runtime on the quantum
machines is only in the order of seconds or minutes.

Takeaway: Queuing times are considerably long and are
expected to grow as demand increases. It is important that
jobs are scheduled in a more queuing time aware manner.
C. Queue time variability across machines

Fig. 3 shows the number of pending jobs across different
quantum machines, averaged over a week’s period in March
and May 2021. The machines are broken down into blocks
(blue dashed lines) based on the number of qubits in the
machine. The first block is a 1-qubit machine, the next block is
5-qubit machines, the next is 7-16 qubits and the final is 27-65
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Fig. 4: Variation in readout error over 74 calibration cycles
across IBM machines.

qubits. Further, publicly accessible machines are highlighted in
purple. In each block (and across both periods), it is observed
that the average pending jobs are highest on a public machine
- this is expected since public machines have considerably
more demand. For instance, in the March week, IBMQ Athens
is 10-100x more in demand than other 5-qubit machines.
More importantly, it is observable that jobs are not distributed
equally across machines (public or otherwise). And further,
trends in job distribution are not stable over time - distributions
vary widely between the two weeks shown. It is intuitive
that while specifics of machine usage and machine popularity
might change over time, the trends that jobs are unequally
distributed across machines and that public machines are
considerably in higher demand are expected to be consistent.

Takeaway: Jobs are unequally distributed across quantum
machines. It is important to ensure that load is well balanced
across the system in order to reduce unreasonable queuing
times on specific machines - especially in the public cloud
where demand is considerably higher.
D. Spatial variability across machines

Even if QCs are manufactured in a highly controlled set-
ting, unavoidable variation results in intrinsic properties that
impact performance. This variation between devices becomes
especially apparent when examining error rates. In Fig. 4,
details of average qubit readout error for 15 IBM QCs over 74
calibration cycles from April 2021 to June 2021 are plotted.
Here, minimum and maximum per-qubit averages over the 74
cycles are included along with the overall average readout
error per machine. The QCs are in ascending order from left to
right in with respect to of number of qubits. Even if machines
have the same number of qubits, such as the five qubit devices
ranging from ibmgq_athens to ibmq_santiago on the x-axis,
their readout error values differ. Understanding a QC’s readout
error is important as qubit measurement is a required step in
QIP.

Fig. 5 plots average CNOT (CX) error for 15 IBM QCs
in asending order in terms of number of machine qubits over
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Fig. 5: Variation in CX error over 74 calibration cycles
across IBM machines.
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Fig. 6: Variation in CX errors over time (74 calibration
cycles) on IBM Rome. Each line represents a two-qubit
connection on the QC that executes a CX gate.

74 calibration cycles from April 2021 to June 2021. Here,
the minimum and maximum average individual CX operation
over 74 cycles is included along with total average CX error
per machine. Once again, the data show that each machine
differs in two-qubit gate perfomance. Additionally, the spread
between intra-machine minimum and maximum CX error is
not insignificant.

Takeaway: Machine characteristics can vary widely across
machines. Moreover, many characteristics and their impact on
applications are likely not be understood well by users. Thus
analyzing how different machine characteristics affect appli-
cation fidelity and scheduling jobs to machines accordingly
are an important step in effective quantum job scheduling.

E. Temporal variability across calibrations

When quantum circuits are compiled, they are done so in a
device aware manner. While this involves static characteristics
such as device topology and device basis gates, it also involves
incorporating dynamic characteristics such as gate / qubit
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(b) Varying Compiled Circuits
Fig. 7: Effects of calibration crossovers. QCs can become
sub-optimal over time.

fidelity. As discussed earlier, the latter are dynamic because
they evolve over time - these characteristics of qubits and gates
are re-calibrated at some coarser granularity (say once a day)
and these calibrations are non-uniform i.e. one day’s qubit
fidelity can be very different from the next day’s qubit fidelity.
Further, these characteristics also drift over time - meaning that
they can differ even within a single calibrated epoch.

To showcase variation among calibration cycles, Fig. 6
illustrates how drastically CX error changes over time on a
QC. Here, the CX error rates for ibmq_rome are plotted for
74 calibration cycles ranging from April 2021 to June 2021.
Data describing the average and standard deviation for each
QC CX gate over the sample period is also included. As seen in
Fig. 6, CX operations have unique error characteristics, some
of which, like CX [1, 2], that evolves significantly over time.

