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21 Time series analyses

Segmentation of inflow and outflow time series based on time variation of the
injection pressure

Pressure vs time
[=2 _:L-_“\”“"!-\
a 2 | | ——— Inj load,cell ... S —
a 8 Back [ oad, —,'-”J'"_;_:“L ;;.'__-"-—:-.:,fé_)n %"""‘h\____
g ¥~ 4 s S
@ = radial filters Injection filter ] N 7B
w o -t
=
FALR 7% & g
! L% ! ]
;' “ : ° T T T T T
. I v o 0 20 40 60 80 100 120
Bentonite ! 1 ~_Manitoring
sample & X f;> ol rod Days
| 1
\ Iy
\ oy N Inflow and outflow
\ ;' & \ =
A B Cc D F G H
F F T F ¥ ©
T‘o- SO S z ° W
I| I. E,_ o~ E|
Radial Radial Radial E © ] |
array 1 array 2 array 3 é o
E 9
% Q | I 1 I | I
- 0 20 40 60 80 100 120
Days

Segments A and B for the inflow, and Segments E and H for outflow were
selected for further time series analysis




31 Global embedding dimension

Evaluation of the Global Embedding Dimension (GED=4-5) indicates phenomena of low-
dimensional chaos with both deterministic and small stochastic components

Global Embedding Dimension was calculated using the False Nearest Neighbors

Method
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4| Gas migration through channeling
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Chaotic diffusion prior Chaotic advection post gas Chaotic diffusion during the
to gas breakthrough breakthrough bentonite recovery




Immiscible fluid
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Model formulation: At water-gas interface F(x, y, z, t)=0

ag - n=o, -n+(*'V-n+ B)n Stress balance for fluids

[(1—d)og-n]Ef=¢(e"V-n+P)n  Stress balance for solid

2acos(0)
c = — Capillary pressure, r is the pore size
Vy = 11;;,
I_r";._,. - VF + g =0 Kinematic evolution of displacement front
_ VF N l
1= —— ormal unit vector
|VF|

Since the pore size is very small (- nm), the capillary pressure to be overcome
is very high. - The system reduces to a system of two superposed viscous
fluids.
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Rayleigh-Taylor instability

Water or gas
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Pressurized gas tries to escape
through the top vent >

Rayleigh-Taylor instability.

Swelling pressure

Dry density

If gas migrates through channeling, the
gas saturation degree would be

~L,/(L,+L,), which is relatively small and

determined by the swelling pressure
curve.
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Linear instability analysis (Whitehead & Luther,
.1 19795)
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10 I Geometry of channeling fluid (Whitehead & Luther, 1975)

Buoyant rising of a less viscous fluid within a more viscous fluid (y,/y, = 6000)




11 1 Gas bubble movement: Deterministic chaos

* As a gas bulb or channel nucleates and migrates in a
water saturated compacted bentonite, complex P

. . U P
nonlinear dynamics of gas flow would emerge due Il d
to the dynamic coupling between fluid flow and
matrix deformation. _
Channel healing Dilated zone Channel opening

* The complex behaviours of the system arise from
constantly unstable gas percolation fronts.
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Assume stepwise movement of a
bubble to overcome the threshold
for bubble opening at its advancing
front.

FORGE Report D4.17 (Harrington, 2013)
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Instability of a single deformable gas permeation

channel

*  Model formulation
*  Model analysis
* Lump parameter model
» Comparison with experimental data
* Gas flow rate
* Variation amplitude and
frequency -> bulk material
properties?
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131 Concluding remarks

« Understanding of the underlying physical process
* Mechanistic model (3-4 variables)
« Constraints on experimental data
* Limited gas saturation degree
 Number of channels
* Bubble movement
* Providing the information about relevant time and spatial scales
for numerical simulations
* Providing insight about process upscaling

« Data requirements
High resolution sampling interval
Data from large-scale tests




