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Abstract

Woody encroachment has impacted grassland ecohydrology worldwide, prompting management
strategies aimed at woody vegetation removal to prevent or mitigate loss of water yield. We measured
stream discharge following sustained cutting of riparian trees (2010-2020) in a native tallgrass prairie
(northeastern Kansas, USA). Discharge has declined at this site since the 1980’s despite a concurrent
increase in precipitation. This decline has been previously attributed to increased transpiration of stream
water by riparian vegetation. We used water stable isotopes (8'*0 and 8*H) to determine whether riparian
grasses, shrubs, and trees primarily used stream/groundwater or soil water. Additionally, we quantified
the increase in riparian and non-riparian woody cover (1978-2020) and combined it with sap-flux data to
estimate changes in transpirative water loss. Sustained cutting of riparian trees did not result in increased
discharge. Rather than stream/groundwater, the largest proportion of water used by riparian trees
(Quercus spp.) was deep soil water. Cornus drummondii (clonal woody shrub) used a higher proportion
of stream water and had greater overall variability in water-use. Riparian shrub cover increased ~57%
from 1978-2020. Over the same time period, shrub cover increased ~20% in areas outside the riparian
zone, resulting in an estimated 25% increase in daily transpirative water loss. Although stream water use
was <50% for all riparian zone species, the total increase in shrub cover on this watershed, coupled with
higher transpiration rates of shrubs, suggests that these woody species — within and outside the riparian

zone — are key contributors to observed declines in stream flow in this system.

Key Words: woody encroachment; grassland hydrology; tallgrass prairie; stable isotopes; land cover;

canopy transpiration
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1. Introduction

Grasslands and wooded grasslands cover ~30% of the Earth’s surface and originate roughly 1/5
of global runoff, making them an important part of stream biogeochemical and hydrologic dynamics
globally (Dodds 1997; Dodds and others 2019). The expansion of woody vegetation into grasslands
(Knight and others 1994; Briggs and others 2002; Eldridge and others 2011; Ratajczak and others 2012;
Veach and others 2014) threatens grassland stream dynamics, as stream hydrology is intricately linked to
its contributing terrestrial habitat. For many grasslands, riparian areas in particular have transitioned from
primarily herbaceous to woody-dominated, affecting ecosystem dynamics, streamflow, and stream health
(Wilcox 2002; Briggs and others 2005; Huxman and others 2005; Scott and others 2006; Veach and
others 2014; Honda and Durigan 2016; Larson and others 2019). Consequences of changing riparian
species composition and/or density on streamflow dynamics depend upon species-specific rooting
patterns, sources of water accessed by those species, and magnitude of water flux via transpiration
(Wilcox and others 2005) as well as local climate, geology, geomorphology, (Huxman and others 2005)
and evaporation of water from the stream channel. However, woody encroachment in grassland
ecosystems typically results in an overall increase in evapotranspiration (Acharya and others 2018),
particularly in more mesic grasslands (Huxman and others 2005), which could exceed the effects of these
other factors.

Woody species often have higher transpiration rates compared to grasses (Scott and others 2006;
Wang and others 2018; O’Keefe and others 2020) and can access deeper soil water and stream- or
groundwater that would flow into streams, whereas grasses primarily use water in the top 30 cm of soil
(Nippert and Knapp 2007). As woody cover increases, these differences in water-use can increase the
overall magnitude of water lost through transpiration (Scott and others, 2006; Honda and Durigan, 2016;
Wang and others 2018; O’Keefe and others 2020) and alter infiltration rates and water flow paths in the
soil (Wilcox and others 2005; Huxman and others 2005), potentially depleting deep soil water stores over
time (Acharya and others 2017). Depending on the magnitude of these changes, woody encroachment has

the potential to reduce streamflow and groundwater recharge (Huxman and others 2005). Although
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woody encroachment can decrease local water yield (Qiao and others 2017; Honda and Durigan 2016),
there are also studies showing that woody encroachment had few impacts on streamflow and cases where
mechanical removal of riparian woody vegetation did not promote streamflow recovery (Belsky 1996;
Dugas and others 1998; Wilcox 2002; Wilcox and others 2005; Wilcox and Thurow 2006).

