

Photocatalytic Oxidation of Dissolved Mn²⁺ by TiO₂ and the Formation of Tunnel Structured Manganese Oxides

Haesung Jung^{1, 2}, Colin Snyder¹, Wenqian Xu³, Ke Wen⁴, Mengqiang Zhu⁴, Yan Li⁵, Anhuai Lu⁵, Yuanzhi Tang^{1*}

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332-0340, United States

²School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do, 51140, Republic of Korea

15 ⁵Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space
16 Sciences, Peking University, Beijing, China

17

18 *Corresponding author.

19 Yuanzhi Tang: E-mail: yuanzhi.tang@eas.gatech.edu; Phone: (1) 404-894-3814

20 **ABSTRACT**

21 The redox reaction of manganese (Mn) is of great environmental, geological, and public
22 health significance, as Mn oxides control the distribution and electron flow of numerous nutrients
23 and contaminants in natural and engineered environments. Current understanding on the oxidation
24 pathways of Mn(II) to Mn(III/IV) mainly focuses on biotic processes due to their much higher
25 oxidation rates than those associated with abiotic processes. This study demonstrates rapid
26 photocatalytic oxidation of Mn²⁺(aq) under circumneutral conditions catalyzed by naturally
27 abundant semiconducting TiO₂ minerals. Notably, the photocatalytic oxidation rates are
28 comparable to or even higher than those of reported biotic/abiotic processes. In addition, the rapid
29 photocatalytic oxidation leads to the formation of large tunnel structured Mn oxides (todorokite
30 and romanechite) on the surface of TiO₂. These findings suggest that photocatalytic oxidation of
31 Mn²⁺(aq) by natural semiconducting minerals is likely an important yet previously overlooked
32 pathway for understanding the occurrence of natural Mn oxide coatings on rock surfaces. In
33 addition, considering the increasing input of photo-reactive engineered nanoparticles into
34 environmental systems, this study shows the potential impacts of nanoparticles on influencing
35 natural redox cycles.

36

37 **Keywords:** Mn oxides, Ti oxide, nanoparticles, photochemistry, oxidation

38 **1. INTRODUCTION**

39 Mn(III/IV) (oxyhydr)oxides (hereafter Mn oxides) are a group of ubiquitous natural
40 minerals in terrestrial and aquatic settings. They play important roles in numerous elemental cycles
41 and affect the electron flow in nature.¹⁻⁹ They have high reduction potential ($E_{\text{MnO}_2/\text{Mn}^{2+}} = \sim 500$
42 mV at pH 7)¹⁰ and high specific surface area (around 10 to 200 m²/g)^{11, 12} and are among the most
43 reactive minerals and the most significant solid oxidants in nature. Thus, understanding the redox
44 reactions of Mn in fresh water and high salinity aqueous systems (e.g., sea water) has been
45 considered a key to elucidate the geochemical electron cycles in the history of Earth and Mars.¹³⁻
46 ¹⁶ With their strong redox reactivity and high adsorption capacity, Mn oxides and related
47 compounds are also widely used in energy and environmental engineering systems for energy
48 storage, water treatment, and contaminant removal.¹⁷⁻²¹ For example, recent studies demonstrated
49 the application of Mn oxides for harvesting energy from wastewater and salinity gradient^{22, 23} as
50 well as for the degradation of antimicrobial agents, organic contaminants, and heavy metals²³⁻²⁸.

51 Because of the important roles that Mn oxides play in natural and engineered systems,
52 many studies have explored the kinetics and mechanisms for their formation and transformation,
53 as well as redox reactions involving Mn oxides. Previous studies showed that the abiotic
54 homogeneous oxidation of Mn²⁺(aq) by molecular oxygen is kinetically sluggish and takes years
55 even though it is thermodynamically favorable.^{29, 30} Mineral surface catalyzed heterogeneous
56 oxidation of Mn²⁺(aq) by molecular oxygen takes 5–2,800 days (half-life) under circumneutral
57 conditions.^{29, 31} In contrast, microbially mediated processes via enzymes (e.g., multicopper oxidase)
58 or reactive oxygen species (ROS, such as superoxide) show much faster oxidation (1–69 days half-
59 life).³¹⁻³⁴ Because of the widespread presence of Mn-oxidizing microorganisms and the fast
60 oxidation rate, biotic processes have been generally accepted as the most significant contributor to

61 the oxidation of $Mn^{2+}(aq)$ and formation of Mn oxides in natural low temperature environments.
62 Interestingly, recent studies showed that photochemically generated superoxide by dissolved
63 organic matter or nitrate can also enable indirect photooxidation of $Mn^{2+}(aq)$ (i.e., oxidation of
64 $Mn^{2+}(aq)$ by photochemically generated oxygen-related species) at rates comparable to biotic
65 processes.³⁵⁻³⁹ These exciting results shed lights on the potentially overlooked contribution of
66 photochemistry, an abiotic process, to the oxidation of $Mn^{2+}(aq)$ and formation of Mn oxides.

67 Notably, previously known biotic/abiotic processes typically lead to the formation of
68 highly disordered and poorly crystalline layered Mn oxides (LMO) that are structurally similar to
69 vernadite ($\delta\text{-MnO}_2$) or hexagonal birnessite. Although diverse tunnel structured Mn oxides (TMO)
70 occur ubiquitously in many environmental settings⁴⁰, the detailed mechanisms of their formation
71 have not been clearly resolved in laboratory studies under circumneutral conditions. Most studies
72 showed the transformation of LMO to TMO under pH or temperature conditions significantly
73 deviating from low temperature circumneutral conditions.⁴¹⁻⁴⁴ In our recent study under
74 circumneutral pH and ambient temperature condition, we demonstrated redox cycling driven
75 transformation of LMO to TMO.⁴⁵ However, although this study provided a new angle for
76 understanding the transformation of LMO to TMO under fluctuating natural conditions such as
77 those at oxic/anoxic interfaces, direct formation of TMO from the oxidation of $Mn^{2+}(aq)$ was rarely
78 observed in laboratory conditions and its feasibility and mechanism remain a puzzle.

79 Natural semiconducting minerals (such as metal oxides and sulfides) are widespread in
80 nature and capable of direct redox reactions at conduction or valence band via photo-excitation.⁴⁶
81 Although evidence for the direct heterogeneous photocatalysis of $Mn^{2+}(aq)$ (i.e., oxidation through
82 the electron transfer from $Mn^{2+}(aq)$ to valence band of natural semiconducting mineral) is lacking,
83 it is thermodynamically feasible as the valence band position of many natural minerals is higher

84 than the reduction potential of Mn(III/IV)/Mn²⁺(aq). Thus, a photo-excited hole in a valence band
85 is thermodynamically feasible to oxidize Mn²⁺(aq). A recent observation on the photon-to-electron
86 conversion by natural semiconducting minerals on rock surfaces supports the potential of mineral
87 photocatalysis and the subsequent direct photocatalytic oxidation of Mn²⁺(aq) by natural
88 semiconducting minerals.⁴⁷ A recent study described the oxidation of Mn²⁺(aq) on natural
89 semiconducting minerals (Fe and Ti oxides), but the high concentration of Mn²⁺(aq) (14 mM) used
90 in the study was not representative of natural conditions.⁴⁸ Systematic studies are thus desired to
91 further explore the reaction kinetics and mechanisms of mineral catalyzed photocatalytic oxidation
92 of Mn²⁺(aq) under environmentally relevant conditions, as well as the structure of the formed Mn
93 oxides.

94 In natural systems, one of the most photoreactive semiconducting minerals is TiO₂. Ti is
95 the 9th most abundant element in Earth's crust, and rutile is the most commonly occurring structure
96 of natural TiO₂.⁴⁹ Anatase is a polymorph of TiO₂.^{50, 51} Due to their strong photoreactivity, both
97 rutile and anatase nanoparticles are used extensively in photocatalytic energy and environmental
98 applications.^{46, 51-53} Because of the widespread anthropogenic use of TiO₂ in the last two decades,
99 many studies have reported rapidly increasing concentrations of engineered TiO₂ nanoparticles in
100 surface waters and wastewater treatment systems.⁵³⁻⁵⁷ While extensive studies have been
101 conducted to evaluate the toxicity of TiO₂ nanoparticles in nature, their photocatalytic effects on
102 natural redox cycles remains elusive. Thus, investigating the roles of TiO₂ minerals in the
103 photocatalytic oxidation of Mn²⁺ and formation of Mn oxides have important implications for both
104 natural and engineered systems.

105 In this study, we show rapid photocatalytic oxidation of Mn²⁺(aq) in the presence of rutile
106 and anatase (representing natural minerals and emerging engineered nanoparticles of TiO₂,

107 respectively). The observed oxidation rates are comparable to or even faster than currently known
108 biotic processes. In addition, we show that the direct formation of TMO with large tunnel size,
109 such as todorokite (3×3) and romanechite (2×3), occurs via heterogeneous nucleation on the
110 surface of TiO_2 . Considering the abundance of natural semiconducting minerals, our findings
111 confirm the importance of direct photocatalytic oxidation for explaining the oxidation of Mn(II)
112 and the formation and diversity of Mn oxides in environmental systems. These results also point
113 to the potential influence of environmental nanoparticles on natural element and electron cycles.