It is also often the case that in scenarios of long queuing
times, the dynamic characteristics which are accounted for at
the time of compilation are very different from the dynamic
characteristics of the quantum machines at the time when
the quantum circuit is actually executed on the machine.
This results in the quantum circuit being sub-optimal to the
quantum machine at the time of actual execution.

IBM Quantum machines are usually calibrated once a day,
likely around 12:00am - 2:00am (North America). Fig.7a
shows that we estimate that over 20% of our studied quantum
jobs were compiled with device information from an older
calibration cycle but were executed on the machine after a new
calibration. This results in the compilation being potentially
sub-optimal. Note that these are only coarse estimates based
on queuing and execution time stamps.

Fig.7b shows a snippet of a circuit compiled with noise-
aware mapping, wherein the noise information of physical
qubits is incorporated into the optimal mapping from the
circuit’s logical qubits to the machine’s physical qubits. Two
compilations of the same circuit snippet are shown, from two
consecutive calibration cycles. It is evident that the optimal
mapping and circuit structure are different. Thus, using an
older mapping can be detrimental to the fidelity of executed
applications.

Note that in the above gate-based compilation approach,
the quantum gates are converted to pulses at the time of
execution. Thus the system will presumably use the most-
recently-calibrated pulses to execute the gates on the quantum
machine i.e. after the job reaches the head of the queue and is
ready for actual quantum execution. On the other hand, in the



pulse based approach (eg. OpenPulse [10], [25], [21]), pulses
are generated at the time of compilation. Thus, these pulses
are generated based on machine characteristics at the time of
compilation. A calibration cross-over would mean that even
the pulses are sub-optimal at the time of quantum execution.

Takeaway: Machine characteristics vary constantly, espe-
cially after day-to-day calibration. Thus time-sensitive ma-
chine characteristics have to be accounted for during schedul-
ing. Moreover, scheduling strategies should be designed to
avoid the machine execution of circuits compiled with stale
machine data.

F. Classical scheduling in the cloud

An increasing amount of computing is hosted in public
clouds, such as those from Amazon, Microsoft, Google etc.
Cloud platforms provide two major advantages for end-users
and cloud operators: flexibility and cost efficiency.

Optimized job scheduling and resource management in the
cloud has been an active area of research and development
over the past two decades including optimizations targeting
resource reservation vs sharing [19], QOS-aware schedul-
ing [17] and maximizing system utilization [18], to name a
few. Incorporating fairness and priorities in scheduling is not
new to the quantum cloud. For example, IBM Quantum applies
a “’fair share” approach to job scheduling [4]. In this approach,
jobs on a quantum system are managed dynamically so that no
user / group can monopolize the system. The shares provided
to each user / group represent the fraction of system time that
is allocated to them. Those with the most device time have
the highest priority in the fair-share algorithm.

Optimized job scheduling to the quantum cloud can differ
from its classical counterpart in at least two distinct ways. One,
the execution of quantum applications on the quantum machine
are significantly impacted by machine fidelity characteristics
(such as static qubit connectivity within the machines and
dynamic qubit error rates) as discussed prior. This adds an
addition layer of "heterogeneity” to the optimum job schedule.
Second, in the near future, quantum jobs / circuits are expected
to be at the lower end of the complexity spectrum, meaning
that both the execution time (which can then be extrapolated
to queuing time) as well as the machine-application fidelity
correlation can be reasonably predicted. This implies that
opportunities for job scheduling that optimize for both fidelity
and wait times, as well as a multitude of other user/system
requirements, are worthy of exploration.

Takeaway: As the quantum cloud matures, it is imperative
to employ job scheduling strategies inspired by those pursued
in the classical computing domain. However, key differences
form the classical domain should be accounted for, especially
those related to fidelity and execution characteristics.

III. EXPERIMENTAL SETUP

A. Compilation

Applications are compiled with highest optimization offered
by Qiskit Terra to map and optimize for the IBM machines [9].
We use Qiskit’s noise aware compilation strategies [27] to
use less noisy qubits most efficiently and thus maximizing the

likelihood of successful runs. The above maps a circuit to a
particular machine using the daily calibration data provided
by the vendor in order to avoid using unreliable qubits and
to prioritize qubit positioning which reduces the likelihood of
communication (SWAP) errors.

