

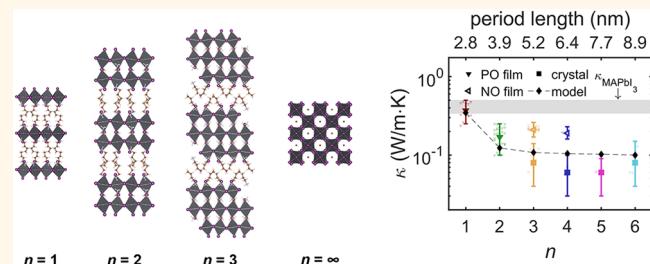
Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden–Popper Phase Perovskites

Alexander D. Christodoulides,* Peijun Guo, Lingyun Dai, Justin M. Hoffman, Xiaotong Li, Xiaobing Zuo, Daniel Rosenmann, Alexandra Brumberg, Mercouri G. Kanatzidis, Richard D. Schaller, and Jonathan A. Malen*

Cite This: <https://dx.doi.org/10.1021/acsnano.0c03595>

Read Online

ACCESS |

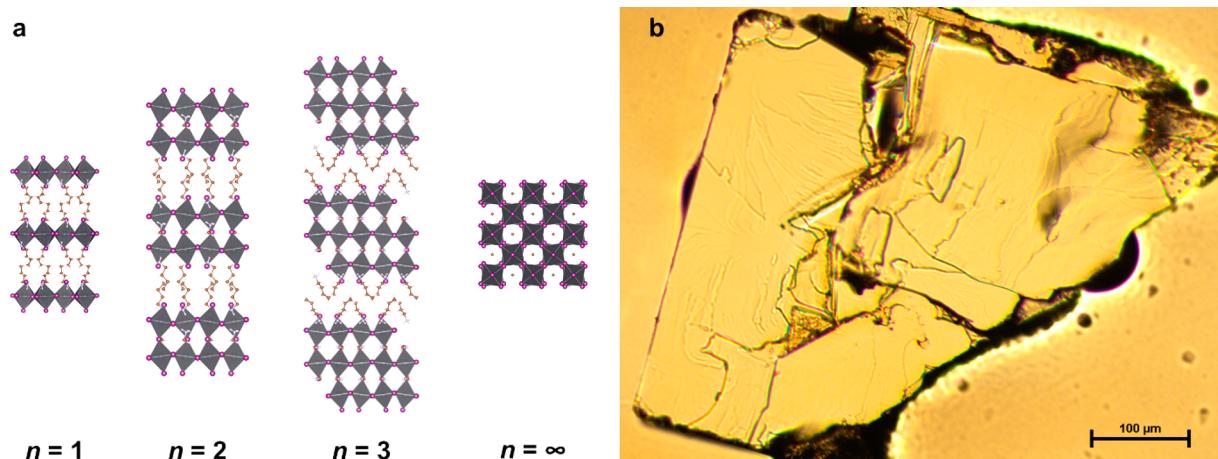

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: An emerging class of methylammonium lead iodide (MAPbI_3)-based Ruddlesden–Popper (RP) phase perovskites, $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$ ($n = 1–7$), exhibit enhanced stability to environmental conditions relative to MAPbI_3 , yet still degrade at elevated temperatures. We experimentally determine the thermal conductivities of these layered RP phases for $n = 1–6$, where n defines the number of repeated perovskite octahedra per layer. We measure thermal conductivities of $0.37 \pm 0.13/0.12$, $0.17 \pm 0.08/0.07$, $0.21 \pm 0.05/0.04$, and $0.19 \pm 0.04/0.03$ $\text{W/m}\cdot\text{K}$ in thin films of $n = 1–4$ and $0.08 \pm 0.06/0.04$, $0.06 \pm 0.04/0.03$, $0.06 \pm 0.03/0.03$, and $0.08 \pm 0.07/0.04$ $\text{W/m}\cdot\text{K}$ in single crystals of $n = 3–6$. With the exception of $n = 1$, these thermal conductivities are lower than the range of $0.34–0.50$ $\text{W/m}\cdot\text{K}$ reported for single-crystal MAPbI_3 . Reduced-order lattice dynamics modeling suggests that the initially decreasing trend of thermal conductivity in similarly oriented perovskites with increasing n may result from the transport properties of coherent phonons, emergent from the superstructure, that do not scatter at the interfaces of organic butylammonium chains and perovskite octahedra. Reduced group velocity of coherent phonons in $n = 3–6$, a consequence of band flattening in the phonon dispersion, is primarily responsible for their ultralow thermal conductivities. Similar effects on thermal conductivity have been experimentally demonstrated in deposited superlattices, but never in naturally defined materials such as RP phases. GIWAXS measurements reveal that higher n RP phase thin films are less orientationally controlled and therefore possess apparently elevated thermal conductivities relative to single crystals of the same n .

