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Abstract

This paper presents a framework for calibrating computational models using data from sev-
eral and possibly dissimilar validation experiments. The offset between model predictions
and observations, which might be caused by measurement noise, model-form uncertainty,
and numerical error, drives the process by which uncertainty in the models parameters is
characterized. The resulting description of uncertainty along with the computational model
constitute a predictor model. Two types of predictor models are studied: Interval Predictor
Models (IPMs) and Random Predictor Models (RPMs). IPMs use sets to characterize uncer-
tainty, whereas RPMs use random vectors. The propagation of a set through a model makes
the response an interval valued function of the state, whereas the propagation of a random
vector yields a random process. Optimization-based strategies for calculating both types
of predictor models are proposed. Whereas the formulations used to calculate IPMs target
solutions leading to the interval value function of minimal spread containing all observations,
those for RPMs seek to maximize the models’ ability to reproduce the distribution of obser-
vations. Regarding RPMs, we choose a structure for the random vector (i.e., the assignment
of probability to points in the parameter space) solely dependent on the prediction error. As
such, the probabilistic description of uncertainty is not a subjective assignment of belief, nor
is it expected to asymptotically converge to a fixed value, but instead it is a description of
the model’s ability to reproduce the experimental data. This framework enables evaluating
the spread and distribution of the predicted response of target applications depending on
the same parameters beyond the validation domain (i.e., roll-up and extrapolation).
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Introduction

Model calibration refers to the process of prescribing the values of the parameters of
a computational model according to experimental observations. Model-form uncertainty,
measurement noise, and numerical error often prevent us from confidently prescribing a
fixed constant value for such parameters. Consequently, a family of parameter values is
prescribed such that the predictions resulting from evaluating the computational model at
any member of this family are a sufficiently accurate representation of the observations [4].

Several model calibration techniques are available in the literature. Many of them assume
the structure

y = M(x, p) + η, (1)

where y ∈ R is the response or model’s output, M is the computational model, x ∈ Rn

is the state or explanatory variable, p ∈ Rnp is the model’s parameter, and η ∈ R is a
random variation caused by noise and measurement error. Many of the model calibration
techniques are based on this model structure, the assumption of p being a fixed but unknown
constant (i.e., the uncertainty in p is epistemic), and the assumption of η being independent
and identically distributed (IID) following a normal distribution with zero mean and a fixed
variance. In contrast, the framework proposed herein is applicable to models M , where p
can either be epistemic or aleatory (i.e., uncertainty caused by inherent, and irreducible
variability) taking on an arbitrary form1.

A typical regression problem consists of estimating the value of p in M given the set of ob-
servations (xi, yi), i = 1, . . . , N , where N > np. This is often carried out by searching for the
parameter realization that minimizes the sum of squared residuals, pLS. The precision of this
estimate, which prescribes how much it can deviate from its “true value” within an epistemic
framework, is often evaluated using confidence intervals [8, 5]. The calculation of confidence
intervals, prediction intervals (i.e., intervals where future observations are expected to fall)
and credible intervals [4] require having a probabilistic description of the uncertainty in p.
This description often requires (i) knowing the distribution for the prediction errors, (ii) M
and η taking particular forms (e.g., M depends linearly on p and the noise η is additive) or
(iii) M being accurately represented by a linear approximation. As such, the suitability of
the resulting confidence and prediction intervals depends tigthly on the validity and accuracy
of the underlying assumptions and approximations.

A common approach to model calibration is Bayesian inference. In parametric Bayesian
inference the objective is to describe the model’s parameters as a vector of possibly dependent
random variables using Bayes’ rule [4]. The resulting vector, called the posterior, depends
on an assumed prior random vector, and the likelihood function; which in turn depends on
the set of N observations available, and on the structure of M . Whereas this approach does
not make any limiting assumptions on the manner in which M depends on p, nor on the
structure of the resulting posterior; it requires for the calibrated variables in p to be epistemic.

1Equation (1) can be seen as a particular case, in which all epistemic uncertainties enter into M , whereas
η is a single additive aleatory uncertainty having a known structure.
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This vector might be comprised of physical epistemic uncertainties and hyper-parameters of
aleatory variables2. Note that the consideration of aleatory uncertainties requires assuming a
structure for them, so they can be parameterized in terms of non-physical epistemic variables.
The presence of model-form uncertainty yields uncertainty characterizations that not only
fail to describe the prediction error, but also are biased by the assumed structure of M .
This can be mitigated by adding a fictitious discrepancy term to M [4]. This term, which
can have a fixed epistemic or a fixed aleatory structure, is calibrated as if it were part
of M . This practice however, prevents rolling-up the resulting prescription of uncertainty
through other computational model depending on p as well3. In spite of this limitation, its
high computational demands, and of the potentially high sensitivity of the posterior to the
assumed prior, this method is commonly regarded as the benchmark for model calibration.

This paper presents techniques for characterizing the uncertainty in parameters common
to several computational models based on multiple validation experiments. These experi-
ments might measure dissimilar quantities of interest having different state variables ranging
over different domains (e.g., some might be temperatures at particular locations whereas
others might be heat flux at other locations). For each of these validation experiments we
have a computational model, and a set of observations. Uncertainty is characterized accord-
ing to the dispersion of the prediction errors. This characterization and a computational
model constitute a predictor model. This paper focuses on Interval Predictor Models (IPM),
for which uncertainty is characterized as a hyper-rectangular set4, and Random Predictor
Models (RPM), for which uncertainty is characterized as a random vector supported in a
hyper-rectangular set. Hyper-rectangular sets are preferred since they have the advantage
that the range of an individual parameter is not affected by the value taken by the others.
IPMs and RPMs are used to generate informative predictions of the spread of the response at
values of the state that might extend beyond the range of observations (i.e., extrapolation).
Such predictions are based on the intrinsic structure of the computational model and on its
ability to describe the observations.

