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ABSTRACT

Current quantum computers are especially error prone and require
high levels of optimization to reduce operation counts and maximize
the probability the compiled program will succeed. These comput-
ers only support operations decomposed into one- and two-qubit
gates and only two-qubit gates between physically connected pairs
of qubits. Typical compilers first decompose operations, then route
data to connected qubits. We propose a new compiler structure,
Orchestrated Trios, that first decomposes to the three-qubit Toffoli,
routes the inputs of the higher-level Toffoli operations to groups of
nearby qubits, then finishes decomposition to hardware-supported
gates.

This significantly reduces communication overhead by giving
the routing pass access to the higher-level structure of the circuit
instead of discarding it. A second benefit is the ability to now select
an architecture-tuned Toffoli decomposition such as the 8-CNOT
Toffoli for the specific hardware qubits now known after the routing
pass. We perform real experiments on IBM Johannesburg showing
an average 35% decrease in two-qubit gate count and 23% increase in
success rate of a single Toffoli over Qiskit. We additionally compile
many near-term benchmark algorithms showing an average 344%
increase in (or 4.44x) simulated success rate on the Johannesburg
architecture and compare with other architecture types.
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(b) Efficient Trios routing

Figure 1: Example routing from Qiskit (a) vs. Trios (b)
for a single Toffoli operation. Circles represent qubits and
lines indicate two qubits are connected. Input qubits are
highlighted in red. SWAP arrows are labeled by timestep.
The routed locations for Trios routing are highlighted in
green while Qiskit moves them several times. Qiskit adds
16 SWAPs (=48 CNOTs), some during the Toffoli, while Trios
adds only 7 SWAPs (=21 CNOTs) all before the Toffoli. Per-
forming multiple passes of decomposition allows direct
routing and enables this huge reduction in communication,
increasing the probability of program success.

1 INTRODUCTION

In recent years, quantum hardware has improved dramatically in
terms of number of accessible quantum bits (qubits), device error
rates, and qubit lifetimes. However, we are still years away from
obtaining fully error corrected devices which are required to run im-
portant algorithms like Grover’s [15] and Shor’s [32]. In the current
Noisy-Intermediate Scale Quantum (NISQ) [28] era, where despite
recent substantial improvements, error rates on current devices are
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still prohibitive, requiring programs to be highly optimized to have
a good chance at succeeding.

Quantum program compilation involves many passes of trans-
formations and optimizations similar in many ways to classical
compilers. Some optimizations occur at the abstract circuit level,
independent of the underlying hardware, such as gate cancellation
[26]. One of the first steps usually taken is to convert an input
program into a gate set (ISA) supported by the target hardware.
For example, on IBM devices, gates are typically rewritten using
only gates in the set {ul,u2,u3, cx} [18] (single-qubit gates and
the common CNOT gate described later). One critical limitation
of many current available architectures is the inability to execute
more complex multi-qubit operations, like the Toffoli, directly; in-
stead, these gates must be decomposed into the supported one- and
two-qubit gates. Furthermore, many current superconducting archi-
tectures only support two qubit operations on adjacent hardware
qubits wired together with a coupler. This requires the insertion of
additional operations called SWAPs to move the data onto adjacent
(and connected) qubits.

The process of transforming an optimized and decomposed pro-
gram to the desired target is typically broken down into three
distinct steps: decomposing the program into basic gates, mapping
the logical qubits of a program to hardware qubits and routing
interacting qubits so that they are adjacent on hardware when they
interact, and scheduling operations in order to minimize total pro-
gram run time (depth) or to minimize errors due to crosstalk [25].
Each of these steps is critical to the success of the input program. A
well-mapped and well-routed program will reduce the total number
of communication operations added and subsequently reduce the
compiled program’s depth, both of which will increase the chance
of success. Conventionally, these three steps occurs sequentially.
By doing so, current strategies are unable to account for structure
in the input program, resulting in inefficient routing of qubits. An
optimal compiler could find the best routing despite the lack of
structure but at the cost of much slower compilation. Consider
the SWAP paths inserted by IBM’s Qiskit compiler for a single
Toffoli compiled to IBM’s Johannesburg device in Figure 1a. This
baseline strategy adds a large number of unnecessary SWAPs as it
individually routes each CNOT composing the Toffoli, dramatically
reducing the probability of successful execution.

Our approach, Orchestrated Trios (Trios) decomposes and routes
qubits in multiple stages, as seen in Figure 2b. For example, first
decompose an input program to one- two-, and three-qubit gates
(e.g. do not decompose Toffoli gates) and route as before except for
three-qubits, route all three to a common location with minimal
SWAPs. This new program can then undergo a second round of
decomposition to produce a circuit containing only hardware per-
mitted one- and two-qubit gates. The second round may use the
now known mapping (locations of data qubits on the device) to
generate fine-tuned decompositions for the architecture.