In an effort to assess ecosystem consequences of woody riparian expansion in tallgrass prairie,
mechanical cutting of riparian woody vegetation was initiated on a section of an intermittent headwater
stream (Kings Creek) at the Konza Prairie Biological Station (KPBS; northeastern Kansas, USA) in
December of 2010. KPBS has experienced significant and widespread woody encroachment — both within
and outside of riparian corridors — over the past several decades (Briggs and others 2005; Ratajczak and
others 2014). From 1980-2020, mean stream discharge has declined, resulting in an increased number of
no flow or “dry” days per year, which were not correlated with changes in annual precipitation (Dodds
and others 2012). Instead, these changes were assumed to be a consequence of riparian woody
encroachment. Following the onset of annual tree cutting, changes in riparian bacterial/fungal
communities and stream chemistry occurred (Reisinger and others 2013; Veach and others 2015; Larson
and others 2019), but no rebound in streamflow was observed in the first three years of removal (Larson
and others 2019), suggesting that aboveground removal of riparian vegetation had little short-term effect
on the hydrologic partitioning of water.

One potential explanation for the lack of streamflow recovery following woody removal is that
riparian tree species were not directly consuming and transpiring stream water to the magnitude
previously presumed. Streamside trees can bypass stream water via deep rooting systems, relying instead
on deeper soil water or groundwater sources (Dawson and Ehleringer 1991; Brooks and others 2010).
Alternatively, despite the continued cutting of riparian woody vegetation, increased woody cover of
shrubs on the broader watershed may enhance overall evapotranspiration fluxes on the hillslopes, thereby
reducing the amount of deep infiltration and subsequent recharge of the stream aquifer. In this scenario,
streamflow declines would represent reduced recharge and hydrologic partitioning at the watershed-scale

rather than direct uptake of stream- or groundwater by woody plants in the local riparian corridor.
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In this study, our main objective was to determine the impacts of riparian and non-riparian woody
vegetation on water cycling in a tallgrass prairie watershed. To this end, we assessed where dominant
riparian species in this watershed obtain their water and paired this information with a new spatial
analysis of woody cover change through time. In addition, existing sap flux data for woody shrubs and
dominant grass species at KPBS were used in conjunction with remote sensing of woody cover change
over time to produce watershed-scale estimates of transpirative water loss. Our research objectives were
to (1) continue reporting whether changes in precipitation and discharge occurred. We then pivot to a
mechanistic explanation for declining discharge by: (2) determining whether common riparian woody
species use stream water as their primary water source, (3) assessing the magnitude of change in woody
cover over the past four decades, both within and outside the riparian corridor of this grassland headwater
stream, and (4) combining these changes in plant cover with existing sap-flux data to estimate catchment-

scale changes in water flux via estimates of transpiration by woody and herbaceous plants.

2. Materials and Methods

2.1 Study area: Sampling was conducted at Konza Prairie Biological Station (KPBS), a 3,487-ha native
unplowed tallgrass prairie in northeastern KS, USA (39.1°N, 96.9°W), co-owned by The Nature
Conservancy and Kansas State University. KPBS is a Long-Term Ecological Research (LTER) site
focused on the dynamics of fire, grazing, and climatic variability as key drivers of change within a
temperate mesic grassland. KPBS is divided into watersheds that have varying fire frequencies (1-yr, 2-
yr, 4-yr, or 20-yr prescribed burns) and grazing treatments (native bison, cattle, or no grazing).

In lowland areas and stream valley bottoms, soils are characterized as silty-clay loams that reach
depths of >2 m (Ransom and others 1998). KPBS geology can be described as merokarst, where
weathering of limestone bedrock layers results in an intricate system of fractures, joints, and perched
aquifers (Sullivan and others 2019; 2020). These layers of weathered limestone (with high hydraulic

conductivity) are separated by mudstone layers (with low hydraulic conductivity), creating a complex
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network of below-ground water infiltration and flow (Vero and others 2017). Shallow groundwater tables
(~5.5 m depth) in this merokarst system appear to be well-connected to the Kings Creek stream system at
KPBS, resulting in rapid water table responses to changes in precipitation (Macpherson and others 2008;
Macpherson and others 2019).