B. Quantum cloud simulation infrastructure

For our experimental evaluation we build a model cloud
setup using IBM Qiskit [9] simulator with device models
of IBM quantum machines. We utilize device models of as
many as 26 IBM quantum machines - these models mimic
the characteristics of the actual device in terms of topology,
error rates for gates and readout, T1/T2 times etc. Machine
details can be found on the IBM Quantum Systems page [7].
Thus fidelity estimations are obtained by running the quantum
circuits on these simulator models.

To model the system load we build different load distribu-
tions of low, high and random queuing jobs / times across
these machines. Loads are defined with respect to a maximum
queuing time which cannot be overshot. For example, given
that machines are traditionally recalibrated every 24 hours, the
max queuing time could be set to 24 hours. Low load: Less
than 10% of maximum queuing on each machine, High load:
50-100% of the maximum queuing on each machine, Random
Load: anywhere from 1-100% of the maximum queuing on
each machine.

C. Benchmarks

The framework is evaluated on benchmarks representative
of real-world use cases, which are described below.

Toffoli: A 3-input gate which performs logical AND be-
tween two controls bits and writes onto the target bit.

Hidden Subgroup Problem: Captures problems like factor-
ing, discrete logarithm, graph isomorphism, and the shortest
vector problem. It is implemented for 4 qubits.

Bernstein-Vazirani: BV guarantees the return of the bitwise
product of some input with a hidden string [13]. BV is
implemented using 5 qubits.

Linear Solver: Solver for a linear equation utilizing 3 qubits.

Quantum Approximate Optimization Algorithm: QAOA [20]
is implemented atop a parameterized circuit called an ansatz
and we use one instance of a hardware efficient QAOA ansatz
as the benchmark. We use QAOA ansatz for 4 qubits.

Variational Quantum Eigensolver: The goal of this algo-
rithm [30] is to variationally find the lowest eigenvalue of a
given problem matrix. We implement VQE on a hardware-
efficient SU2 ansatz [6] and use one instance as the bench-
mark. We construct the ansatz for 4 qubits (4 reps / full
entanglement) and 6 qubits (3 / SCA).

Quantum Repetition Code Encoder: A repetition code en-
coder which introduces redundancy to the encoding that can
be exploited for error detection [32] (5 qubits).

Ripple Carry Adder: We implemented a linear-depth, 2 bit
ripple-carry adder quantum circuit that uses 6 qubits based on
the structure described in [15].

D. Metrics

The benefits of our scheduler are primarily evaluated for

a) fidelity, based on the Probability of Success (POS) metric
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which is the ratio of a number of error-free trials to the total
number of trials, and b) queuing time, based on a simulated
load distributions across our model cloud system made up of
“fake” machines (i.e. simulation).
E. Evaluation comparisons

We compare our proposed scheduler against two baselines -
Only-WT: which only aims to minimize wait times (i.e. queu-
ing times) agnostic to application fidelity or QOS requirements
etc, and Only-Fid: which only aims to maximize application
fidelity (based on predictions from the fidelity correlator) but
is agnostic to system load, wait times etc.

IV. PROPOSAL

This paper proposes to automate and improve the scheduling
of quantum jobs into the quantum cloud. The improved
scheduling targets a number of goals: () Maximizing exe-
cution fidelity at low system load, (2) Minimizing wait times
at high system load, 3) A balanced approach otherwise, @
Accounting for user’s QOS (Quality of Service) requirements,
in terms of maximum wait times, @ Accounting for the
effects of machine recalibration, and (6) Optimizing calibration
schedules for better overall fidelity / throughput.

An overview of the proposal is shown in Figure 8 and
summarized below. Detailed design evaluation in Section V:

(D A user uses their classical computing device to launch a
quantum job to be executed in the cloud. Unlike the traditional
setting, the user does not specify a target quantum machine in
the vendor cloud. The machine selection will be managed by
the scheduler.

