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Abstract

Two ocean models are considered for geophysical flow simulations: the multi-layer shallow water
equations and the multi-layer primitive equations. For the former, we investigate the parallel perfor-
mance of exponential time differencing (ETD) methods, including exponential Rosenbrock-Euler,
ETD2wave, and B-ETD2wave. For the latter, we take advantage of the splitting of barotropic and
baroclinic modes and propose a new two-level method in which an ETD method is applied to solve
the fast barotropic mode. These methods could improve the computational efficiency of numerical
simulations because ETD methods allow for much larger time step sizes than traditional explicit
time-stepping techniques that are commonly used in existing computational ocean models. Several
standard benchmark tests for ocean modeling are performed and comparison of the numerical re-
sults demonstrate a great potential of applying the parallel ETD methods for simulating real-world
geophysical flows.

Keywords: Shallow water equations, primitive equations, exponential time differencing, parallel
computing, barotropic/baroclinic splitting

1. Introduction

Without a doubt, the ocean is vitally important to everyone and significantly affects our daily
life. To understand and predict ocean circulation, many numerical models have been developed
based on fundamental laws of physics with a focus on the properties of geophysical flows. So far, the
primitive equations, built upon the Boussinesq approximation, are widely used to model global or
regional oceanic circulation, including the velocity, depth (or layer thickness), pressure, and tracers
such as temperature, salinity, or chemicals. Due to the large aspect ratio, the ocean model can
usually be simplified by regarding the ocean as a single-layer or a stack of immiscible layers for which
each one is characterized by a constant density. The layered model is more accurate in representing
vertical profiles and is often used to model the actual ocean. The reader is referred to [5] for
additional details. On the other hand, numerical simulations of the layered models become more
challenging as the oceanic dynamical systems are of very large scales. In addition, oceanic flows
are impacted by many other factors, including the coupling of external and internal gravity waves
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and planetary rotation which results in ocean dynamics involving multiple time scales. Therefore,
to achieve accurate and stable numerical schemes, one has to choose small time step schemes such
as in explicit Runge-Kutta methods, which have good parallel scalability and are commonly used
in existing numerical ocean models.

To better handle the multiple time scales, some techniques based on the splitting strategies
have been developed. For instance, in [10, 33], Günther and Sandu designed a generalized additive
Runge-Kutta (GARK) method which allows fast and slow modes to use different stages and time
step sizes. However, GARK needs extra effort devoted to the coupling conditions between different
modes. In [1], Bleck and Smith applied a splitting idea to predict the Atlantic ocean dynamics
under the isopycnal coordinate system. This approach separates the ocean motion into two modes:
the barotropic (fast) mode and baroclinic (slow) mode. The fast mode is obtained via vertical
averaging and the slow mode consists of the difference between the original velocity and the fast
mode. Based on Bleck and Smith’s work, in [11, 12, 13, 14], Higdon et al. developed a two-level
time-stepping method, one of the split-explicit time-stepping methods, to speed up the simulation
. In their approach, the baroclinic mode is first advanced with a large time step size and after that,
an iterative scheme is applied to determine the barotropic mode. However, the sub-stepping could
still be time consuming. Therefore, to further improve the computational efficiency, in this work
we introduce a new two-level method that replaces the sub-stepping for the barotropic mode with
an exponential time differencing (ETD) method.

Exponential-integrator based methods, as an alternative to explicit or implicit time stepping,
were introduced as early as the 1960s [3, 29] to solve autonomous systems of first-order ordinary dif-
ferential equations (ODEs). The systems are solved exactly via the variation of constants formulas
or integrating factors, after which the temporal integrals of the matrix exponentials are approxi-
mated. These methods did not gain much attention until the early 1990’s because of the difficulty
encountered in evaluating exponential functions of matrices. Thanks to the progress in computer
science and numerical linear algebra [7, 15, 16, 23, 32, 34], this method has received a renewed
interest in solving various large systems of stiff semilinear or nonlinear systems [4, 17, 40]. As
for its application to climate sciences, Clancy and Pudykiewicz investigated the potential of ETD
methods in atmospheric models. They concluded that these schemes are more efficient than the
semi-implicit methods by allowing far longer time-steps, but one needs to efficiently calculate the
products of matrix exponentials and vectors. In [8], Gaudreault and Pudykiewicz utilized Incom-
plete Orthogonalization Method (IOM) to evaluate the matrix exponential functions. Recently, the
ETD methods were applied to speed up the simulations of the rotating multi-layer shallow water
model in [28, 22]. Pieper et al.[28] reformulated the original equations into a Hamiltonian frame-
work, then developed the ETD-wave and the barotropic ETD methods. By comparing the average
simulated years per real day, they numerically showed the ETD methods are more efficient than
the classical explicit Runge-Kutta methods. Whereas only sequential algorithms are addressed in
those works, as we know, parallel computing is a powerful tool to accelerate scientific computing
and have, necessarily, been widely used in numerical climate models. Hence, in this paper, we
will further implement and investigate the performance of parallel ETD methods based on domain
decomposition. In addition, there has not been much work applying ETD methods to the primitive
equations, with the most related research being that of Calandrini et al.[2], in which the authors
propose an ETD method to speed up the tracer equations in the primitive equations system, and
use a second-order ETD method for solving the dynamics. As mentioned earlier, we will also at-
tempt to replace the sub-steppings for the barotropic mode in the two-level time-stepping method
with ETD.

In this paper we mainly focus on the parallel implementation of the ETD methods for simulating
two ocean models: the multi-layer shallow water equations and the multi-layer primitive equations.
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The computational settings and testbeds we used are taken from MPAS-Ocean [27], a numerical
ocean model developed at the Los Alamos National Laboratory for the simulation of the ocean
system across scales in time and space. The rest of paper is outlined as follows. We first present the
two types of ocean dynamics equations in Section 2. For spatial discretization, we apply the TRiSK
scheme that is briefly introduced in Section 3. Section 4 covers the illustration of different ETD
methods for solving these two models and their parallel implementation. Numerical experiments
are performed and discussed in Section 5. Finally, some conclusions are drawn in Section 6.

2. Ocean dynamics and related models

In this section we briefly review two widely-used ocean models: one is governed by the multi-
layer rotating shallow water equations (SWEs), the other is by the multi-layer primitive equations.
For the case of shallow water equations, we consider the equations reduced by depth integration
from the primitive equations and their variation in the framework of Hamiltonian systems developed
in [28]. For the primitive equations, we specifically consider the ones used in MPAS-Ocean ([27])
which are the incompressible Boussinesq equations in hydrostatic balance and include several tracer
equations.

2.1. Shallow water equations

For geophysical flow with a vertical dimension much smaller than the horizontal scale, the
shallow water equations can be used to describe the fluid motion. This is a typical situation when
fluid flows in the ocean, coastal regions, estuaries and rivers are concerned. The single-layer rotating
shallow water model defined on a surface Ω is governed by:

∂h

∂t
= −∇ · (hu) ,

∂u

∂t
= −∇ (K[u] + g(h+ b))− q[h,u]k̂ × (hu) + G (h, u) ,

(1)

where h = h(t,x) is the fluid thickness, u = u(t,x) is the velocity tangential to the surface Ω (i.e.,
u · k̂ = 0) and the velocity is subject to zero normal flow boundary condition (i.e., u · n̂ = 0 on
∂Ω). In addition, K[u] = |u|2/2 is the kinetic energy, k̂ × u is the perpendicular velocity which
is usually denoted by u⊥, and q[h,u] = (k̂ · ∇ × u + f)/h is the potential vorticity with f being
the Coriolis parameter. As discussed in [28], the SWEs can be reformulated in the Hamiltonian
framework by introducing the following Hamiltonian

H[h,u] =

∫
Ω

(
hK[u] +

g

2
(h+ b)2

)
dx. (2)

Let V = (h,u) belong to the solution space X = L2(Ω)× (L2(Ω))2, that is equipped with the inner
product, for any φ = (φh, φu), ψ = (ψh, ψu) ∈ X ,

(φ, ψ)X =

∫
Ω

(φhψh + φu · ψu) dx.