The climate at KPBS is mid-continental with cold, dry winters and warm, wet summers. Long-
term mean annual precipitation (1983-2020) is 812 mm, most of which occurs during the growing season
(April-September). During the winter (November — February), most vegetation at KPBS is dormant or
senesced, allowing precipitation inputs to infiltrate to greater soil depths, avoiding immediate uptake by
plants. During the growing season, precipitation inputs are less likely to infiltrate to greater soil depths in
grass-dominated areas because herbaceous root density is high (Nippert and others 2012) and water
uptake by the herbaceous community is focused on surface soil layers (Nippert and Knapp 2007; O’Keefe
and Nippert 2017).

KPBS has high floristic diversity (Collins and Calabrese 2012) consisting of dominant perennial
C4 grasses (Andropogon gerardii, Schizachyrium scoparium, Panicum virgatum, and Sorghastrum
nutans), as well as sub-dominant grass, forb, and woody species. Historically, this region of the Flint Hills
was comprised mainly of open grasslands with very little woody vegetation, with the exception of riparian
corridors (Abrams 1986). Over the past several decades, native woody vegetation cover has increased at
KPBS, particularly in riparian zones and in watersheds with lower fire frequency (Briggs and others 2005,
Veach et al. 2014).

In this study, we sampled in a watershed (N2B) that is burned every two years and grazed by
bison since the early 1990’s. The cover of woody riparian vegetation increased from the 1980s through
2010 (Veach and others 2014), and this watershed was selected for a riparian woody removal experiment
that began in 2010. To determine the influence of woody riparian removal on streamflow and ecosystem
processes, the majority of aboveground woody vegetation was mechanically removed via cutting within
30 m of the Kings Creek streambed in main channels and within 10 m of side channels (Larson and others

2019). Vegetation was cut along 4.8 km of stream channel during winter to minimize soil disturbance,
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and roughly half the removal area was re-cut each year to minimize woody re-growth. Woody shrubs in
particular re-sprouted quickly following cutting, though most trees did not. The removal area comprised

roughly 21% of the total watershed area.

2.2 Discharge and climate data: Daily stream discharge and precipitation amounts for Kings Creek from
1983-2020 were obtained through the Konza Prairie LTER database (KNZ LTER datasets ASD05 and
ASDO06; Dodds 2018). Discharge measurements were taken at five-minute intervals at a triangular
throated flume located near the terminus of the N2B catchment. For precipitation and discharge, we
computed a five-year running average and then performed a linear regression of each variable. This
approach was based on a manuscript exploring more advanced hydrological modelling and temporal auto-
correlation in both of these variables (Raihan et al. unpublished). Prior to this study, no rebound in

streamflow had been seen after the first three years of riparian tree removal (Larson and others 2019).

2.3 Stable isotopic analysis of source water and stem xylem water: Three deep soil cores (2 m length, 5
cm diameter) were collected outside of the riparian corridor in watershed N2B. Cores were extracted with
a hydraulic-push corer (540MT Geoprobe Systems, Salina, KS). After collection, cores were immediately
stored in sealed plastic coring tubes in a laboratory refrigerator at 1-2 °C. Cores were subsampled at 10,
20, and 30 cm, then every 25 cm for the remainder of the core. When the core was cut, root-free
subsampled soil was immediately placed into exetainer vials (LabCo Ltd, UK) and stored at 1-2 °C. Soil
water was extracted from each soil depth for 55-65 minutes using the cryogenic vacuum distillation
method (Ehleringer and Osmond 1989; modified in Nippert and Knapp 2007). Archived stream water
samples (01/01/2010 — 01/01/2017) from Kings Creek collected on watershed N2B and a nearby
watershed (N1B) were subsampled and analyzed for 8'%0 and 8?H. Archived groundwater samples (Edler