The calibration of models that depend linearly in p and polynomial in x can be done
rigorously [3]. This process yields a formal description of the model’s reliability, i.e., the
probability that future observations will lie within the predicted range of responses by ana-
lytical, non-statistical means, of the uncertainty in p, and of the spread in the corresponding
response y. This paper extends these ideas to cases in which (i) data from multiple validation
experiments are available (i.e., nv > 1, where nv is the number of validation experiments),
(ii) the model structure depends arbitrarily on parameters and states and might not even
have an explicit form (e.g., M is a finite element model predicting the stress at a particular
location of a nonlinear structure), and (iii) the resulting characterization of uncertainty is

2For instance, if q contains the physical parameters of the model M , where q1 is epistemic and q2 is
aleatory having a normal distribution with mean µ and standard deviation σ, the vector p = [q1, µ, σ]>

contains three epistemic variables, one physical and two non-physical.
3By roll-up we mean the process of calibrating the parameters of one or several computational models

and using the resulting characterization of p to make predictions of a target application which also depends
on p.

4By hyper-rectangular set, we mean a set which can be represented by a Cartesian product of intervals.
This constrains its orientation so that its edges are parallel to the coordinate axes.
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probabilistic. This generality precludes the formal descriptions listed above.

This paper is organized as follows. Section introduces basic notions and definitions and
describes the main objectives of this article. This is followed by Section where a framework
for calculating IPMs is presented. Section introduces RPMs and a formulation for their
calculation. This is followed by Section where the methodology is extended to the roll-up
problem. Finally, some conclusions are made.

Problem Statement

In the developments that follow we assume that experimental observations are stationary
and independent, that the response of the models depend continuously on both the param-
eters and the states, and that the models have a deterministic mathematical structure, i.e.,
they yield a fixed value of the response for fixed values of the state x and of the parameter p.
Consider the ensemble5 of computational models yj = M j(xj, p), for j = 1, . . . nv, where the
response yj is a scalar, the state xj is a vector of length nj, p ∈ Rnp is a parameter, and nv
is the number of validation experiments. Note that all nv computational models share the
same parameter p. The values of parameters that are not common to all nv models can be
set to fixed constant values, e.g., the corresponding term in the least squares solution, before
applying this methodology. This practice enables rolling up the uncertainty in all calibrated
models to system-level target applications.

Further assume we have experimental observations corresponding to each of the nv val-
idation experiments. Denote by N j the number of observations corresponding to the jth
validation experiment. The Data-Generating Mechanism (DGM) associated with each of
these experiments is postulated to act on the state to produce a response. The responses
can depend on state variables and on some other influences such as intrinsic variability and
measurement noise. Let Xj ⊆ Rnj

be a set of state variables, and Y j ⊆ R be the set of
responses corresponding to the DGM governing the jth validation experiment acting on ele-
ments of Xj. The data sequence associated with this experiment is denoted as zj = (xji , y

j
i ),

where i = 1, . . . N j. The DGMs might depend on parameters and states that are absent
from the computational models. As compared to a DGM, the model M j might be subject to
parametric and model-form uncertainty. Parametric uncertainty can be epistemic, aleatory
or a combination of both. As compared to a computational model with the highest fidelity
possible, M j often suffers from approximation, numerical, and discretization errors. These
errors are a consequence of making M j computationally tractable.

The first objective of this paper is to prescribe p according to the data sequences z1, z2, . . .,
znv , based on the predictive ability of the computational models M1, M2 . . ., Mnv describing
such experiments. The second objective is to use this prescription to generate informative

5The following conventions will be used regarding the usage of subindices and superindices on the model’s
state and model’s response. Subindices will be used to describe experimental realizations whereas su-
perindices will be used to describe different states/responses; e.g., y23 is the third observed response associated
to model M2 whose state and response are x2 and y2 respectively.
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predictions corresponding to unobserved realizations of the state. An informative prediction
can be interpreted as a prediction that is consistent with salient features of the data sequences
and with the predictive ability of the nv computational models used to characterize p. In
the context of IPMs, a prediction is an interval of possible responses whereas for RPMs a
prediction is a random variable. The spread and probability concentration of such predictions
are driven by the model’s ability to reproduce the observations. As such, models that fail
to properly capture the physics driving the DGM will yield large uncertainties and wide
prediction ranges.

For simplicity in the presentation, the two sections on IPMs and RPMs that follow assume
that there is only one validation experiment (i.e., nv = 1). Consequently, we will drop the
super-indices from the notation of states and responses.

Interval Predictor Models

An IPM is simply a function that returns an interval as output. These models were
proposed in the framework of differential inclusions and set-valued dynamical systems [1,
2], and further developed for the case in which prior knowledge on the data-generating
mechanism is available [6, 7]. In the context of this paper, an IPM is a rule that assigns to
each instance vector x ∈ X a corresponding outcome interval in Y . That is, an IPM is a
set-valued map

I : x→ Iy(x) ⊆ Y, (2)

where x is a state on which the model’s output depends, and Iy(x) is the prediction interval.
Let M be any functional acting on a vector x of state variables and a vector p of parameters
to produce an output y; i.e., y = M(x, p). A parametric IPM is obtained by associating to
each x ∈ X the set of all possible outputs y that result from varying p over some subset P
of parameter space:

Iy(x, P ) = {y : y = M(x, p) for all p ∈ P}. (3)

Iy(x, P ) will be an interval as long as M(x, p) is a continuous function of x and p, and
P is a connected set. All instances of M and P considered in this paper will satisfy these
restrictions. Attention will be limited to the case in which P is the bounded6 hyper-rectangle:
P = {p : pmin ≤ p ≤ pmax}. The prediction of the IPM can be described as Iy(x, P ) =
[ y(x, P ), y(x, P ) ], where

y(x, P ) = min
p∈P
{M(x, p)}, (4)

y(x, P ) = max
p∈P
{M(x, p)}. (5)

The functions y and y are envelopes of the family of infinitely many predictions that result
from evaluating M(x, p) for each parameter realization p ∈ P . Note that the envelopes
themselves might not be members of the family (e.g., the envelopes of a family of polynomials

6Vector inequalities hold component-wise.
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need not to be polynomials). The spread of Iy, which is the separation between the envelopes,
is

δy(x, P ) = y(x, P )− y(x, P ). (6)

The solutions to Equations (4-5) occur at vertices of P when M is a linear function of p
(the particular vertex might vary with x). Otherwise, the solution might correspond to an
interior point of P . The case in which M is a convex function of p can be efficiently solved
by using convex optimization techniques (when solving for y) and by evaluating M at the
vertices’s of P (when solving for y). If none of the above cases hold, nonlinear optimization
or sampling techniques can be readily used.