114

115 **2. EXPERIMENTAL SECTION**

116 **Materials and reagents**

117 Rutile and anatase TiO_2 phases were obtained from Alfa Aesar and were confirmed phase
118 pure by X-ray diffraction (XRD). Their specific surface areas were measured by using Brunauer–
119 Emmett–Teller (BET) method with N_2 gas adsorption (Autosorb-1-MP surface pore analyzer,
120 Quantachrome Corp.) and are $5.5 \text{ m}^2/\text{g}$ for rutile and $51.5 \text{ m}^2/\text{g}$ for anatase. MnCl_2 stock solution
121 was used to achieve $100 \mu\text{M Mn}^{2+}(\text{aq})$ in artificial sea water (ASW) and deionized water (DI).
122 ASW was prepared with 0.42 M NaCl , 0.025 M MgSO_4 , 0.0091 M CaCl_2 , 0.0089 M KCl , and
123 0.0024 M NaHCO_3 .⁵⁸ The pH value of the ASW experiments remained at 7.9 ± 0.1 during the 8 h
124 reaction without any adjustment. The pH value in the DI experiments was initially adjusted to 7.5
125 ± 0.1 and later adjusted every hour using dilute NaOH or HCl. Throughout the reaction, pH stayed
126 within the range of 7.5–7.8. TiO_2 particles (0.1 g/L) were dispersed in 180 mL ASW or DI
127 solutions and sonicated for 10 min before starting the photocatalytic reactions. To understand the
128 effect of cations on the rapid photocatalytic oxidation and formation of tunnel structured Mn
129 oxides, parallel experiments were conducted by reacting anatase particles in DI water containing

130 only one cation (0.42 M NaCl, 0.025 M MgSO₄, or 0.0091 M CaCl₂; consistent with their
131 corresponding concentrations in ASW). The suspension pH was initially adjusted to 7.5 ± 0.1, was
132 adjusted every hour, and stayed within the range of 7.5–7.8 throughout the experiments. These
133 experiments are referred to as single cation experiments.

134

135 **Photocatalytic oxidation of Mn²⁺(aq)**

136 Photochemical experiments were initiated by illuminating the prepared TiO₂ suspension
137 by a 450 W Xe-arc lamp light source (Newport). The light passed through a 10 cm IR water filter
138 to avoid the increase of temperature. We used a borosilicate reactor with a quartz window (1 inch
139 diameter) facing the light. The reaction suspension was magnetically stirred over the entire
140 reaction process. Aliquots (0.3 mL) of the suspension was taken every hour to analyze the
141 concentration of oxidized Mn(III,IV) using the leucoberberlin blue (LBB, Sigma Aldrich)
142 colorimetric method at 625 nm on an UV-vis spectrophotometer (Cary 60, Agilent). Calibration
143 of the LBB method used KMn^{VII}O₄.⁵⁹ Because 1 mole of Mn(VII) oxidizes 5 moles of LBB, using
144 the obtained calibration with Mn(VII), the amount of oxidized Mn²⁺ can be converted to Mn(III)
145 or Mn(IV) equivalent by considering the oxidation state of Mn oxides. For example, 10 μM
146 Mn(VII) is equivalent to 25 μM Mn(IV) or 50 μM Mn(III). Because it is difficult to accurately
147 determine the oxidation state of the photochemically formed Mn oxides, we used Mn(III)
148 equivalent calculation in order to compare the electron flow under different reaction conditions.
149 All experiments were conducted in replicates.

150 Several control experiments were also conducted by using anatase in ASW, as this system
151 showed the fastest oxidation among all tested conditions. (1) Dark experiments were conducted to
152 differentiate photocatalytic oxidation (i.e., Mn(II) oxidation by photochemically generated holes)

153 from mineral surface catalyzed oxidation (i.e., heterogeneous Mn(II) oxidation by molecular
154 oxygen on mineral surface^{60, 61}). (2) To determine the photoactive wavelength region of anatase
155 for Mn²⁺(aq) oxidation, 400 or 550 nm optical cut-off filters (Newport) was used to cut-off lights
156 lower than 400 or 550 nm wavelength, respectively. The optical filter was placed between the light
157 source and reactor. Because anatase showed much higher oxidation rate as compared to rutile, the
158 control experiment was conducted using anatase to clearly distinguish the effective wavelength
159 region for the photocatalytic oxidation of Mn²⁺(aq) by TiO₂. (3) Because TiO₂ can generate
160 superoxide upon photoexcitation⁵¹, to confirm the contribution of superoxide for the oxidation of
161 Mn²⁺(aq), scavenge experiments were conducted by adding 0.1 μM superoxide dismutase (SOD,
162 Sigma Aldrich) in the suspension to scavenge superoxide during the reaction. (4) A control
163 experiment was conducted in the absence of TiO₂, which showed no oxidation of Mn²⁺(aq) in both
164 ASW and DI water conditions.

165

166 **Calculation of quantum yield**

167 Using the photocatalytic oxidation of Mn²⁺(aq) by TiO₂ with 450 W Xe-arc lamp, we
168 calculated the quantum yield of rutile and anatase in ASW and DI. Multiplying irradiance of 450
169 W Xe-arc lamp (Figure S1), wavelength, unit conversion factor, absorbance at each wavelength
170 provides photons generated by a certain wavelength of 450 W Xe-arc lamp light. The exposed area
171 and penetration depth were multiplied in the reactor. To obtain total photons generated by anatase
172 or rutile by 450 W Xe-arc lamp, the calculated number of photons per wavelength using Equation
173 1 below were integrated from 250 to 800 nm (Table S4).

174

175 $I \left(\frac{\text{photons}}{\text{nm}^2} \right) = I(\text{W/cm}^2\text{nm}) \times \text{Wavelength(nm)} \times 5.035 \times 10^{15} (\text{photons/s} \cdot \text{nm}) \times$

176 $Abs. (1/cm) \times penetration\ depth\ (cm) \times area\ (cm^2)$ Eq. (1)

177

178 We used the concentration of Mn(III) equivalent, which represents successfully transferred holes
179 from TiO_2 . Because the Mn(III) equivalent concentration reached a plateau after 6 h for reaction
180 in rutile suspension, we used the concentration at 6 h for the calculation of quantum yield.

181

182 $QY\ (\%) = \frac{total\ oxidized\ Mn^{2+}(aq)\ for\ 6\ hrs}{total\ generated\ photons\ from\ TiO_2\ for\ 6\ hrs} \times 100$ Eq. (2)

183

184 Using the obtained quantum yields of TiO_2 in ASW and DI, we obtained the estimated oxidation
185 rates of $Mn^{2+}(aq)$ by TiO_2 under natural sunlight exposure. The spectrum of natural sunlight
186 (reference E-490-00; Figure S1) is obtained from the National Renewable Energy Laboratory.
187 Using Equation 1 and integration, the total number of photons were obtained under sunlight
188 irradiation. By multiplying the total number of photons and quantum yield, we obtained the
189 estimated concentration of Mn(III) equivalent under sunlight irradiation in 6 h reaction. The
190 oxidation rates under sunlight condition were estimated by linearizing the Mn(III) equivalent
191 concentration between 0 and 6 h.

192

193 **Characterization of heterogeneously nucleated Mn oxides on TiO_2**

194 At each time point, the reacted suspension was syringe filtered (0.2 μm) and analyzed by
195 LBB colorimetric method to quantify the amount of Mn oxides formed on the surface of TiO_2
196 (heterogeneous nucleation) and in the solution (homogeneous nucleation). To identify the phase
197 and oxidation state of Mn oxides, reacted solids were collected at the end of photocatalysis by
198 repeated centrifugation and rinsing by DI water, followed by freeze-drying. The dried samples

199 were analyzed using X-ray photoelectron spectroscopy (XPS), synchrotron XRD (SXRD), and
200 synchrotron X-ray absorption spectroscopy (XAS), as detailed below.

201 Mn 3p XPS spectra, which show better sensitivity of Mn oxidation state than Mn 2p
202 spectra^{62, 63}, was obtained on a K-alpha XPS system with monochromatic Al K α radiation (1486.6
203 eV) (ThermoFisher Scientific). Although Mn 3s spectra are also useful for analyzing Mn oxidation
204 state, the use of Mn 3s in this study was inappropriate due to its overlap with Mg 1s spectra for
205 ASW samples. Energy calibration used C 1s spectra (284.6 eV). Fitting of Mn 3p spectra was
206 conducted with allocations of Mn(II), Mn(III), and Mn(IV) at 47.8, 48.6, and 49.8 eV, respectively.

207 SXRD was measured at Beamline 17-BM-B (51.324 keV, $\lambda = 0.24157 \text{ \AA}$) at the Advanced
208 Photon Source (APS, Lemont, IL, US). Mn K-edge X-ray absorption spectroscopy (XAS) analysis
209 was conducted at Beamline 4-1 at the Stanford Synchrotron Radiation Lightsource (SSRL, Menlo
210 Park, CA, US), Beamline 12-BM-B at APS, and Beamline 6-BM at National Synchrotron Light
211 Source-II (NSLS-II, Upton, NY, US). Both XANES (X-ray absorption near edge structure) and
212 EXAFS (extended X-ray absorption fine structure) data were collected. The monochromators were
213 detuned by 40% to avoid higher order harmonics. Energy calibration used Mn foil. Multiple scans
214 (2–6) were collected for each sample, averaged, and normalized for further analysis. Analysis of
215 the Mn XANES spectra for each sample showed no evidence of photo-reduction under the X-ray
216 beam.

217 XAS data analysis was performed using the programs SIXPACK⁶⁴ and Iffeffit⁶⁵. Linear
218 combination fitting (LCF) of the Mn XANES region was conducted to determine the relative
219 percentage of Mn(II), Mn(III), and Mn(IV) species and the average oxidation state (AOS)
220 following previous procedures.⁶⁶ To obtain statistically meaningful fitting results, all possible
221 combinations were fitted with at most four references among 12 references in Table S1. Among

222 the obtained 781 different fitting results, 30 fitting results with the lowest R factors were selected
223 and averaged to determine AOS and percentages of Mn valence states. Considering the typical 10%
224 error for LCF, values lower than 5% were considered negligible. Details on the reference
225 compounds and results for LCF analysis are in Table S1 and Table S2, respectively.