This layered approach has a major advantage over current rout-
ing techniques: we are better able to capture program structure by
inspecting intermediate complex operations for routing. This better
informs how qubits should be moved around the device during
program execution. In Figure 1, the Trios strategy reduces the total
number of SWAPs added to 21: fewer than half compared to Qiskit.
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(a) Conventional compilation (b) Trios compilation
Figure 2: (a) Typical compilation passes used by Qiskit (sim-
plified). (b) Trios compilation passes.

This was an extreme example we selected to present the issue, not
an average case.

We specifically propose a two-pass approach to circuit decom-
position. We will focus on superconducting hardware systems
like IBM’s cloud accessible devices, but our strategy can easily be
adapted to other systems. An overview of our compilation structure
is found in Figure 2b. This strategy has a substantial benefit on the
overall success rate of programs. We demonstrate these improve-
ments by executing Toffoli gates on a real IBM quantum computer
and estimating success probability of a suite of benchmarks via
simulation.

Our contributions are as follows:

e A new compiler structure, Trios, with two passes for de-
composition with a modified routing pass in between which
greatly improves qubit routing.

o A simple method for architecture-tuned Toffoli decomposi-
tions during the second decompose pass that allows for a
new kind of location-aware optimization.

o On Toffoli-only experiments, Trios reduces the total number
of gates by 35% geomean (geometric mean) resulting in 23%
geomean increase in success rate when run on real IBM
hardware as compared to Qiskit.

e On near-term algorithms shown in Figure 11 (4 to 20 qubit
benchmarks), Trios reduces total gate count by 37% geomean
resulting in 344% geomean increase in (or 4.44x) simulated
success rate on IBM Johannesburg with noise rates of near-
future hardware as compared to programs compiled without
Trios. A sensitivity analysis over four architecture types
shows the benefit range from 133% to 3020% increase in
success rate.
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2 BACKGROUND

2.1 Quantum Computing Basics

The most basic object in quantum computing is the quantum bit
(qubit). Unlike a classical bit which is either 0 or 1, the qubit has
two basis states |0) and |1) and can exist as a linear superposition
over these two states, i.e. for a quantum state |/) = «|0) + §|1)
with &, f € C and ||a||? + || 8]|?> = 1. In general, a quantum system
consisting of n qubits can exist in a linear superposition of 2" basis
states in contrast to a classical system of n bits which can exist as
exactly a single of these states. An important feature which gives
quantum computing its power is the ability to entangle qubits via
two qubit operations like the CNOT. This, along with quantum
interference between the complex amplitudes, allows quantum
programs to solve certain problems faster than classical computers.

While a qubit system can exist in these superpositions during
computation, at the end of the computation, the qubits are mea-
sured producing a classical binary outcome. The probability of each
outcome depends on the amplitude of each basis state (the values of
a, By, ... ). Consequently, since the outcome of a quantum program
is a classical bitstring and because quantum systems are inherently
noisy, programs are usually run thousands of times to obtain a
distribution over possible answers. A comprehensive background
can be found in [27].

2.2 Quantum Circuits

Quantum programs are typically represented as a circuit which,
like a classical program, is an ordered list of instructions. Here the
instructions are quantum logic gates applied to qubits. The input
circuit may not be expressed in the instruction set supported by the
underlying hardware or it might even be structured as hierarchical
modules.

Quantum circuits have a single line for each qubit, with time
flowing from left to right. Gates in a quantum circuits have the same
number of inputs and outputs and gates on disjoint sets of lines
can be executed in parallel. Single qubit gates are represented as a
box labeled with the indicated operation and controlled operations,
like the CNOT and Toffoli, have one or two controls respectively
indicated by e and target given by .

Currently available superconducting quantum hardware, like
that of IBM and Rigetti, only supports one-qubit gates and two-
qubit gates on specific pairs. Therefore, more complex instructions
must be decomposed into multiple simpler, supported operations.
For example, many quantum algorithms and subroutines make use
of the Toffoli gate, a three-input gate which performs the logical
AND between two controls bits and writes the output onto the
target bit. This gate cannot be executed directly on available hard-
ware and instead is decomposed into an equivalent sequence of
one- and two-qubit operations. Two such popular decompositions
are given in Figures 3, 4. There are two key distinctions in these
decompositions illustrating a more general trade off. The first [27]
is the most popular decomposition using only 6 CNOT gates but
requires CNOTs between all three pairs of qubits. This would re-
quire inserted SWAPs or a device connectivity containing a triangle.
The second [31] uses a total of 8 CNOT gates and requires all three
inputs be only linearly connected (only two of the three qubit pairs
are required to be connected). While the first is apparently more
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Figure 3: A 6-CNOT decomposition of the Toffoli gate.
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Figure 4: An 8-CNOT decomposition of the Toffoli gate.

efficient, this is not true if the connectivity of the underlying hard-
ware does not directly support it. It is more efficient to use the
8-CNOT version than use the 6-CNOT version with added SWAPs.