The DGM is often approximated by the Least Squares (LS) prediction y = M(x, pLS),
where the parameter estimate pLS is given by

pLS = argmin
p

{
N∑
i=1

(yi −M(xi, p))
2

}
. (7)

Whereas the LS prediction describes the overall trend of the data as described by a point
estimate of p, Iy(x) describes its spread. A set P , which prescribe such a spread, might not
even contain pLS.

Formulations for calculating two types of IPMs are presented next. These formulations
parameterize the geometry of P differently. Denote by θ the set of parameters required to
fully prescribe P . The two parameterizations to be considered are (i) θ = {c,m, α}, where
c is the geometric center, m is the unit diagonal vector, and α > 0 ∈ R is the length of the
semi-diagonal of P ; and (ii) θ = {pmin, pmax}, where pmin and pmax are the “lower left” and
“upper right” corners of P . The dependence among these variables is given by

c =
pmax + pmin

2
, m =

pmax − pmin

‖pmax − pmin‖2

, α =
‖pmax − pmin‖2

2
. (8)

Hyper-rectangular Sets with Fixed Parameters

Here we seek the IPM given by (3) where the uncertainty set P (θ) is parameterized by
θ = {c,m, α} according to

P (θ) = {p : c− αm ≤ p ≤ c+ αm}. (9)

The following optimization program yields an IPM whose uncertainty set (9) has fixed given
values for c and m whereas α is optimized.

The optimization programs in this paper utilize Ex[·], the expected value operator with
respect to x, in their objective functions. When x has a known distribution, the implied
integral can be evaluated analytically or numerically depending on the integrand. Otherwise,
the sample mean of the integrand using the data in z can be used to approximate it.
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Optimization Program 1. Consider the IPM defined by (3) and (9). Assume that the values
c and m > 0 are set in advance and denote by Ex[·] the expectation operator with respect to
the state variable x. The value of α required to fully prescribe this IPM is

α̂ = argmin
α>0

{
Ex[δy(x, P )] : y(xi, P ) ≤ yi ≤ y(xi, P ), 1 ≤ i ≤ N

}
. (10)

Therefore we search for the set P with a fixed geometric center and unit diagonal vector
that minimizes the expected interval spread such that all the observed responses are within
the limits of the interval valued function Iy. The corresponding uncertainty set, denoted as

P̂ , is given by (9) evaluated at θ̂ = {c,m, α̂}. Note that if P1 ⊂ P2, then δy(x, P1) ⊆ δy(x, P2),
and Ex[δy(x, P1)] ≤ Ex[δy(x, P2)]. Consequently, the minimization in (10) yields uncertainty
sets of minimal size in this sense.

A few comments regarding the selection of the fixed parameters in P are in order. A
natural candidate for c is pLS. Even though this practice leads to a prescription of uncertainty
in which the prediction corresponding to the center of the box optimally describes the overall
trend of the data, the corresponding spread in the prediction might be suboptimal (i.e., the
selection of another center point leads to a smaller expected spread). Regarding the unit
diagonal vector, the components of m should be made proportional to the expected range of
uncertainty in the corresponding parameters. Note that m should not only account for such
ranges but also for the different units in the corresponding p’s.

The above formulation does not take into account uncertainty in experimental observa-
tions. Error due to instrument calibration, data acquisition, and variation in experimental
conditions yield random and bias errors. This uncertainty is often prescribed as error bars
centered about the measurements, e.g., the uncertainty in (xi, yi) is cast as (xi± dx, yi± dy)
where dx > 0 and dy > 0. The effects of experimental uncertainty can be taken into account
by replacing the inequality constraints in (10) with

y(x, P )− dy ≤ yi ≤ y(x, P ) + dy, for all x ∈ [xi − dx, xi + dx]. (11)

The particular case in which dx = 0 yields y(xi, P ) + dy ≥ yi ≥ y(xi, P ) − dy. The
general form of (11) is hard to evaluate since the inequality applies to a continuum of
state values. A natural approximation to (11) is given by y(xvk, P ) ≤ yvk ≤ y(xvk, P ) for

k = 1, . . . , 2n
j+1, where {(xvk, yvk) : 1 ≤ k ≤ 2n+1} enumerates the vertices of the box

[xi−dx, xi+dx]×[yi−dy, yi+dy]. The formulations herein ignore experimental uncertainty,
thus dx = 0 and dy = 0. Their extension to the general case can be carried out by taking
these considerations into account.

The formulation in (10) as well as some of the concepts to be introduced later in the paper
can be described using the Zero-Prediction-Error Manifold. This is the manifold of parameter
points for which the computational model M can exactly reproduce an observation point.
More specifically, the Zero-Prediction-Error Manifold for the data point (xi, yi) is defined as

Si = {p : yi −M(xi, p) = 0}. (12)

12



Note that a feasible solution to (10) leads to a set P whose intersection with S1, S2, . . . ,
SN are all non-empty. When M depends linearly on p such manifolds are hyperplanes.
When the response yi is outside the range of predictions associated with the model at xi,
Si is empty. When the observation is within such a range, there might be infinitely many
parameter realizations and, thus, infinitely many fixed parameter point predictions M(xi, p)
passing through yi.