Then the functional derivative of H is given by

δH[V ] =
δH
δV

[V ] =

[
K[u] + g(h+ b)

hu

]
, (3)
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and its directional derivative is

H′[V ;W ] =

(
δH
δV

[V ],W

)
X

=

∫
Ω

((K[u] + g(h+ b))hw + hu · uw) dx (4)

for any W = (hw,uw). Define the skew-symmetric operator J as

J [h,u] :=

[
0 −∇·
−∇ −q[h,u]k̂×

]
. (5)

Then the SWEs (1) can be recast in the Hamiltonian framework as:

∂V

∂t
= J δH[V ] +

[
0

G[h,u]

]
. (6)

2.1.1. Multi-layer shallow water equations

Besides the ambient rotation, stratification effects play an essential role in geophysical fluid
dynamics. Layered models include the density differences that depict the stratified fluid as a finite
number of moving layers, stacked one upon another, with an in-layer constant density. Such models
can be derived by partitioning the vertical range into L segments and imposing distinct density
values in different layers that increase downward (i.e., ρi < ρi+1, i = 1, . . . , L− 1). The multi-layer
SWEs on Ω in correspondence to the classic SWEs (1) read: for k = 1, . . . , L,

∂hk
∂t

= −∇ · (hkuk) ,

∂uk
∂t

= −∇ (K[uk] + (g/ρk) pk[h])− q[hk,uk]k̂ × (hkuk) + Gk (h,u) ,

(7)

where hk and uk are the thickness and velocity of layer k, and K[uk] and q[hk,uk] are defined
similarly as those in the single-layer case.

Define V = (h,u) ∈ XL, the Cartesian production of X for L times, which consists of the
variables of all layers. For any φ = (φh, φu), ψ = (ψh, ψu) ∈ XL, the corresponding inner produce
is defined by

(φ, ψ)XL =
L∑
k=1

∫
Ω

(
φhkψ

h
k + φuk · ψu

k

)
dx.

Different from the single-layer case, the pressure term pk[h] combines all the layers above layer k,
defined as

pk[h] = ρkηk+1[h] +

k∑
l=1

ρlhl = ρkηk[h] +

k−1∑
l=1

ρlhl, (8)

where ηk is the layer coordinates defined by ηL+1 = b with b being the bathymetry, and for

k = 1, . . . , L, ηk[h] = b+
L∑
l=k

hl. Following the constructions in [28, 37], the multi-layer Hamiltonian

H is defined as

H[V ] =

k∑
l=1

ρk

∫
Ω

(hkK[uk] + ghk(ηk+1[h] + hk/2)) dx, (9)

and the skew-symmetric operator J [V ] is

J [V ] := diagk=1,...,L

1

ρk
J [hk,uk]. (10)
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2.1.2. Jacobian Matrix

For the special ETD-Euler method (i.e. the exponential Rosenbrock-Euler) to be discussed in
Section 4, one needs to evaluate the Jacobian matrix of the equation (7). Hence, we present the
Jacobian matrix Jk(h,u) here, that is,

Jk(h,u) =

[
−∇ · (•uk) −∇ · (hk•)

J2,1 J2,2

]
, (11)

where the two entries J2,1 and J2,2 are defined by

J2,1 = −∇
(
g/ρk

∂Pk
∂h

)
− ∂q[hk,uk]

∂h
k̂ × (hkuk)− q[hk,uk]k̂ × (•uk),

J2,2 = −∇uk −
∂q[hk,uk]

∂u
k̂ × (hkuk)− q[hk,uk]k̂ × (hk•),

and • is the placeholder to fill in the elements when the Jocobian matrix works on a vector. The
derivatives with respect to layer i’s thickness and normal velocity are respectively

∂Pk
∂hi

=

{
ρk, if i ≥ k,
ρi, if i < k,

∂q[hk,uk]

∂hi
= − k̂ · ∇ × uk + f

h2
k

δi,k,

∂q[hk,uk]

∂ui
=

k̂ · ∇ × •
hk

δi,k.

Notice that evaluations of −∇ · (•uk), −∇ · (hk•) and J2,2 only involve quantities from layer k
and, for calculating J2,1, only the term ∂Pk

∂h uses the thickness and densities from the other layers.
Therefore, we can further split the Jacobian matrix as the sum of two terms:

Jk(h,u) = JPk (h,u) + JRk (h,u), (12)

where

JPk (h,u) =

[
0 0

−∇
(
g/ρk

∂Pk
∂h

)
0

]
, JRk = Jk(h,u)− JPk (h,u).

Such splitting significantly simplifies the coding effort and improves the efficiency in the construction
of the Jacobian matrices in our parallel implementation.

2.2. Primitive equations

Different from the SWEs, the primitive equations describe the incompressible Boussinesq equa-
tions in hydrostatic balance [30, 27, 26]. The single-layer model consists of the following equations:

• Thickness equation:
∂h

∂t
+∇ · (hu) +

∂

∂z
(hw) = 0. (13)

• Momentum equation:

∂u

∂t
+

1

2
∇|u|2 + (k · ∇ × u)u⊥ + fu⊥ + w

∂u

∂z
= − 1

ρ0
∇p+ νh∇2u +

∂

∂z
(νv

∂u

∂z
). (14)
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• Tracer equations:

∂hϕ

∂t
+∇ · (hϕu) +

∂

∂z
(hϕw) = ∇ · (hκh∇ϕ) + h

∂

∂z
(κv

∂ϕ

∂z
). (15)

• Hydrostatic condition:

p = ps(x, y) +

∫ zs

z
ρg dz′. (16)

• Equation of state:
ρ = feos(Θ, S, p). (17)

The definitions of variables are listed in Table 1.

Variables Definition

h Layer thickness
u, w Horizontal and vertical velocity

p, ps(x, y) Pressure and the top pressure of layer k
Θ Potential temperature
S Salinity

ρ, ρ0 Density and referential density
g Gravity acceleration
ϕ Generic tracer (Θ or S)

z, zs Vertical coordinate and the z-location of the top boundary location
νh, νv Viscosity
κh, κv Tracer diffusion
f Coriolis parameter
feos Equation of state

Table 1: List of definitions of variables.

2.2.1. Multi-layer primitive equations

Taking the consideration of the stratification effects, let us partition the vertical range into L
segments and discretize the primitive equations in the vertical direction. First, we refer to the
methods from [2, 30] for the vertical discretization. Let φk be the vertical average of the generic
variable φ in layer k and adopt the following notations from [30, Appendix A.3]:

(φt:)
m

k = (φtk + φtk+1)/2,

(φm: )
t

k = (φmk−1 + φmk )/2,

δzmk (φt:) =
φtk − φtk+1

hk
,

δztk(φ
m
: ) =

φmk−1 − φmk
(h)

t

k

,

where the superscripts m and t denote the location as the middle and top of layer k in the vertical.
Then one can discretize the vertical derivatives as
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

∂

∂z
(hkwk) ≈ wtk − wtk+1,

wk
∂uk
∂z
≈ (wt: δz

t(u:))
m

k ,

∂

∂z
(hkϕkwk) ≈ (ϕm: )

t

kw
t
k − (ϕm: )

t

k+1w
t
k+1,

and 
∂

∂z
(νv

∂uk
∂z

) ≈ δzmk (νvδz
t(u:)),

∂

∂z
(κv

∂ϕk
∂z

) ≈ δzmk (κvδz
t(ϕ:)).