@ A job’s QC is compiled for all suitable machines.
Unsuitable machines can include those that have lower number
of qubits than the circuit requires, queuing times beyond the
QOS specification of the application etc.

@ Note that at the above step, in case a batch of circuits
are present in the job, the user is allowed to specify a specific
circuit to be representative of the batch - to ease compilation
overheads across a variety of machines.

@ Once the circuit is compiled for the suitable machines,
post-compilation features of the circuit for each machine are

extracted and passed to the fidelity correlator.

(5 The fidelity correlator provides a correlation between the
circuit features and the expected fidelity of the execution of
the quantum circuit on each machine.

(© In parallel, the job queuing information on each machine,
along with the sizes of the jobs and the number of shots
of execution, are used to predicting the wait times on each
machine.

(D Other constraints such as QOS requirements, machine
calibration information are taken into account.

A machine selection is made based on all of the above
information using a utility function. The utility function is built
to optimize for fidelity and wait times, as well as to respect
other constraints such as QOS and calibration.

(© Once the machine is selected, any uncompiled circuits
in the job (which were not used for machine selection) are
compiled for the target machine.

Finally, the job joins the machines queue and waits for
execution (note that in a more optimized design, it could be
possible to overlap the last two steps).

@ Further, the scheduler can provide inputs to space out
the recalibrations of machines so as to better maximize the
system efficiency.

V. DESIGN AND EVALUATION

In this section we evaluate job scheduling policies based on
fidelity, exeuction times and system load. Fidelity is evaluated
via simulated IBM quantum machines which are a snapshot
representation of the actual machine. Execution times are
evaluated from data collected over millions of circuits run
on the machines themselves over a two year period. Machine
load is simulated via an in-house queuing model model which
interacts with the above.

A. Predicting the best machine (fidelity) for the job

Fig.9 shows the fidelity of 9 benchmarks on the 26 simulated
quantum machines. The dashed line shows the average fidelity
on these machines and machines are sorted by this average. It
is evident from the figure that fidelity trends exist - some ma-
chines such as Athens - Manhattan consistently perform better
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than other machines. Note that the correlation isn’t purely
related to the size of the machines. While the largest machine
(Manhattan - 65q), and larger machines (Paris - 27q etc) are
on the right end of the graph, so are machines like Athens and
Santiago which are 5q machines. Further, even among these
machines trends are not always fixed. For example, the 5q
machines sometimes outperform machines such as Manhattan,
Paris etc (i.e. all the lines are not monotonically increasing).
Thus it is clear that there are potential macroscopic trends
within machine behavior but they are not simple enough to be
naively captured.

To build a fidelity correlator (as shown in Fig.8), we make
use of four features that are characteristics of a circuit com-
piled to a particular quantum machine and which intuitively
affect the fidelity of the circuit when run on the machine.
These features are: a) Circuit Depth, b) Avg. CX error over
the circuit, ¢) Avg CX in the circuit critical path, and d)
readout errors on the measured qubits. Note that there are other
features (eg. 1q gate errors) which can also be considered to
improve the quality of this metric.

The model is built as a product of linear terms: F,, =
II(a; + b; * x;), where F,, is the fidelity of job n, x; is the
feature and a; and b; are the tuned coefficients. The model is
developed with scipy.optimize curve_fit. Collected data is split
into training and test sets (70 / 30%) to build the model (we
also validated the results on a 33% training set).

In Fig.10 the Pearson correlation between actual application
fidelity and the tuned model ("Tuned”), as well as with each
feature is shown. Bars in green show results averaged over
the 26 simulated machines. The orange bar shows results
averaged from 15 real quantum machines run on the cloud.

Correlations in the range of 0.5-0.7 are considered moderately
correlated while correlation greater than 0.7 is considered
highly correlated. First, note that in simulation all the features
show moderate correlation against the application fidelity.
The tuned model shows very high correlation, achieving a
coefficient of nearly 0.9. On the real machines, the tuned
model “Tuned (M)” achieves a correlation of near 0.7 which
is at the borderline of moderate and high correlation. Thus, it
is clear that even a simple model with a few features is able
to capture fidelity correlation with moderate to high accuracy.
Higher accuracy can potentially be achieved by adding more
features as well as improving the model itself.

