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ABSTRACT

The redox reaction of manganese (Mn) is of great environmental, geological, and public
health significance, as Mn oxides control the distribution and electron flow of numerous nutrients
and contaminants in natural and engineered environments. Current understanding on the oxidation
pathways of Mn(Il) to Mn(I11/1V) mainly focuses on biotic processes due to their much higher
oxidation rates than those associated with abiotic processes. This study demonstrates rapid
photocatalytic oxidation of Mn?*(aq) under circumneutral conditions catalyzed by naturally
abundant semiconducting TiO. minerals. Notably, the photocatalytic oxidation rates are
comparable to or even higher than those of reported biotic/abiotic processes. In addition, the rapid
photocatalytic oxidation leads to the formation of large tunnel structured Mn oxides (todorokite
and romanechite) on the surface of TiO2. These findings suggest that photocatalytic oxidation of
Mn?*(aq) by natural semiconducting minerals is likely an important yet previously overlooked
pathway for understanding the occurrence of natural Mn oxide coatings on rock surfaces. In
addition, considering the increasing input of photo-reactive engineered nanoparticles into
environmental systems, this study shows the potential impacts of nanoparticles on influencing

natural redox cycles.

Keywords: Mn oxides, Ti oxide, nanoparticles, photochemistry, oxidation
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1. INTRODUCTION
Mn(111/1V) (oxyhydr)oxides (hereafter Mn oxides) are a group of ubiquitous natural
minerals in terrestrial and aquatic settings. They play important roles in numerous elemental cycles

and affect the electron flow in nature.r® They have high reduction potential (Emno,/mn2z+ = ~500

mV at pH 7)!° and high specific surface area (around 10 to 200 m?/g)** 12 and are among the most
reactive minerals and the most significant solid oxidants in nature. Thus, understanding the redox
reactions of Mn in fresh water and high salinity aqueous systems (e.g., sea water) has been
considered a key to elucidate the geochemical electron cycles in the history of Earth and Mars.**
16 With their strong redox reactivity and high adsorption capacity, Mn oxides and related
compounds are also widely used in energy and environmental engineering systems for energy
storage, water treatment, and contaminant removal.'’-?! For example, recent studies demonstrated
the application of Mn oxides for harvesting energy from wastewater and salinity gradient®> 23 as
well as for the degradation of antimicrobial agents, organic contaminants, and heavy metals?3-28,
Because of the important roles that Mn oxides play in natural and engineered systems,

many studies have explored the kinetics and mechanisms for their formation and transformation,
as well as redox reactions involving Mn oxides. Previous studies showed that the abiotic
homogeneous oxidation of Mn?*(aq) by molecular oxygen is kinetically sluggish and takes years
even though it is thermodynamically favorable.?® 3° Mineral surface catalyzed heterogeneous
oxidation of Mn?*(aq) by molecular oxygen takes 5-2,800 days (half-life) under circumneutral
conditions.?®3! In contrast, microbially mediated processes via enzymes (e.g., multicopper oxidase)
or reactive oxygen species (ROS, such as superoxide) show much faster oxidation (1-69 days half-
life).3-3* Because of the widespread presence of Mn-oxidizing microorganisms and the fast

oxidation rate, biotic processes have been generally accepted as the most significant contributor to
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the oxidation of Mn?*(aq) and formation of Mn oxides in natural low temperature environments.
Interestingly, recent studies showed that photochemically generated superoxide by dissolved
organic matter or nitrate can also enable indirect photooxidation of Mn?*(aq) (i.e., oxidation of
Mn?*(aq) by photochemically generated oxygen-related species) at rates comparable to biotic
processes.®>3° These exciting results shed lights on the potentially overlooked contribution of
photochemistry, an abiotic process, to the oxidation of Mn?*(aq) and formation of Mn oxides.

Notably, previously known biotic/abiotic processes typically lead to the formation of
highly disordered and poorly crystalline layered Mn oxides (LMO) that are structurally similar to
vernadite (6-MnO.) or hexagonal birnessite. Although diverse tunnel structured Mn oxides (TMO)
occur ubiquitously in many environmental settings*, the detailed mechanisms of their formation
have not been clearly resolved in laboratory studies under circumneutral conditions. Most studies
showed the transformation of LMO to TMO under pH or temperature conditions significantly
deviating from low temperature circumneutral conditions.**** In our recent study under
circumneutral pH and ambient temperature condition, we demonstrated redox cycling driven
transformation of LMO to TMO.* However, although this study provided a new angle for
understanding the transformation of LMO to TMO under fluctuating natural conditions such as
those at oxic/anoxic interfaces, direct formation of TMO from the oxidation of Mn?*(aq) was rarely
observed in laboratory conditions and its feasibility and mechanism remain a puzzle.