Now, we introduce the multi-layer primitive equations with the vertical discretization: for k =
1, . . . , L,

∂hk
∂t

+∇ · (hkuk) + wtk − wtk+1 = 0,

∂uk
∂t

+
1

2
∇|uk|2 + (k · ∇ × uk)u

⊥
k + fu⊥k + (wt: δz

t(u:))
m

k = − 1

ρ0
∇pk + νh∇2uk

+ δzmk (νvδz
t(u:)),

∂hkϕk
∂t

+∇ · (hkϕkuk) + (ϕm: )
t

kw
t
k − (ϕm: )

t

k+1w
t
k+1 = ∇ · (hkκh∇ϕk) + hkδz

m
k (κvδz

t(ϕ:)),

pk = psk(x, y) +
k−1∑
l=1

ρlghl +
1

2
ρkghk,

ρk = feos(Θk, Sk, pk).

(18)

(19)

(20)

(21)

(22)

The computation of wtk via (18) is highly dependent on the chosen vertical coordinate. For
example, wtk is set to zero in the idealized isopycnal vertical coordinate since there is no vertical
transport. For the z-level vertical coordinate, all layers have a fixed thickness except for the top
layer (k=1). Hence wtk is computed with ∂hk

∂t = 0 for k > 1. For the z-star vertical coordinate, the
layer thickness is proportional to the sea surface height (SSH). Therefore, wtk is non-zero for all the
layers when the ocean is not at rest. M. Petersen et al. [26] considered the arbitrary Lagrangian-
Eulerian (ALE) vertical coordinate to obtain wtk in a unified way, in which a new quantity, named
hALE
k , is introduced to represent the expected new layer thickness, i.e.,

wtk = wtk+1 −∇ · (hkuk)−
hALE
k − hk

∆t
.

We refer the readers to [26] for more details. In this paper, we will consider the z-star vertical
coordinate in our numerical experiments, which is the default setting in MPAS-Ocean.

As mentioned in the introduction, the primitive equations involve the barotropic mode for the
dynamics and require a small time-stepping size for stable simulations with explicit time stepping
schemes. To design an efficient numerical scheme, transformed dynamics equations are derived to
treat the barotropic (fast) mode and baroclinic (slow) modes separately. Define the barotropic
velocity u and baroclinic velocity u′k as

u =

L∑
k=1

hkuk

/ L∑
k=1

hk and u′k = uk − u, k = 1, . . . , L. (23)
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Let ζ =
∑L

k=1 hk + b − H be the sea surface height (SSH) with b being the bottom elevation
above a reference level and H the height of the reference surface, and let ∆z1 be the top layer’s
original thickness. To derive the equation for ζ, we consider the velocity (u, v, w) where u, v are
z-independent, then integrate the continuity equation over the entire fluid depth yields

0 =

∫ b+
∑L

k=1 hk

b

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz =

(
∂u

∂x
+
∂v

∂y

)∫ b+
∑L

k=1 hk

b
dz + w|b+

∑L
k=1 hk

b . (24)

The kinematic conditions [5, Chapter 7] of the geophysical flow give the following two boundary
conditions

w(z = b+
∑L

k=1 hk) =
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
, w(z = b) = u

∂b

∂x
+ v

∂b

∂y
.

Plugging the above two equations into (24) gives

∂ζ

∂t
= −

∂(u
∑L

k=1 hk)

∂x
−
∂(v

∑L
k=1 hk)

∂y
. (25)

For more details about ζ, the readers are referred to [5, Chapter 7]. By calculating the the layer-
thickness-weighted average of (19) and combining (25), the barotropic thickness and momentum
equations are then given by 

∂ζ

∂t
= −∇ ·

(
u

L∑
k=1

hk

)
,

∂u

∂t
= −fu⊥ − g∇ζ + G(uk,u

′
k),

(26)

(27)

where G(uk,u
′
k) includes all remaining terms in the barotropic equation. Subtracting (27) from

(19) yields the baroclinic momentum equation: for k = 1, . . . , L,

∂u′k
∂t

= −fu′k
⊥

+ Tu(uk, wk, pk) + δzmk (νvδz
t(u:)) + g∇ζ −G(uk,u

′
k), (28)

where

Tu(uk, wk, pk) = −1

2
∇|uk|2 − (k · ∇ × uk)u

⊥
k − (wt: δz

t(u:))
m

k −
1

ρ0
∇pk + νh∇2uk.

3. The TRiSK schemes for spatial discretizations

The multi-layer rotating SWE (7), the layer thickness equation (18), and the barotropic and
baroclinic equations (26-28) will be discretized by the mimetic TRiSK scheme [39, 31, 38] as done
in MPAS-Ocean to ensure the properties of the continuous system, such as energy and mass con-
servations on unstructured, locally orthogonal meshes. The TRiSK scheme utilizes the staggered
C-grid, which is comprised of spherical centroidal Voronoi tessellation (SCVT) as the primal grid
and its corresponding Delaunay triangulation as the dual grid, see Figure 1 for illustration. The
layer thickness hk, the vertical velocity w, the pressure p and the tracer ϕ are defined on the cell’s
center xi, the horizontal velocity uk is defined at xe, the intersection point between the primal and
dual edges. The vorticity is located at the center xv of the dual grid’s cell. We list all the notations
for the mesh information from [24, 31] in Tables 2-4, and the corresponding differential operators
in Table 5.

The discretization of the multi-layer SWE and primitive equations in TRiSK scheme are given
as follow:
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thickness field is defined on the Voronoi cells while all
vorticity-related fields, such as relative vorticity, abso-
lute vorticity, and potential vorticity, are defined on the
Delaunay triangles. The discrete thickness equation is
obtained by simply supplying a discrete approximation
to the divergence operator (see Fig. 3 in R10). As with
all C-grid methods, only the component of velocity in
the direction normal to the thickness finite-volume cell
is prognosed. To derive this normal-component velocity
equation, the inner product of ne (shown in Fig. 3) and
(10) is computed at each edge location. The resulting
discrete system of equations is then expressed as

›hi

›t
5 2[$ ! Fe]i and (11)

›ue

›t
1 F?e q̂e 5 2f$[g(hi1 bi) 1 Ki]ge, (12)

where Fe 5 heue represents the mass flux across the edge of
a Voronoi cell and F?e represents the mass flux across the
edge of each Delaunay cell. The discrete approximations
of the divergence and gradient operator are shown in R10
and Fig. 3. In (11) and (12), the yet-to-be-defined fields are
Ki, he, q̂e, and F?e . These fields are defined following R10

without exception. Also following R10, we use the antici-
pated potential vorticity method (Sadourny and Basdevant
1985) to dissipate the potential enstrophy.

The culmination of the derivations in T09 and R10 is
a numerical method that conserves the total energy to
within a time-truncation error, conserves the total po-
tential vorticity to within a machine round-off error, and
dissipates the potential enstrophy at a rate that depends
on a single parameter. This derivation was carried out
for a general Voronoi mesh; the results in section 5 are
intended to confirm this analysis.

5. Results

Through the use of three shallow-water test cases, we
confirm the derivations in T09 and R10 related to the
system energetics, geostrophic balance, and potential
vorticity dynamics. Shallow-water test case 5 (SWTC5)
and shallow-water test case 2 (SWTC2) from W92 are
used primarily to confirm the abilities of the numerical
methods to mimic conservation properties and maintain
geostrophic balance, respectively. A final test case, the
barotropic instability test case, is used to illustrate
the method’s ability to allow prototypical structures of
the atmosphere and ocean to enter and exit mesh tran-
sition zones (Galewsky et al. 2004, hereafter G04).