Spring, KPBS) were also analyzed for §'*0 and 8°H values over the same time interval.
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Plant species of interest for this study included some of the most common species expanding in
KPBS riparian areas: Q. macrocarpa (bur oak), Q. muehlenbergii (chinquapin oak), and C. drummondii.
(rough-leaf dogwood). C. drummondii is also expanding beyond the riparian area, comprising as much as
20% of aerial coverage in this watershed (Ratajczak and others unpublished data). Additionally, we
collected samples from Andropogon gerardii, the most common perennial C4 grass in this ecosystem. We
chose eight sampling sites directly along Kings Creek (within 5 m from the stream) in watershed N2B,
the site of the riparian woody removal experiment. At each site, non-photosynthetic tissue was collected
from each species in May, June, July, and August of 2016. For each woody individual, 10-15 cm of stem
tissue (from stems <1 cm diameter) were collected and immediately placed in an exetainer vial. For
grasses, crown tissue was collected and stored in the same way. All samples were immediately put on ice,
and then stored at 1-2 °C. Xylem water was extracted using the cryogenic vacuum distillation method
(Ehleringer and Osmond 1989; Nippert and Knapp 2007).

All water samples (soil, stream, groundwater, and xylem water) were analyzed for §'30 and &*H
on a Picarro WS-CRDS isotopic water analyzer. ChemCorrect software was used to identify if spectral
interference by organic contaminants occurred during analysis of soil and plant water samples —
contaminated samples were removed from further analysis. Isotopic ratios were expressed in per mil (%o)
relative to V-SMOW (Vienna Standard Mean Ocean Water). The long-term precision of this instrument
using in-house standards was <0.3 %o for 8*°H and <0.15 %o for '%0. Differences in xylem water 5'%0
between species were assessed using a mixed effects model with sampling date and species as fixed
effects and sampling site as a random variable to discern differences among several predictor variables on
the source water used by these species. Mixed effects models were performed using the nlme package in

R (Pinheiro and others 2016).

2.4 Source water use of riparian vegetation: Stable isotopes are often used as a tool to identify plant

water sources in riparian ecosystems (Ehleringer and Osmond 1989; Dawson and Ehleringer 1991; Busch
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and others 1992; Ehleringer and Dawson 1992). When coupled with robust statistical mixing-model
techniques (Parnell and others 2013), water isotope analyses allow for the determination of the
proportional reliance on multiple water sources coupled with the associated variability from the
prediction. Stable isotope water data (§?°H and 3'80) were analyzed using the Bayesian mixing model
simmr (stable isotope mixing models in R; Parnell and others 2013) to determine source water use by
riparian vegetation growing near Kings Creek. This model was used to analyze proportional water use of
woody riparian vegetation — potential sources included stream water, deep soil water (averaged across 50-
250 cm), and shallow soil water (averaged across 0-30 cm). For each simmr run, a posterior distribution
consisting of 10,000 MCMC (Markov Chain Monte Carlo) iterations was produced that showed the best
estimates of source water use for each species. Model summaries included means, standard deviations,

and credible intervals for each source.

2.5 Expansion of woody cover over time: We used remote sensed aerial imagery to estimate how the
cover of trees and shrubs changed in watershed N2B over time (1978-2020), parsing changes in the
riparian and the non-riparian zones. Compared to trees, shrubs are typically more difficult to differentiate
from herbaceous vegetation in aerial imagery. At coarse resolutions, like those commonly used in
LANDSAT, MODIS, and some USDA NAIP imagery, shrubs and herbaceous species are especially
difficult to differentiate. However, with high resolution imagery, tall shrubs can potentially be identified
with high accuracy. We combined images from a range of sources (ultimately Google Earth [Google
Earth 2021] and NEON [NEON 2021]) to identify true color aerial images (red, green, and blue
wavelengths) with a resolution of at least 1 m. This search yielded images from 2002, 2003, 2010, 2012,
2014, 2016, 2018, 2019, and 2020 (see Table S1 for the source of each image and related details). An
additional black and white image from 1978 was also located, which was derived from a low-altitude
flyover and an analog camera. This image had coarser resolution, but long-term data indicates that forb

cover was low on this site at that point (Ratajczak and others 2014) and grassy areas are easier to



222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

differentiate from shrubs. Therefore, this image was also included in analyses (see Table S1 for details,
including citations for Google Earth images).