226

227 **3. RESULTS AND DISCUSSION**

228 **Rapid photocatalytic oxidation of Mn²⁺(aq)**

229 In the presence of TiO₂ minerals, Mn²⁺(aq) in both ASW and DI was quickly oxidized
230 (Figure 1). The oxidation rates with different mineral phases and aqueous conditions (1.4 to 8.0
231 $\mu\text{M hr}^{-1}$) (Figure S2) are all comparable to or faster than those of biotic processes ($\sim 1.2 \pm 0.2 \mu\text{M}$
232 hr^{-1})^{37, 67-69}. This finding suggests that photocatalytic oxidation of Mn²⁺(aq) by TiO₂ is a feasible
233 scenario in nature due to the abundance of natural semiconducting TiO₂ minerals⁴⁹ and increasing
234 concentrations of anthropogenic nanoparticles in environmental systems.^{53-57, 70} Indiscernible
235 oxidation under dark condition indicates that both surface catalyzed oxidation of Mn²⁺(aq) by TiO₂
236 (i.e., heterogeneous oxidation) and homogeneous oxidation of Mn²⁺(aq) by dissolved oxygen in
237 solutions are negligible compared to photocatalytic oxidation (Figure S3). Anatase shows about
238 two times faster oxidation rates than rutile in both ASW and DI (Figure 1 and Figure S2). This
239 difference might be from the higher specific surface area of anatase ($51.5 \text{ m}^2 \text{ g}^{-1}$) than rutile (5.5
240 $\text{m}^2 \text{ g}^{-1}$). However, surface area normalized concentrations of Mn(III) equivalent showed that the
241 oxidized Mn²⁺(aq) is about an order of magnitude higher on the surface of rutile than that of anatase
242 (Figure S4), indicating that the difference of surface area might not be the dominant controlling
243 factor for the higher oxidation rates in anatase suspensions. This suggests that the higher oxidation
244 rates in anatase suspensions is likely due to the higher photo-reactivity of anatase for redox

245 reaction.⁵¹

246 Except for the photocatalytic oxidation of Mn²⁺(aq) in ASW-anatase suspension, all other
247 conditions showed slowed oxidation after 6 h (Figure 1). This is possibly due to the aggregation
248 of TiO₂ particles over time, attachment of TiO₂ particles to the photochemical reactor over time,
249 or the blockage of surface active sites by the nucleated Mn oxide.

250 Interestingly, both anatase and rutile show faster oxidation in ASW than that in DI. The
251 pH difference in ASW (7.9 ± 0.1) vs DI (7.5–7.8) might partially contribute to the difference in
252 oxidation rate. Our thermodynamic calculations using Visual MINTEQ showed no significant
253 changes in Mn(II) aqueous speciation in ASW and DI conditions (data not shown). Thus we
254 hypothesize that the difference in oxidation rate is likely due to the presence of large amount of
255 cations (e.g., Na⁺, K⁺, Ca²⁺, and Mg²⁺) in ASW that can facilitate the oxidation of Mn²⁺(aq) and
256 formation of Mn oxides.^{44, 71, 72} This is confirmed by the single cation experiments using solutions
257 containing only one cation at the corresponding ASW concentration (i.e. 0.091 M Ca²⁺, 0.025 M
258 Mg²⁺, or 0.420 M Na⁺). The photocatalytic oxidation of Mn²⁺(aq) by anatase in single cation
259 experiments with Mg²⁺ ($\sim 8.2 \mu\text{M hr}^{-1}$) or Ca²⁺ ($\sim 6.6 \mu\text{M hr}^{-1}$) (Figure S5A) shows oxidation rates
260 similar to ASW systems ($8.0 \pm 0.6 \mu\text{M hr}^{-1}$). Interestingly, in single cation experiment with Na⁺,
261 we observed the fastest oxidation rate ($\sim 11.3 \mu\text{M hr}^{-1}$) among all the tested experimental conditions.
262 This indicates the profound role of cations in the photocatalytic oxidation and formation of Mn
263 oxides on TiO₂ particles. The different phase of Mn oxides formed in the single cation experiments
264 (Figure 2) also supports the influence of cations on the Mn oxide structure, as discussed below.
265 Since this study focuses on the photocatalytic oxidation of Mn²⁺(aq) by TiO₂ nanoparticles and
266 consequent formation of TMO, detailed mechanistic understanding of the roles of cations and
267 anions in the oxidation rate is beyond the scope of this work. Further studies are warranted to

268 explain the photocatalytic reactions of TiO_2 under varied aqueous conditions.

269

270 **Formation of large tunnel structured Mn oxides**

271 The rapid photocatalytic oxidation of $\text{Mn}^{2+}(\text{aq})$ led to the formation of Mn oxides on the
272 surface of TiO_2 . Mn(III,IV) species were not detected by the LBB method in the filtrate of the
273 reaction suspension at all times (Figure S3). Considering that homogeneously nucleated Mn oxides
274 are 6–30 nm in diameter,⁷³ which can readily pass through 0.22 μm filters, the absence of Mn
275 oxides at all times in the filtrate likely indicates the heterogeneous nucleation of Mn oxides on the
276 surface of TiO_2 instead of homogeneous nucleation of Mn oxide nanoparticles in solution.

277 Interestingly, we also observed the formation of TMO with large tunnels under all reaction
278 conditions (Figure 2A and 2B). Considering that LMO (such as $\delta\text{-MnO}_2$ and birnessite) are the
279 typical phase of homogeneously nucleated Mn oxides through biotic/abiotic processes,^{36, 37, 74} the
280 formation of TMO in our system also strongly suggest the heterogeneous nucleation of Mn oxides
281 on TiO_2 through photocatalytic oxidation of $\text{Mn}^{2+}(\text{aq})$. SXRD analyses of the 8-h samples in
282 anatase-ASW and rutile-ASW suspensions (Figure 2A and 2B) indicate the formation of
283 todorokite (3×3 tunnel size) with diffraction peaks at 9.6 and 4.8 \AA d-spacing. Although the large
284 d-spacing can also occur from buserite, which has similar structure to birnessite but with a 10 \AA
285 interlayer spacing, the interlayer of buserite (10 \AA interlayer spacing) collapses to birnessite (~7 \AA
286 interlayer spacing) upon dehydration due to weakly bound interlayer H_2O in the interlayer
287 positions^{40, 75, 76}. Thus, the large d-spacing of our fully dehydrated samples (obtained under
288 vacuum freeze-drying for 1 day) indicates that the nucleated Mn oxide on TiO_2 in ASW is
289 todorokite. In anatase-DI and rutile-DI suspensions, SXRD showed only weak diffraction at ~4.9
290 \AA , which occurs from all large tunnel structured Mn oxides (3×3 , 3×2 , and 2×2 tunnel size)

291 (Figure 2A and 2B). To further identify the structure of the Mn oxides formed in DI experiments,
292 we conducted Mn K-edge EXAFS analysis and identified the formation of romanechite-like
293 structure (2×3 tunnel size) (Figure 2C). Specifically, the region between 7 and 10 \AA^{-1} in k space
294 is a well-known “indicator region” for Mn oxide structure.^{77, 78} In this region, Mn oxides formed
295 in DI experiments have two peaks at ~ 8.7 and 9.2 \AA^{-1} , consistent with the spectra of romanechite
296 and is distinctively different from the spectra of todorokite formed in ASW (Figure 2C) and
297 hollandite (2×2 tunnel size, Figure S6). These results indicate an important observation that
298 heterogeneous nucleation on natural mineral surfaces can facilitate the direct formation of TMO
299 with large tunnels. Specifically, todorokite is one of the most ubiquitous natural Mn oxides, yet its
300 formation in low temperature environments is poorly constrained due to the difficulties in
301 synthesizing this phase in laboratory settings through the transformation of LMO to TMO. Most
302 previous studies employed reaction conditions that do not represent circumneutral low temperature
303 environments, such as the transformation of Mg^{2+} -intercalated LMO using reflux or hydrothermal
304 reactions at temperatures above $100 \text{ }^{\circ}\text{C}$ ^{41, 42, 44}. Our findings suggest that photocatalytically
305 promoted direct heterogeneous nucleation of Mn oxides on natural minerals might be an alternative
306 pathway for the formation of todorokite. In our system, the underlying TiO_2 minerals serve as
307 templates to facilitate the heterogeneous nucleation of Mn oxides, which might have lowered the
308 structural strain and formation energy for TMO. In addition, this observation also suggest a new
309 phase selection pathway (i.e., formation of TMO via heterogeneous nucleation of Mn oxides) as
310 compared to previously observed common formation of LMO induced by homogeneous nucleation
311 of Mn oxides upon Mn(II) oxidation^{36, 37, 74}. Future microscopic studies are warranted to further
312 investigate the mechanism, structure, and morphology of the heterogeneously nucleated TMO,
313 such as the use of high resolution transmission electron microscopy (HRTEM) to analyze the

314 micromorphology, potential presence of poorly crystalline LMO, and relationships with the
315 mineral substrate.