Natural semiconducting minerals (such as metal oxides and sulfides) are widespread in
nature and capable of direct redox reactions at conduction or valence band via photo-excitation.*®
Although evidence for the direct heterogeneous photocatalysis of Mn?*(aq) (i.e., oxidation through
the electron transfer from Mn?*(aq) to valence band of natural semiconducting mineral) is lacking,

it is thermodynamically feasible as the valence band position of many natural minerals is higher
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than the reduction potential of Mn(111/IV)/Mn?*(aq). Thus, a photo-excited hole in a valence band
is thermodynamically feasible to oxidize Mn?*(aq). A recent observation on the photon-to-electron
conversion by natural semiconducting minerals on rock surfaces supports the potential of mineral
photocatalysis and the subsequent direct photocatalytic oxidation of Mn?*(aq) by natural
semiconducting minerals.*” A recent study described the oxidation of Mn?*(ag) on natural
semiconducting minerals (Fe and Ti oxides), but the high concentration of Mn?*(aq) (14 mM) used
in the study was not representative of natural conditions.*® Systematic studies are thus desired to
further explore the reaction kinetics and mechanisms of mineral catalyzed photocatalytic oxidation
of Mn?*(aq) under environmentally relevant conditions, as well as the structure of the formed Mn
oxides.

In natural systems, one of the most photoreactive semiconducting minerals is TiO2. Ti is
the 9" most abundant element in Earth’s crust, and rutile is the most commonly occurring structure
of natural TiO,.° Anatase is a polymorph of TiO2.%% °! Due to their strong photoreactivity, both
rutile and anatase nanoparticles are used extensively in photocatalytic energy and environmental
applications.*® 51-53 Because of the widespread anthropogenic use of TiO; in the last two decades,
many studies have reported rapidly increasing concentrations of engineered TiO2 nanoparticles in
surface waters and wastewater treatment systems.>3” While extensive studies have been
conducted to evaluate the toxicity of TiO2 nanoparticles in nature, their photocatalytic effects on
natural redox cycles remains elusive. Thus, investigating the roles of TiO2 minerals in the
photocatalytic oxidation of Mn?* and formation of Mn oxides have important implications for both
natural and engineered systems.

In this study, we show rapid photocatalytic oxidation of Mn?*(aq) in the presence of rutile

and anatase (representing natural minerals and emerging engineered nanoparticles of TiOa,
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respectively). The observed oxidation rates are comparable to or even faster than currently known
biotic processes. In addition, we show that the direct formation of TMO with large tunnel size,
such as todorokite (3 x 3) and romanechite (2 x 3), occurs via heterogeneous nucleation on the
surface of TiO.. Considering the abundance of natural semiconducting minerals, our findings
confirm the importance of direct photocatalytic oxidation for explaining the oxidation of Mn(ll)
and the formation and diversity of Mn oxides in environmental systems. These results also point

to the potential influence of environmental nanoparticles on natural element and electron cycles.

2. EXPERIMENTAL SECTION
Materials and reagents

Rutile and anatase TiO2 phases were obtained from Alfa Aesar and were confirmed phase
pure by X-ray diffraction (XRD). Their specific surface areas were measured by using Brunauer—
Emmett-Teller (BET) method with N2 gas adsorption (Autosorb-1-MP surface pore analyzer,
Quantachrome Corp.) and are 5.5 m?/g for rutile and 51.5 m?/g for anatase. MnCl; stock solution
was used to achieve 100 pM Mn?*(aq) in artificial sea water (ASW) and deionized water (DI).
ASW was prepared with 0.42 M NaCl, 0.025 M MgSOs, 0.0091 M CaCl,, 0.0089 M KCI, and
0.0024 M NaHCO3.%8 The pH value of the ASW experiments remained at 7.9 + 0.1 during the 8 h
reaction without any adjustment. The pH value in the DI experiments was initially adjusted to 7.5
+ 0.1 and later adjusted every hour using dilute NaOH or HCI. Throughout the reaction, pH stayed
within the range of 7.5-7.8. TiO. particles (0.1 g/L) were dispersed in 180 mL ASW or DI
solutions and sonicated for 10 min before starting the photocatalytic reactions. To understand the
effect of cations on the rapid photocatalytic oxidation and formation of tunnel structured Mn

oxides, parallel experiments were conducted by reacting anatase particles in DI water containing
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only one cation (0.42 M NaCl, 0.025 M MgSOQOs, or 0.0091 M CaCly; consistent with their
corresponding concentrations in ASW). The suspension pH was initially adjusted to 7.5+ 0.1, was
adjusted every hour, and stayed within the range of 7.5-7.8 throughout the experiments. These

experiments are referred to as single cation experiments.