Within the area of this watershed, we established a network of permanently located plots. Each
circular plot was 1256 m? (20 m radius), with 38 plots in the non-riparian zone and 29 plots in the riparian
zone. These levels of replication allowed for approximately 50 m between plots, with differences in
spacing to account for rare topographic features like bison paths and steep draws in the broader
watershed. A larger sample size was needed for the non-riparian zone because the riparian zone only
occupies approximately 1/5 of the watershed.

For each combination of image and plot, we used photo interpretation to outline woody
vegetation. At sub-meter accuracy, polygons were drawn around all distinguishable trees, shrubs,
grassland, and areas that contained woody vegetation. When trees and shrubs could not be distinguished
from each other, these polygons were labelled as “other woody”, and comprised <5% of woody plant
cover across images, but a larger portion of woody cover in 1978. Images were co-interpreted by two
users (Brynn Ritchey and Zak Ratajczak) to increase accuracy. For each plot, proportion of woody
vegetation (tree, shrub, and “other woody”) was calculated, then values for all riparian and non-riparian
plots were averaged to obtain the mean proportion of woody cover in the riparian and non-riparian zones
of the watershed for each year. Herbaceous cover was calculated by subtracting total woody proportion

(shrub + tree + “unknown woody”) from 1.

2.6 Watershed-scale transpiration estimates: Modelled daily canopy transpiration values (Ec; mm day™!
per m? ground area) for 4. gerardii and C. drummondii at KPBS were obtained from O’Keefe and others
(2020). The State-Space Canopy Conductance (StaCC) model (Bell and others 2015) was used to predict
E¢ values based on stem sap flow (daytime and nighttime) measured throughout the growing season in
2014 (day of year 140 to 260). Weather in 2014 was comparable to an average year, with 709 mm of
precipitation (compared to a long-term average of 829 mm per year) and a July mean temperature of 31.7

°C (compared to a long-term average of 32.7 °C). Cumulative growing season canopy transpiration was
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divided by the number of days in the growing season during 2014 to obtain daily values (for more
detailed methods, see O’Keefe and others 2020).

In conjunction with woody cover data, daily canopy transpiration rates were used to estimate
watershed daily canopy transpiration rates (Ecw) that reflect the proportion of herbaceous vs. shrub cover
in the non-riparian zone of our sample watershed each year. The model can be reduced to the following
approach:

Ecw = Sr* Ecs+ Hr * Ecy
Where Srand Hr are mean proportions of shrub and herbaceous cover, respectively, for a given year 7.
Ecs and Ecy are modeled shrub (C. drummondii; 2.01 mm day™') and grass (4. gerardii; 0.91 mm day™')
daily canopy transpiration rates, respectively, from O’Keefe et al. (2020). Calculations assumed average
climate conditions for each modeled year.

Because tree E¢ data was not available for this site and tree cover was more extensive in the
riparian zone (likely contributing substantially to total riparian transpiration), only the non-riparian zone
was used for estimates of daily water loss in this watershed. Shrub cover and herbaceous cover — which
had available E¢ data from KPBS — were used in calculations of non-riparian zone Ecw, while tree cover
and “other woody” cover were excluded. This will likely result in an underestimation of woody cover in
the non-riparian zone, leading to a more conservative estimate of water loss via transpiration outside of

the riparian corridor.

3. Results

3.1 Stream discharge: Consistent with Dodds and others (2012) and Macpherson and Sullivan (2019),
five-year mean running discharge decreased by about 55% (1> = 0.32, p < 0.0001; Fig. 1b) while 5 year
running cumulative precipitation increased significantly (r* = 0.20 p < 0.0001; Fig. 1a) by about 17%
between 1987 and 2019 (Fig. 1b). From 2010-2017, discharge amounts had high interannual variability,

and discharge events coincided with periods of high intensity precipitation, as expected (Fig. 1). These
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data suggest about a two-fold decrease in runoff efficiency (ratio of annual discharge to inputs of

precipitation) across the site.