B. Predicting execution times and, thus, queuing times

To understand the dependencies of execution time on job
characteristics, we build another simple prediction model. The
model is built as a product of linear terms: E,, = I(a;+b;*x;),
where ), is the execution time of job n, x; is the feature and
a; and b; are the tuned coefficients. The studied features are:
batch size, number of shots; circuit: depth, width and total
quantum gates; and machine overheads: size (proportional to
qubits) and memory slots required. The model is developed
with scipy.optimize curve_fit. Collected data is split into train-
ing / test sets (70 / 30%) to build the model.

Fig.11.a plots the correlation of predicted runtimes vs actual
runtimes, averaged across all jobs that ran on each quantum
machine. Correlation is calculated with the Pearson Coeffi-
cient. First, note that the correlation is 0.95 or above on all
but two machines. The major contributor to the correlation is
the batch size, i.e. the number of circuits in the job. A second
contributor is the number of shots which is usually influential
when the batch size of the job is low. Other factors like depth,
width and memory slots have limited influence - suggesting
that batching and shots are the main contributors.

In Fig.11.b we plot the actual runtimes for different jobs on
a particular machine, IBMQ Manhattan in comparison to the
predicted runtimes. The high accuracy in prediction is evident.

Thus, while machine and job characteristics can vary widely,
application’s runtimes remain fairly predictable. This is pri-
marily because we are in the early stage of quantum computing
exploration in which the number of qubits are low and the
algorithmic depth and complexity of the circuits are limited.
Therefore the overheads associated with execution of a circuit
is more influential than the characteristics of the circuit itself
- this trend is expected to persist in the near term.

Finally, summing up the predictions of execution times
across a machine’s queue, provides an estimate of its queuing
time as follows: Q) = X™FE;, where Q) is the queuing
time on machine M, FE; is the execution time of the ith job in
machine M’s queue which has a total of m jobs in the queue.
C. Designing a utility function

Having estimations of the fidelity and queuing characteris-
tics of a machine means that we are ready to design the utility
function. Utility function based scheduling has been utilized
effectively in classical supercomputing [11]. First, maximizing
the function should result in a job schedule that provides with
a good balance between fidelity and queuing time. Second,
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Fig. 11: Correlating the predicting runtimes (based on job characteristics) with actual observed runtimes. The major
contributor to the correlation is the batch size. A second contributor is the number of shots.

the function should also account for QOS requirements and
the impact of calibrations and stale compilations on the utility
of the machine. Beyond the above (but not pursued in this
work), the utility function could account for user priorities,
improved machine utilization etc. We use a balanced linear
equation (sum of linear terms) of the form: X(a; * x;), where
x; is the feature (describing queuing time metric, machine-
application fidelity metric, QOS satisfied or not, expected
calibration crossover or not etc) and a; is the coefficients (we
currently only use -1 / 0 / 1), to design the utility function.
More complex functions can be designed with suitably tuned
coefficients if required. Next, we discuss the how this utility
function compares to the naive scheduling baselines.

D. Balancing between fidelity and wait times

Fig.12 shows comparisons of the effectiveness of the pro-
posed approach (Proposed) in balancing wait times and fi-
delity, in comparison to baselines which target only fidelity
maximization (Only-Fid) or only wait time reduction (Only-
WT). The solid lines show per-instance metrics while the
dashed lines so averages. These comparisons are built by
running the schedulers on a sequence of 100 circuits, which
are picked randomly from our benchmark set, to be scheduled
on our simulated quantum cloud system. In this experiment we
do use any QOS requirements nor do we look at the impact
of calibration crossovers.