316 Prior studies showed the importance of Mn(III) and large cations (e.g., Mg²⁺, Ca²⁺) on the
317 transformation of LMO to TMO with large tunnels.^{41, 42, 44, 71, 79-81} In our system, Mn oxides
318 produced from all tested conditions contain considerable amount of structural Mn(III) as probed
319 by XPS and XANES (Figures 3 and S7 and Table S2), which is necessary to form TMO. The
320 results show that Mn oxides formed in the presence of anatase have more Mn(III) in the structure
321 than those formed in the rutile system. Specifically, Mn oxides formed in the anatase-ASW
322 suspension show a higher content of Mn(III) than those formed in rutile-ASW suspension based
323 on the fitting of Mn 3p XPS spectra. This feature can be readily observed from the lower peak
324 position of Mn 3p spectra of anatase-ASW sample than that of rutile-ASW (Figure 3). It is worth
325 noting that obtaining accurate ratios of Mn(III/IV) using XPS and XANES is challenging, due to
326 errors resulting from data fitting and the intrinsic differences in these techniques (i.e., XANES
327 obtains bulk information whereas XPS detects near-surface structure).⁸² Nonetheless, linear
328 combination fitting (LCF) of Mn XANES spectra also shows that the nucleated Mn oxides in
329 anatase-ASW suspension have higher content of Mn(III) than those formed in rutile-ASW
330 suspension (Figure S7 and Table S2). Despite the difference in Mn(III) content, the Mn oxides
331 formed in both anatase and rutile suspensions have the same structure (i.e., todorokite in ASW and
332 romanechite in DI).

333 Interestingly, although the Mn oxides formed in rutile-DI and rutile-ASW suspensions
334 show similar Mn(III) contents, they have different structures. This suggests that the observed
335 different tunnel sizes between ASW (todorokite, 3 × 3) and DI (romanechite, 2 × 3) systems mainly
336 resulted from the presence of cations in ASW, not from the difference in Mn(III) content. Indeed,

337 results from the single cation experiments (DI water containing only Mg^{2+} , Ca^{2+} , or Na^+ at their
338 corresponding ASW concentrations) support the relative importance of different cations in ASW
339 in mediating the TMO formation. Among all anatase-single cation experiments (Mg^{2+} , Ca^{2+} , or
340 Na^+), the Mn oxides produced in Mg^{2+} experiment shows the most relevant structure to Mn oxide
341 formed in anatase-ASW suspension, as revealed by linear combination fitting of Mn K-edge
342 EXAFS spectra (Figure S5B and Table S3). This observation is consistent with prior studies
343 showing the necessity of Mg^{2+} intercalation into LMO to enable the hydrothermal transformation
344 of LMO to todorokite.^{41, 42, 44, 71, 79-81} Ca^{2+} also likely contributes to the formation of todorokite,
345 based on the similarity in EXAFS indicator region for Mn oxides produced in the Ca^{2+} single cation
346 experiment as compared to todorokite spectra. We can rule out the contribution of Na^+ to the
347 formation of todorokite in ASW based on the formation of romanechite-like structure (Figure S5B
348 and Table S3). Overall, results from the single cation experiments indicate that, regardless of the
349 mineral catalyst, large cations (e.g., Mg^{2+} and Ca^{2+}) in ASW are main factors responsible for the
350 structural difference during heterogeneous nucleation of Mn oxide on TiO_2 in ASW vs DI water.
351 Detailed mechanistic investigation on the effects of cations on the oxidation of $Mn^{2+}(aq)$ and the
352 structure of nucleated Mn oxides is beyond the scope of this study and warrants further work.

353

354 **Reaction mechanisms**

355 Our mechanistic study further reveals that photo-excitation of TiO_2 enables the rapid
356 oxidation of $Mn^{2+}(aq)$ by the generation of (1) holes at valence band (direct oxidation) as well as
357 (2) superoxide (indirect oxidation), as explained below.

358 For Mn^{2+} oxidation by the generated holes at valence band (direct oxidation): we conducted
359 parallel experiments using different optical cut-off filters in the anatase-ASW suspension (which

360 shows the fastest oxidation) to elucidate the mechanisms of photocatalytic oxidation of $Mn^{2+}(aq)$.
361 We found that the rapid oxidation occurs via the photo-excitation of electrons and holes from
362 anatase (Figure 4A). Specifically, in the presence of 400 nm cutoff optical filter (which cuts off
363 wavelengths at < 400 nm), the oxidation of $Mn^{2+}(aq)$ is significantly suppressed. This indicates
364 that the rapid oxidation of $Mn^{2+}(aq)$ occurs mainly from the photo-excitation in UVA region (320–
365 400 nm), which matches the band-gap of anatase (3.2 eV). With 550 nm cutoff optical filter (cutoff
366 < 550 nm), little oxidation of $Mn^{2+}(aq)$ occurred (Figure 4A) due to completely suppressed photo-
367 excitation.

368 For Mn^{2+} oxidation by superoxide (indirect oxidation): TiO_2 is capable of generating
369 superoxide because its conduction band located at lower reduction potential than that of oxygen
370 (O_2) / superoxide (O_2^-) (Figure 4C). Prior studies show that superoxide can readily oxidize $Mn^{2+}(aq)$
371 while hydroxyl radical and hydrogen peroxide cannot.^{36, 68} In our control experiment with
372 superoxide scavenger SOD, both the extent and rate of Mn^{2+} oxidation decreased slightly,
373 indicating the contribution of superoxide (produced from photocatalysis) in the indirect oxidation
374 of Mn^{2+} (Figure 4D). However, considering the small decrease in Mn^{2+} oxidation caused by SOD
375 as compared to those caused by the cut-off filters (Figure 4D), direct electron transfer from
376 $Mn^{2+}(aq)$ to photo-generated holes is still considered as the dominant oxidation mechanism. In
377 addition, the occurrence of superoxide and the observed direct electron transfer from $Mn^{2+}(aq)$ to
378 a hole in the valence band of TiO_2 indicate that oxygen is the electron acceptor which suppresses
379 the recombination between the photo-generated electrons and holes.

380

381 **4. ENVIRONMENTAL IMPLICATIONS**

382 To assess the relative importance of this photocatalytic oxidation process in nature, we

383 compare the oxidation rates obtained from this study to previously observed representative
384 oxidation rates. Using the experimentally obtained photocatalytic oxidation rate, spectra of 450 W
385 Xe-arc lamp and natural sunlight, and by calculating the quantum yields (Table S4 and Figure S1),
386 we extrapolated the laboratory oxidation rates (450 W Xe lamp) to natural sunlight condition. We
387 note that oxidation processes are controlled by many factors (e.g., pH, initial Mn^{2+} concentration,
388 dissolved oxygen concentration, temperature, solution chemistry, etc.). Nevertheless, the
389 comparison of oxidation rates in Figure 5 provides an initial visual comparison of the relative
390 importance of different oxidation pathways. As shown in the experimental and calculated results
391 with TiO_2 (Figure 5), the calculated oxidation rates under natural sunlight condition are
392 comparable to or faster than that of microbial oxidation processes. Natural semiconducting
393 minerals occur in a wide variety of natural systems. Besides TiO_2 and Fe oxides, other natural
394 semiconducting minerals such as ZnS , FeS , etc. may also serve to photocatalytically oxidize
395 $Mn^{2+}(aq)$ (or other species). However, different mineral catalysts might insert different
396 photocatalytic oxidation mechanisms.

397 Our findings highlight the importance of a previously overlooked pathway: the
398 photocatalytic oxidation of $Mn^{2+}(aq)$, which might significantly contribute to Mn redox balance in
399 nature. Meanwhile, the observed fast photocatalytic oxidation of $Mn^{2+}(aq)$ raises the potential
400 concern of semiconducting nanoparticles in influencing environmental redox systems. Through
401 anthropogenic activities, TiO_2 and other semiconducting nanoparticles are released to a wide
402 variety of environmental systems. Based on the observed rapid photocatalytic oxidation by TiO_2
403 in this study, accumulation of the photo-active nanoparticles in nature might influence the balance
404 of Mn redox. As an example of such anthropogenic impact, a recent study reported the occurrence
405 of elevated concentration of dissolved Mn from the reduction of natural Mn oxides by emerging

406 contaminants and fertilizers in US groundwater, impacting more than 2.6 million people
407 consuming the Mn contaminated groundwater.⁸³ In contrary, the increase of semiconducting
408 nanoparticles in environmental systems might promote the oxidation of Mn²⁺(aq) and formation
409 of Mn oxides, thus affecting the fate and transport of many other elements and contaminants. For
410 example, Mn oxides are known to oxidize the more mobile As(III) into the less mobile As(V)
411 species, whereas they can oxidize the less mobile Cr(III) species into more mobile and toxic Cr(VI)
412 species ^{3, 84-87}.

413 This study also demonstrates the direct formation of todorokite through heterogeneous
414 nucleation on the surface of natural minerals under circumneutral conditions in the presence of
415 large cations. To our knowledge, this is the first observation of direct formation of todorokite in
416 laboratory settings under environmentally relevant conditions (Table S5). The results suggest that
417 environmental conditions, such as solution chemistry, mineral surface, etc., may govern the
418 polymorphism of natural Mn oxides, and the latter in turn might potentially serve as a fingerprint
419 to trace environmental conditions at the time of Mn oxide formation.

420 **ASSOCIATED CONTENT**

421 **Supporting Information.**

422 Reference compounds used for XANES LCF (Table S1), results of XANES LCF (Table
423 S2), results of EXAFS LCF (Table S3), results on the calculation of quantum yields (Table S4),
424 experimental conditions of the representative biotic/abiotic oxidation of Mn²⁺(aq) to Mn(IV)
425 (Table S5), irradiance spectra of Xe-arc lamp and sunlight (Figure S1), linear initial oxidation rates
426 (Figure S2), results of dark and filtrate control test (Figure S3), surface area normalized
427 concentration of Mn(III) equivalent (Figure S4), effect of cations on the photocatalytic oxidation
428 rates (Figure S5), EXAFS spectra of the nucleated Mn oxides and references (Figure S6), and
429 XANES data (Figure S7).