The separation between c and the manifold Si in (12) can be evaluated via the Parametric
Safety Margin (PSM), which is defined as

ρi = min
p
{‖c− p‖∞m : yi = M(xi, p)}, (13)

where the m-infinity norm of a vector a is defined by

‖a‖∞m = max
1≤k≤np

{
|ak|
mk

}
.

The PSM ρi is the length of the semi-diagonal of the smallest hyper-rectangle oriented as
P̂ (i.e., same center and same diagonal orientation) for which one of the corresponding IPM
envelopes passes through the ith observation point. Hence, ρi evaluates the extent by which
the presence of the data point (xi, yi) contributes to the spread of P̂ . The spread of the
resulting prediction and of the uncertainty set are driven by the observation(s) attaining
the largest PSM values. Note however, that the particular observations in z attaining such
values vary with c and m. Equation (13) is equivalent to

ρi = min
p,α
{α : α > 0, yi = M(p, xi), −αm ≤ c− p ≤ αm} , (14)

which, as opposed to (13), does not suffer from derivative discontinuities. Note that α̂ =
maxi=1...N{ρi}. PSMs are used in [3] to identify and eliminate outliers from the data set and
to calculate IPMs having tighter predictions.

Fixed-parameters IPM Example

In this example we will consider Validation Experiment 1. This experiment consists of
N1 = 50 observations of an output which depends on a single state variable (n1

x = 1) and
two parameters (np = 2). This DGM depends nonlinearly on the state and parameters,
and it is subject to state-dependent measurement noise. Figure 1 shows the elements of the
corresponding data sequence, z1.

A mathematical model M1(x1, p) describing this DGM was built. This model, which de-
pends nonlinearly on x1 ∈ R and p ∈ R2, suffers from model-form and epistemic uncertainty.
The prediction corresponding to the LS parameter, which is pLS1 = [0.9420, 1.0689]>, and
the prediction interval function [5] associated with the nonlinear regression are also shown
in Figure 1. In statistical inference [8], a prediction interval is an estimate of an interval
in which future observations will fall, with a certain probability, given what has already

13



Figure 1. Observations, LS prediction, and confidence
band.
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Figure 2. IPM with fixed parameters.

been observed. Note that more than 60% of the observations lay outside the interval valued
function.

The model M1(x1, p) and the N1 = 50 observations were used to build an IPM. The
resulting predictor model will be called IPM1. The solution to (10) yields α̂ = 0.2625, and
Ex[δy] = 2.2505. Figure 2 shows the envelopes of IPM1 for c = pLS and m = [

√
0.5,
√

0.5]>.
All 50 observations are within the envelopes and the lower envelope passes through one of
them, indicating that the corresponding constraint is binding. This particular observation
point, located near (0.7, 1.25), ends up prescribing the extension of P̂ . Recall that the
functional form of the envelopes depends exclusively on the observations and the structure
of M1. Whereas M1(x1, pLS) describes the dominant trend of the data by weighing all data
points equally, the interval valued function Iy1(x

1, P̂ ) describes their spread. This spread,
which is driven by extreme observations, is not necessarily centered about M1(x1, pLS). In
general, there is no basis to expect that (i) pLS ∈ P̂ , or that (ii) y1(x1) ≤M1(x1, pLS) ≤ y1(x1)

for all x1 ∈ X, or that (iii) the centerline of Iy1(x
1, P̂ ), (y1(x1, P̂ ) + y1(x1, P̂ ))/2, accurately

describes the overall trend of the data.

The prescription of fixed values for c and m makes the resulting IPMs suboptimal (i.e.,
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there may well exist other IPMs yielding tighter predictions and smaller P ’s). The formu-
lation that follows removes these restrictions thereby enabling the calculation of improved
IPMs.

Hyper-rectangular Sets with Free Parameters

In this formulation we seek the IPM in (3) for the uncertainty set P (θ) parameterized by
θ = {pmin, pmax} according to

P (θ) = {p : pmin ≤ p ≤ pmax}, (15)

such that all components of θ are optimal.

Optimization Program 2. Consider the IPM defined by (3) and (15). This IPM is fully
prescribed by the limits of P , which are given by

〈p̂min, p̂max〉 = argmin
pa, pb

{Ex[δy(x,Q)] : y(xi, Q) ≤ yi ≤ y(xi, Q), 1 ≤ i ≤ N, (16)

Q = P (θ) where θ = {pa, pb}, pa ≤ pb}.

Therefore we search for the limits of P that minimize the expected interval spread such
that all the observed responses are within the limits of the interval valued function Iy(x).

The resulting uncertainty set, P̂ , is given by (15) evaluated at θ̂ = {p̂max, p̂min}. Remarks
regarding the evaluation of Ex[δ] made in the previous section apply here as well. The PSM
associated to resulting IPM are given by (13) with the parameters c and m corresponding
to P̂ .

The additional flexibility of (16), as compared to (10), often yields IPMs with tighter
predictions and smaller uncertainty sets. This flexibility comes at the expense of requiring
more optimization variables. As before, the spread of both the prediction and the uncertainty
set are often driven by a few data points. These data points, which attain the largest PSM
values from the full ensemble in z, often deviate significantly from the rest of the observations.
The empirical Cumulative Distribution Function (CDF) of the PSMs is defined to be the
function whose value at an arbitrary real number ρ is the fraction of the N values of the
PSMs which are less than or equal to ρ. Examining this empirical CDF enables visualizing
how likely are the extreme observations prescribing the IPM envelopes. The majority of
PSM values might be considerably smaller than the largest PSM value(s) of the set, even
though the IPM is prescribed according to the data point(s) close to such values.