Low Load: Fig.12.a shows how fidelity varies across the
sequence of jobs executed on our simulated quantum cloud
system at low load. At low load across machines, we would
ideally want the highest fidelity machines to be chosen, since
the queuing times are not significant and thus best results are
worth the short wait. Clearly, the fidelity achieved by the Only-
Fid is the highest as it always selects the machine which is
predicted have the highest fidelity for application execution.
The fidelity achieved by Only-WT is substantially lower,
achieving only about 70% of the Only-Fid fidelity on average.
This is intuitive because Only-WT simply selects machines
which have the least queuing time. On the other hand, our
proposed approach is within 1% of the ideal fidelity (Only-
Fid) and and roughly 40% higher average fidelity compared to
Only-WT. Fig.12.d shows the wait times for this same low load
usecase. As expected the wait times of Only-WT are always
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at the minimum - at load load, there are always relative free
machines to execute jobs almost immediately. Only-Fid has
considerably longer wait times even in this load load scenario,
primarily because only a few high fidelity machines (like
those to the right of Fig.9) are being constantly targeted. Our
Proposed approach shows higher wait times than the Only-
WT scenario but is still negligible at low load, while its wait
time is roughly 3x lower on average (and up to 7x lower) than
the Only-Fid approach. Clearly the proposed approach is not
sacrificing on fidelity, but at the same time achieves reasonably
low queuing times. At low load, this is optimal for the system.

High Load: Fig.12.b shows how fidelity varies across a
sequence of jobs executed on our simulated quantum cloud
system at high load. At high load across machines, we
would ideally accept some loss in fidelity in order to achieve
reasonable queuing times, though we would still want the
fidelity to be substantial enough for realistic benefits. First,
Fig.12.b shows that even at high load, our Proposed approach’s
average fidelity is within 5% of the fidelity-focused Only-Fid
approach but roughly 25% better than the queuing focused
Only-WT approach. Second, Fig.12.e shows that the wait times
of Proposed very closely follows that of Only-WT, which is
ideal at high load, and is roughly 20% lower than the Only-Fid
approach on average (up to 2x lower). Clearly the proposed
scheduler is not sacrificing on wait times, but at the same time
achieves reasonably high fidelity. At high load, this is optimal
for the system.

Random Load: Finally at random load, we see again that
the Proposed approach achieves 30% higher fidelity than Only-
WT (Fig.12.c) and 2.3x lower queuing times than Only-Fid
(Fig.12.f), clearly highlighting the benefits of the proposed
scheduler. Note that the coefficients of the utility function can
potentially be fine tuned so that these margins are even better.
E. Accounting for QOS specifications

In Fig.13 we perform the same analysis but with QOS
specifications in terms of targeted maximum queuing times.

QOS 50: Fig.13.a and Fig.13.d show the fidelity and wait
times respectively for ”QOS50” which means a wait time of
up to 7”507 is tolerated by these jobs. Clearly from Fig.13.a,
the relaxed QOS requirements means that Proposed is able to
achieve nearly maximum fidelity, comparable to the Only-Fid
approach and 60% better than that achieved by the Only-WT
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Fig. 13: Incorporating Quality of Service

approach. Further, from Fig.13.d it is evident that the QOS
requirements are always met by Proposed unlike Only-Fid
which constantly overshoots it.

QOS 25: Fig.13.b and Fig.13.e show the fidelity and wait
times respectively for 7QOS25” which means a wait time of up
to 725” is tolerated by these jobs, a tighter bound. In Fig.13.b,
the stricter bound means that Proposed sacrifices about 5%
of the maximum fidelity but still achieves 20% higher fidelity
than the Only-WT approach. Further, from Fig.13.e it is evident
that the QOS requirements are still met by Proposed.

QOS 10: Fig.13.c and Fig.13.f show the fidelity and wait
times respectively for QOS10” which means a wait time of
up to 107 is tolerated by these jobs, a very strict requirement.
In Fig.13.c, this results in the fidelity of Proposed falling
down to match Only-WT meaning that meeting such a strict
QOS requires the scheduler to solely focus on wait time
optimization. Fig.13.f shows that Proposed is still able to
match the QOS bounds by mimicking the Only-WT schedule.

Overall, it is clear that depending on the QOS specification,
the proposed scheduler is able to adjust the job schedule to
maximize fidelity while attempting to meet the QOS con-
straints, however strict they may be.

F. Avoiding Calibration Crossovers

In Fig.14 we analyze the scheduler’s capability to avoid
calibration crossovers. As discussed earlier, recalibration of
machines (which, for example, is performed once a day around
midnight by IBM Quantum machines) results in changes to
error rates and device characteristics, meaning that machine-
aware compilation on an old calibration cycle is not optimal
for execution on a new calibration cycle. This is especially
critical in terms of our proposed scheduler since the scheduler
estimates fidelity across the variety of machines based on
information extracted post-compilation for each machine.