For superconducting qubits, current quantum computers sup-
ports gates only between adjacent hardware qubits. In order to use
qubits which are currently mapped far apart on the hardware, extra
SWAP operations must be inserted, each of these SWAPs is usually
decomposed as a series of 3 CNOT gates (equivalent to a classical
memory in-place swap using 3 alternating XORs). In the case of the
6-CNOT Toffoli decomposition above, when mapped to a device
with linear or square grid connectivity, no triangles exist so extra
SWAPs will need to be inserted, resulting in a greater total number
of CNOTs due to the mismatch with hardware details.

2.3 Current Quantum Devices

In this paper we focus primarily on currently available supercon-
ducting quantum devices. This type of hardware is the primary fo-
cus of many industry players like IBM, Rigetti, and Google [1, 18, 34].
We show some representative topologies for superconducting de-
vices in Figure 5abd. For completeness, we include a clustered device
shown in Figure 5c representative of a QCCD ion trap device such
as [22]. These systems exhibit all of the properties previously dis-
cussed. They have a small universal supported gate set which all
programs must be transformed into and only support local two-
qubit operations. The connectivity of these devices is given as a
coupling graph specifying which pairs of qubits can execute CNOTs.

Furthermore, these systems are subject to a wide variety of noise
which cause programs to fail. Some noise is due to manufacturing
imperfections or calibration error. Some is inherent to quantum
program execution resulting from the imperfect physical isolation
of the qubits from the environment required to manipulate the
quantum state [20]. In IBM machines, the experimental devices of
this work, single qubit gate errors are small, occurring on average 1
in 2000 operations. CNOT gate errors are more significant occurring
on roughly 1 in 100 gates. Measurement error is also significant,
with errors on the same order of magnitude as CNOT gates. Finally,
qubit lifetimes (coherence times) are relatively short, allowing on
the order of 50 CNOT gate durations before the qubit state is lost
[2] (but gates can often run in parallel while imposing additional
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(a) IBM Johannesburg

(b) 2D Grid
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(c) 4, 5 qubit fully connected clusters

(d) Linear

Figure 5: Example topologies of near-term quantum devices. Orange (a): IBM Johannesburg. Yellow (b): 2D Grid. Purple (c):
four groups of five fully connected clusters. Green (d) Linear. Our real experiments run on Johannesburg and our simulations
explore all of these topologies. Colors correspond with the bars in Figures 9, 10, 11.

crosstalk error). Therefore, quantum compilation is essential to
reduce both of these sources of error: add as few extra gates as
possible and minimize total execution time.

2.4 The Compilation Problem

In the NISQ era, quantum programs are highly optimized in order
to reduce the effect on errors and maximize the probability the
correct answer is observed. Similar to many classical programs,
compilation uses a pass structure, where a set of transformation
and optimizations are applied in a fixed order resulting in the com-
pilation of an input quantum program to an executable for the
target hardware [19, 26]. For the most part, these optimizations
take place at the circuit-gate level. Some optimizations are hard-
ware independent, for example, reducing total number of gates via
commutativity-aware gate cancellation or find and replace with
circuit identities. Other passes are focused on decomposing gates
into the hardware’s ISA [4, 21, 30].

One of the most important parts of this compilation process is
mapping and routing the optimized program to one executable on
the target hardware, typically done post-decomposition. Quantum
mechanics imposes new constraints on these than classical com-
pilation or logic synthesis. By the no cloning theorem, quantum
states cannot be copied, only entangled, which prevents fan-out or
fan-in. Instead, the data must be routed sequentially (i.e. swapped
with SWAP gates) to each place it is needed.

Compilation involves three main steps. First, mapping program
qubits to hardware qubits in order to minimize the total distance
between qubits that will need to be close by in the future [23, 37, 38].
Second, routing pairs of CNOT inputs to be adjacent by inserting
SWAPs [10, 17]. Finally, scheduling operations to minimize total
execution time [16, 25]. In general, the compilation problem is
computationally hard and while some attempts at optimal solutions
have been pursued [33, 36, 40] the dominant approach is heuristics.