Free-parameters IPM Example

The free-parameter formulation in (16) was used to build an IPM based on the same
computational model and the same observations used in the previously. The resulting
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Figure 3. IPM with free parameters.

model, to be referred to as IPM2, is shown in Figure 3. The optimal solution leads to
c = [0.8837, 0.9740]>, m = [0.3236, 0.9462]>, and Ex[δy] = 1.9642. The improved tightness
in the model prediction of IPM2 as compared to that of IPM1 is apparent. Note that most
improvements are reflected in a tighter upper envelope, while the lower envelope degrades
slightly. Further notice that the LS prediction is closer to upper envelope than in the IPM1
case.

Figure 4 shows the empirical CDF of the PSM associated with IPM2. The vertical lines
are the 10-percentiles. Note that the PSM values range from 0.0005 to 0.3263, but about
80% of them take on values that are less than 0.15. The observation(s) for which the PSM
attains the largest value(s) prescribe the IPM whereas the rest of them are inconsequential.
The optimization programs above can be cast as min-max problems since they lower the
worst-case PSM (i.e., the 100-percentile of ρ) as much as possible. When outliers are present
in the data set, or when the analyst wants tighter predictions for most of the observations
(i.e., lower values of ρ), the minimization of lower percentiles can be considered instead [3].

IPMs are effective for describing extreme and possibly unlikely predictions but lack the
fidelity to describe the likelihood of occurrence within Iy1(x

1). RPMs, to be introduced next,
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Figure 4. Empirical CDF of the PSMs associated to IPM2
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provide a means to mend for this deficiency.

Random Predictor Models

An RPM is simply a rule that assigns to each state vector x ∈ X a corresponding random
variable in the output space Y . That is, an RPM is a random variable-valued map

R : x→ Ry(x) ⊆ Y, (17)

where x is the state, and Ry(x) is a random process having a support that lies in Y . The
prediction of the RPM is

Ry(x) = {y : y = M(x, p), p ∼ fp(p) for p ∈ P (θ)}, (18)

where fp(p) is the joint Probability Density Function PDF of p having P (θ) as its support set.
As with the IPMs presented above, we will focus on hyper-rectangular P ’s parameterized by
θ. When both P and M are bounded, which is the case assumed in this paper, the support
of Ry(x) is bounded as well. The PDF of the predicted response M(x, p) at any value of x
is fully prescribed by that of p. The PDF of the random variable Ry(x̂) will be denoted as
fM(x̂,p(θ))(y). Therefore, statistics of the response, such as the mean µy(x) = Ep[M(x, p)], the
variance νy(x) = Ep[(M(x, p) − µy(x))2], and the support Iy(x) (given in Equations (4,5));
vary with x. Note that the limits of the support of an RPM are the envelopes of an IPM
having the same P .

Figure 9 shows an example of the RPM in (18). This figure shows the LS prediction, the
expected/mean response, and the 5-percentile curves for a uniform PDF supported in the P̂
corresponding to IPM2. This RPM, which will be compared to other RPMs below, will be
referred to as RPM1. Recall that IPM2 leads to a range of predictions with minimal spread.
Note the sizable offset between the LS prediction and the expected response µy(x). It turns
out that the mean response underestimates 41 of the 50 experimental observations by a
considerable margin, thus, it is a poor descriptor of the overall trend of the data. Further
notice that the probability of occurrence of the data sequence z under the IID assumption,
which is the product of the individual probabilities at the observation points and whose
values can be inferred from the percentile curves, is comparatively low (see Figure 8 for
comparison).

This paper proposes a process for constructing a probabilistic description for p, fp(p) with
p ∈ P (θ), based on a non-subjective figure of merit. This figure of merit rewards parameter
realizations (i.e., assigns a higher value) leading to model predictions that closely describe
the experimental observations (i.e., points in the parameter space lying on the manifolds S
in (12)). The closer the parameter point to the manifolds associated to all the experimental
observations, the larger the value of the figure of merit, thus, the larger the value of the joint
density function at such a point. Note that the “distance” from any parameter point to any of
such manifolds, which can be evaluated using several different norms, will only depend on the
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Figure 5. RPM for a uniform joint PDF (RPM1).
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experimental observation (xi, yi) and on the ability of the computational model y = M(x, p)
to replicate such an observation. Note that these two underlying criteria also prescribe the
likelihood function used in Bayesian inference. The developments that follow propose a few
norms to evaluate such a “distance”, thus, a figure of merit, and describe a procedure from
which probabilistic descriptions of p, consistent with this figure of merit, can be built.

Assume the joint PDF for p is given by

fp(p) =
γ(p)

C0

for p ∈ P (θ), (19)

where C0 is a normalization constant so the volume under the joint PDF over P (θ) is one, and
θ is a variable to be determined. The function γ(p) assigns a figure of merit to each possible
realization of p. Denote by d(p, Si) ≥ 0 a norm of the separation between the parameter
point p and the zero prediction error manifold in (12). The structure of the function γ to be
considered is given by

γ(p) =

(
β1 + β2

N∑
i=1

d(p, Si)

)−1

, (20)

where 0 < β1 � 1 is a small number used to prevent γ from being unbounded, and β2 > 0
is a scaling parameter used to control the smoothness of γ(p). The closer p is to parameter
points where the computational model is able to reproduce all experimental observations,
the larger the value of γ, thus, the larger the value of fp(p) at p. Note that in an idealized
case in which there is no measurement noise or model-form uncertainty, and the only source
of uncertainty is epistemic, γ(p) will be maximal at the “true” value(s) of p.

