This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2021- 4899C

Pathways to Renewable
Fuels
Using Concentrated Sunlight

PRESENTED BY
Anthony McDaniel

- == —— @cNEReY MNISH

e e~

S p ri n g M R S m e e t i n g 3 A p ri | 2 O 3 2 O 2 1 Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

1 This presentation does not contain any proprietary, confidential, or otherwise restricted information




2 I Acknowledgements

HydroGEN Advanced Water Splitting Materials National Laboratory Solar
Thermochemical Water Splitting Research Team:

Sandia National Laboratories
o Andrea Ambrosini, Eric Coker, James Park, Joshua Sugar, Jamie Trindell

National Renewable Energy Laboratory
- Robert T. Bell, David Ginley, Dan Plattenberger, Philip Parilla, Sarah Shulda

Lawrence Livermore National Laboratory
o Tadashi Ogitsu

Funding provided by DOE’s Hydrogen and Fuel Cell Technologies Office

"m T e— i
Othece o

ENERGY EFFICIENCY & RENEWABLE ENERGY




3 | Hydrogen Is Large In The Google-verse

! Australian Government

e I Depariment of Industry, Science,

Energy amd Resouroes
Policies and initiatives Regulations and standards Funding and incentives »  About us Publications News

U.S. Department of Energy Australia’s National Hydrogen Strategy

Commentional Storage Tramsportation

)

2021 Best Countries » See the Worst Countries for Racial Equality

German Government Agrees on National Hydrogen
S Strategy

Global efforts underway to advance “green” hydrogen
production.

=

o Address KEY technology challenges to advance readiness level G e

of large scale, low cost renewable H, production
China prepares multi-pronged
hydrogen strategy
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‘ Hydrogen As Far As The Eye Can See L
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US DOE heavily invested in developing advanced water splitting technology
pathways.
o Electrolysis, photoelectrochemical, thermochemical, microbial

DOE’s HydroGEN Advanced Water Splitting Materials consortium (H,AWSM):
o Enables access to 5 core National Laboratories through collaborations with awarded projects

o Experimental facilities, computational resources, 4subject matter experts



Solar Thermochemical Water Splitting Is A Simple
Concept: Heat + H,0O In, H, + O

R. Pezet, SAND Report (SAND2011-3622), Sandia National Laboratories, 2011.
G. J. Kolb, R. B. Diver, SAND Report (SAND2008-1900), Sandia National Laboratories, 2008. |
i

o Mox_a S. Abanades, P. Charvin, G. Flamant, P. Neveu, Energy. 31, 2805-2822 (20006).
' @ (8;-0¢)H,0
20, (5-5)H, | ,
MO, ;, | thermal reduction: : 0,
MNuclear |
) Thighr Plow |
MO —->MO_;+-0, (1) Reduction |
' 27 | A I
MQ-—& -I-CS'HZO _>MO-< +0 .Hz (2) Oxidation Concentrated Solar Power | :
: _ ' MO, 5 MO,
0-HO—>—0,+6-H, (3) Thermolysis | |
2 52 2 | |
Y
. . . H.O ! ' H
Direct storage of solar energy in a chemical bond. 2~ | 2

——> H, production:
Many hundred cycles proposed. | _
o Multi-phase, multi-step, thermochemical-electrochemical hybrids |

DOE’s HydroGEN Advanced Water Splitting Materials (H,AWSM) consortium is
focused on two-step, non-volatile MO,.

> h2awsm.org




Outline

Searching for a commercially viable metal oxide.
> Navigating a highly constrained requirement space (oxygen storage materials)

o Application of first principles theory to material discovery (H,AWSM)

An interesting story about layered perovskites.
- Ba,CeMn;0,, and Ba,PrMn;0,, and polytypes

Summary.



Principal Material Challenges For Non-Stoichiometric

Oxides:

Reduction Temneratiirea (T_) & Sanlid State Q-atnmArtivity o
: challenge: decrease T; and increase Ad Y &

(Mg,solid) | R ox ) .

Oxygen storage materials with a twist.
> O-atom “harvested” from H,O not Air
o Bulk phenomena largely govern O-atom exchange with environment

Material subject to extreme environments.
> Redox cycling on the order of seconds

o Large thermal stress per cycle
© 800 °C< T <1450 °C; ATgare ~100 °C/sec

o Large chemical stress per cycle
o 10" atm< pg, <10" atm

Water splitting at extremely low pg,.
o Strongly reducing “oxidizing” atmosphere

“O” activity in Hoas > Hsotid | Mgas ~ 107 3atm
H,O:H,




A Brief History Of Non-Stoichiometric Materials...

challenge: decrease T and increase Adpy )

spinel )
Fe?*/Fe®* (unsupported) systems:
High redox capacity (A5>0.1)

WS inactive at T, gnsee <1100 °C
high H,0:H, ratio at Tg; gnsee <1400 OCJ
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H,AWSM Projects Are Fulfilling The Vision Of The Consortium/EMN
Model (HPC, ML, Theory Guided Material Design)

Found RP phases that modify redox
thermo.
o DFT screening of defect formation energy
o Thin film combinatorics for compound discovery
o High throughput colorimetric screening
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Use machine-learned models coupled
to DFT to discover new redox
materials.

o Rapidly screen materials based on machine-
learned predicted stability

o Formulate descriptor(s) for predicting reaction
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Incorporate second redox active sublattice to
modify thermo.
DFT method to predict Ad a priori using simple sublattice
model formulations

Discover compounds with optimized thermo (6H, 8S)
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Use high-throughput Density Functional
Theory to discover new redox materials.