In this work we focus on two pieces of this compilation problem:
decomposition and routing.

IBM’s Qiskit compiler, the standard for compiling programs to
execute on an IBM device, has a default sequence of passes. First,
all high level optimization and analysis passes are performed and
all gates are unrolled and decomposed to the target gate set. Then
single passes of mapping, routing, and scheduling are performed

[3].

2.5 Evaluation Metrics

When evaluating compiler methods, we use a few metrics to com-
pare our results. Our primary metric is program success rate, the
fraction of circuit executions that result in the correct output. Oth-
ers use fidelity which can stand-in for success rate when evaluating
sub-circuits where the output is not measured. When executing a
quantum algorithm, the corresponding quantum circuit is typically
executed thousands of times to gather output statistics or identify
the error-free result.

Program success rate is highly dependent to the noise charac-
teristics of the quantum computer the program runs on. The rates
of these device errors can fluctuate day-to-day so we also use the
simpler metric of two-qubit gate count. The number of two-qubit
operations in the final compiled circuit is inversely correlated with
the success rate because they are usually the largest source of noise.

2.6 Simulation

Simulating general quantum systems is exponentially expensive
in the size of the system and therefore it is difficult to realistically
model all of the errors during the execution of a quantum program.
We use a simplified model for simulation to predict, specifically
obtain a close upper bound on, the success rate of a program with
specified gate error rates and qubit coherence times. In our simpli-
fied model, we compute the probability of a program succeeding
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as the probability that no gate errors occur (pgare)"94¢s times the
probability no coherence errors occur pooperences Where the latter
is computed as eATHAT: \where A is the total program duration
and T7 and T are the relaxation and dephasing times, collectively
decoherence.

Current error rates, while rapidly improving, are still insufficient
to obtain high probabilities of success, making it difficult to com-
pare our mid-size benchmarks that are large enough to need many
SWAPs. For our simulations we use error rates 20x improved over
current IBM Johannesburg error rates to obtain reasonable success
rates and we study sensitivity to this choice later.

3 MOTIVATION: CONVENTIONAL
COMPILATION

In this section we motivate the need for a split decomposition pass
with routing in between. We look closely at the Qiskit compiler
which does not effectively account for the structure in programs.
It often produces circuits with an excessive number of swaps sug-
gesting room for improvement.

The default compilation framework in Qiskit used to transform
input circuits to be executed on their hardware ensures a fully
decomposed circuit before mapping, routing, and scheduling occur.
As a simple example, consider three qubits placed fairly distant
on IBM’s Johannesburg device but for which we need to execute
a Toffoli gate on them; as in Figure 1a. Qiskit decomposes this
Toffoli as in Figure 3 with 6 CNOTs. Each CNOT acts on distant
qubits so the many SWAPs inserted for all 6 CNOTs gets expensive
quickly. When routing, we first SWAP the first interacting pair
together (usually by adding SWAPs from control to target or the
reverse, but a meet-in-the-middle strategy is also possible) and the
qubit mapping is updated. The next CNOT is also distant so we add
SWAPs to move them together and there is an even chance that
the SWAPs for the second CNOT separate the two qubits that were
just brought together.

Ideally, we move the third qubit to the already adjacent pair, but
Qiskit cannot recognize this situation and could just as well move
the other way. This is clearly sub-optimal and could continue on for
the other four SWAPs. Even in the case where it makes the correct
decision to move the distant third qubit, there are problems. Because
pair of qubits needs to interact we may need single additional
SWAPs as the qubits compete to be neighbors. This causes the
6-CNOT Toffoli decomposition to use many more than 6 CNOTs
when there is not a triangle in the qubit connectivity graph. The
core idea is that the routing strategy fails to take advantage of two
things. First, it has effectively forgotten the desired operation is a
Toffoli which will require all three qubits be adjacent and second
that a more efficient Toffoli decomposition could be chosen which is
more suitable for the underlying device architecture. In the example,
inefficient compilation adds a total of 16 SWAPS or 48 CNOTs in
total.

Some approaches in the past have attempted to solve the first
of these problems, for example by using lookahead when choosing
routing strategies [7, 39] and while this helps to treat the symp-
toms of pre-decomposing all operations it does not remedy the
underlying problem.
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4 ORCHESTRATED TRIOS

In this section we describe our proposed compilation structure com-
pared to the conventional one as outlined in Figure 2. Specifically,
we focus on improving the routing and decomposition stages of
compilation. Previously, we identified a key problem in current
methods: decomposing the program to one- and two-qubit gates up
front hinders the ability of heuristic-based compilers to effectively
minimize the communication cost, i.e. the number of SWAPs added,
and eliminates the possibility of location-aware decompositions.