Several norms d(p, Si) can be used to fully prescribe (20). Each of them will lead to a
different joint PDF, thus to a different random process Ry(x). Three suitable norms are

d(p, Si) = min
p̄
{‖p− p̄‖2 : yi = M(xi, p̄)}, (21)

d(p, Si,m) = ρi = min
p̄
{‖p− p̄‖∞m : yi = M(xi, p̄)}, (22)

and

d(p, Si) =
(yi −M(p, xi))

2

Ci
, (23)

where Ci is a normalization constant used to ensure that d(p, Si) ≤ 1 for all i = 1 . . . N . The
norms in (21) and (22) measure the separation between any parameter point p and the zero-
prediction-error manifold by evaluating a distance in the parameter space. Conversely, (23)
measures separation by evaluating a distance in the output space. As such, the norm in (23)
yields results that are structurally different from those based on the other two norms (unless
M is linear in p). Furthermore, the norms in (21) and (22) require solving an optimization
problem, whereas (23) only requires a single model evaluation. This makes the norm in
(23) preferable from a computational standpoint. The particular case in which M depends
linearly on p and polynomially on x, i.e., y = p>ϕ(x) where ϕ(x) is a vector of monomials
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in the components of x, enables evaluating (21) and (22) analytically. In such a case, we
obtain

d(p, Si) =
|yi − p>ϕ(xi)|
‖p‖2

, (24)

d(p, Si,m) =

∣∣∣∣yi − ϕ(xi)
>p

ϕ(|xi|)>m

∣∣∣∣ . (25)

Once the norm d, and the value of the parameter θ have been chosen, the uncertainty model
fp(p), thus, the RPM in (18) are fully prescribed.

The formulation below targets RPM with optimal characteristics. Two performance
metrics used to quantify desirable traits of the prediction will be considered. One of them is

J(θ, fp, z) =
1

N

N∑
i=1

∫ pmax

pmin

fp(p, θ)(M(xi, p)− yi)2dp,

=
1

N

N∑
i=1

(
V [M(xi, p)] + (E[M(xi, p)]− yi)2

)
, (26)

where E[·] and V [·] are the expectation and variance operators. This metric, which evaluates
the dispersion of the random process Ry(x) about the observations, is computationally cheap
to evaluate since it only requires evaluating means and variances. Another metric is

J(θ, fp, z) = −
N∏
i=1

fM(xi, p(θ))(yi), (27)

where fM(xi,p)(yi) is the PDF of the predicted output evaluated at y = yi. This density
function depends on fp, which in turn, depends on θ. This performance metric is proportional
to the probability of M reproducing the data sequence when fp(θ)(p) is the joint PDF of p
and the observations in z are IID. Note that (27) is a likelihood function where θ, not p, is the
independent variable. The sign in (27) enables maximizing the likelihood via minimization.
The calculation of (27) requires constructing an accurate approximation of fy(y, xi) for all
xi’s in z, a task that is more computationally expensive than the calculation of (26). The
performance metric (26) is well suited to describe unimodal random processes. For instance,
if z = {(x1, y1), (x1, y2)}, the minimization of (26) will tend to yield a symmetric unimodal
PDF for y(x1) centered about (y1 + y2)/2. Conversely, the metric in (27) is better suited to
capture multi-modal processes. For instance, if z = {(x1, y1), (x1, y2)}, the minimization of
(27) will tend to yield a bimodal and symmetric PDF for y(x1) peaking at y1 and y2. The
modality of the predicted random variable y is exclusively dependent on the structure of M
and the spread of the observations. The framework above enables us posing an optimization
program for calculating RPMs.

Optimization Program 3. Consider the RPM defined by (18-20) for a norm d prescribed
by any of the Equations (21-23) and any of the performance metrics in (26-27). Denote by
Θ the set of θ values leading to a feasible P . The value of the parameter θ required to fully
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prescribe this RPM7 is given by

θ̂ = argmin
θ ∈ Θ

{
J(θ, fp, z) : y(xi, P (θ)) ≤ yi ≤ y(xi, P (θ)), 1 ≤ i ≤ N

}
. (28)

Therefore, this formulation targets the support set of the PDF in (19) such that (i)
the resulting random process Ry(x) maximizes the performance of the prediction, e.g., it
minimizes the dispersion of probability about the observations, and (ii) all the observations
in z can be reproduced by the computational model M(x, p) for at least one parameter
point of P . Condition (ii), which is enforced via the set of inequality constraints in (28), is
equivalent to P (θ) ∩ Si 6= ∅ for all i = 1, . . . , N . Either of the parameterizations of P in (9)
and (15) can be used in (28). In the context of (9) and (15), the constraint θ ∈ Θ leads to
α > 0, and to pmin < pmax respectively.

RPM Example

Next we calculate a RPM based on the same data sequence z1 and the same computational
model M1(x1, p) used previously. Figure 6 shows the figure of merit γ(p) defined by (20) and
(23) for N = 1 (top-left), N = 2 (top-right), N = 3 (bottom-left), and N = 50 experimental
observations (bottom-right). The top-left plot shows that the manifold S1, which is the set of
parameter points where γ(p) takes on the maximum value, is a nonlinear function of p. The
rate of decay in the value of γ(p), thus of fp(p), is driven by the rate at which the function
(y1

1 −M1(p, x1
1))2 departs from its zero manifold. This rate can be adjusted via parameters

β1 and β2. The top-right figure is calculated by adding an additional term to the figure of
merit shown in the top-left figure. This yields to a function γ(p) where both manifolds S1

and S2 are superimposed. The bottom-left figure shows the figure of merit corresponding
to S1, S2 and S3. Note that γ(p) reaches its largest values where the zero-prediction-error
manifolds intersect. The bottom-right plot shows the figure of merit corresponding to all
50 manifolds. Note that two-regions of high-manifold concentration emerge, with the one in
the vicinity of p = [1, 1]> being dominant.

Figure 7 illustrates the dependency of the figure of merit γ(p) on the tuning parameter
β2 for N = 50. Values of β2 equal to one (top-left), 0.1 (top-right), 0.01 (bottom-right),
and 0.001 (bottom-left) were used. Whereas larger values of β2 yield faster rates of decay
and therefore, more accurate probability allocations (i.e., allocations that concentrate more
probability closer to the manifolds), smaller values yield a smoother γ(p), thus, density
functions fp(p) that can be sampled more efficiently. Figures 6 and 7 are chosen to illustrate
the β2 dependency of γ(p) and are not illustrative of an optimal support set for p.