430

431 **ACKNOWLEDGMENTS**

432 This work is supported by U.S. National Science Foundation under Grant No. 1710285
433 (Y.T.) and by the National Research Foundation of Korea (NRF) grant funded by the Korea
434 government (No. 2021R1F1A1063426) (H.J.). We thank beamline scientists at Beamlines 17-BM-
435 B and 12-BM-B at Advanced Photon Source (APS), 4-1 at Stanford Synchrotron Radiation
436 Lightsource (SSRL), and 6-BM at National Synchrotron Radiation Lightsource-II (NSLS-II). Use
437 of APS, SSRL, and NSLS-II are supported by the US Department of Energy, Office of Science,
438 Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357, DE-AC02-
439 76SF00515, and DE-SC0012704, respectively.

440 **References**

441 1. Sunda, W. G.; Kieber, D. J., Oxidation of humic substances by manganese oxides yields
442 low-molecular-weight organic substrates. *Nature* **1994**, 367, (6458), 62-64.

443 2. Stone, A. T.; Morgan, J. J., Reduction and dissolution of manganese (III) and manganese
444 (IV) oxides by organics: 2. Survey of the reactivity of organics. *Environ. Sci. Technol.* **1984**, 18,
445 (8), 617-624.

446 3. Fendorf, S. E.; Zasoski, R. J., Chromium(III) oxidation by d-manganese oxide (MnO_2). 1.
447 Characterization. *Environ. Sci. Technol.* **1992**, 26, (1), 79-85.

448 4. Murray, K. J.; Webb, S. M.; Bargar, J. R.; Tebo, B. M., Indirect oxidation of Co (II) in the
449 presence of the marine Mn (II)-oxidizing bacterium *Bacillus* sp. strain SG-1. *Appl. Environ.*
450 *Microbiol.* **2007**, 73, (21), 6905-6909.

451 5. Nealson, K. H.; Saffarini, D., Iron and manganese in anaerobic respiration: environmental
452 significance, physiology, and regulation. *Annu. Rev. Microbiol.* **1994**, 48, (1), 311-343.

453 6. Lefkowitz, J. P.; Rouff, A. A.; Elzinga, E. J., Influence of pH on the Reductive
454 Transformation of Birnessite by Aqueous Mn(II). *Environ. Sci. Technol.* **2013**, 47, (18), 10364-
455 10371.

456 7. Wang, Z.; Xiong, W.; Tebo, B. M.; Giammar, D. E., Oxidative UO_2 Dissolution Induced
457 by Soluble Mn (III). *Environ. Sci. Technol.* **2013**, 48, (1), 289-298.

458 8. Wang, Z.; Tebo, B. M.; Giammar, D. E., Effects of Mn (II) on UO_2 Dissolution under
459 Anoxic and Oxic Conditions. *Environ. Sci. Technol.* **2014**, 48, (10), 5546-5554.

460 9. Elzinga, E. J., ^{54}Mn Radiotracers Demonstrate Continuous Dissolution and
461 Reprecipitation of Vernadite ($\delta-MnO_2$) during Interaction with Aqueous Mn(II). *Environ. Sci.*
462 *Technol.* **2016**, 50, (16), 8670-8677.

463 10. Borch, T.; Kretzschmar, R.; Kappler, A.; Cappellen, P. V.; Ginder-Vogel, M.; Voegelin,
464 A.; Campbell, K., Biogeochemical redox processes and their impact on contaminant dynamics.
465 *Environ. Sci. Technol.* **2009**, 44, (1), 15-23.

466 11. Villalobos, M.; Toner, B.; Bargar, J.; Sposito, G., Characterization of the manganese oxide
467 produced by *Pseudomonas putida* strain MnB1. *Geochim. Cosmochim. Acta* **2003**, 67, (14), 2649-
468 2662.

469 12. Zhao, S.; Wang, Q.; Sun, J.; Borkiewicz, O. J.; Huang, R.; Saad, E. M.; Fields, B.; Chen,
470 S.; Zhu, M.; Tang, Y., Effect of Zn coprecipitation on the structure of layered Mn oxides. *Chem.*
471 *Geol.* **2018**, 493, (20), 234-245.

472 13. Planavsky, N. J.; Asael, D.; Hofmann, A.; Reinhard, C. T.; Lalonde, S. V.; Knudsen, A.;
473 Wang, X.; Ossa Ossa, F.; Pecoits, E.; Smith, A. J. B.; Beukes, N. J.; Bekker, A.; Johnson, T. M.;
474 Konhauser, K. O.; Lyons, T. W.; Rouxel, O. J., Evidence for oxygenic photosynthesis half a billion
475 years before the Great Oxidation Event. *Nat. Geosci.* **2014**, 7, (4), 283-286.

476 14. Daye, M.; Klepac-Ceraj, V.; Pajusalu, M.; Rowland, S.; Farrell-Sherman, A.; Beukes, N.;
477 Tamura, N.; Fournier, G.; Bosak, T., Light-driven anaerobic microbial oxidation of manganese.
478 *Nature* **2019**, 576, (7786), 311-314.

479 15. Lingappa, U. F.; Monteverde, D. R.; Magyar, J. S.; Valentine, J. S.; Fischer, W. W., How
480 manganese empowered life with dioxygen (and vice versa). *Free Radical. Biol. Med.* **2019**, 140,
481 113-125.

482 16. Lanza, N. L.; Wiens, R. C.; Arvidson, R. E.; Clark, B. C.; Fischer, W. W.; Gellert, R.;
483 Grotzinger, J. P.; Hurowitz, J. A.; McLennan, S. M.; Morris, R. V.; Rice, M. S.; Bell III, J. F.;
484 Berger, J. A.; Blaney, D. L.; Bridges, N. T.; Calef III, F.; Campbell, J. L.; Clegg, S. M.; Cousin,

485 A.; Edgett, K. S.; Fabre, C.; Fisk, M. R.; Forni, O.; Frydenvang, J.; Hardy, K. R.; Hardgrove, C.;
486 Johnson, J. R.; Lasue, J.; Le Mouélic, S.; Malin, M. C.; Mangold, N.; Martìn-Torres, J.; Maurice,
487 S.; McBride, M. J.; Ming, D. W.; Newsom, H. E.; Ollila, A. M.; Sautter, V.; Schröder, S.;
488 Thompson, L. M.; Treiman, A. H.; VanBommel, S.; Vaniman, D. T.; Zorzano, M.-P., Oxidation
489 of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. *Geophys. Res. Lett.*
490 **2016**, *43*, (14), 7398-7407.

491 17. Wang, Y.; Benkaddour, S.; Marafatto, F. F.; Peña, J., Diffusion- and pH-Dependent
492 Reactivity of Layer-Type MnO₂: Reactions at Particle Edges versus Vacancy Sites. *Environ. Sci.*
493 *Technol.* **2018**, *52*, (6), 3476-3485.

494 18. Droz, B.; Dumas, N.; Duckworth, O. W.; Peña, J., A Comparison of the Sorption Reactivity
495 of Bacteriogenic and Mycogenic Mn Oxide Nanoparticles. *Environ. Sci. Technol.* **2015**, *49*, (7),
496 4200-4208.

497 19. Remucal, C. K.; Ginder-Vogel, M., A critical review of the reactivity of manganese oxides
498 with organic contaminants. *Environ. Sci.: Process. Impacts* **2014**, *16*, (6), 1247-1266.

499 20. Balgooyen, S.; Alaimo, P. J.; Remucal, C. K.; Ginder-Vogel, M., Structural transformation
500 of MnO₂ during the oxidation of bisphenol A. *Environ. Sci. Technol.* **2017**, *51*, (11), 6053-6062.

501 21. Balgooyen, S.; Campagnola, G.; Remucal, C. K.; Ginder-Vogel, M., Impact of bisphenol
502 A influent concentration and reaction time on MnO₂ transformation in a stirred flow reactor.
503 *Environ. Sci.: Process. Impacts* **2019**, *21*, (1), 19-27.

504 22. Kim, T.; Logan, B. E.; Gorski, C. A., A pH-Gradient Flow Cell for Converting Waste CO₂
505 into Electricity. *Environ. Sci. Technol. Lett.* **2017**, *4*, (2), 49-53.

506 23. Fortunato, J.; Peña, J.; Benkaddour, S.; Zhang, H.; Huang, J.; Zhu, M.; Logan, B. E.; Gorski,
507 C. A., Surveying Manganese Oxides as Electrode Materials for Harnessing Salinity Gradient
508 Energy. *Environ. Sci. Technol.* **2020**.

509 24. Charbonnet, J. A.; Duan, Y.; van Genuchten, C. M.; Sedlak, D. L., Chemical Regeneration
510 of Manganese Oxide-Coated Sand for Oxidation of Organic Stormwater Contaminants. *Environ.*
511 *Sci. Technol.* **2018**.

512 25. Grebel, J. E.; Charbonnet, J. A.; Sedlak, D. L., Oxidation of organic contaminants by
513 manganese oxide geomedia for passive urban stormwater treatment systems. *Water Res.* **2016**, *88*,
514 481-491.

515 26. Huang, J.; Zhong, S.; Dai, Y.; Liu, C.-C.; Zhang, H. J., Effect of MnO₂ phase structure on
516 the oxidative reactivity toward contaminant degradation. *Environ. Sci. Technol.* **2018**, *52*, 11309-
517 11318.

518 27. Zhao, S.; Li, C.; Liu, P.; Huang, R.; Saad, E.; Tang, Y., Zinc Presence during Mineral
519 Formation Affects the Sorptive Reactivity of Manganese Oxide. *Soil Syst.* **2018**, *2*, (2), 19.

520 28. van Genuchten, C. M.; Pena, J., Sorption selectivity of birnessite particle edges: a d-PDF
521 analysis of Cd(ii) and Pb(ii) sorption by [small delta]-MnO₂ and ferrihydrite. *Environ. Sci.:*
522 *Process. Impacts* **2016**, *18*, (8), 1030-1041.