We propose a new pass structure. Rather than performing a
single round of decomposition and routing, we propose a split
approach. Any program processing prior to decomposition stays
the same. The decomposition pass is then divided so the majority
of decomposition occurs next but any Toffoli gates are left as-is
before moving on to mapping and routing.

The mapping and routing passes come next like normal but must
be modified slightly to handle three-qubit gates. The mapper can
simply treat the non-decomposed Toffoli as it would the equiva-
lent 6 CNOTs for the purposes of determining which qubits most
need to be placed nearby. We then do the modified routing pass,
moving groups of qubits together instead of only pairs where all
or all-but-one of the group are moved into a single neighborhood
via SWAPs. This greatly improves the effectiveness of the routing
heuristics when applied to this modified routing pass. There are
some subtleties when coordinating the routing of multiple qubits to
the same place to ensure the paths don’t overlap. For the purposes
of our evaluations we do the following but many similar heuristic
strategies are possible.

Taking the next operation to apply, we first find the shortest
paths (using any shortest path algorithm on a graph) between all
the pairs of qubits. We choose the qubit with the shortest sum of
paths to the other two qubits as the destination. SWAPS following
these two paths are then inserted into the circuit. The two shortest
paths are checked for overlap. If the ending points overlap, the
second is only routed to the penultimate hardware location along
the swap path and the first becomes the middle qubit adjacent to
both others. This can save one valuable SWAP but doesn’t affect
the correctness. Once they are adjacent, the Toffoli gate is now on
adjacent qubits and routing can continue to the next operation.

Finally, the second decomposition pass is run. This is different
from normal decomposition as there are only Toffoli gates to decom-
pose and they are already mapped to neighboring qubits. We could
use the default 6-CNOT decomposition and still get the above ben-
efit of improved routing but now that we have more information,
this can be exploited to further reduce SWAPs due to a mismatch
between the decomposition and the hardware connectivity. If all
three pairs of qubits are connected, then the 6-CNOT Toffoli of
Figure 3 is best, otherwise use the 8-CNOT Toffoli of Figure 4, en-
suring the middle qubit is used for the middle of the decomposition
(Any of the three qubits can be the target by simply moving the
two H gates to that qubit).

When routing complex operations like the Toffoli, we recognize
the underlying hardware does not usually support triangles in the
connectivity graph but linear connectivity is sufficient for a decent
decomposition. Since we are creating operations on three qubits,
the qubits must be routed into a valid linear connectivity. That is, a
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configuration where each qubit is connected with at least one of
the other qubits.

This method can be easily extended to be noise-aware like previ-
ous work [23, 37] by using a noise-aware mapper with the simple
modification described earlier where the path-finding graph has
weighed edges with the —log value of the CNOT success rate. The
path distance represents the — log probability of success of that par-
ticular path where lower values indicate a higher success rate and
the shortest path can be found just as before and the routing steps
are unchanged. Any routing strategy designed for one and two-
qubit gates can be modified to work for one, two, and three-qubit
gates and used as the first routing step of Trios.

In programs where there are no three qubit gates as in the typ-
ical NISQ benchmark, Bernstein-Vazirani [9], which is specified
directly as CNOT gates, our strategy will have no effect. Many
benchmarks, however, are written using Toffoli gates because they
are the quantum analog the AND gate ubiquitous in arithmetics
and other common subroutines.

Trios can naturally be extended to any multi-qubit operation of
three or more qubits but this introduces the challenges of simulta-
neously routing many qubits and of designing decompositions that
are efficient with whichever grouping the simultaneous router can
achieve. It is not obvious how to route more than three qubits into
a line or other desired shape. As many NISQ benchmarks are not
typically written with more complex structures and usually phrase
them in terms of one-, two-, and three-qubit gates, this extension
may only be desirable for larger-scale quantum computing.

5 EVALUATION
5.1 Toffoli Only Circuits

We first evaluate the effect of our new compilation strategy by
studying simple circuits containing only a single Toffoli gate. In
these experiments, we place the three input qubits at random loca-
tions on the target hardware to emulate the potential locations of
the qubits at some intermediate point in the execution of a more
complex circuit.

We study these circuits on a real IBM device, namely IBM Johan-
nesburg, a 20-qubit device with limited connectivity in Figure 5a.
We use the default Qiskit compiler which decomposes the Toffoli
gates before doing shortest path routing compared to our proposed
method where we do shortest path routing first and then decompose
the Toffoli. We study the use of two different Toffoli implementa-
tions, a 6 CNOT decomposition with full qubit connectivity and an
8 CNOT decomposition with linear qubit connectivity.