Photocatalytic oxidation of Mn?*(aq)

Photochemical experiments were initiated by illuminating the prepared TiO2 suspension
by a 450 W Xe-arc lamp light source (Newport). The light passed through a 10 cm IR water filter
to avoid the increase of temperature. We used a borosilicate reactor with a quartz window (1 inch
diameter) facing the light. The reaction suspension was magnetically stirred over the entire
reaction process. Aliguots (0.3 mL) of the suspension was taken every hour to analyze the
concentration of oxidized Mn(Il1,1V) using the leucoberbelin blue (LBB, Sigma Aldrich)
colorimetric method at 625 nm on an UV-vis spectrophotometer (Cary 60, Agilent). Calibration
of the LBB method used KMn¥"04.%® Because 1 mole of Mn(V1I) oxidizes 5 moles of LBB, using
the obtained calibration with Mn(V11), the amount of oxidized Mn?* can be converted to Mn(l11)
or Mn(1V) equivalent by considering the oxidation state of Mn oxides. For example, 10 uM
Mn(VI1) is equivalent to 25 uM Mn(1V) or 50 uM Mn(l11). Because it is difficult to accurately
determine the oxidation state of the photochemically formed Mn oxides, we used Mn(lll)
equivalent calculation in order to compare the electron flow under different reaction conditions.
All experiments were conducted in replicates.

Several control experiments were also conducted by using anatase in ASW, as this system
showed the fastest oxidation among all tested conditions. (1) Dark experiments were conducted to

differentiate photocatalytic oxidation (i.e., Mn(Il) oxidation by photochemically generated holes)
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from mineral surface catalyzed oxidation (i.e., heterogeneous Mn(ll) oxidation by molecular
oxygen on mineral surface®® 51), (2) To determine the photoactive wavelength region of anatase
for Mn?*(aq) oxidation, 400 or 550 nm optical cut-off filters (Newport) was used to cut-off lights
lower than 400 or 550 nm wavelength, respectively. The optical filter was placed between the light
source and reactor. Because anatase showed much higher oxidation rate as compared to rutile, the
control experiment was conducted using anatase to clearly distinguish the effective wavelength
region for the photocatalytic oxidation of Mn?*(aq) by TiO.. (3) Because TiO2 can generate
superoxide upon photoexcitation®?, to confirm the contribution of superoxide for the oxidation of
Mn?*(aq), scavenge experiments were conducted by adding 0.1 pM superoxide dismutase (SOD,
Sigma Aldirch) in the suspension to scavenge superoxide during the reaction. (4) A control
experiment was conducted in the absence of TiO2, which showed no oxidation of Mn?*(aq) in both

ASW and DI water conditions.

Calculation of quantum yield

Using the photocatalytic oxidation of Mn?*(aq) by TiO, with 450 W Xe-arc lamp, we
calculated the quantum yield of rutile and anatase in ASW and DI. Multiplying irradiance of 450
W Xe-arc lamp (Figure S1), wavelength, unit conversion factor, absorbance at each wavelength
provides photons generated by a certain wavelength of 450 W Xe-arc lamp light. The exposed area
and penetration depth were multiplied in the reactor. To obtain total photons generated by anatase
or rutile by 450 W Xe-arc lamp, the calculated number of photons per wavelength using Equation

1 below were integrated from 250 to 800 nm (Table S4).

Ji (_ph"t‘ms) = I(W/cm?nm) X Wavelength(nm) x 5.035 x 10> (photons/s - nm) X

nms
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Abs. (1/cm) X penetration depth (cm) X area (cm?) Eq. (1)

We used the concentration of Mn(111) equivalent, which represents successfully transferred holes
from TiO.. Because the Mn(I11) equivalent concentration reached a plateau after 6 h for reaction

in rutile suspension, we used the concentration at 6 h for the calculation of quantum yield.

total oxidized Mn?*(aq) for 6 hrs
total generated photons from T TiO2 for 6 hrs

QY (%) = x 100 Eq. (2)

Using the obtained quantum yields of TiO2 in ASW and DI, we obtained the estimated oxidation
rates of Mn?*(aq) by TiO. under natural sunlight exposure. The spectrum of natural sunlight
(reference E-490-00; Figure S1) is obtained from the National Renewable Energy Laboratory.
Using Equation 1 and integration, the total number of photons were obtained under sunlight
irradiation. By multiplying the total number of photons and quantum yield, we obtained the
estimated concentration of Mn(ll11) equivalent under sunlight irradiation in 6 h reaction. The
oxidation rates under sunlight condition were estimated by linearizing the Mn(lll) equivalent

concentration between 0 and 6 h.