Along the way, we compute L2 error norms of the
thickness field hi in order to better understand how the
solution error varies with the amount of mesh variation.
The L2 norm is computed as

L2 5
fS[(hi 2 hr

i )2]g1/2

fS[(hr
i )

2]g1/2
. (13)

The field hr
i is the reference solution that has been cal-

culated at or interpolated to xi positions. The reference
solution represents either an analytic solution or, if an
analytic solution is not available, a high-resolution so-
lution. The function S[ f ] computes the area-weighted
average of f over the entire sphere.

Twenty-five simulations are conducted for each test
case, thus filling the [grid points 3 mesh variation] ma-
trix shown in Table 1. Every simulation in every test case
is conducted with the exact same executable with the
exact same parameter settings. The spatial discretization
discussed above is paired with a fourth-order Runge–
Kutta time-stepping method using a time step of dt 5
25 s. Each simulation employs the anticipated potential
vorticity method with the upwind-bias parameter u set
to dt/2 [see Sadourny and Basdevant (1985), Eq. (8)].
All simulations are conducted with 64-bit floating point
arithmetic.

FIG. 3. Shown is the variable staggering for the finite-volume
scheme. Mass, surface topography, and KE are defined at the
center of each Voronoi cell. The normal component of the velocity
field ue is defined at the midpoint of line segments connecting cell
centers. All vorticity-related fields, such as the relative, absolute,
and potential vorticities, are defined at the vertices of the Voronio
cells. The derived fields ĥe, q̂e and F?e , must be reconstructed at each
velocity point in order to evolve the velocity field forward in time.
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Figure 1: An illustration of spherical centroidal Voronoi tessellation and its dual Delaunay triangulation for ocean
modeling.

Notations Definition

xi Centers of primal mesh cells
xv Centers of dual mesh cells
xe The intersection point between the primal and dual edges
Pi Primal cells corresponding to xi
Dv Dual cells corresponding to xv

le Length of the primal edge e
de Length of the dual edge intersecting e
Ai Area of the primal cell Pi
Adv Area of the dual cell Dv

Aee Area associated with the primal edge e: Aee = 1/2lede

Table 2: List of the mesh elements and quantities.

Notations Definition

e ∈ EC(i) Set of edges of the primal cell Pi
i ∈ CE(e) Two primal cells either side of primal edge e
e ∈ EV (v) Set of primal edges sharing vertex v
i ∈ CV (v) Set of primal cells having v as their vertex
v ∈ V E(e) Two endpoints of primal edge e
e′ ∈ ECP (e) Set of primal edges nearby e

Table 3: List of the mesh connectivity.

• Multi-layer shallow water equations{
∂hk
∂t = −∇E→I · ({hk}E ∗ uk) ,
∂uk
∂t = Q[hk,uk]({hk}E ∗ uk)−∇I→E (K [{uk}I ] + (g/ρk)pk[{h}E ]) +Gk(h,u),

(29)

where ∗ denotes the point- or component-wise product. The term Q[hk,uk](·) is an operator
and varies accordingly with the time-stepping methods. Let

q[hk,uk] =
(

(k̂ · ∇×)E→V uk + f
)
/{hk}V ,
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Notations Definition

ne The unit vector at xe normal to e in the direction corresponding to positive ue
te The unit tangential vector at xe: te = k × ne
ne,i Normal indicator function

ne,i =

{
1 if ne is an outward normal of Pi,

−1 otherwise.

te,v Tangential indicator function

te,v =

{
1 if v is an outward normal of k × ne,

−1 otherwise.

i.e., counterclockwise circulation about vertex v contributes positively to the vorticity at v.

Table 4: List of the normal and tangential vectors.

Divergence : (∇·E→Iy)e = (1/Ai)
∑

e∈EC(i) ne,ileye
Gradient : (∇I→Ey)i = (1/de)

∑
i∈CE(e)−ne,iyi

Curl: ((k̂ · ∇×)E→V y)v = (1/Av)
∑

e∈EV (v) te,vdeye
Perpendicular Gradient: (∇⊥V→Ey)e = (1/le)

∑
v∈V E(e) te,vyv

Perpendicular Flux: (k̂×E→Ey)e = (1/de)
∑

e′∈ECP (e)we,e′ leye′

Cell to Vertex interpolation: {y}V,v = (1/Av)
∑

i∈CV (v)Ri,vAiyi
Vertex to Edge interpolation: {y}E,e =

∑
v∈V E(e) yv/2

Edge to Cell interpolation: {y}I,i = (1/Ai)
∑

e∈EC(i) yeAe/2

Cell to Edge interpolation: {y}E,e =
∑

i∈CE(e) yi/2

Table 5: Summary of the discrete operators given concretely in terms of geometrical quantities [31].

then we define

Q[hk,uk](y) = −{q[hk,uk]}E ∗
(
k̂×E→Ey

)
, in ETD-Euler,

1
2

(
{q[hk,uk]}E ∗

(
k̂×E→Ey

)
+ k̂×E→E {q[hk,uk]}E ∗ y

)
, in ETD-Wave.

The second form comes from the skew-symmetry of k̂×E→E .

• Multi-layer primitive equations

∂hk
∂t +∇E→I · ({hk}E ∗ uk) + wtk − wtk+1 = 0,

∂uk
∂t +∇I→EK [{uk}I ] +

({
(k̂ · ∇×)E→V uk

}
E

+ f
)
∗
(
k̂×E→Euk

)
+ (wt: δz

t(u:))
m

k

= − 1
ρ0
∇I→Epk +∇I→E(∇E→I · uk) +∇⊥V→E(k̂ · ∇×)E→V uk + δzmk (νvδz

t(u:)),

∂hkϕk
∂t +∇E→I · ({hkϕk}E ∗ uk) + (ϕm: )

t

kw
t
k − (ϕm: )

t

k+1w
t
k+1

= ∇E→I · (κh{hk}E ∗ ∇I→Eϕk) + hkδz
m
k (κvδz

t(ϕ:)),
(30)

where we applied ∇2u = ∇(∇ · u) + k ×∇(k · ∇ × u).
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4. Exponential time differencing methods and parallel implementations

In this section, we first briefly go over and discuss the classic ETD method [18] and the re-
cently derived ETD-wave and Barotropic ETD-wave methods in [28] for the multi-layer SWEs.
Then, we propose a new two-level ETD method to solve the multi-layer primitive equations in the
barotropic/baroclinic splitting fashion. Finally we discuss their parallel implementation through
domain decomposition.

4.1. Classic ETD schemes

Consider the following nonlinear parabolic equation on the time interval [tn, tn + τ ]:

∂tV = F [V ] = AnV +N [V ], (31)

where V is the unknown variable, F [V ] is the flux, An is a linear operator, and N [V ] is a nonlinear
term. By using the integrating factor e−t∆An , (31) can be advanced to a future time tn + ∆t
provided Vn, the value of V at tn:

V (tn + ∆t) = e∆tAnVn +

∫ tn+∆t

tn

e(tn+∆t−τ)AnN(V (τ)) dτ

= Vn + ∆tϕ1(∆tAn)AnVn + ∆t

∫ 1

0
e∆t(1−θ)AnN(V (tn + θ∆t)) dθ.

