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• From right outside Richmond, VA 
• Bachelor of Science in Physics and 

Mathematics – 2017
• University of Lynchburg (VA)

• Master of Engineering in Materials Science 
and Engineering – 2019

• University of Virginia (UVA)
• PhD in Materials Science and Engineering – 

Expected Summer 2021
• Anodic and Cathodic Limitations on Localized 

Corrosion and Stress Corrosion Cracking 
Propagation of Stainless Steel 304L in 
Atmospheric Environments

• Graduate Student Intern
• Storage and Transportation technology

About me
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• Advisor: Dr. Robert Kelly
• Center for Electrochemical Science and 

Engineering (CESE)
• Outreach

• Creation of 3D printing class for 4-5TH  
graders ay the UVA Curry School for 
Education

About Graduate School
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Katona, et al. Corros. Sci. 175 (2020) 108849.

• Consulting at UVA
• Assisted in creating a Virtual Twin for a spent nuclear fuel 

canister
• Incorporation of pit modeling into twin to identify 

potentials for materials degradation
•  Highlighted Research (not presented today)

• Creation of sensor to determine water layer thickness in 
accelerated testing

• Publication record
• 9 publications accepted/submitted (7 first author)



• Advisor: Dr. Rebecca Schaller (Materials Reliability)
• Previously Dr. Eric Schindelholz

• Working in Storage and Transportation Technology
• Proposals

• Three proposals written with one successfully funded 
• Creation of laboratory space

• Lead environmental assessments, failure modes 
analysis, and created working documents

• Experimental design and testing on electromechanical 
and hydraulic fracture mechanics load frames

At Sandia
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• Advised multiple undergraduate students from University of New Mexico
• Taught fundamentals of electrochemistry 
• Helped create posters for presentation at conferences



Overview
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• Alloys are commonly exposed to atmospheric, marine environments
• Through salt enabled deliquescence or salt spray the creation of a water 

layer (WL) on the surface of an alloy allows for a corrosion cell to form

Atmospheric corrosion
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• Many factors will 
influence the corrosion

• WL
• Solution composition
• Solution concentration
• Temperature
• Alloy
• Reaction mechanisms



• Alloys are commonly exposed to atmospheric, marine environments
• Through salt enabled deliquescence or salt spray the creation of a water 

layer (WL) on the surface of an alloy allows for a corrosion cell to form

Atmospheric corrosion

7

• Many factors will 
influence the corrosion

• WL
• Solution composition
• Solution concentration
• Temperature
• Alloy
• Reaction mechanisms



Atmospheric Brines
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• Dehydration of seawater brine shows wide variation in composition
• Important relative humidities:

• Precipitation of NaCl ~ 75 % RH
• Precipitation of MgCl2 ~ 35 % RH 98 % RH ~ 0.6 M NaCl



• In atmospheric scenarios, salt enabled deliquescence is possible

Thin Atmospheric Water Layers

9
R.M. Katona, A.W. Knight, E.J. Schindelholz, C.R. Bryan, R.F. Schaller, R.G. Kelly. 

Electrocimicha Acta. Accepted. (2020).

• WL dependent upon:
• Salt composition
• Relative humidity
• Temperature
• Loading density

• Under typical conditions a 
WL < 200 µm is expected

• Due to condensation, rain, or salt spray, WLs above 1,000 µm are likely, at 
least transiently



• Alloys are commonly exposed to atmospheric, marine environments
• Through salt enabled deliquescence or salt spray the creation of a water 

layer (WL) on the surface of an alloy allows for a corrosion cell to form

Atmospheric corrosion

10

• Many factors will 
influence the corrosion

• WL
• Solution composition
• Solution concentration
• Temperature
• Alloy
• Reaction mechanisms



• Seasonal and diurnal fluctuations of 
temperature

• One specific application of work is for 
spent nuclear fuel storage

• Combination of ambient temperatures, 
ambient RH, and surface temperature

Temperatures
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FCRD-UFD-2012-000114 Figure 7.3

NaCl Deliquescence

MgCl2 Deliquescence
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• Failure mechanisms for SS
• Pitting corrosion, crevice corrosion, and stress corrosion cracking

• Pitting corrosion typically initiated at magnesium sulfide (MnS) inclusions
• Creation of an aggressive environment through metal ion hydrolysis

SS Susceptibility to Localized Corrosion

13T.D. Weirich, et al., J. Electrochem. Soc. 166 (2019) C3477–C3487.