Characterization of heterogeneously nucleated Mn oxides on TiO2

At each time point, the reacted suspension was syringe filtered (0.2 um) and analyzed by
LBB colorimetric method to quantify the amount of Mn oxides formed on the surface of TiO>
(heterogeneous nucleation) and in the solution (homogeneous nucleation). To identify the phase
and oxidation state of Mn oxides, reacted solids were collected at the end of photocatalysis by

repeated centrifugation and rinsing by DI water, followed by freeze-drying. The dried samples
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were analyzed using X-ray photoelectron spectroscopy (XPS), synchrotron XRD (SXRD), and
synchrotron X-ray absorption spectroscopy (XAS), as detailed below.

Mn 3p XPS spectra, which show better sensitivity of Mn oxidation state than Mn 2p
spectra®? %3 was obtained on a K-alpha XPS system with monochromatic Al Ko radiation (1486.6
eV) (ThermoFisher Scientific). Although Mn 3s spectra are also useful for analyzing Mn oxidation
state, the use of Mn 3s in this study was inappropriate due to its overlap with Mg 1s spectra for
ASW samples. Energy calibration used C 1s spectra (284.6 eV). Fitting of Mn 3p spectra was
conducted with allocations of Mn(11), Mn(111), and Mn(1V) at 47.8, 48.6, and 49.8 eV, respectively.

SXRD was measured at Beamline 17-BM-B (51.324 keV, L =0.24157 A) at the Advanced
Photon Source (APS, Lemont, IL, US). Mn K-edge X-ray absorption spectroscopy (XAS) analysis
was conducted at Beamline 4-1 at the Stanford Synchrotron Radiation Lightsource (SSRL, Menlo
Park, CA, US), Beamline 12-BM-B at APS, and Beamline 6-BM at National Synchrotron Light
Source-11 (NSLS-11, Upton, NY, US). Both XANES (X-ray absorption near edge structure) and
EXAFS (extended X-ray absorption fine structure) data were collected. The monochromators were
detuned by 40% to avoid higher order harmonics. Energy calibration used Mn foil. Multiple scans
(2-6) were collected for each sample, averaged, and normalized for further analysis. Analysis of
the Mn XANES spectra for each sample showed no evidence of photo-reduction under the X-ray
beam.

XAS data analysis was performed using the programs SIXPACK 8 and Ifeffit %. Linear
combination fitting (LCF) of the Mn XANES region was conducted to determine the relative
percentage of Mn(ll), Mn(lll), and Mn(IV) species and the average oxidation state (AOS)
following previous procedures.®® To obtain statistically meaningful fitting results, all possible

combinations were fitted with at most four references among 12 references in Table S1. Among

10



222  the obtained 781 different fitting results, 30 fitting results with the lowest R factors were selected
223  and averaged to determine AOS and percentages of Mn valence states. Considering the typical 10%
224 error for LCF, values lower than 5% were considered negligible. Details on the reference
225  compounds and results for LCF analysis are in Table S1 and Table S2, respectively.

226

227 3. RESULTS AND DISCUSSION

228 Rapid photocatalytic oxidation of Mn?*(aq)

229 In the presence of TiO, minerals, Mn?*(aq) in both ASW and DI was quickly oxidized
230  (Figure 1). The oxidation rates with different mineral phases and aqueous conditions (1.4 to 8.0
231 uM hrt) (Figure S2) are all comparable to or faster than those of biotic processes (~1.2 + 0.2 pM
232 hrt) 376789 Thjs finding suggests that photocatalytic oxidation of Mn?*(aq) by TiO; is a feasible
233 scenario in nature due to the abundance of natural semiconducting TiO2 minerals*® and increasing
234 concentrations of anthropogenic nanoparticles in environmental systems.>3*" 7 Indiscernible
235  oxidation under dark condition indicates that both surface catalyzed oxidation of Mn?*(aq) by TiO2
236  (i.e., heterogeneous oxidation) and homogeneous oxidation of Mn?*(aq) by dissolved oxygen in
237  solutions are negligible compared to photocatalytic oxidation (Figure S3). Anatase shows about
238  two times faster oxidation rates than rutile in both ASW and DI (Figure 1 and Figure S2). This
239  difference might be from the higher specific surface area of anatase (51.5 m? g) than rutile (5.5
240  m? g). However, surface area normalized concentrations of Mn(lI1) equivalent showed that the
241  oxidized Mn?*(aq) is about an order of magnitude higher on the surface of rutile than that of anatase
242  (Figure S4), indicating that the difference of surface area might not be the dominant controlling
243  factor for the higher oxidation rates in anatase suspensions. This suggests that the higher oxidation