523 29. Diem, D.; Stumm, W., Is dissolved Mn²⁺ being oxidized by O₂ in absence of Mn-bacteria
524 or surface catalysts? *Geochim. Cosmochim. Acta* **1984**, *48*, (7), 1571-1573.

525 30. Morgan, J. J., Kinetics of reaction between O₂ and Mn (II) species in aqueous solutions.
526 *Geochim. Cosmochim. Acta* **2005**, *69*, (1), 35-48.

527 31. Wehrli, B.; Friedl, G.; Manceau, A., Reaction rates and products of manganese oxidation
528 at the sediment-water interface. In *Aquatic Chemistry: Interfacial and Interspecies Processes*,
529 Huang, C. P.; Omelia, C. R.; Morgan, J. J., Eds. American Chemical Society: 1995; Vol. 244, pp
530 111-134.

531 32. Johnson, C.; Ulrich, M.; Sigg, L.; Imboden, D., A mathematical model of the manganese
532 cycle in a seasonally anoxic lake. *Limnol. Oceanogr.* **1991**, *36*, (7), 1415-1426.

533 33. Tebo, B. M.; Emerson, S., Effect of oxygen tension, Mn (II) concentration, and temperature
534 on the microbially catalyzed Mn (II) oxidation rate in a marine fjord. *Appl. Environ. Microbiol.*
535 **1985**, *50*, (5), 1268-1273.

536 34. Vojak, P. W.; Edwards, C.; Jones, M. V., Evidence for microbiological manganese
537 oxidation in the River Tamar estuary, South West England. *Estuar. Coast. Shelf Sci.* **1985**, *20*, (6),
538 661-671.

539 35. Nico, P. S.; Anastasio, C.; Zasoski, R. J., Rapid photo-oxidation of Mn (II) mediated by
540 humic substances. *Geochim. Cosmochim. Acta* **2002**, *66*, (23), 4047-4056.

541 36. Jung, H.; Chadha, T.; Kim, D.; Biswas, P.; Jun, Y.-S., Photochemically-assisted Fast
542 Abiotic Oxidation of Manganese and Formation of δ -MnO₂ Nanosheets in Nitrate Solution. *Chem.*
543 *Commun.* **2017**, *53*, 4445-4448.

544 37. Learman, D.; Wankel, S.; Webb, S.; Martinez, N.; Madden, A.; Hansel, C., Coupled biotic-
545 abiotic Mn (II) oxidation pathway mediates the formation and structural evolution of biogenic Mn
546 oxides. *Geochim. Cosmochim. Acta* **2011**, *75*, (20), 6048-6063.

547 38. Jung, H.; Chadha, T. S.; Min, Y.; Biswas, P.; Jun, Y.-S., Photochemically-assisted
548 Synthesis of Birnessite Nanosheets and Their Structural Alteration in the Presence of
549 Pyrophosphate. *ACS Sustain. Chem. Eng.* **2017**, *5*, (11), 10624-10632.

550 39. Zhang, T.; Liu, L.; Tan, W.; Suib, S. L.; Qiu, G.; Liu, F., Photochemical Formation and
551 Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure.
552 *Environ. Sci. Technol.* **2018**, *52*, (12), 6864-6871.

553 40. Post, J. E., Manganese oxide minerals: Crystal structures and economic and environmental
554 significance. *Proc. Natl. Acad. Sci.* **1999**, *96*, (7), 3447-3454.

555 41. Feng, X. H.; Zhu, M.; Ginder-Vogel, M.; Ni, C.; Parikh, S. J.; Sparks, D. L., Formation of
556 nano-crystalline todorokite from biogenic Mn oxides. *Geochim. Cosmochim. Acta* **2010**, *74*, (11),
557 3232-3245.

558 42. Atkins, A. L.; Shaw, S.; Peacock, C. L., Release of Ni from birnessite during
559 transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments.
560 *Geochim. Cosmochim. Acta* **2016**, *189*, 158-183.

561 43. Yang, P.; Lee, S.; Post, J. E.; Xu, H.; Wang, Q.; Xu, W.; Zhu, M., Trivalent manganese on
562 vacancies triggers rapid transformation of layered to tunneled manganese oxides (TMOs):
563 Implications for occurrence of TMOs in low-temperature environment. *Geochim. Cosmochim.
564 Acta* **2018**, *240*, 173-190.

565 44. Feng, X.; Zhao, H.; Liu, F.; Cui, H.; Tan, W.; Li, W., Transformation from
566 Phyllosilicates to Todorokite under Various Conditions: A Review of Implication for
567 Formation Pathway of Natural Todorokite. In *Advances in the Environmental Biogeochemistry of
568 Manganese Oxides*, American Chemical Society: 2015; Vol. 1197, pp 107-134.

569 45. Jung, H.; Taillefert, M.; Sun, J.; Wang, Q.; Borkiewicz, O. J.; Liu, P.; Yang, L.; Chen, S.;
570 Chen, H.; Tang, Y., Redox Cycling Driven Transformation of Layered Manganese Oxides to
571 Tunnel Structures. *J. Am. Chem. Soc.* **2020**, *142*, (5), 2506-2513.

572 46. Li, Y.; Ding, C.; Liu, Y.; Li, Y.; Lu, A.; Wang, C.; Ding, H., Visible Light Photocatalysis
573 of Natural Semiconducting Minerals. In *Advances in Photocatalytic Disinfection*, An, T.; Zhao,
574 H.; Wong, P. K., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2017; pp 17-39.

575 47. Lu, A.; Li, Y.; Ding, H.; Xu, X.; Li, Y.; Ren, G.; Liang, J.; Liu, Y.; Hong, H.; Chen, N.;
576 Chu, S.; Liu, F.; Li, Y.; Wang, H.; Ding, C.; Wang, C.; Lai, Y.; Liu, J.; Dick, J.; Liu, K.; Hochella,

577 M. F., Photoelectric conversion on Earth's surface via widespread Fe- and Mn-mineral coatings.
578 *Proc. Natl. Acad. Sci.* **2019**, *116*, (20), 9741-9746.

579 48. Xu, X.; Li, Y.; Li, Y.; Lu, A.; Qiao, R.; Liu, K.; Ding, H.; Wang, C., Characteristics of
580 desert varnish from nanometer to micrometer scale: A photo-oxidation model on its formation.
581 *Chem. Geol.* **2019**, *522*, 55-70.

582 49. Meinholt, G., Rutile and its applications in earth sciences. *Earth-Sci. Rev.* **2010**, *102*, (1-
583 2), 1-28.

584 50. Ranade, M. R.; Navrotksy, A.; Zhang, H. Z.; Banfield, J. F.; Elder, S. H.; Zaban, A.; Borse,
585 P. H.; Kulkarni, S. K.; Doran, G. S.; Whitfield, H. J., Energetics of nanocrystalline TiO₂. *Proc.*
586 *Natl. Acad. Sci.* **2002**, *99*, (suppl 2), 6476-6481.

587 51. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental
588 Applications of Semiconductor Photocatalysis. *Chem. Rev.* **1995**, *95*, (1), 69-96.

589 52. Loeb, S. K.; Alvarez, P. J. J.; Brame, J. A.; Cates, E. L.; Choi, W.; Crittenden, J.; Dionysiou,
590 D. D.; Li, Q.; Li-Puma, G.; Quan, X.; Sedlak, D. L.; David Waite, T.; Westerhoff, P.; Kim, J.-H.,
591 The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? *Environ. Sci.*
592 *Technol.* **2018**.

593 53. He, X.; Hwang, H.-M., Engineered TiO₂ Nanoparticles: Their Fate and Effects in Natural
594 Aquatic Environments. In 2014; pp 1-20.

595 54. Rodríguez-Romero, A.; Ruiz-Gutiérrez, G.; Viguri, J. R.; Tovar-Sánchez, A., Sunscreens
596 as a New Source of Metals and Nutrients to Coastal Waters. *Environ. Sci. Technol.* **2019**, *53*, (17),
597 10177-10187.

598 55. Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N., Titanium Dioxide
599 Nanoparticles in Food and Personal Care Products. *Environ. Sci. Technol.* **2012**, *46*, (4), 2242-
600 2250.

601 56. Westerhoff, P.; Song, G.; Hristovski, K.; Kiser, M. A., Occurrence and removal of titanium
602 at full scale wastewater treatment plants: implications for TiO₂ nanomaterials. *J. Environ. Monitor.*
603 **2011**, *13*, (5), 1195-1203.

604 57. Neal, C.; Jarvie, H.; Rowland, P.; Lawler, A.; Sleep, D.; Scholefield, P., Titanium in UK
605 rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal
606 sources and the significance of within-river retention. *Sci. Total Environ.* **2011**, *409*, (10), 1843-
607 1853.

608 58. Montserrat, F.; Renforth, P.; Hartmann, J.; Leermakers, M.; Knops, P.; Meysman, F. J. R.,
609 Olivine Dissolution in Seawater: Implications for CO₂ Sequestration through Enhanced
610 Weathering in Coastal Environments. *Environ. Sci. Technol.* **2017**, *51*, (7), 3960-3972.

611 59. Tebo, B. M.; Clement, B. G.; Dick, G. J., Biotransformations of manganese. *Manual of*
612 *Environmental Microbiology* **2007**, *3*, 1223-1238.

613 60. Davies, S. H.; Morgan, J. J., Manganese (II) oxidation kinetics on metal oxide surfaces. *J.*
614 *Colloid Interface Sci.* **1989**, *129*, (1), 63-77.

615 61. Junta, J. L.; Hochella Jr, M. F., Manganese (II) oxidation at mineral surfaces: A
616 microscopic and spectroscopic study. *Geochim. Cosmochim. Acta* **1994**, *58*, (22), 4985-4999.