3.2 Source and xylem water 6" 0: From 2010-2017, mean groundwater §'30 was -5.6%o (£0.01 SE),
which was similar to stream water 8'30 (-5.48%0 £0.06 SE) over the same time period (Fig. 2). Water
from the top 50 cm of soil had greater mean 3'%0 values (-4.9%o +£0.26 SE) than water from deeper soil
(50-250 cm depth; -7%o +£0.18 SE). The pattern of lower soil water 5'%0 at zones deeper in the soil profile
reflects infiltration inputs via winter precipitation (Dansgaard 1964; West and others 2006). Xylem water
8'80 for A. gerardii (-4.56%0 £0.27 SE) was significantly higher than C. drummondii, Q. muehlenbergii,
and Q. macrocarpa 830 (-5.89%0 +£0.17 SE , -6.45%0 +£0.21 SE , and -6.54%o +£0.39 SE, respectively) (p <
0.001 for all three species) (Fig. 3). C. drummondii xylem water 8'®0 was slightly higher than Q.

muehlenbergii and Q. macrocarpa, but not significantly different (p = 0.31 and p = 0.33, respectively)

(Fig. 3).

3.3 Source water use of riparian vegetation: Due to the substantial isotopic overlap between stream and
groundwater sources at this site (Fig. 2), we considered groundwater and stream water to be the same
source to avoid source redundancy in the model. KPBS is known to have a strong stream-groundwater
connection (Vero and others 2017; Brookfield and others 2017), further validating the decision to
combine stream- and groundwater sources in the mixing model. From here on, we refer to this combined
source as stream/groundwater. The simmr model using 8*H and '*0 from xylem water produced
frequency distributions that showed the proportional contribution of each source — stream/groundwater,
deep soil water (50-250 cm), and shallow soil water (0 — 30 cm) — to water use by each species. Model
results for Q. macrocarpa showed that deep soil water made up the largest proportion of source water
used (55.9% £9.4 SD) followed by stream/groundwater (26.7% +13.2 SD) and shallow soil water (17.4%

+9.4 SD) (Fig. 3b). Source water use by Q. muehlenbergii was similar, with deep soil water making up
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60.2% (£8.8 SD) of the source water used followed by stream/groundwater (23.8% + 12.9 SD) and
shallow soil water (16% %7.7 SD) (Fig. 3¢). Stream/groundwater and shallow soil water made up the
largest proportion of source water use by C. drummondii (37.1% +20.5 SD and 38.1% +10 SD,
respectively), but the variability associated with the model prediction for stream/groundwater use was
higher in comparison to the oak species. Deep soil water contributed 24.8% (+12.3 SD) of source water
used by C. drummondii (Fig. 3d). A. gerardii, the only C4 grass species measured, primarily used shallow
soil water (78.3% +10.4 SD) and showed relatively low proportional water use of both

stream/groundwater (13.8% +10.2 SD) and deep soil water (7.8% +4.5 SD) (Fig. 3a).

3.4 Expansion of woody cover through time: From 1978 to 2010 (prior to riparian woody plant removal),
total woody cover increased to 67.5% in the riparian zone and to 14.9% in the non-riparian zone. In the
riparian zone, trees accounted for most of this expansion (45.3% increase in tree cover), whereas woody
plant expansion in the non-riparian zones was primarily by shrubs (14.5% increase in shrub coverage).
The effects of tree removal in the riparian zone were evident from 2010 to 2012, with a sharp decrease in
tree cover and an increase in shrub cover (Fig. 4). Tree cover remained low (<11%) in the riparian zone
after the onset of the riparian tree removal project, but riparian shrub cover increased rapidly from 2010 to
2020, reaching 58.9% cover by the final year (Fig. 4). Across the broader watershed, shrub cover steadily
increased from 2010-2020, reaching 20.8% in the final year, and tree cover remained low (<1%)

throughout the entire time period. See Table S2 for cover proportions and area values for each year.