244 rates in anatase suspensions is likely due to the higher photo-reactivity of anatase for redox
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reaction.>!

Except for the photocatalytic oxidation of Mn?*(aq) in ASW-anatase suspension, all other
conditions showed slowed oxidation after 6 h (Figure 1). This is possibly due to the aggregation
of TiO2 particles over time, attachment of TiO: particles to the photochemical reactor over time,
or the blockage of surface active sites by the nucleated Mn oxide.

Interestingly, both anatase and rutile show faster oxidation in ASW than that in DI. The
pH difference in ASW (7.9 + 0.1) vs DI (7.5-7.8) might partially contribute to the difference in
oxidation rate. Our thermodynamic calculations using Visual MINTEQ showed no significant
changes in Mn(Il) aqueous speciation in ASW and DI conditions (data not shown). Thus we
hypothesize that the difference in oxidation rate is likely due to the presence of large amount of
cations (e.g., Na*, K*, Ca?*, and Mg?") in ASW that can facilitate the oxidation of Mn?*(aq) and
formation of Mn oxides.** %72 This is confirmed by the single cation experiments using solutions
containing only one cation at the corresponding ASW concentration (i.e. 0.091 M Ca?*, 0.025 M
Mg?*, or 0.420 M Na*). The photocatalytic oxidation of Mn?*(aq) by anatase in single cation
experiments with Mg?* (~8.2 uM hr?) or Ca?* (~6.6 uM hrt) (Figure S5A) shows oxidation rates

similar to ASW systems (8.0 = 0.6 uM hr?). Interestingly, in single cation experiment with Na*,

we observed the fastest oxidation rate (~11.3 pM hrt) among all the tested experimental conditions.
This indicates the profound role of cations in the photocatalytic oxidation and formation of Mn
oxides on TiOz particles. The different phase of Mn oxides formed in the single cation experiments
(Figure 2) also supports the influence of cations on the Mn oxide structure, as discussed below.
Since this study focuses on the photocatalytic oxidation of Mn?*(aq) by TiO2 nanoparticles and
consequent formation of TMO, detailed mechanistic understanding of the roles of cations and

anions in the oxidation rate is beyond the scope of this work. Further studies are warranted to
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explain the photocatalytic reactions of TiO2 under varied aqueous conditions.

Formation of large tunnel structured Mn oxides

The rapid photocatalytic oxidation of Mn?*(aq) led to the formation of Mn oxides on the
surface of TiO2. Mn(l11,1V) species were not detected by the LBB method in the filtrate of the
reaction suspension at all times (Figure S3). Considering that homogeneously nucleated Mn oxides
are 6-30 nm in diameter,” which can readily pass through 0.22 um filters, the absence of Mn
oxides at all times in the filtrate likely indicates the heterogeneous nucleation of Mn oxides on the
surface of TiO2 instead of homogeneous nucleation of Mn oxide nanoparticles in solution.

Interestingly, we also observed the formation of TMO with large tunnels under all reaction
conditions (Figure 2A and 2B). Considering that LMO (such as 6-MnOz and birnessite) are the
typical phase of homogeneously nucleated Mn oxides through biotic/abiotic processes,® 3" 7 the
formation of TMO in our system also strongly suggest the heterogeneous nucleation of Mn oxides
on TiO, through photocatalytic oxidation of Mn?*(aq). SXRD analyses of the 8-h samples in
anatase-ASW and rutile-ASW suspensions (Figure 2A and 2B) indicate the formation of
todorokite (3 x 3 tunnel size) with diffraction peaks at 9.6 and 4.8 A d-spacing. Although the large
d-spacing can also occur from buserite, which has similar structure to birnessite but with a 10 A
interlayer spacing, the interlayer of buserite (10 A interlayer spacing) collapses to birnessite (~7 A
interlayer spacing) upon dehydration due to weakly bound interlayer H2O in the interlayer
positions 4% 7> 76 Thus, the large d-spacing of our fully dehydrated samples (obtained under
vacuum freeze-drying for 1 day) indicates that the nucleated Mn oxide on TiO2 in ASW is
todorokite. In anatase-DI and rutile-DI suspensions, SXRD showed only weak diffraction at ~4.9