617 62. Cerrato, J. M.; Hochella Jr, M. F.; Knocke, W. R.; Dietrich, A. M.; Cromer, T. F., Use of
618 XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from
619 drinking water treatment plants. *Environ. Sci. Technol.* **2010**, *44*, (15), 5881-5886.

620 63. Cerrato, J. M.; Knocke, W. R.; Hochella, M. F.; Dietrich, A. M.; Jones, A.; Cromer, T. F.,
621 Application of XPS and Solution Chemistry Analyses to Investigate Soluble Manganese Removal
622 by MnO_x(s)-Coated Media. *Environ. Sci. Technol.* **2011**, *45*, (23), 10068-10074.

623 64. Webb, S. M., SIXPack a Graphical User Interface for XAS Analysis Using IFEFFIT. *Phys. 624 Scr.* **2005**, *T115*, 1011-1014.

625 65. Ravel, B.; Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray 626 absorption spectroscopy using IFEFFIT. *J. Synchrotron Radiat.* **2005**, *12*, (4), 537-541.

627 66. Manceau, A.; Marcus, M. A.; Grangeon, S., Determination of Mn valence states in mixed- 628 valent manganates by XANES spectroscopy. *Am. Mineral.* **2012**, *97*, (5-6), 816-827.

629 67. Hansel, C. M.; Francis, C. A., Coupled photochemical and enzymatic Mn (II) oxidation 630 pathways of a planktonic Roseobacter-like bacterium. *Appl. Environ. Microbiol.* **2006**, *72*, (5), 631 3543-3549.

632 68. Learman, D.; Voelker, B.; Vazquez-Rodriguez, A.; Hansel, C., Formation of manganese 633 oxides by bacterially generated superoxide. *Nat. Geosci.* **2011**, *4*, (2), 95-98.

634 69. Francis, C. A.; Tebo, B. M., Enzymatic manganese (II) oxidation by a marine α - 635 proteobacterium. *Appl. Environ. Microbiol.* **2001**, *67*, (9), 4024-4029.

636 70. Yang, Y.; Chen, B.; Hower, J.; Schindler, M.; Winkler, C.; Brandt, J.; Di Giulio, R.; Ge, 637 J.; Liu, M.; Fu, Y.; Zhang, L.; Chen, Y.; Priya, S.; Hochella, M. F., Discovery and ramifications 638 of incidental Magnéli phase generation and release from industrial coal-burning. *Nat. Commun.* 639 **2017**, *8*, (1), 194.

640 71. Yuan, Y.; He, K.; Byles, B. W.; Liu, C.; Amine, K.; Lu, J.; Pomerantseva, E.; Shahbazian- 641 Yassar, R., Deciphering the Atomic Patterns Leading to MnO₂ Polymorphism. *Chem* **2019**, *5*, (7), 642 1793-1805.

643 72. Toyoda, K.; Tebo, B. M., Kinetics of Mn(II) oxidation by spores of the marine *Bacillus* sp. 644 SG-1. *Geochim. Cosmochim. Acta* **2016**, *189*, 58-69.

645 73. Soldatova, A. V.; Balakrishnan, G.; Oyerinde, O. F.; Romano, C. A.; Tebo, B. M.; Spiro, 646 T. G., Biogenic and Synthetic MnO₂ Nanoparticles: Size and Growth Probed with Absorption and 647 Raman Spectroscopies and Dynamic Light Scattering. *Environmental Science & Technology* **2019**, 648 *53*, (8), 4185-4197.

649 74. Spiro, T. G.; Bargar, J. R.; Sposito, G.; Tebo, B. M., Bacteriogenic manganese oxides. *Acc. 650 Chem. Res.* **2009**, *43*, (1), 2-9.

651 75. Lee, S.; Xu, H., XRD and TEM studies on nanophase manganese oxides in freshwater 652 ferromanganese nodules from Green Bay, Lake Michigan. *Clays and Clay Minerals* **2016**, *64*, (5), 653 523-536.

654 76. Webb, S.; Tebo, B.; Bargar, J., Structural characterization of biogenic Mn oxides produced 655 in seawater by the marine *Bacillus* sp. strain SG-1. *Am. Mineral.* **2005**, *90*, (8-9), 1342-1357.

656 77. Santelli, C. M.; Webb, S. M.; Dohnalkova, A. C.; Hansel, C. M., Diversity of Mn oxides 657 produced by Mn (II)-oxidizing fungi. *Geochim. Cosmochim. Acta* **2011**, *75*, (10), 2762-2776.

658 78. Webb, S.; Fuller, C.; Tebo, B.; Bargar, J., Determination of uranyl incorporation into 659 biogenic manganese oxides using X-ray absorption spectroscopy and scattering. *Environ. Sci. 660 Technol.* **2006**, *40*, (3), 771-777.

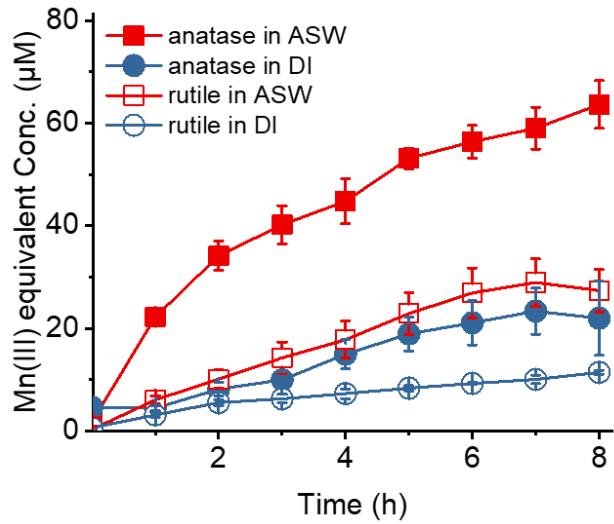
661 79. Feng, X. H.; Tan, W. F.; Liu, F.; Wang, J. B.; Ruan, H. D., Synthesis of todorokite at 662 atmospheric pressure. *Chem. Mater.* **2004**, *16*, (22), 4330-4336.

663 80. Atkins, A. L.; Shaw, S.; Peacock, C. L., Nucleation and growth of todorokite from 664 birnessite: Implications for trace-metal cycling in marine sediments. *Geochim. Cosmochim. Acta* 665 **2014**, *144*, 109-125.

666 81. Hu, X.; Kitchaev, D. A.; Wu, L.; Zhang, B.; Meng, Q.; Poyraz, A. S.; Marschilok, A. C.; 667 Takeuchi, E. S.; Takeuchi, K. J.; Ceder, G.; Zhu, Y., Revealing and Rationalizing the Rich 668 Polytypism of Todorokite MnO₂. *J. Am. Chem. Soc.* **2018**, *140*, (22), 6961-6968.

669 82. Ilton, E. S.; Post, J. E.; Heaney, P. J.; Ling, F. T.; Kerisit, S. N., XPS Determination of Mn
670 Oxidation States in Mn (Hydr) oxides. *Appl. Surf. Sci.* **2016**, *366*, 475-485.

671 83. McMahon, P. B.; Belitz, K.; Reddy, J. E.; Johnson, T. D., Elevated Manganese
672 Concentrations in United States Groundwater, Role of Land Surface–Soil–Aquifer Connections.
673 *Environ. Sci. Technol.* **2019**, *53*, (1), 29-38.

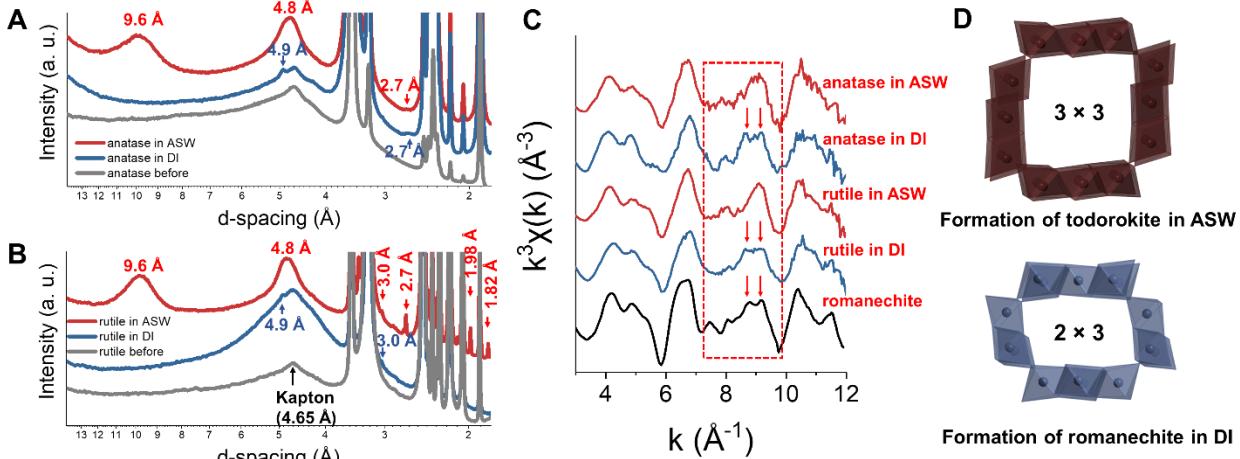

674 84. Manning, B. A.; Fendorf, S. E.; Bostick, B.; Suarez, D. L., Arsenic (III) oxidation and
675 arsenic (V) adsorption reactions on synthetic birnessite. *Environ. Sci. Technol.* **2002**, *36*, (5), 976-
676 981.

677 85. Villalobos, M.; Escobar-Quiroz, I. N.; Salazar-Camacho, C., The influence of particle size
678 and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and
679 oxidation of As(III). *Geochim. Cosmochim. Acta* **2014**, *125*, 564-581.