(32)

If we replace N(V (tn + θ∆t)) with a polynomial approximation in time

N(V (tn + θ∆t)) ≈
S∑
s=2

θs−1

(s− 1)!
bn,s, (33)

where bn,s approximates the derivatives ds−1N(V (tn+θ∆t))
dθs−1

∣∣
θ=0

, then V (tn+1) can be approximated
with S internal stages as

V (tn+1) ≈ Vn+1 = Vn + ∆t
(
ϕ1(∆tAn)F [Vn] +

S∑
s=2

ϕs(∆tAn)bn,s

)
,

where the ϕ−functions are defined by

ϕs(z) =

∫ 1

0
exp((1− σ)z)

σs−1

(s− 1)!
dσ =

∞∑
k=0

zk

(k + s)!
. (34)

We call the method with S = 1, ETD-Euler method, that is

Vn+1 = Vn + ∆tϕ1(∆tAn)F [Vn]. (35)

If An = ∂F [V ]
∂V

∣∣
t=tn

, then (35) is also specially called exponential Rosenbrock-Euler method, which is
of second order accuracy in time for autonomous systems. Let us focus on the space-discrete case,
i.e. (31) is a ODE system where V is a vector and An is a matrix. To compute ϕ1(∆tAn)F [Vn],
or more generally ϕs(An)b, we will use Krylov subspace methods [7, 32]. The essential idea is to
approximate the matrix An with a matrix HM of smaller size but preserves as much information
of An as possible. Usually, it can be done in two steps.

11



• Firstly, one constructs the orthonormal basis VM of the Krylov subspace

KM (An, b) = span{b, Anb, · · · , AM−1
n b} (36)

by the Arnoldi process. It also generates an unreduced upper Hessenberg matrix HM , satis-
fying the recurrence formula

AnVM = VMHM + hM+1,MvM+1e
T
M , VM = (v1, v2, · · · , vM ).

Hence,

ϕs(∆tAn)b ≈ VMϕs(V
T
M∆tAnVM )V T

Mb = ‖b‖0VMϕs(∆tHM )e1, (37)

where ‖b‖0 =
√
bT b. If the matrix An has some (skew-)symmetric properties, then the Arnoldi

process can be replaced by the (skew-)Lanczos process to reduce the Gram-Schmidt process
and obtain a tridiagonal matrix HM .

• Secondly, one instead computes ϕs(∆tHM )e1 and then ‖b‖0VMϕs(∆tHM )e1 as an approx-
imation of ϕs(An)b due to (37). For that, many methods such as Padé approximation or
scaling-doubling method can be applied [23, 15, 34]. In our numerical tests in Section 4.5,
we will use the function “dgpadm” from the software package Expokit [34] which uses the
scaling-doubling method.

4.2. ETD-wave method for multi-layer SWEs

The linearization of the Hamiltonian formalism (6) of the multi-layer SWEs around the reference
state V ref =

(
href,uref

)
is given by

∂tW = J ′[V ref;W ]δH[V ref] + J [V ref]δ2H[V ref]W, W (0) = W0, (38)

where V = V ref +W and W = (hw,uw) is the perturbation. Picking uref = 0, then (38) is reduced
to

∂tW = J [V ref]δ2H[V ref]W = AW, (39)

where J and δ2H have the following symmetry properties,

(W ,JV )XL = − (JW ,V )XL ,
(
W , δ2HV

)
XL =

(
δ2HW ,V

)
XL .

In order to apply the symmetry property on the discrete level, we first specify some spaces for the
discrete quantities. Let X = XI ×XE ∈ RNI × RNE , where NI and NE are the numbers of cells
and edges on each layer. We assume for each layer hk ∈ XI , uk ∈ XE , and the whole system
solution (h,u) ∈ XL = XL

I ×XL
E . Define the mass matrix MXL containing L copies of the cell

and edge areas on the diagonal, then

MHA = −ATMH , where MH = MXLδ2H.

Based on this property, we can introduce the skew-Lancos process to calculate ϕs(∆tAn)b at
each time step under the MXL−norm, which is defined as

(u, v)M
XL

= uTMXLv,

where u, v are two vectors. The method, ETDSwave, is to pick “S” internal stages, and use the
approximation (39) with the skew-Lancos process to find the lower dimensional matrix HM , then
calculate the matrix exponential function.
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4.3. Barotropic ETD-wave method for multi-layer SWEs

The barotropic ETD-wave method for solving multi-layer SWEs approximates the whole system
by using some fast modes. It introduces a reduced-layer space

XL̂ = XL̂
I ×XL̂

E , for 1 ≤ L̂ << L,

and define the mapping Ψ : XL̂ →XL with the structure

Ψ =

[
Ψh 0
0 Ψu

]
,

where Ψh and Ψu are defined by

[Ψhĥ]i =

L̂∑
j=1

Ψj,i
h ĥk,i, ∀ĥ ∈XL̂

I

[Ψuû]i =

L̂∑
j=1

Ψj,i
u ûk,i, ∀û ∈XL̂

E .

Here ĥk,i and ûk,i are the ith components of ĥk and ûk, respectively. Ψj,i
h and Ψj,i

u correspond to
the jth fastest vertical height mode [28, Section 2.3]. Then we define the reduced Hamiltonian as

Ĥref(V̂ ) = H(ΨV̂ ) =
1

2

(
ΨV̂ , δ2HΨV̂

)
XL

=
1

2

(
V̂ , δ2ĤV̂

)
XL

, (40)

where δ2Ĥ is the corresponding reduced Hamiltonian matrix and δ2Ĥ = ΨT δ2HΨ. As we can
see that the mapping Ψ is singular, we will define its inverse mapping through the Moore-Penrose
pseudoinverse

Ψ† : XL →XL̂, Ψ† =
(
δ2Ĥ

)−1
ΨT δ2H. (41)

The following proposition shows Ψ† optimally projects the full solution V onto the reduced layer

space XL̂ under the energy norm ‖ · ‖δ2H .

Proposition 1. [28, Proposition 5.1] The restriction matrix Ψ† gives the solution to the following
minimization problem: for any V ∈XL, we have Ψ†V = V̂ where

V̂ = argmin
V̂ ∈XL̂

∥∥V −ΨV̂
∥∥
δ2H

= argmin
V̂ ∈XL̂

1

2

(
V −ΨV̂ , δ2H(V −ΨV̂ )

)
XL

. (42)

We can define the orthogonal projection P : XL →XL as

P = ΨΨ†, such that PV = ΨV̂ .

Then, we define

Ap = PAP = ΨÂΨ†, where Â = Ψ†AΨ.

Based on the above framework of the reduced layer model, we can reformulate ϕs(A) with respect
to the reduced matrix Â.
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Proposition 2. [28, Proposition 5.3] Let Ap = PAP and Â = Ψ†AΨ. Then, it holds for any
s ≥ 0 that

ϕs(Ap) =
1

s!
(Id− P ) + Ψϕs(Â)Ψ†. (43)

Thereby, we can compute ϕs(∆tÂ)b̂s instead of ϕs(∆tAp)bs in the ETD method. Since the
barotropic modes usually evolve much faster than the remaining modes in realistic global ocean
simulations, we choose the fast barotropic modes to approximate the solutions and ignore the slow
modes. The obtained ETD method is referred to as B-ETDSwave methods in [28] with “S” denoting
the number of internal stages.

4.4. Two-level ETD method for multi-layer primitive equations

By following the framework of the two-level time-stepping method [13] currently used in MPAS-
Ocean, we next propose a new two-level ETD-based method for solving the multi-layer primitive
equations, in which the same time step size ∆t is able to be used in advancing both barotropic and
baroclinic modes. The following three stages will be repeated twice in a predictor-corrector way.

• Stage 1: Advance the baroclinic mode (3D) explicitly.