A, which occurs from all large tunnel structured Mn oxides (3 x 3, 3 x 2, and 2 x 2 tunnel size)
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(Figure 2A and 2B). To further identify the structure of the Mn oxides formed in DI experiments,
we conducted Mn K-edge EXAFS analysis and identified the formation of romanechite-like
structure (2 x 3 tunnel size) (Figure 2C). Specifically, the region between 7 and 10 A in k space
is a well-known “indicator region” for Mn oxide structure.’” ’® In this region, Mn oxides formed
in DI experiments have two peaks at ~8.7 and 9.2 A, consistent with the spectra of romanechite
and is distinctively different from the spectra of todorokite formed in ASW (Figure 2C) and
hollandite (2 x 2 tunnel size, Figure S6). These results indicate an important observation that
heterogeneous nucleation on natural mineral surfaces can facilitate the direct formation of TMO
with large tunnels. Specifically, todorokite is one of the most ubiquitous natural Mn oxides, yet its
formation in low temperature environments is poorly constrained due to the difficulties in
synthesizing this phase in laboratory settings through the transformation of LMO to TMO. Most
previous studies employed reaction conditions that do not represent circumneutral low temperature
environments, such as the transformation of Mg?*-intercalated LMO using reflux or hydrothermal

reactions at temperatures above 100 °C *% 424 Qur findings suggest that photocatalytically

promoted direct heterogeneous nucleation of Mn oxides on natural minerals might be an alternative
pathway for the formation of todorokite. In our system, the underlying TiO2 minerals serve as
templates to facilitate the heterogeneous nucleation of Mn oxides, which might have lowered the
structural strain and formation energy for TMO. In addition, this observation also suggest a new
phase selection pathway (i.e., formation of TMO via heterogeneous nucleation of Mn oxides) as
compared to previously observed common formation of LMO induced by homogeneous nucleation
of Mn oxides upon Mn(I1) oxidation % 3" 7 Future microscopic studies are warranted to further
investigate the mechanism, structure, and morphology of the heterogeneously nucleated TMO,

such as the use of high resolution transmission electron microscopy (HRTEM) to analyze the
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micromorphology, potential presence of poorly crystalline LMO, and relationships with the
mineral substrate.

Prior studies showed the importance of Mn(lI1) and large cations (e.g., Mg?*, Ca?*) on the
transformation of LMO to TMO with large tunnels.: 42 44 7% 7981 |n gyr system, Mn oxides
produced from all tested conditions contain considerable amount of structural Mn(l11) as probed
by XPS and XANES (Figures 3 and S7 and Table S2), which is necessary to form TMO. The
results show that Mn oxides formed in the presence of anatase have more Mn(l11) in the structure
than those formed in the rutile system. Specifically, Mn oxides formed in the anatase-ASW
suspension show a higher content of Mn(l11) than those formed in rutile-ASW suspension based
on the fitting of Mn 3p XPS spectra. This feature can be readily observed from the lower peak
position of Mn 3p spectra of anatase-ASW sample than that of rutile-ASW (Figure 3). It is worth
noting that obtaining accurate ratios of Mn(111/1V) using XPS and XANES is challenging, due to
errors resulting from data fitting and the intrinsic differences in these techniques (i.e., XANES
obtains bulk information whereas XPS detects near-surface structure).!2 Nonetheless, linear
combination fitting (LCF) of Mn XANES spectra also shows that the nucleated Mn oxides in
anatase-ASW suspension have higher content of Mn(lll) than those formed in rutile-ASW
suspension (Figure S7 and Table S2). Despite the difference in Mn(lll) content, the Mn oxides
formed in both anatase and rutile suspensions have the same structure (i.e., todorokite in ASW and
romanechite in DI).