In all four configurations, we compare the total compiled CNOT
counts which correlates with the total success probability of a
program. For execution on Johannesburg, we prepare the qubits
in the states |110), perform the compiled Toffoli, then measure
the three qubits of interest and compute the success rate as the
probability of obtaining the correct answer (here the [111) state),
where each experiment is performed with 8192 trials.

5.2 NISQ Benchmarks and Quantum
Subroutines

We also study Trios on real quantum benchmarks of moderate size
using simulation only. The error rates of current devices are still
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Table 1: Details about our benchmarks, both NISQ programs
and other quantum subroutines

Benchmark Qubits  Toffolis CNOTs!
cnx_dirty [6] 11 16 128
cnx_halfborrowed [14] 19 32 256
cnx_logancilla [8] 19 17 136
cnx_inplace [14] 4 54 490
cuccaro_adder [11] 20 18 190
takahashi_adder [35] 20 18 188
incrementer_borrowedbit [14] 5 50 448
grovers[15] 9 84 672
gft_adder [29] 16 0 92
bv [9] 20 0 19
gaoa_complete [13] 10 0 90

too high to run benchmarks of these sizes but are expected to run
on current devices as errors improve in the near future. We choose
error rates 20x better than Johannesburg rates as this make the
estimated success probabilities within a reasonable range and is a
realistic near-term estimate. We discuss sensitivity to this choice
later.

We study four implementations of the many-controlled-NOT
(CnX) gate. This subroutine has many use cases from Grover’s algo-
rithm to various arithmetics. The implementations take advantage
of differing numbers of ancilla and are chosen based on the number
of available qubits on hardware. We study three adder implementa-
tions: Cuccaro, Takahashi, and QFT. The first two have many uses
of the Toffoli gate while the latter has no such gates, for compari-
son. We study a small version of Grover’s algorithm as well which
makes use of the cnx_logancilla subroutine. Finally, we compile
two common NISQ benchmarks: QAOA for Max-Cut and Bernstein
Vazirani (BV). We expect no gain on these benchmarks since they
do not contain any Toffoli gates.

A summary of our benchmarks is found in Table 1 using imple-
mentations found in [5]. The last three benchmarks use no Toffoli
gates where we expect advantage only for circuits containing Tof-
foli gates. For BV, we assume the all 1 bit string oracle. The different
CnX (many-controlled-NOT) benchmarks use various numbers of
ancilla.

As noted previously, the connectivity of the underlying hard-
ware has a significant impact on the number of required SWAPs.
For example, on a completely connected set of qubits, no SWAPs are
ever needed. In architectures with greater connectivity, we may opt
for a more efficient Toffoli decomposition using 6 CNOTs. With sim-
ulation we study the effect of connectivity on the overall expected
success rates and gate counts. We study four different connectivity
models, all shown in Figure 5, each with 20 qubits, the topology of
IBM’s Johannesburg device containing four connected rings, a 2D
mesh, a line, and a small clustered architecture representative of a
QCCD ion trap.

!The total number of CNOT gates is after decomposition with the 8-CNOT Toffoli but
does not including any SWAPs for routing.
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We use error rates reported by IBM obtained via randomized
benchmarking on a daily basis; for simulations we use error num-
bers obtained from Johannesburg obtained on 8/19/2020 with an
average T1 time of 70.87pus, T2 time of 72.72us, two qubit gate time
of 0.559us, a one qubit gate time of 0.07us, two qubit gate error
of 0.0147, one qubit gate error of 0.0004. Source code for all ex-
periments is available at [12]. Experiments using IBM are tested
with version 0.14.0 through their Python API. When compiling
with Qiskit for the single Toffoli experiments, we use the default
settings for the transpile function while specifying the Johan-
nesburg backend. This means light optimization is performed: a
stochastic routing policy is chosen, and some simple optimizations
such as single qubit gate consolidation is performed. We fix the
initial mapping to force routing to occur.

6 RESULTS AND DISCUSSION
6.1 Trios Reduces Total Number of Gates

In both sets of experiments, the total number of gates required to
make the input programs executable is much less than when using
the default Qiskit compiler. When compiling our simple programs
consisting of a single Toffoli gate with qubits mapped in random
locations, we reduce the average number of gates by 35% geomean.

In Figure 7 we show 35 different triplets of hardware qubits
for each of the four strategies. For each triplet, we note the total
distance between the qubits on the hardware, given by the shortest
path distance in the underlying topology. Even when the distance
is relatively small, Trios outperforms reducing overall gate count
and as the distance increases, the margin tends to increase. In the
small distance cases, this can be attributed to Trios choosing the
better Toffoli decomposition for a linearly connected topology. This
is significant for two reasons. First, the fewer the gates, the less
likely an error occurs due to qubit manipulation. Second, fewer
gates, especially long sequential chains of SWAPs, often means
lower circuit depth, meaning fewer chances for decoherence errors.
Together this translates into faster and more successful programs.