• There are various mechanisms for pit initiation, however always will have 
an aggressive environment in the pit

• Dissolution supported by cathodic reduction reaction
• In atmospheric scenarios typically thought to be oxygen reduction 

reaction

SS Reaction Mechanisms

14

� 2 + 2� + + 4� −→4� � −

• Literature determined 
reaction mechanisms focus 
on dilute solutions typically 
at room temperature



• Corrosion reaction mechanisms in high chloride containing solutions 
across a wide range of relative humidity and temperature

What is missing in localized corrosion?
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• Prediction and validation of localized corrosion in atmospheric environments 
containing various solution properties



• What mechanisms control how external (solution composition, solution 
concentration, geometry, temperature) and internal (material) factors 
affect pitting and stress corrosion? 

• To what extent can we predict damage from localized corrosion and stress 
corrosion cracking and what are the governing factors in these 
predictions?

Critical Dissertation Questions
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• For NaCl solutions (high RH), oxygen reduction (ORR) is dominant cathodic 
reduction reaction

Cathodic Reaction Mechanisms

18R.M. Katona et al., J. Electrochem. Soc. 168 (2021) 031512. 

� 2 + 2� + + 4� −→4� � −

• Holds for all concentrations (0.6 – 5.3 M) and temperatures (25-45 ˚C) of 
NaCl explored 



• NaOH solutions (evolved cathode of NaCl) exhibit one-electron transfer 
ORR as rate limiting step

Cathodic Reaction Mechanisms

19R.M. Katona, et al., Submitted to Journal of the Electrochemical Society (2021).

� 2 + � −↔�� −
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• ORR suppression in NaOH solutions
• Decrease in current density in NaOH 

solution in comparison to NaCl solutions



• Hydrogen evolution (HER) dominant in MgCl2 brines (low RH)
• Also present at elevated temperatures and for seawater solutions

Cathodic Reaction Mechanisms

20R.M. Katona, et al., Corros. Sci. 177 (2020) 108935.

• Proposed HER due to ORR suppression due to precipitate formation in 
brine and localized corrosion



• Visualization of precipitate formation in MgCl2 solutions as a function of 
cathodic polarization

In-situ Spectroelectrochemistry

21R.M. Katona, et al., Electrochem. Commun. 118 (2020) 106768.

• Mg(OH)2 identified
• ORR suppression
• MgCO3 not kinetically stable

• Technique development to control boundary 
layer with flow rate



• Across wide range of solutions, various mechanisms are dominant

Cathodic Kinetics Summary
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• Now that we know mechanisms, we can model corrosion scenarios



• In chloride environments, pitting is highly probable, therefore worried 
about maximum extent of corrosion

• Pits (anode) are inherently coupled to the surrounding cathode 

Modeling Localized Corrosion
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• Anode can only grow if sufficient supply from cathode
• Cathode current limited by reaction mechanism and physical geometry 

(water layer, sample size, etc.)

Limited Cathode Size -> Limited Cathodic Current -> Limited Supply 
for Anodic Dissolution -> Finite Pit (Anode)



Background – Pit Propagation

24
[1] Srinivasan, J. and Kelly, R. G., Corrosion, Vol. 73, 2017, p. 613–633

[2] Galvele, J. R.,, Corrosion Science, Vol. 21, 1981, p. 551–579

Studied through lead-in-pencil 
experiments under a salt film (full 

saturation) [1]

Schematic of 1-D scenario with active alloy 
surrounded by no flux (J) boundary (J=0)



Converted to hemisphere by a 
geometric factor of 3

Background – Pit Propagation
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• Ohmic drop in cathode 
governed by current 
densities, water layer 
thickness, and conductivity

Cathode Supply
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• Cathode current function of 
conductivity, WL, electrochemical 
potentials, anode radius, and equivalent 
current density



• Putting it all together
• Anodic demand determined by ability to maintain aggressive 

environment
• Finite cathodic current given by ohmic drop in thin electrolyte layers

Modeling Localized Corrosion
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Anodic Demand = Cathodic Supply -> Max pit



• Predicted maximum pit sizes 
relatively invariant to temperature 
fluctuations

• Competing phenomena between 
cathode supply and anodic 
demand

• Temperature variations may not be 
as important

Elevated Temperatures

28R.M. Katona, et al., J. Electrochem. Soc. 166 (2019) C3364–C3375.