Interestingly, although the Mn oxides formed in rutile-DI and rutile-ASW suspensions
show similar Mn(l1l) contents, they have different structures. This suggests that the observed
different tunnel sizes between ASW (todorokite, 3 x 3) and DI (romanechite, 2 x 3) systems mainly

resulted from the presence of cations in ASW, not from the difference in Mn(l11) content. Indeed,
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results from the single cation experiments (DI water containing only Mg?*, Ca?*, or Na* at their
corresponding ASW concentrations) support the relative importance of different cations in ASW
in mediating the TMO formation. Among all anatase-single cation experiments (Mg?*, Ca®*, or
Na'*), the Mn oxides produced in Mg?* experiment shows the most relevant structure to Mn oxide
formed in anatase-ASW suspension, as revealed by linear combination fitting of Mn K-edge
EXAFS spectra (Figure S5B and Table S3). This observation is consistent with prior studies
showing the necessity of Mg?* intercalation into LMO to enable the hydrothermal transformation
of LMO to todorokite.* 42 44 71. 7981 Ca2* glso likely contributes to the formation of todorokite,
based on the similarity in EXAFS indicator region for Mn oxides produced in the Ca?* single cation
experiment as compared to todorokite spectra. We can rule out the contribution of Na* to the
formation of todorokite in ASW based on the formation of romanechite-like structure (Figure S5B
and Table S3). Overall, results from the single cation experiments indicate that, regardless of the
mineral catalyst, large cations (e.g., Mg?* and Ca?*) in ASW are main factors responsible for the
structural difference during heterogeneous nucleation of Mn oxide on TiO2 in ASW vs DI water.
Detailed mechanistic investigation on the effects of cations on the oxidation of Mn?*(aq) and the

structure of nucleated Mn oxides is beyond the scope of this study and warrants further work.

Reaction mechanisms

Our mechanistic study further reveals that photo-excitation of TiO enables the rapid
oxidation of Mn?*(aq) by the generation of (1) holes at valence band (direct oxidation) as well as
(2) superoxide (indirect oxidation), as explained below.

For Mn?* oxidation by the generated holes at valence band (direct oxidation): we conducted

parallel experiments using different optical cut-off filters in the anatase-ASW suspension (which
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shows the fastest oxidation) to elucidate the mechanisms of photocatalytic oxidation of Mn?*(aq).
We found that the rapid oxidation occurs via the photo-excitation of electrons and holes from
anatase (Figure 4A). Specifically, in the presence of 400 nm cutoff optical filter (which cuts off
wavelengths at < 400 nm), the oxidation of Mn?*(aq) is significantly suppressed. This indicates
that the rapid oxidation of Mn?*(aq) occurs mainly from the photo-excitation in UVA region (320—
400 nm), which matches the band-gap of anatase (3.2 eV). With 550 nm cutoff optical filter (cutoff
< 550 nm), little oxidation of Mn?*(aq) occurred (Figure 4A) due to completely suppressed photo-
excitation.

For Mn?* oxidation by superoxide (indirect oxidation): TiO2 is capable of generating
superoxide because its conduction band located at lower reduction potential than that of oxygen
(0,) I superoxide (05) (Figure 4C). Prior studies show that superoxide can readily oxidize Mn?*(aq)
while hydroxyl radical and hydrogen peroxide cannot.®® © In our control experiment with
superoxide scavenger SOD, both the extent and rate of Mn?* oxidation decreased slightly,
indicating the contribution of superoxide (produced from photocatalysis) in the indirect oxidation
of Mn?* (Figure 4D). However, considering the small decrease in Mn?* oxidation caused by SOD
as compared to those caused by the cut-off filters (Figure 4D), direct electron transfer from
Mn?*(aq) to photo-generated holes is still considered as the dominant oxidation mechanism. In
addition, the occurrence of superoxide and the observed direct electron transfer from Mn?*(aq) to
a hole in the valence band of TiO: indicate that oxygen is the electron acceptor which suppresses

the recombination between the photo-generated electrons and holes.

4. ENVIRONMENTAL IMPLICATIONS

To assess the relative importance of this photocatalytic oxidation process in nature, we
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compare the oxidation rates obtained from this study to previously observed representative
oxidation rates. Using the experimentally obtained photocatalytic oxidation rate, spectra of 450 W
Xe-arc lamp and natural sunlight, and by calculating the quantum yields (Table S4 and Figure S1),
we extrapolated the laboratory oxidation rates (450 W Xe lamp) to natural sunlight condition. We
note that oxidation processes are controlled by many factors (e.g., pH, initial Mn?* concentration,
dissolved oxygen concentration, temperature, solution chemistry, etc.). Nevertheless, the
comparison of oxidation rates in Figure 5 provides an initial visual comparison of the relative
importance of different oxidation pathways. As shown in the experimental and calculated results
with TiO, (Figure 5), the calculated oxidation rates under natural sunlight condition are
comparable to or faster than that of microbial oxidation processes. Natural semiconducting
minerals occur in a wide variety of natural systems. Besides TiO2 and Fe oxides, other natural
semiconducting minerals such as ZnS, FeS, etc. may also serve to photocatalytically oxidize
Mn?*(aq) (or other species). However, different mineral catalysts might insert different
photocatalytic oxidation mechanisms.