As suggested in [13], we first ignore the barotropic forcing term G, and apply the forward
Euler method to predict the baroclinic velocity as

ũ′k,n+1 = u′k,n + ∆t
(
−fu⊥k,n + Tu(uk,n, wk,n, pk,n) + g∇ζn

)
. (44)

Due to the layer thickness average free property of the baroclinic velocity, that is,

L∑
k=1

hku
′
k,t

/ L∑
k=1

hk = 0,

we can obtain

G =
1

∆t

L∑
k=1

hkũ
′
k,n+1

/ L∑
k=1

hk, (45)

and then correct the baroclinic velocity by

u′k,n+1 = ũ′k,n+1 −∆tG. (46)

• Stage 2: Compute the barotropic mode (2D) by ETD method.

At this stage, we are going to solve (26)-(27). The barotropic forcing term G in (27) is
obtained from Stage 1. These two equations can be put in the general form:

∂V

∂t
= −F (V ) + b, (47)

where V = (ζ,u)T , F (V ) =
(
∇ · (u

∑L
k=1 hk), fu

⊥ + g∇ζ
)T

, and b =
(
0,G

)T
. The associ-

ated Jacobian matrix is

Jn :=
∂F (V )

∂V

∣∣∣∣
t=tn

=

[
−∇ · (•un) −∇ ·

(
•
∑L

k=1 hn,k

)
−g∇• −fk × •

]
. (48)
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According to (32), given Vn, we can advance (47) as{
Vn+1 = Vn + ∆tϕ1(−∆tJn) (−F (Vn) + bn) ,

Vn+1/2 = 1/2(Vn + Vn+1),
(49)

where we choose the left endpoint rule for the integral. This method is referred to as “ETD-
SE1”. As mentioned in [21], it essentially subsamples the high-frequency barotropic motions
and consequently alias high-frequency energy onto lower frequencies if we only advance the
barotropic mode to tn+1. There is one solution suggested in [21] to average over the baroclinic
time step, and this is best done by integrating the barotropic equations forward over 2∆t,
then average with the solution at tn. So we will consider the following approximation to
calculate un+1 {

Vn+2 ≈ Vn + 2∆tϕ1(−2∆tJn) (−F (Vn) + bn) ,

Vn+1 = 1/2(Vn + Vn+2).
(50)

This method is referred to as “ETD-SE2”. Accordingly, we will refer the split-explicit methods
currently adopted in MPAS-Ocean as “SE1” or “SE2” for advancing the barotropic mode to
∆t or 2∆t.

• Stage 3: Update thickness, tracers, density and pressure by forward-Euler scheme.

Notice that the equations belong to the hyperbolic type of advection equations. As suggested
in [35], we better choose the transport velocity at the intermediate time level tn+1/2. While
the transport velocity is split into two parts, we approximate the baroclinic velocity at tn+1/2

by averaging the velocities at the two consecutive time steps. However, we will consider the
barotropic velocity at tn+1 due to the sub-sampling issue mentioned in Stage 2.

Remark 4.1. To increase its stability, we might also consider the sub-stepping process at Stage
2 in the way it is done in MPAS-Ocean, but it requires less steps because the ETD schemes allow
larger time-step sizes than the forward Euler scheme.

Remark 4.2. For the vertical diffusion terms in the momentum and tracer equations, we implicitly
solve them by the back-ward Euler scheme after the above predictor-corrector iteration. This is
referred to as the vertical mixing and fulfilled by MPAS-Ocean.

4.5. Domain decomposition and parallel implementations

The major computational cost for the above ETD methods lies on evaluations of matrix ex-
ponential and vector products. Even if the Krylov subspace methods are used, a large amount of
matrix-vector products are still required in both Arnoldi and Lanczos processes. Therefore, parallel
implementation of these ETD methods on large distributed systems mainly focuses on parallelizing
these products efficiently. Due to its cross-platform portability and high performance, our code is
developed with the message passing interface (MPI) [9].

For both layered SWE and primitive equation models, we first partition the target three-
dimensional domain into several vertical layers, and each layer shares the same horizontal domain
meshed by the SCVTs together with a dual Delaunay triangulation. To achieve high parallelization
efficiency, we further decompose the horizontal domain into Np subdomains, where Np is the num-
ber of the processors. Six horizontal partitions generated by “METIS” [20] are shown in Figures 2
and 3. To avoid the communication between processors due to the pressure, we assign all the ver-
tical layers relating to the same sub-domain to the same processor. More specifically, suppose the
Voronoi cell centers and vertices are labeled as {Ni,k | i = 1, . . . ,M, and k = 1, . . . , L}, where M is
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the number of centers and vertices on the horizontal mesh, L is the number of layers. The indices
1, . . . ,M will be separated into Np groups based on the domain decomposition, i.e., there are Np

index sets: Ĩ1, · · · , ĨNp , such that Ĩi ∩ Ĩj = ∅, for i 6= j. In order to share the information among
processors, we need to assign some interface cells from their neighbor subdomains. In our imple-
mentation, three outer layer cells will be used. This would lead to new index sets I1, · · · , INp , such

that Ĩi ⊂ Ii. Hence, the ith process is assigned with the indices {Ni,k | i ∈ Ii, and k = 1, . . . , L}.
We use the sophisticated parallel package Epetra [6] from Trilinos [41] to take care of the MPI data
structure and inter-process communication.

Figure 2: Domain decomposition examples for the SOMA test cases.

Figure 3: Sample domain decompositions for the global ocean test case.

5. Numerical experiments

In [28], the authors tested ETD2wave and B-ETD2wave methods on multi-layer shallow water
equations (7). Hence in this paper, we mainly focus on their parallel implementation. We choose the
test cases from MPAS-Ocean Version 7.0. Without special notification, our numerical experiments
are carried on a project-owned partition of the Cori at the National Energy Research Scientific
Computing Center (NERSC). Cori is a Cray XC40 with a peak performance of about 30 petaflops,
which is comprised of 2,388 Intel Xeon“Haswell” processor nodes and 9,688 Intel Xeon Phi “Knight’s
Landing” (KNL) nodes. Our codes run on ”Haswell” processor nodes, where each node has two
16-core Intel Xeon “Haswell” (E5-2698 v3, 2.3 GHz) processors and 128 GB DDR4 2133 MHz
memory.
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5.1. The SOMA test case for the shallow water equations with three layers

In this test, the spatial domain is a circular basin centered at the point xc (latitude θc = 35◦ and
longitude αc = 0◦) with radius 1250 km, lying on the surface of the sphere of radius R = 6371.22
km. The fluid depth in the basin varies from 2.5 km at the center to 100 m on the coastal shelf.
The initial interfaces of the three-layer locations are at η0

1 = 0 m, η0
2 = −250 m, and η0

3 = −700 m
and the layer densities are (ρ1, ρ2, ρ3) = (1025, 1027, 1028) kg/m3. Three SCVT meshes of different
resolutions on each layer are used:

i. 16 km resolution with 22,007 cells, 66,560 edges and 44,554 vertices;

ii. 8 km resolution with 88,056 cells, 265,245 edges and 177,190 vertices;

iii. 4 km resolution with 352,256 cells, 1,058,922 edges and 706,667 vertices.

The maximum dimension of Krylov subspaces used in ETD methods is set to be 25. We run 15-day
simulations with the time step-size ∆t = 107 s by the three parallel ETD methods: Rosenbrock-
Euler, ETD2wave, and B-ETD2wave. In addition, we carry out the same simulation using the
fourth-order Runge-Kutta (RK4) method with the small time step-size ∆t = 10.7 s and take its
results as the benchmark solution for computing errors. The simulated layer thickness h1 and
velocity u1 of the first layer by parallel implementations of the ETD methods are shown in Figure
4. The corresponding differences between these solutions and the RK4 solution are shown in
Figure 5, together with the quantitative results of relative l∞ and average l2 errors reported in
Table 6. As the second order method, ETD2wave has the best performance among these three
methods, which is with the smallest errors comparing to RK4. Since B-ETD2wave method is a
model reduction method, it considers the reduced model and bears some extra reduction error.
Exponential Rosenbrock-Euler has larger errors than ETD2wave method, but smaller errors than
B-ETD2wave.