This advantage extends to our NISQ benchmarks which contain
various numbers of Toffoli gates. In Figure 10 we note substantial
reductions in total gates across all benchmarks containing Toffoli
gates across all underlying topologies. The only exception is the two
smallest benchmarks (on 4 and 5 qubits) for the clustered topology
because they could be compiled with zero SWAPs.

An extreme of the clustered topology is a single cluster with all-
to-all connected qubits. On this device, Orchestrated Trios would
have no benefit as operations can be performed between any pair
of qubits so no SWAPs are needed and routing is trivial. However,
as quantum technologies scale to more than a few qubits, fully-
connected architectures hits physical limitations and must be re-
engineered. As trapped ion qubit chains get longer, for example,
gate operations become slower and lower fidelity. [24] showed that
the optimal trap size is 15-25 ions interconnected similar to our
cluster model with cluster sizes of 15-25 where Trios does benefit.

On average, for Toffoli-containing programs we reduce gate
count 37%, 36%, 48%, 26% for Johannesburg, Grid, Line, and Cluster
topologies respectively with the maximum gain obtained for linear
devices.
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6.2 Trios Improves Overall Success Rate

In general, we expect programs with fewer total two-qubit gates,
to succeed with higher probability. In devices with limited con-
nectivity, the addition of routing operations like SWAPs, usually
decomposed to 3 CNOTs, can severely reduce the chance an input
program can succeed. While success rate is inversely correlated
with number of gates, gate error is not the only reason a program
can fail and reducing gate counts does not guarantee improved
success rates.

In Figure 6 we show the success rates of our Toffoli-only experi-
ments when the two controls are initialized to |1) and the target is
initialized to |0) so we measure the probability of obtaining |111).
These results are obtained from Johannesburg on 8/19/2020. The
x-axes of both Figures 6 and 7 line up to compare gate counts and re-
sulting success rate. In general, experimentally, fewer gates results
in substantial improvements to success rates. For example, a Toffoli
on (6-17-3) compiled with Trios improves success rate from around
30% to over 50%. On average, we improve success rates by 23 %
geomean with max of 286%. In Figure 8, we show improvements
compiled with Trios normalized to baseline for 99 different triplets
of varying total distance on Johannesburg.

Trios on average improves the probability of success for these
circuits. However, there are a small number of cases where Trios
performs worse despite having a smaller number of total gates.
This can be attributed to several different factors. For example, the
chosen edges for SWAP paths may be more noisy, or on pairs of
edges with greater crosstalk, or the final qubits which are measured
have worse readout error. Regardless, reducing the overall gate
count of a program is an important contributing factor to improving
expected success rate.

For our simulated NISQ benchmarks, we see even larger gains.
The reduced gate counts in Figure 10 translate to major improve-
ments in simulated success rate in Figure 9 (normalized success
rates in Figure 11). For example, in cnx_logancilla-19, Trios more
than doubles the expected success rates when compiled to each
of the architectures. In many cases, the expected success rate of
programs compiled with Qiskit is effectively zero while Trios has a
realistic chance of obtaining the correct answer. As expected, on
programs containing no Toffoli gates, Trios has no effect on success
showing that it introduces no excessive overhead. This suggests
Trios can easily be added to other quantum compilation toolflows.

6.3 Trios Routes Complex Interactions Better

Trios improves gate counts, and consequently improves success
rates, by routing more efficiently and choosing more appropriate
Toffoli decompositions based on the underlying architecture’s con-
nectivity. Current compilers, like Qiskit, perform routing on fully
decomposed and unrolled programs, and while this must eventually
be done, it leads to less efficient routing policies and relies on as-
sumptions that a theoretically good decomposition (fewer CNOTs)
is the best decomposition for the hardware. Trios eliminates this by
choosing a context-dependent Toffoli decomposition and routing
multiqubit gates as single units.

Trios greatly improves effectiveness compared to a heuristic-
based compiler by applying similar heuristics to the higher ab-
straction level Toffoli gates. An optimal routing of the decomposed
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Toffoli Experiment on IBMQ Johannesburg
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Figure 6: Success probabilities of Toffoli gates between random triplets of qubits. Higher is better. The x labels specify the three
qubits and total swap distance. The geometric mean success rates for each compiler are 41%, 35%, 47%, and 50% respectively.
Trios (8-CNOT) improves average success rate by 23% vs. the Qiskit baseline.