3.5 Watershed-scale transpiration estimates: In 1978, Ecy (estimated watershed daily canopy
transpiration rate) was 0.91 mm day!, reflecting the fact that herbaceous cover in the non-riparian zone
was nearly 100% during this year (Fig. 5; Table S2). A ~20% increase in shrub cover in the non-riparian
zone between 1978 and 2020 led to a ~25% increase in Ecyw, reflecting the higher transpiration rate of C.

drummondii relative to the C4 grasses they replaced. Small increases in Ecy (calculated per m? ground
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area) translate to substantial magnitudes of water when scaled up to the entire non-riparian zone of this

watershed (538,966 m?) — from ~490,000 L of water per day to >600,000 L of water per day.

4. Discussion

The impacts of woody vegetation on grassland streamflow and groundwater recharge depend on a
variety of factors, including magnitude of water flux via transpiration, species-specific rooting patterns,
and local climate and geomorphology (Wilcox and others 2005). Similarity in $'%0 between groundwater
and stream water (Fig. 2) reflect the shallow groundwater at KPBS (~5.5 m below ground level;
Macpherson and others 2008; Sullivan and others 2020) and the connection to the Kings Creek stream
system (Vero and others 2017). Declines in stream discharge over the past several decades at KPBS (Fig.
1) were not correlated with changes in precipitation or temperature but were previously correlated with a
gradual (but extensive) increase in woody cover along the riparian corridor (Dodds and others 2012).
Results from this study support the hypothesis that riparian woody vegetation likely has a negative impact
on stream discharge in this tallgrass prairie watershed, but also suggests that woody plant expansion
outside of the riparian zone could account for a substantial portion of declining streamflow.

The lack of stream flow recovery following a decade of mechanical cutting of riparian trees
suggests that observed declines in streamflow are not solely attributable to transpiration of groundwater
and stream water by large riparian trees. Results from the stable isotope mixing model indicate that
riparian trees were using groundwater and stream water in this watershed, but that these sources made up
a relatively small proportion of overall water use (Fig. 3). A dendrochronology study performed in the
same watershed at KPBS reported that the rate of riparian tree establishment had been increasing since the
1970’s (Weihs and others 2016). Therefore, it is possible that this gradual increase in tree cover over
several decades, presumably associated with an overall increase in magnitude of stream- and groundwater

usage, could have contributed to observed declines in streamflow. However, we would have expected to
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see a rebound in streamflow following removal if transpiration of stream- and groundwater by riparian
trees was the primary cause of this decline.

Compared to Q. macrocarpa and Q. muehlenbergii, C. drummondii in the riparian zone was more
variable in its source water use and showed a higher proportion of stream water use than the two oak
species (Fig. 3). This suggests that transpiration of stream water by C. drummondii could have been
substantial during portions of the growing season. Additionally, shrub cover in the riparian corridor
increased rapidly, particularly in the past 20 years (Fig. 4). A higher proportion of stream water use by C.
drummondii compared to the oak species, coupled with high transpiration rates (O’Keefe and others
2020) and a rapid increase in riparian cover by C. drummondii, makes it likely that the magnitude of
stream water use by riparian woody shrubs increased substantially in recent decades. Along with gradual
increases in tree cover since the 1970’s, this more recent increase in shrub cover could be contributing to
declines in stream flow via direct consumption of stream water.

In addition to increasing shrub cover in the riparian zone, shrub cover has also increased in the
broader watershed since 2002, although this trend is more modest compared to average rate of
encroachment in the riparian corridor. While these shrubs are less directly connected to the stream
corridor, an increase in whole-watershed woody cover could increase total evapotranspiration and have
cascading impacts on interflow, deep soil water recharge, and streamflow generation. Due to the higher
magnitude of water-use by dominant woody shrubs compared to Cs grasses (O’Keefe and others 2020),
the observed 20% increase in shrub cover on the broader watershed from 1978-2020 (Fig. 4; Table S2)
corresponds to a ~25% increase in daily transpirative water-loss over this time period (Fig. 5). In addition,
eddy covariance measurements at KPBS suggest that this effect of shrub expansion on transpiration fluxes
may be enhanced when transpiration outpaces precipitation inputs in a given growing season — a
phenomenon observed at KPBS during dry years in woody-encroached areas (Logan and Brunsell 2015).
Results from this study and Logan and Brunsell (2015) suggest that the expansion of woody cover at the
catchment-scale may be more critical in determining streamflow dynamics than previously considered.