KEYWORDS: thermal transport, methylammonium lead iodide, 2D perovskites, layered materials, photovoltaics, optoelectronics



Methylammonium lead iodide (MAPbI_3), a hybrid organic–inorganic perovskite (HOIP) belonging to the lead halide perovskite family, is a semiconducting material that has been widely considered for next-generation photovoltaic (PV) and optoelectronic (OE) applications.^{1–7} Researchers have exploited its facile processability,⁷ notable defect tolerance,^{4,6,8} long carrier lifetime,^{4,6,9,10} high absorption coefficient,¹ and suitable optical bandgap² to develop MAPbI_3 -based solar cells that have improved in power conversion efficiency (PCE) from less than 3% to 24% in just over a decade.^{1,3,11} The impressive external luminescence efficiency and color quality of this HOIP have also made it a material of interest in light-emitting and lasing applications.^{1,3,4}

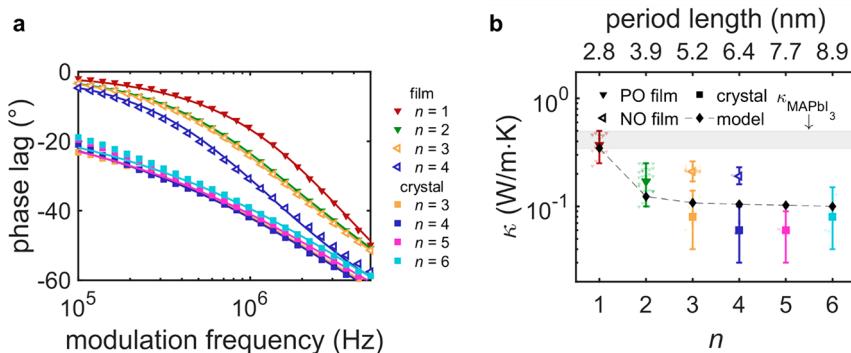
Despite such promising characteristics, MAPbI_3 is inherently unstable and tends to rapidly degrade into solid PbI_2 and vaporous MA^+ and I^- .^{12,13} This process occurs even in dark vacuum environments and is accelerated by oxygen,¹⁴ moisture,^{14–16} light,^{15,17,18} and, of central importance to this study, elevated temperature.^{15–18} Careful synthesis,¹⁹ encapsu-

Received: April 29, 2020

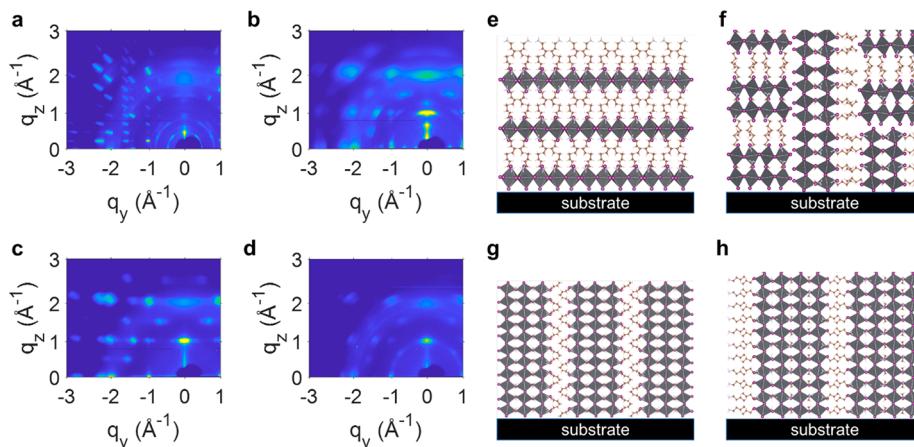
Accepted: February 19, 2021

Figure 1. (a) Crystal structure of $n = 1$ –3 homologous members, where n represents the number of perovskite octahedra per organic layer and dictates the thickness of the inorganic layers. As n approaches infinity, the formula describes 3D MAPbI_3 . (b) Optical microscope image of a Au-coated single crystal of $n = 6$ ($\text{BA}_2\text{MA}_5\text{Pb}_6\text{I}_{19}$).

lation,^{11,20} and pinhole control²¹ can increase the material's resilience and lifetime but not significantly enough to make it competitive with more stable alternative PV and OE materials such as Si- or Ga-based compounds. Prior studies have shown that exposing MAPbI_3 to temperatures as modest as 75–85 °C leads to degradation rates significantly faster than that at room temperature.^{12,16–18,22} This thermal instability is responsible for the failure to meet international standards for solar cells, which require that they remain stable up to at least 85 °C (IEC 61646).²³ The exceptionally low thermal conductivity of single-crystal MAPbI_3 , reported to be $\kappa = 0.34$ –0.50 W/m·K,^{24–27} makes proper thermal management a major challenge to its stability and longevity in devices.