In Fig.14.a shows a low load scenario. On the y-axis, '1’
implies a crossover occurred while 0’ means no crossover. A
Naive scheduling approach without accounting for calibration
cycles results in multiple instances of crossover as shown
in red. On the other hand, accounting for calibration cycle
information as part of the utility function adds a significant
penalty to the function if the crossover occurs, and thus is
avoided whenever possible. At low load, it is evident that
a CC-aware approach almost always avoids crossover. Even
if a job is scheduled late in the calibration cycle, the job is
scheduler onto a machine with very low queuing time, almost
always allowing the job to complete in the current cycle.
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Unfortunately, avoiding crossovers is more challenging at
high load. Fig.14.b shows that the CC-aware approach still
results in a large number of crossovers even though it is lower
than the Naive approach. This is because, if a job is scheduled,
say, 3 hours before the end of the calibration cycles of all
machines, and if all the machines have queuing times greater
than 3 hours, then it is impossible to avoid the crossover.

To overcome this, we instead propose a staggered calibration
approach wherein machines are not calibrated all at nearly the
same time (around midnight in North America), but instead
the machine calibrations are distributed evenly throughout the
day. This means that irrespective of when a job is scheduled,
there are always machines with considerable time left in their
current calibration cycle, potentially allowing for one of those
machines to be chosen for the job and thus having it complete
execution within the current cycle on that machine. Fig.14.c
shows the effect of this approach at high load. The CC-aware
scheduling is now always able to avoid calibration crossovers,
as is optimal for a machine calibration aware compilation
approach. Note that it is possible to design more intelligent
staggered calibration policies based on observing queuing
times on each machine, job arrival patterns etc.

VI. LIMITATIONS AND FUTURE DIRECTIONS

This work is a first step towards optimized engineering
solutions for the quantum cloud. It has certain limitations and
opportunities for improvement, as discussed below:

(D Note that the behaviors observed from the data shown
here are a consequence of the usage policies established
by IBM that govern machine behavior (such as fair-sharing
policies) as well as the users themselves. Further, there are
subsystems and interactions governing authentication, valida-
tion, diagnostics, etc. which are not considered.

@) As presented, the work scheduler optimization does not
consider other critical aspects of job scheduling like user
priorities, improving machine utilization, drift in machine
characteristics as well as dynamic changes to system load
including machine reservations etc. They can be incorporated
into the utility function model proposed in this work.

(3 This work proposes compilation across multiple ma-
chines before choosing the right machine for execution. This
might not scale well as applications become more complex
and the number of machines increase. Thus it is important to
identify machine execution characteristics (both application-
independent and application-dependent) which can be esti-
mated without compilation, which can then be used to shortlist

10

the number of machines. This could include machine qubits,
connectivity/topology, average machine-wide error rates etc.

@ There is room to improve the fidelity correlation and
execution time predictions model especially when targeting the
complex characteristics of real quantum machine execution.
More features can be added to the predictors, as well a more
advanced learning model can be utilized.

(® To reduce the impact of machine calibration on job
schedules, it is worth exploring more intelligent staggered
calibration policies based on observing queuing times on each
machine, job arrival patterns etc. Fine-grained calibrations
such as IBM readout calibration can also be accounted for.

(6) We envision evaluating in practice by testing on an actual
cloud network and fine-tuning the functionality accordingly.

VII. CONCLUSION

As quantum demand continuous to grow, it is imperative to
efficiently manage quantum resources in the cloud. This paper
proposes to automate and improve scheduling quantum jobs
to the quantum cloud. It takes note of primary characteristics
/ requirements of quantum jobs and their scheduling, such
as queuing times and fidelity trends across machines, as
well as other aspects such as quality of service guarantees
and machine calibration constraints. The proposed scheduler
achieves a balance between application fidelity and queuing
times while appreciating the quality of service requirements
of users as well as the calibration cycles of the quantum
machine. Further it lays the foundation for more sophisticated
quantum cloud job scheduling. In all, this work is a first
step towards efficiently managing quantum machine usage, a
precious commodity for the years to come.
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