A RPM defined by Equations (18-20, 23, 26), with support set P given by (15) and (28)
was calculated. The prediction corresponding to the resulting RPM, to be called RPM2, is
shown Figure 8. This formulation aims at concentrating the probability of the predicted re-
sponse as close as possible to the observations. The comparison of Figures 9 and 8 illustrates

7The parameters β1 and β2 in (20) used to prescribe fp(p) could be additional optimization variables.
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Figure 6. Dependence of γ(p) on the number of observa-
tions N .
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Figure 7. Dependence of γ(p) on the tuning parameter β2.
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Figure 8. RPM with minimal dispersion about observa-
tions (RPM2).

that the mean response and the 5-percentile curves corresponding to RPM2 are a tighter rep-
resentation of the data. Note that the mean prediction and the LS prediction are close even
though they have a different mathematical structure (i.e., one corresponds to the evaluation
of the computational model at a single parameter point whereas the other one is the average
value of the model predictions corresponding to a large number of parameter points). The
support set of p corresponding to RPM2, P (θ̂1), is bounded by p̂min = [0.8030, 0.8106]> and
p̂max = [1.0356, 1.2247]>, for which J(θ̂, fp, z

1) = 3.8140. This region contains but it is not
centered about points where fp(p) takes on its largest values. Conversely, the performance
of RPM1 is J(θ, fp, z

1) = 8.1332. This poor performance is expected since the probabilistic
features of RPM1 are not optimal.

For comparison purposes, model M1(x1, p) was calibrated using Bayesian inference. The
calibration is based in Equation (1) where η is a zero-mean Gaussian with fixed variance
σ2. Calibration yields a probabilistic description of [p, σ]. The resulting RPM is shown in
Figure 9, where the maximum likelihood predictionM1(x1, pMLE) for the maximum likelihood
estimate (MLE) pMLE = [1.8071, 0.8666]> is also shown. Note that the MLE prediction and
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Figure 9. RPM resulting from Bayesian Inference.

the random process are poor predictors of both the spread and overall trend of the data.

Uncertainty Roll-up

Uncertainty quantification aims at studying the effects of uncertainty in full-system tar-
get applications. Unfortunately, we often have some tests at the subsystem/component level
but not at the full system level. We want to use these tests to calibrate/validate the compu-
tational models of the subsystems in order to generate informative predictions of the target
application. By roll-up we mean the process of calibrating the parameters of one or several
computational models and using the resulting characterization of p to make predictions of a
target application which also depends on p. In particular, we want to prescribe p according
to the ability of the computational model M j(xj, p) to reproduce the data sequence zj for
all j = 1, . . . , nv. Note that the structure of the DGM and of the computational model
corresponding to a validation experiment might be different from those for other validation
experiments. Once p is characterized, a prediction for the target application yt = M t(xt, p)
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will be made. Note that the response quantities y1, y2, . . ., ynv and yt; as well as the cor-
responding states x1, x2, . . ., xnv and xt may differ from each other (they might describe
different physics and different quantities of interest).

The IPM and RPM formulations above can be naturally extended to study the roll-up
problem. The main extension considered in this section is the joint usage of all the data
sequences with all computational models. The resulting characterization of p along with
each computational model M i constitutes a predictor model. Therefore, we will obtain a
family of predictor models linked by the common prescription of the uncertainty in p where,
each family member describes one of the nv validation experiments. Extensions to the
formulations above are presented next.

Optimization Program 4. Consider the family of IPMs defined by (3-9) for M1(x1, p),
M2(x2, p), . . ., Mnv(xnv , p) and assume that the values c and m > 0 are set in advance. The
value of the parameter α required to fully prescribe this family is given by

α̂ = argmin
α>0

{
1

nv

nv∑
j=1

Exj [δyj(x
j, P (θ))]

Dj
: yj(xj

ij
, P (θ)) ≤ yj

ij
≤ yj(xj

ij
, P (θ)), (29)

1 ≤ j ≤ nv, 1 ≤ ij ≤ N j, where θ = {c,m, α}
}
,

and Dj is a normalization constant.

Therefore, (29) yields a P that minimizes the average spread of the nv predicted responses,
such that the envelopes of all such responses contain all observations. The normalization
constant Dj is used to make the spread of different response metrics comparable. One
possible choice for this constant is the variance of the observed responses associated with the
same validation experiment Dj = Vi[y

j
i ]. As expected, the spread of the prediction envelopes

for all nv models, as well as the size of P , grow with the value of nv. The extension of
Optimization Program 2, which follows the same structure and rationale of (29), can be
easily inferred. Regarding RPMs, the extension of Optimization Program 3 is as follows.

Optimization Program 5. Consider the family of RPMs defined by (18-20) for M1(x1, p),
M2(x2, p), . . ., Mnv(xnv , p), and a norm d prescribed in any of the Equations (21-23). The
value of the parameter θ required to fully prescribe this family is given by

θ̂ = argmin
θ ∈ Θ

{
J̄(θ, fp, z

1, . . . , znv) : yj(xj
ij
, P (θ)) ≤ yj

ij
≤ yj(xj

ij
, P (θ)),

1 ≤ j ≤ nv, 1 ≤ ij ≤ N j
}
, (30)

where the cost function J̄ is given by

J̄(θ, fp, z
1, . . . , znv) =

nv∑
j=1

qjJ(θ, fp, z
j)

Dj
, (31)

J̄(θ, fp, z
1, . . . , znv) = −

nv∏
j=1

∣∣J(θ, fp, z
j)
∣∣ηj , (32)
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when the performance metric J is given by (26) or (27) respectively. The parameters q ∈
Rnv and η ∈ Rnv are constants set by the analyst, while Dj is the normalization constant
introduced earlier.