Assuming that deep soil moisture would historically contribute to recharge if it was not taken up by
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woody vegetation, this trend will likely become more pronounced as shrub cover increases — particularly
if summer drought events become more frequent in an altered future climate.

Based on these results, we argue that increased tree and shrub cover, both in riparian and non-
riparian zones, contributed to declining stream flow in this watershed via increased transpiration of
stream/groundwater directly, and declining deep soil water that would otherwise recharge
stream/groundwater. We note that it is possible that the area of riparian tree-removal compared to total
watershed area in this study could have been too small to detect an impact on streamflow. However, the
removal encompassed ~21% of the total watershed area (Larson and others 2019), which was found to be
sufficient to elicit a detectable response in streamflow in many paired watershed studies (Bosch and
Hewlett 1982, Brown and others 2005). The lack of post-removal recovery of stream discharge could also
be attributed to (1) rapid increases in riparian shrub cover after the onset of tree-removal (Fig. 4a-b),
likely due to increased availability of light, and (2) continued increases in woody cover on the broader
watershed after the onset of riparian tree removal. The lack of continuous sap-flux data for riparian
vegetation limits our ability to quantify the magnitude of transpirative water-use from deep soil water vs.
stream/groundwater sources throughout the growing season, particularly for trees, but does not alter the

significance of shrub water use both within the riparian area and across the watershed more broadly.

5. Conclusion

These results illustrate the importance of combining fine scale ecohydrology, experimental
manipulations, and quantification of broader vegetation changes to understand the influence of woody
encroachment on grassland ecohydrology. Changes in soil water infiltration, transport, and use by
vegetation represent key fluxes within grassland ecosystems, and alterations to these fluxes as a result of
woody encroachment could prevent alluvial aquifers from rebounding to pre-disturbance levels following
riparian woody removal (Vero and others 2017). Taken together, this long-term study clearly illustrates
the complex impacts of woody encroachment on the ecohydrology of grassland ecosystems and

underscores the utility of a critical zone observatory (CZO) framework that links aboveground and
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belowground processes at multiple scales to understand the consequences of ongoing landscape change

(Dawson and others 2020).
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Figure Captions

Figure 1: (A) 5-year back-tracked running mean of daily precipitation measured at KPBS headquarters
from 12/31/1987 to 12/31/2020. (B) 5-year back-tracked running mean of daily discharge for Kings Creek
at KPBS from 4/1/1984 to 11/16/2019. Discharge measurements were taken every five minutes during
this time period at the USGS station 06879650 2 km downstream of the woody removal site.

Figure 2: Measured 3'30 and &°H values for each water source at KPBS (shallow soil water [0-30 cm],
stream water, groundwater, and deep soil water [50-250 cm]). Bars represent standard deviation. Dashed
gray line represents the global meteoric water line.

Figure 3: Mixing model output of proportional source water use for A. gerardii, Q. macrocarpa, Q.
muehlenbergii, and C. drummondii. Density values from the simmr model were averaged for each source
and species to produce density histograms.

Figure 4: Proportion of (A) shrub cover, (B) tree cover, and (C) total woody cover in the riparian and
non-riparian zones for the years 1978, 2002, 2003, 2010, 2012, 2014, 2016, 2018, 2019, and 2020. Note
that for 1978 we were unable to distinguish between shrubs and trees, which is why the value in the
bottom panel is not the sum of the top two panels.

Figure 5: Estimated watershed daily canopy transpiration rates (Ecw) for shrubs only (purple),
herbaceous species only (green), and combined shrub and herbaceous Ecw (blue) for the years 1978,
2002, 2003, 2010, 2012, 2014, 2016, 2018, 2019, and 2020. Transpiration estimates were calculated using
proportional woody and herbaceous cover data for each year in conjunction with modeled woody and
herbaceous canopy transpiration rates from O’Keefe and others (2020). Estimates were made for the non-

riparian zone of the watershed only.
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