680 86. Tang, Y.; Webb, S. M.; Estes, E. R.; Hansel, C. M., Chromium(III) oxidation by biogenic
681 manganese oxides with varying structural ripening. *Environ. Sci.: Process. Impacts* **2014**, *16*, (9),
682 2127-2136.

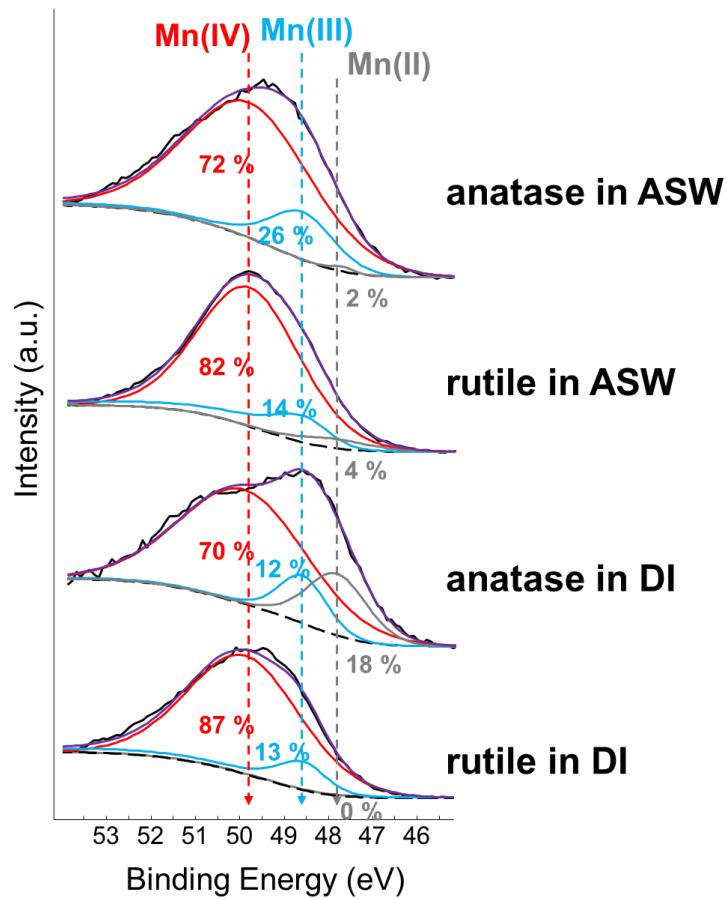
683 87. Landrot, G.; Ginder-Vogel, M.; Livi, K.; Fitts, J. P.; Sparks, D. L., Chromium (III)
684 oxidation by three poorly-crystalline manganese (IV) oxides. 1. Chromium (III)-oxidizing capacity.
685 *Environ. Sci. Technol.* **2012**, *46*, (21), 11594-11600.

686



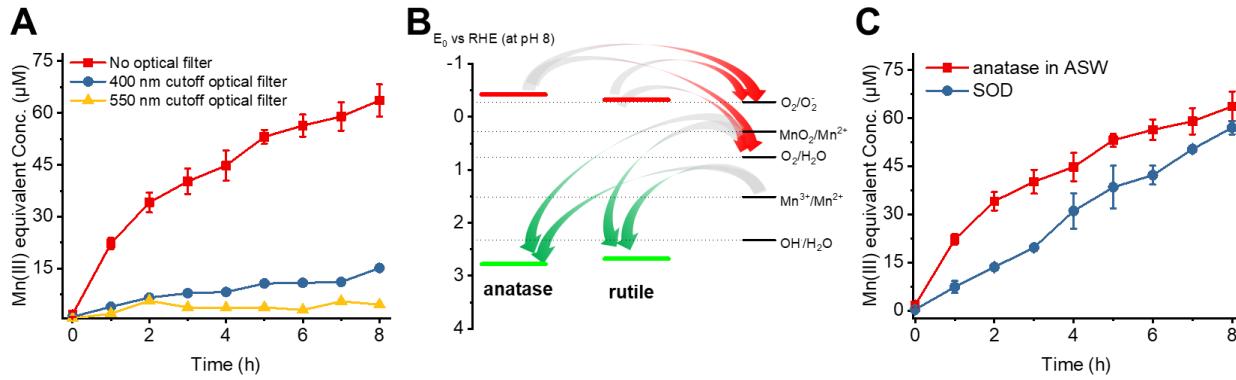
687

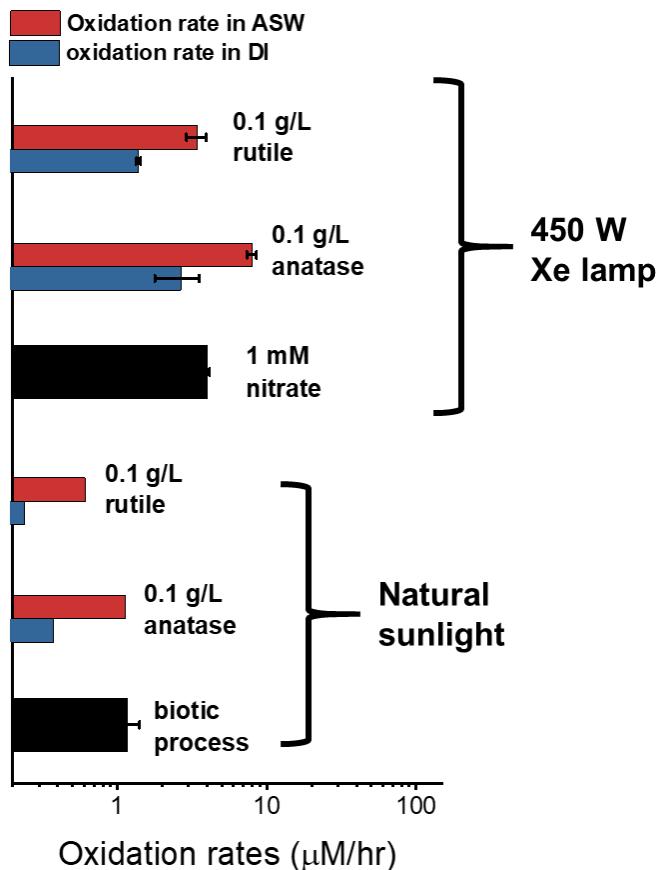
688


689 **Figure 1.** Rapid photocatalytic oxidation of $Mn^{2+}(aq)$ by anatase and rutile in artificial seawater

690 (ASW) and deionized (DI) water.

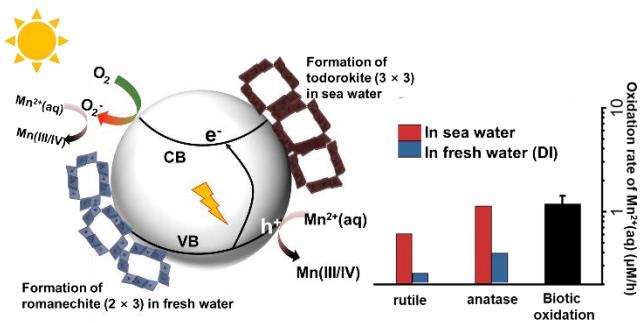
691


692 **Figure 2.** Formation of large tunnel structured Mn oxides on the surface of TiO₂. (A and B)
693 Synchrotron XRD analyses show that the nucleated Mn oxide on the surface of both anatase and
694 rutile in ASW is todorokite (3 × 3 tunnel structure). In DI system, weak diffraction occurred at 4.9
695 Å. Because several tunnel structured Mn oxides (romanechite (2 × 3), hollandite (2 × 2), and
696 todorokite (3 × 3)) have diffraction peak at this position, it is challenging to identify the phase of
697 Mn oxide using SXRD alone. (C) EXAFS analysis confirms that Mn oxides formed in DI system
698 are structurally similar to romanechite. (D) Schematic structures of todorokite (3 × 3 tunnel size)
699 and romanechite (2 × 3 tunnel size).


700

701

702 **Figure 3.** Mn 3p XPS spectra of Mn oxides formed on the surface of TiO_2 . Fitting results show
 703 that all the Mn oxides formed under varied conditions have Mn(III). Mn oxides formed in the
 704 presence of anatase have more Mn(III) than those formed in the rutile system.



705 **Figure 4.** Mechanistic understanding of the photocatalytic oxidation of Mn²⁺(aq) in the presence
 706 of TiO₂. (A) Control tests with 400 or 550 nm optical cut off filters suggest that the rapid
 707 photocatalytic oxidation of Mn²⁺(aq) with TiO₂ occurs from the photo-excited electron-hole pair
 708 mainly at wavelength < 400 nm. (B) The positions of valence and conduction bands show that the
 709 photocatalytic oxidation of Mn²⁺(aq) with TiO₂ is thermodynamically feasible via both direct
 710 electron transfer and indirect reaction of Mn²⁺(aq) with photocatalytically generated superoxide.
 711 (C) The decrease of oxidation rate in the presence of superoxide dismutase (SOD; a superoxide
 712 scavenger) indicates that both superoxide and photo-excited holes contribute to the rapid oxidation
 713 of Mn²⁺(aq) in the presence of TiO₂ and light. In addition, the occurrence of superoxide indicates
 714 that oxygen is the electron acceptor, which enables the rapid direct electron transfer from Mn²⁺(aq)
 715 to a hole in the valence band of TiO₂ by blocking the recombination of electron-hole pair.

717

718 **Figure 5.** Comparison of the photocatalytic oxidation rates of $Mn^{2+}(aq)$ in this study (using Xe
 719 lamp or calculated to natural sunlight condition) with previously reported oxidation rates in the
 720 presence of nitrate or via biotic processes.

721

722

TOC graphic