• Larger pit size in NaCl solutions despite nearly half the chloride 
concentration

Change in Solution Composition
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• MgCl2 experiences ORR suppression and decreased conductivity
• MgCl2 increased demand for anodic dissolution potentially due to 

common ion effect

Cathodic current dominating factor in 
determining maximum pit sizes 



• 104-week exposures of SS304L to 
sea water solutions at 35 ˚C

• 40 % sea salt brine ~ saturated 
MgCl2 with thinner water layer

• 76 % sea salt brine ~ saturated 
NaCl

• Conservative estimates of the 
maximum pit 

• Roughly 1.5 x larger estimate

Comparison to Long Term Exposures

30J. Srinivasan, et al. J. Electrochem. Soc. 168 (2021) 021501. 

76 % Max Pit ~ 230 µm
40 % Max Pit ~ 110 µm

Can we decrease the error in our 
predicted maximum pit sizes?



• Current model assumes constant cathode, however, direct observation of 
precipitates on surface of alloy 

Improved Prediction for Maximum Pit Sizes
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Mg(OH)2

• Above pHcrit precipitation occurs and 
can cause:

• Changes in conductivity
• Changes in WL thickness

• Will directly impact cathodic kinetics



• Cathodic reactions cause pH rise
• Can calculate OH- production at a 

given pit depth and convert to a pH

Modeling Cathode Precipitates
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• Initially for MgCl2 solutions
• Decrease in pit size by roughly 75 µm when 

considering precipitation
• Decrease in conductivity by roughly a 

factor of 1.5

Influence of Precipitation on Max Pit Sizes

33R.M. Katona, et al. Electrochim. Acta. 370 (2021) 137696.



• When comparing to exposures, prediction of maximum pit sizes with 
precipitation is directly inline for 40% RH 

Re-Comparison to Long Term Exposures

34J. Srinivasan, et al. J. Electrochem. Soc. 168 (2021) 021501. 

40 % Max Pit ~ 70 µm

76 % Max Pit ~ 190 µm



• What mechanisms control 
how external (solution 
composition, solution 
concentration, geometry, 
temperature) and internal 
(material) factors affect 
pitting and stress 
corrosion? 

Answered Questions
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• To what extent can we predict 
damage from localized corrosion 
and stress corrosion cracking and 
what are the governing factors in 
these predictions?



• Kinetics of pit growth and 
metastable pitting

• Pit to crack transition 

What is still missing?

36
J. Srinivasan, et al. J. Electrochem. Soc. 168 (2021) 021501.

N.E.C. Co, J.T. Burns, Int. J. Fatigue. (2017). 

• Stress Corrosion Cracking
• In-situ crack growth rate 

measurements in atmospheric 
conditions

• Understanding crack tip 
electrochemistry



Extension of Work, Future Work, and Potential 
Applications
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• Finite Element Modeling in a galvanic couple
• Many trends with temperature and chloride 

concentration hold in galvanic couple

Extension of Work to Galvanic Modeling
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• Enhanced modeling  tracking pH and chemical speciation using finite 
element modeling techniques

Future work
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• Overall project was supporting modeling efforts to help identify potential 
materials degradation for spent nuclear fuel canisters

• Goal to help identify potential hot spots for materials degradation (local 
to canister and around the country)  

Modeling in Consulting 

40

FCRD-UFD-2012-000114 Figure 7.3



• Utilizing Finite Element Modeling in order to inform upon coating efficacy 
and potential failure

Modeling in Consulting 

41R.S. Marshall, et al., Corrosion. 76 (2020) 476–484.