Toffoli Experiment on IBMQ Johannesburg

M Qiskit (baseline) M Qiskit (8-CNOT Toffoli) * Trios (6-CNOT Toffoli) M Trios (8-CNOT Toffoli)

60

g

o

§40 I 1 I

<

oY1)

E_4

gmllI.|II|||..||||.|.I.|.|...||| o . |

@]

| || || | || | ||| |III|II| |
Q 9 ‘-‘o°o% 'o‘o‘o b H 5 H DD >
\\%;»,\\\@ YOVO) 9\«\%\@@@@@\ @%\\q\o@\@@@;ﬁ\@@@»@ @\@”’oa’” &
,x,xbz/ %’,’c,/ v 6x\%¢, /,\‘o’,’,b’, VS NN Gl o

@\\bﬁ@o\\Q\\\\\@Q\\b@@\\\%@/\@\go@\eooﬂ S Q’Q«\ &

Figure 7: Total number of two-qubit (CNOT) gates required to execute a Toffoli gate between various distant qubits. Lower is
better. The x labels specify the three qubits and total swap distance. The geometric mean gate counts for each compiler are 29,
28, 23, and 19 respectively. Trios (8-CNOT) reduces average gate count by 35%.
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Figure 8: Normalized success probabilities of Toffoli gates between triplets of qubits. Higher is better. Bars below 100% indicate
lower success rate for Trios. The geometric mean increase in success rate is 23%. The x labels indicate the qubit distance for a

range of bars.
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Figure 9: Simulated upper-bounds on the program execution success probability on various hardware (using 20x lower idle
and gate errors than Johannesburg). Neighboring pairs of bars compare the baseline with Trios compiled for Johannesburg.
Higher is better when comparing pairs of bars with the same color. The geometric mean success rates over the benchmarks
that use Toffoli gate for each device type respectively are 2.2%—9.8%, 3.2%—12%, 0.19%—6.0%, 7.3%—17%. The rightmost three
benchmarks contain zero Toffoli gates so have no change vs. the baseline.
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respectively. The rightmost three benchmarks contain zero Toffoli gates so have no change vs. the baseline.
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Sensitivity to Device Error Rates
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Figure 12: Factor of improvement in success rate in Trios
over baseline for scaling gate error rates. The dotted line
indicates current error rates on IBM Johannesburg and the
dashed line (20x improvement) indicates values of the near
future used in simulation. In our approximation of success
rate factors of improvement in gate error rates lead to an ex-
ponential fall off in success ratios, as expected. In the very
near term, we expect Trios to drastically improve the execu-
tion of quantum programs.

circuit would be better except it cannot select the best architec-
ture location-specific decomposition. This makes a huge difference
specifically with Toffolis on any square-grid-based device. One
might choose to improve the solution found by an optimal com-
piler by always decomposing Toffolis to the 8-CNOT version before
optimally routing, but this will still limit the solution. There are
multiple possible qubit orders for the decomposition and the best
can only be selected after the routing pass.

6.4 Simulation Sensitivity to Error Rates

For our simulations we use an error model (20x better than cur-
rent errors on Johannesburg) which is forward looking. As errors
improve, we expect Trios to have a reduced impact on program suc-
cess rates since gate errors will contribute less and less to program
failure though Trios will never perform worse than the baseline. In
Figure 12 we study the sensitivity of simulation results to two qubit
error rates beginning with current IBM error rates. For poor error
rates, the benefit of Trios is extremely large, owed to the fact that
programs compiled with the baseline have probabilities of success
very close to 0. In our simplified simulation framework, as error
rates improve we expect an exponential drop off in improvement
with the most advantage obtained with current error rates.

7 CONCLUSION

We present a new quantum compilation structure, Trios, with a
split decomposition pass to greatly reduce compiled communication
cost and enable architecture-tuned decompositions. We specifically
target the three-qubit Toffoli operation to capture program structure
enabling more optimal compiled circuits. Because current quantum

Casey Duckering, Jonathan M. Baker, Andrew Litteken, and Frederic T. Chong

computers are especially error prone, they require high levels of
optimization to reduce gate counts and maximize the probability
the compiled program will succeed.

Orchestrated Trios both greatly improves the effectiveness of
qubit routing given newly exposed program structure and improves
decompositions with connectivity-awareness. These both greatly
benefit the program success rate, a critical metric for today’s error-
prone and resource-constrained quantum computers. We hope this
inspires more hierarchically designed NISQ algorithms now that we
have shown breaking the abstractions of discrete compilation passes
can help bridge the gap between these noisy quantum hardware
and practical applications.
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