Figure 4: Simulated layer thickness (top row) and velocity (bottom row) ) of the first layer on Day 15 by ETD
methods for the SOMA test case. Latitude and Longitude are in degrees.
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Figure 5: The differences in simulated layer thickness (top row) and velocity (bottom row) of the first layer on Day
15 between the ETD solutions and the RK4 solution for the SOMA test case. Latitude and Longitude are in degrees.

Rosenbrock-Euler ETD2wave B-ETD2wave

Rel. l∞
h1 1.3128e-06 1.0066e-08 3.2326e-06
u1 4.5907e-05 2.7242e-07 9.4878e-05

Avg. l2
h1 4.5363e-05 1.3442e-07 1.1972e-04
u1 6.3922e-07 3.1764e-09 1.6630e-06

Table 6: The relative l∞ and average l2 errors of simulated layer thickness and velocity of the first layer on Day 15
by the parallel ETD methods.

To measure the parallel efficiency, we define Ep = r·Tr
p·Tp , where p is the number of used cores

and Tp is the associated CPU time, r is the minimum number of cores considered in the test case
and the corresponding CPU time Tr is regarded as the reference. The simulation performances are
reported in Tables 7-9.

Cores
Rosenbrock-Euler ETD2wave B-ETD2wave

Time (s) Efficiency Time (s) Efficiency Time (s) Efficiency
8 194.64 - 76.64 - 27.99 -

16 100.14 92% 43.11 89% 17.87 78%
32 84.82 58% 27.2 70% 12.56 56%
64 35.71 68% 16.10 60% 8.17 43%

128 18.57 66% 10.57 45% 6.61 26%

Table 7: CPU times and parallel efficiency for the SOMA test case: 16 km resolution mesh.

It is seen that the parallel efficiency of the three methods increases as the resolution increases.
A higher resolution mesh contains more degrees of freedom (vertices, edges, and cells), which
results in more computing tasks to each core and leads to the improvement on parallel efficiency.
Because of some model reduction, B-ETD2wave achieves a better overall performance than the other
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Cores
Rosenbrock-Euler ETD2wave B-ETD2wave

Time (s) Efficiency Time (s) Efficiency Time (s) Efficiency
8 855.73 - 470.61 - 140.25 -

16 482.32 89% 281.73 84% 78.26 90%
32 343.71 62% 216.39 54% 51.67 68%
64 173.84 62% 93.15 63% 26.47 66%

128 92.20 58% 33.67 87% 14.51 60%
256 51.95 51% 19.39 76% 11.76 37%

Table 8: CPU times and parallel efficiency for the SOMA test case: 8 km resolution mesh.

Cores
Rosenbrock-Euler ETD2wave B-ETD2wave

Time (s) Efficiency Time (s) Efficiency Time (s) Efficiency
16 2316.33 - 1414.57 - 528.82 -
32 1657.91 70% 1069.01 66% 364.62 73%
64 737.64 79% 478.49 74% 157.13 84%

128 369.09 78% 221.02 80% 53.99 122%
256 188.15 77% 101.67 87% 29.01 114%

Table 9: CPU times and parallel efficiency for the SOMA test case: 4 km resolution mesh.

two. For instance, when the smaller number of cores are used, the B-ETD2wave scheme is about
five times faster than the exponential Rosenbrock-Euler and three times faster than ETD2wave.
Since the exponential Rosenbrock-Euler requires more local computing on the Arnoldi process, its
parallel efficiency is better than that of the other two methods for the 16 and 8 km resolution
cases. On the 4 km resolution mesh, its parallel performance becomes worse than the other two
methods. A potential reason is that we take the computing time of 16 processes as the reference.
Exponential Rosenbrock-Euler has a better balance between the inter-process communication and
local computing with 16 processes on Cori. Eventually, the inter-process communication wins over
local computing, which can be seen from the overall decreasing efficiency. Whereas for the other
two methods, 16 processes are not their optimal task decomposition and thus, their performance
keeps increasing and even gives super-linear speedups.

5.2. The baroclinic eddies test case for the primitive equations with twenty layers

Next we consider a test case of the primitive equations with twenty layers from MPAS-Ocean
[25, 26, 30] imported from [19]. The domain consists of a horizontally periodic channel of latitudinal
extent 440 km and longitudinal extent 160 km, with a flat bottom of 1 km vertical depth. The
channel is on a f-plane [5, 26] with the Coriolis parameter f = 1.2×10−4 s−1. The initial temperature
decreases downward in the meridional direction. A cosine shape temperature perturbation with
a wavelength of 120 km in the zonal direction is used to investigate the baroclinic instability and
diagnose spurious mixing via the resting potential energy (RPE) [19]. It is defined by

RPE = g

∫
zρ∗(z) dV,

where z is the z-location, and ρ∗(z) is the sorted density which is constant horizontally and mono-
tonically increasing along the depth. The way to compute RPE is given by

RPE = g
∑
j

z∗(j)ρ∗(j)V ∗(j).

19



To reduce the effect of irrelevances to the mixing, it is commonly to consider the normalized RPE,
i.e.,

RPE(t)− RPE(0)

RPE(0)
.

Thus, we will measure the normalized RPE for each case. For more details on RPE, we refer to
[26, Section 2.3].

5.2.1. Accuracy test

In this subsection, we first test the accuracy of the proposed methods and carry out 15 days
simulation on a 10-km-resolution SCVT mesh containing 3,920 cells, 11,840 edges, and 7,920 ver-
tices. The horizontal viscosity is set as νh = 10 m2s−1, and choose all other parameters as the
default value in MPAS-Ocean. Considering that it is a relatively small scale problem, we run all
numerical experiments in this test with 6 cores. The maximum dimension of Krylov subspaces used
in ETD methods is set to be 25. The numerical results for the surface temperature produced by
ETD-SE2, SE2, and RK4 schemes are shown in Figures 6, 7, and 8 respectively, and all of them
perform very similarly. In addition, we test ETD-SE1 for comparison and present its results in
Figure 9. It is observed that the temperature obtain by ETD-SE1 is less diffusive than that of
ETD-SE2 and RK4. The inaccuracy is mainly caused by the sub-sampling influence discussed in
Section 4.4.

Figure 6: Simulated surface temperatures by ETD-SE2 with ∆t = 60 s for the baroclinic eddies test case. From left
to right are the results for day 1, 5, 10 and 15.

To test the accuracy of these methods, we choose the classical RK4 with ∆t = 1 s as the
benchmark solution and compare the errors of the surface temperature at 1 hour. The relative
l∞ errors of simulated surface temperature by ETD-SE2 and SE2 are listed in Table 10. Since
we develop our code in MPAS-Ocean by replacing its barotropic sub-stepping part with the ETD
method, we compare the time cost of computing the barotropic velocity (Stage 2 in Section 4.4) with
four cores. The results are listed in Table 10, in which ∆t is the time step size for both baroclinic
and barotropic modes in ETD-SE2, ∆t and ∆btrt are the ones for the baroclinic and barotropic
modes, respectively, in SE2. From Table 10, we observe that both ETD-SE2 and SE2 only achieves
the first-order accuracy in time. It is probably because one advances the barotropic mode over
2∆t to avoid sub-sampling its high frequency in the current MPAS-Ocean numerical model. Since
MPAS is based on the MPDATA method, it suggests using the velocity at the middle time level,
tn+1/2, to solve the transport equation. But we input the barotropic velocity at tn+1 instead of
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Figure 7: Simulated surface temperatures by SE2 in MPAS with ∆t = 60 s and ∆tbtr = 4s for the baroclinic eddies
test case. From left to right are the results for day 1, 5, 10 and 15.