Our findings highlight the importance of a previously overlooked pathway: the
photocatalytic oxidation of Mn?*(aq), which might significantly contribute to Mn redox balance in
nature. Meanwhile, the observed fast photocatalytic oxidation of Mn?*(aq) raises the potential
concern of semiconducting nanoparticles in influencing environmental redox systems. Through
anthropogenic activities, TiO2 and other semiconducting nanoparticles are released to a wide
variety of environmental systems. Based on the observed rapid photocatalytic oxidation by TiO>
in this study, accumulation of the photo-active nanoparticles in nature might influence the balance
of Mn redox. As an example of such anthropogenic impact, a recent study reported the occurrence

of elevated concentration of dissolved Mn from the reduction of natural Mn oxides by emerging
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contaminants and fertilizers in US groundwater, impacting more than 2.6 million people
consuming the Mn contaminated groundwater.2® In contrary, the increase of semiconducting
nanoparticles in environmental systems might promote the oxidation of Mn?*(aq) and formation
of Mn oxides, thus affecting the fate and transport of many other elements and contaminants. For
example, Mn oxides are known to oxidize the more mobile As(lll) into the less mobile As(V)
species, whereas they can oxidize the less mobile Cr(111) species into more mobile and toxic Cr(V1)
species 8487,

This study also demonstrates the direct formation of todorokite through heterogeneous
nucleation on the surface of natural minerals under circumneutral conditions in the presence of
large cations. To our knowledge, this is the first observation of direct formation of todorokite in
laboratory settings under environmentally relevant conditions (Table S5). The results suggest that
environmental conditions, such as solution chemistry, mineral surface, etc., may govern the
polymorphism of natural Mn oxides, and the latter in turn might potentially serve as a fingerprint

to trace environmental conditions at the time of Mn oxide formation.
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689  Figure 1. Rapid photocatalytic oxidation of Mn?*(aq) by anatase and rutile in artificial seawater
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Figure 2. Formation of large tunnel structured Mn oxides on the surface of TiO2. (A and B)

Synchrotron XRD analyses show that the nucleated Mn oxide on the surface of both anatase and

rutile in ASW is todorokite (3 x 3 tunnel structure). In DI system, weak diffraction occurred at 4.9

A. Because several tunnel structured Mn oxides (romanechite (2 x 3), hollandite (2 x 2), and

todorokite (3 x 3)) have diffraction peak at this position, it is challenging to identify the phase of

Mn oxide using SXRD alone. (C) EXAFS analysis confirms that Mn oxides formed in DI system

are structurally similar to romanechite. (D) Schematic structures of todorokite (3 x 3 tunnel size)

and romanechite (2 x 3 tunnel size).
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Figure 3. Mn 3p XPS spectra of Mn oxides formed on the surface of TiO,. Fitting results show
that all the Mn oxides formed under varied conditions have Mn(l1l). Mn oxides formed in the

presence of anatase have more Mn(111) than those formed in the rutile system.
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Figure 4. Mechanistic understanding of the photocatalytic oxidation of Mn?*(aq) in the presence
of TiO2. (A) Control tests with 400 or 550 nm optical cut off filters suggest that the rapid
photocatalytic oxidation of Mn?*(aq) with TiO occurs from the photo-excited electron-hole pair
mainly at wavelength <400 nm. (B) The positions of valence and conduction bands show that the
photocatalytic oxidation of Mn?*(aq) with TiO> is thermodynamically feasible via both direct
electron transfer and indirect reaction of Mn?*(aqg) with photocatalytically generated superoxide.
(C) The decrease of oxidation rate in the presence of superoxide dismutase (SOD; a superoxide
scavenger) indicates that both superoxide and photo-excited holes contribute to the rapid oxidation
of Mn?*(aq) in the presence of TiO2 and light. In addition, the occurrence of superoxide indicates
that oxygen is the electron acceptor, which enables the rapid direct electron transfer from Mn?*(aq)

to a hole in the valence band of TiOz by blocking the recombination of electron-hole pair.
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Figure 5. Comparison of the photocatalytic oxidation rates of Mn?*(aq) in this study (using Xe

lamp or calculated to natural sunlight condition) with previously reported oxidation rates in the

presence of nitrate or via biotic processes.
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