• Identify potential areas for failure in different geometries



• Assessing failure mechanisms by in-
situ crack growth rate 

• Performing ex-situ microscopy in 
order to help determine stress 
corrosion cracking morphologies

Failure Analysis

42

Crack Propagation

• Combine with modeling to get overall 
picture of cracking mechanisms

 FEM Schematic of Crack
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• In accelerated corrosion scenarios, WL thicknesses are based on angle of 
exposure

Putting the WL into Perspective

46R.M. Katona, S. Tokuda, J. Perry, R.G. Kelly, Corros. Sci. 175 (2020) 108849.

• Under ASTM B117 (15 – 30˚),  WL varies from 660 – 1210 µm
• Transient WL present at certain angles of exposure 

�



• When using a rotating disk electrode (RDE) a hydrodynamic boundary 
layer can simulate WL thicknesses

Putting the WL into Perspective

47



• MgCl2 solutions exhibit no rotational dependence when using an RDE
• IC/W only increases with increasing WL

• Ohmic control
• No M-T limitations

Changing Solution

48R.M. Katona, J.C. Carpenter, A.W. Knight, C.R. Bryan, R.F. Schaller, R.G. Kelly, E.J. 
Schindelholz, Corros. Sci. 177 (2020) 108935.
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• At small WL, NaCl has a higher IC/W
• Due to current density dependence on WL

• When increasing WL, NaCl experiences more M-T limitations whereas MgCl2 
does not due to a lack of WL dependence on the cathodic kinetics

Changing Solution

50R.M. Katona, J.C. Carpenter, A.W. Knight, C.R. Bryan, R.F. Schaller, R.G. Kelly, E.J. 
Schindelholz, Corros. Sci. 177 (2020) 108935.



• Natural convection occurs in 
solutions that have thermally 
or compositionally driven 
spatially inhomogeneous 
density distributions 

• When oxygen is being 
reduced:

Natural Convection Boundary Layer

51

• Determines the transition between atmospheric and bulk conditions

� 2 + 2� + + 4� −→4� � −



• Limiting current densities can be 
predicted based on Fick’s first law:

• If there was no natural convection 
creating a boundary layer, 

Natural Convection Boundary Layer

52C. Liu, J. Srinivasan, R.G. Kelly, J. Electrochem. Soc. 164 (2017) C845–C855.

• Liu et al. determined the natural convection boundary layer to be roughly 
800 µm in 0.6 M NaCl

���� →0δ�→�∞



Natural Convection Boundary Layer

53R.M. Katona, J.C. Carpenter, A.W. Knight, C.R. Bryan, R.F. Schaller, R.G. Kelly, E.J. 
Schindelholz, Corros. Sci. 177 (2020) 108935.

• Trends hold for MgCl2 solutions
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• Mass transport in 
electrochemical systems can 
be described with 
dimensionless values

• Literature results match well with fit



Modeling in a Galvanic Couple
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• Potential at the interface is 
the AA/SS304L coupling 
potential

• Potential far away from 
interface is OCP of SS304L

• Current density high near 
the interface and decays 
when moving from the 
interface

• Evaluate IC/W by integrating 
current along the cathode

Modeling in a Galvanic Couple
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• Continuously increasing the WL at the same cathode size will not increase 
the current 

• Current is now fully limited by the cathode size

Increasing WL Thickness
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• Further increasing cathode length increases IC/W
• IC/W scales with cathode size

Increasing Cathode Length and WL
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Increasing Temperature
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• Increasing chloride concentration decreases IC/W in most cases
• Shouldn’t current increase? -> More corrosion damage?
• Limited by the mass transport in the system

Increasing Chloride Concentration
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• Cathode size is very important in 
accelerated testing scenarios

Implications
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larger cathodes (0.3 and 
0.5 m) in comparison to 
the smaller cathode (0.01 
m)
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• Same cathode length at different angles will experience different corrosion 
damage

• Tests experience large test-to-test and chamber-to-chamber variability
• Difficult to extrapolate corrosion damage to real life scenarios



MgCl2 Cathodic Kinetics
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