> Screen >10* known compounds for ground state
stability/synthesizability and favorable thermo at
reduction T<1400 °C
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One dozen potential
compounds have been
“discovered” using HPC,
ML, and DFT

* Water splitting
functionality has been
verified in several of these
predicted formulations

* Validated high-throughput
computational tools are
now in place to rapidly
expand the known

~
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‘ An Interesting Story About Layered Perovskites

vanced Water Splitting Materials

é‘:' HydroGEN

Ba,CeMn;0,, Ba,PrMn;0,,
(BCM) J (BPM) J
* PrforCe | Important
Ba . Interrelationships:
- Mn « electronics
0O * defects

Objectives:

» structure

. performanc_P,)

> Discover and synthesize model perovskite system
> Develop and exercise multi-length-scale observation platforms and methods

o Apply first principles theory to derive atomistic understanding of water splitting activity

macro ‘/

SNL: Virtually Accessible Laser
Heated Stagnation Flow Reactor]

SNL: High-Temperature X-Ray Diffraction (HT-
XRD) and Complementary Thermal Analysis

meso )

NREL: Controlled Matenals
Synthesis and Defect Engineering
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Microscopy
atomistic )
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NREL: First Principles Materials Theory
for Advanced Water Splitting Pathways
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‘ Redox Functionality Extremely Sensitive To MnOg4

rran TGA result
Acrangements _ onrel
LaMnO . UH_PNitro%en IDry_Air .
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Swapping Pr For Ce Dramatically Changes Redox

Beh az}sbi @1-=850°C. 330s @T=1350°C
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#166 R3m
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o Oxidation state Prt* = Ce**; A
o ldentical ground state crystallography, different electronic structure

O, redox capacity of BCM << BPM (measured by TGA).

N

Pr variant has TWO
additional 4f electrons
and empty d-states

Ce:[Xe] 4f" 5d' 652
Pr:[Xe] 4f3 6s2

BXM (X = Ce, Pr) are structurally identical.
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‘ Hot Stage In Situ Vacuum Reduction of BCM: Electron Energy
Loss Spectroscopy (EELS) Probes Local Electronic States

Precision FIB Cutout
/N
| 2 A

FIB precision sample prep.
> Qrient FIB cutout along low index crystal planes

Heating rates >> 100 °C per second.

Clear and obvious changes to electronic
structure local to MnO; manifold in BCM.

> Features in O K-edge and Mn L-edge change
shape and intensity

o Coordination chemistry and Mn oxidation state
change

Trend-wise loss of intensity in Ce electronic
states.

o Unclear to what extent O 2p — Ce 4f manifold
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HT-XRD Experiments Reveal Different Redox E
Crystallography Within BXM Family i
i

o
RT L BPM Ce:Mn
1:3
1400 °C x
< oy
I v O
RT S35 L &
wT d TS
o o
1400 °C_ o I =
E Qg ’ |
\
b RT |} L d o
PO o ¢ | deg. 26 6H-Ba;Ce, ;5Mn, 5504
Fixed from initial 6H, and maintains
12R-BaCe ,5Mn, ;50,4 12R-BCM cation ratio

12R to 6H polytype transition in BCM is reversible.

- MnQg timer reduced to a dimer, partial occupancy of Mn on Ce site increases configurational
entropy

BPM clearlv exhihite mare comnlicated redox nhase hehavior.
unclear if non-stoichiometry or phase transition more important to WS )




HR-STEM Reveals Structural Transformations In BCM
12R Twin 6H
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for 6H formation.
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6 I Summary: Rich And Interesting Behavior At The Atomic

Scale

Examined the behavior of a complex layered perovskite to unravel structure —
property relationships important to high performing thermochemical water
splitting materials.

o Hot Stage HR/STEM with EELS
o Operando HT-XRD

Ba,CeMn;0,, is the first perovskite material discovered that lowers thermal
reduction temperature while maintaining “decent” Ad,y in H,O:H, mixtures.

> High configurational entropy upon reduction is important, the 12R — 6H transition provides a
clue

Substituting Pr for Ce dramatically degrades redox behavior.
o |sostructural variant with ONE additional valence electron
- Ba,PrMn;0,, redox behavior is much more complex than Ce variant

- BPM is the perfect model system to unravel the details of electronic effects in these materials
and gain an understanding of atomistic processes that engender favorable water-splitting
thermodynamic behavior