Figure 8: Simulated surface temperatures by RK4 in MPAS with ∆t = 15 s for the baroclinic eddies test case. From
left to right are the results for day 1, 5, 10 and 15.

Figure 9: Simulated surface temperatures by ETD-SE1 with ∆t = 60 s for the baroclinic eddies test case. From left
to right are the results for day 1, 5, 10 and 15.
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tn+1/2, so it might degrade the accuracy. On the other hand, we can see that our ETD-SE2 spends
less time than SE2 (about a half of the time cost of SE2) thus is more efficient in this case. This
gain comes from the single step at solving the barotropic velocity, while the original sub-stepping
method in SE2 needs multiple small time steps.

∆t(∆btrt)
ETD-SE2 SE2

Error Rate Time (s) Error Rate Time (s)
60s(8s) 6.1029e-05 - 0.37 6.1164e-05 - 0.69
30s(4s) 3.0709e-05 0.99 0.75 3.0776e-05 0.99 1.37
15s(2s) 1.4884e-05 1.04 1.46 1.4927e-05 1.04 2.75
8s(1s) 7.4326e-06 1.00 2.86 7.4590e-06 1.00 5.40

Table 10: The relative l∞ errors and convergence rates of simulated surface temperature and the corresponding CPU
times by ETD-SE2 and SE2 with 6 cores for the baroclinic eddies test case.

5.2.2. Long-term simulation and the resting potential energy

In this subsection, we perform a 200-day simulation with 4 km resolution mesh containing
5,040 cells, 15,200 edges, and 10,160 vertices. We use the default setting of the parameter values
in MPAS-Ocean, and vary the horizontal viscosity from 1 to 200 m2s−1. The simulated surface
temperatures under five different horizontal viscosities, νh = 200, 20, 10, 5 and 1, produced by
ETD-SE2 with ∆t = 25 s, are shown in Figure 10. In addition, we plot and compare in Figure 11
the corresponding evolutions of the normalized resting potential energy (RPE) of the fluids under
these horizontal viscosities. Since the kinetic energy gets lower at higher viscosity, the eddies get
larger and the mixing slower along the increasing of the viscosity. Consequently, the higher the
viscosity is, the slower the RPE increases along the time. All these phenomena are clearly observed
in the simulations.

5.3. The global ocean test case for the primitive equations with sixty layers

In this part, let us consider a test with global real-world configuration. The mesh provided by
MPAS-Ocean, EC60to30, varies from 30 km resolution at the equator and poles to 60 km resolution
at the mid-latitudes and uses 60 vertical layers. The grid contains 235,160 cells, 714,274 edges,
and 478,835 vertices on each layer. The Coriolis parameter f = 2ω sin(Φ), where ω is the angular
velocity of Earth’s rotation, Φ is the latitude [5]. The initial conditions for temperature and salinity
are interpolated from the Polar Science Center Hydrographic Climatology, version 3 [36] that are
presented in Figure 12. We run the 15 days simulation using ETD-SE2 with ∆t = 60 s and show the
resulting surface temperature and salinity in Figure 13. The increments of the two states generated
by ETD-SE2 and RK4 with ∆t = 60 s are shown and compared in Figures 14, and the results show
that they perform very similarly.

In addition, we test the parallel efficiency of ETD-SE2 and SE2 by running 1 hour simulation
and evaluating Ep as done in Section 5.1. To obtain the comparable accuracy, we again set the
maximum dimension of Krylov subspace to be 25 in ETD-SE2 and take the time step ∆t = 60 s. In
SE2, we take the same ∆t = 60 s for the baroclinic mode and ∆tbtr = 1 s for the baratropic mode.
Comparing with the benchmark solution of RK4 with ∆t = 5 s, the l∞ error of simulated surface
temperature by ETD-SE2 and SE2 are 7.5515e-05 and 7.5773e-05, respectively. Their computation
times with different number of cores up to 256 are reported in Table 11, from which we observe
that ETD-SE2 costs less computational times than SE2 in these cases (i.e., when the number of
used cores is not very large), but it has relatively lower parallel efficiency. That is partially due
to the fact that ETD-SE2 needs more inter-process communication due to the Arnoldi process,
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(a) Day 50 with different horizontal viscosities νh = 200, 20, 10, 5, and 1.

(b) Day 100 with different horizontal viscosities νh = 200, 20, 10, 5, and 1.

(c) Day 200 with different horizontal viscosities νh = 200, 20, 10, 5, and 1.

Figure 10: Simulated surface temperatures by ETD-SE2 with ∆t = 25 s for the baroclinic eddies test case under five
different horizontal viscosities νh = 200, 20, 10, 5, and 1 (from left to right). From top to bottom are the results on
days 50, 100, and 200, respectively.

its orthogonalization requires several matrix-vector multiplications and evaluate the norm of the
resulting vectors. Therefore, its efficiency decreases as the number of cores increases. SE2 only
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Figure 11: Evolutions of the normalized resting potential energy under different horizontal viscosities νh = 200, 20,
10, 5, and 1, respectively.

needs the inter-process communication to update the values on the halo cells at the end of each
sub-time-stepping, which gives super-linear speedups again.

Figure 12: Initial values of the salinity and temperature for the global ocean test case.

Cores
ETD-SE2 SE2

Time (s) Efficiency Time (s) Efficiency
16 44.44 - 225.61 -
32 27.72 80.2% 126.01 89.5%
64 16.68 66.6% 65.61 86.0%
128 11.33 49.0% 27.90 100.9%
256 6.85 40.6% 11.59 121.4%

Table 11: CPU times and parallel efficiency of ETD-SE2 and SE2 for the global ocean test case.
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Figure 13: Simulated surface salinity and temperature on Day 15 by ETD-SE2 with ∆t = 60 s for the global ocean
test case.

Figure 14: Simulated increments of the surface salinity and temperature on Day 15 by ETD-SE2 (top panel) and
RK4 (bottom panel) with ∆t = 60 s.

6. Conclusions

In this paper, we have fulfilled and test the parallel implementation of several exponential
time differencing methods for simulating the ocean dynamics, governed by either the multi-layer
SWEs or the multi-layer primitive equations. Since B-ETD2wave is developed on a reduced layered
model, it costs less computations than exponential Rosenbrock-Euler and ETD2Wave in solving
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multi-layer SWEs. We also designed a new ETD-SE2 method for solving the multilayer primitive
equations. After splitting the oceanic motion into the baroclinic and barotropic components, we use
the forward Euler scheme for the baroclinic mode and the exponential Rosenbrock-Euler scheme
for the barotropic mode in the current MPAS-Ocean framework. Several standard numerical tests
are performed and the comparison results demonstrate a great potential of applying the parallel
ETD methods in simulating real-world geophysical flows.

Since the tracers’ equations, like temperature and salinity, are the advection equations, MPAS-
Ocean adopts the method proposed in [13], which is to utilize the MPDATA method and transport
the tracers by the advective velocity at the intermediate time tn+1/2. Smolarkiewicz and Margolin
[35] designed the MPDATA method based on a general advection equation without considering the
sub-sampling issue mentioned in [21]. As a future work, we will carefully design the new MPDATA
method with the splitting transport velocities at different time levels to improve the temporal
accuracy.
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