Therefore, (30) yields a value of θ for which the corresponding fp(p) minimizes the cost
function J̄ such that the envelopes of the predicted responses contain all corresponding
observations. The cost J̄ in Equation (31) is the weighted sum of the dispersion of all RPMs
about the observations. Use q = 1 to give the same importance to the calibration of all
RPMs. Conversely, the cost J̄ in Equation (32) depends on the likelihood of all RPMs
reproducing the corresponding data sequence. Use ηj = 1 to weigh each observation point
equally, and ηj = 1/N j to weigh each data sequence equally. The spread of the envelopes
and the tightness of the random predictions resulting from (30), regardless of the particular
performance function used, can only degrade as the value of nv increases. As before, either
of the parameterizations of P in (9) and (15) can be used in (30). In the context of (9) and
(15), the constraint θ ∈ Θ leads to α > 0, and to pmin < pmax respectively.

Roll-up Example

We now consider Validation Experiment 2. The DGM associated to this experiment, from
which we obtained the data sequence z2 with N2 = 50 observations, depends nonlinearly on
the state and parameters, and it is subject to state dependent random noise. Figure 10
shows the observations. The computational model M2(p, x2), for which x2 ∈ R and p ∈ R2,
was built to describe this DGM. As compared to the DGM, the model M2 is subject to
epistemic-, aleatory- and model-form uncertainty.

We will calculate a RPM based on z2 and M2(p, x2) first. This RPM is defined by (18-
20) with norm d given by (23) and performance metric given by (26). The corresponding
LS parameter estimate, pLS2 = [1.3090, 1.0866]>, differs significantly from the LS parameter
estimate for Validation Experiment 1, pLS1 = [0.9420, 1.0689]> (see Fixed-parameters IPM
Example). This difference is caused by the uncertainty affecting the models and the noise
affecting the DGMs. The resulting RPM, to be called RPM3, is shown in Figure 10. The
performance of RPM3, J(θ, fp, z

2) = 77.6056, is much larger than that of RPM2. The

support set of p corresponding to RPM3, P (θ̂2), is given by p̂min = [1.1333, 0.3192]> and
p̂max = [1.5174, 1.8015]>. Note that the uncertainty affecting M2 is significantly larger than
that of M1.

The simultaneous calibration of M1 and M2 using z1 and z2 is considered next. The
mathematical structure of the DGMs associated to each validation experiment, thus of the
data sequences, and of the corresponding computational models is significantly different.
RPMs for both validation experiments were calculated using Equations (23, 26, 30) for η = 1.
These RPMs, to be called RPM4 and RPM5, are shown in Figures 11 and 12. These figures
show the 5-percentile curves, the IPM envelopes, and the LS predictions corresponding to
each validation experiment alone. The large differences between pLS1 and pLS2, and between
the corresponding predictions illustrate that the uncertainty for the joint system is much
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Figure 10. RPM for Validation Experiment 2 (RPM3).
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Figure 11. RPM for Validation Experiment 1 (RPM4).

larger than the uncertainty resulting from calibrating each computational model individually.
The support set of both RPM4 and RPM5, P (θ̂3), is bounded by p̂min = [0.8049, 0.3413]>

and p̂max = [1.5173, 1.8018]>. Note that P (θ̂3) 6= P (θ̂1) ∪ P (θ̂2), and the volume of P (θ̂3) is
much larger than the other two.

The comparison of Figures 8 and 11 indicates a considerable degradation in the quality
of the prediction. The performance of RPM4, J(θ, fp, z

1) = 30.2080, is 7.92 times larger
than RPM2’s; whereas the performance of RPM5, J(θ, fp, z

2) = 211.4523, is about 2.72
time larger than RPM3’s. The degradation in the tightness of the prediction is caused by
calibrating M1 and M2 jointly.

Figure 13 provides insight into the process by which the probabilistic description of
the uncertainty p is constructed. This figure shows the joint PDFs corresponding to the
RPMs resulting from calibrating M1 alone (left-subplot), from calibrating M2 alone (center-
subplot), and from calibrating M1 and M2 together (right-subplot). The concentration of
probability indicates how the zero-prediction error manifolds are distributed in the parameter
space.
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Figure 12. RPM for Validation Experiment 2 (RPM5).
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Figure 13. PDFs of RPM2 (left), RPM3 (center), and
RPM4-RPM5 (right).
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Figure 14. RPM of target application for calibrations
based on 1st (left) and both (right) validation experiments.
Same line conventions used previously apply.

Finally, we use the characterizations of p obtained above to make predictions on a target
application. Figure 14 shows the RPM for the target application yt = M t(xt, p) when the
uncertainty in p is characterized based on the first validation experiment (left subplot),
and on the first and second validation experiments (right subplot). The LS predictions
corresponding to the first (blue), and second (black) validation experiments, the 5-percentile
curves (red-dotted), process support (red-dashed) and the expected output (red-solid) are
shown. The degradation in the predictive response, in terms of the spread of the support
and of the dispersion of probability, is apparent. Note that the predicted random process
is skewed towards smaller output values. Further notice that whereas the spread of the
output increases when both validation experiments are used for calibration, the variation of
the mean output response has actually decreased. Notice that the prediction for the target
application depends on the ability of M1 to reproduce the sequence z1, on the ability of M2

to reproduce the sequence z2, and on the structure of M t.
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Conclusions

This paper proposes a new paradigm for the calibration of computational models and a
framework for uncertainty roll-up. The formulations proposed render a description of the
uncertainty in the models parameters, thereby enabling the evaluation of the dispersion in
models predictions. The process by which the predictor models are generated is based on
modeling the discrepancy between model predictions and observations using deterministic
and probabilistic means. In contrast to standard Bayesian approaches, the predictions re-
sulting from IPMs and RPMs will not converge to a deterministic response function as more
data is made available. Instead, IPMs converge to an interval valued function matching the
spread of the experimental data, whereas RPMs converge to a random process matching
their distribution.
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