Two-dimensional, layered perovskite structures such as Ruddlesden–Popper (RP) phases have been developed in an effort to retain the desirable features of 3D HOIPs, such as solution processability, and catalyze stability and excitonic effects more akin to conventional PV materials.^{28–30} In these structures, n layers of perovskite octahedral cages are separated by organic cationic spacers. The MAPbI_3 -based RP phases, $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$ (BA = butylammonium) (see Figure 1a), exhibit improved stability in moisture- and light-rich environments due to the presence of hydrophobic BA chains and demonstrate PCEs as high as ~12.5%.^{30–32} These RP phases have shown degradation at 80 °C, though at slower rates than MAPbI_3 .¹⁵ However, their thermal conductivities and the underlying phonon transport mechanisms, which control their ability to dissipate heat, remain unclear. A recent experimental study of multiple lead halide 2D layered perovskites finds that their thermal conductivities are related to the orientation of the organic spacers relative to the inorganic layers.³³ The importance of the inorganic layer thickness and interface density, controlled by n , was not considered since the structures were not derivatives of the same perovskite family. Meanwhile, Rasel *et al.* hypothesize that the decreasing thermal conductivity they observe in $(\text{C}_n\text{H}_{2n+1}\text{NH}_3)_2\text{PbI}_4$ 2D perovskites with increasing n may result from phonon transport dependency on organic-chain length.³⁴

To that end, interest in the thermal conductivity of $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$ RP phases is 2-fold. Practically, the thermal conductivity is important to maintain appropriate temperatures during device operation. Fundamentally, the naturally occurring 2D architecture of these structures allows for the possibility of

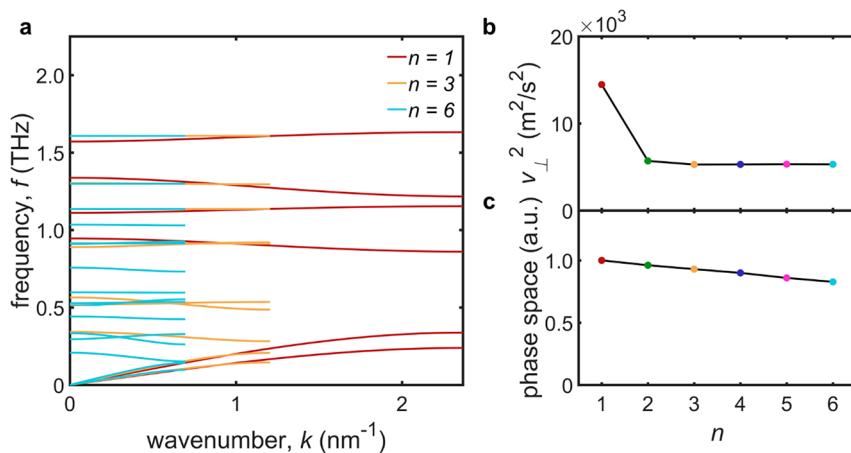

coherent interlayer phonon transport. In the context of 91 superlattices, this occurs when phonon modes emerge from 92 the secondary periodicity rather than scatter at the structure's 93 associated interfaces and therefore exhibit "wave-like" instead of 94 "particle-like" transport.^{35,36} The so-called coherent phonons 95 can have mean free paths greater than the superlattice period, 96 thus enabling higher thermal conductivities than would be 97 expected in a purely particle-like regime. However, such 98 coherent phonon enhancements to thermal conductivity of 99 layered materials can be hindered by imperfect interfaces that 100 destroy periodicity^{35,36} and thus have only been observed in a 101 few cases such as in very high-quality epitaxial oxide 102 heterostructures³⁴ and GaAs/AlAs superlattices.³⁶

Secondary periodicity and the resulting coherent phonons 104 have been studied in RP phases,^{37–39} and their effect on thermal 105 conductivity has been considered with mixed conclusions.^{40,41} A 106 recent transient reflectance study describes longer period 107 oscillations in $(\text{PEA})_2\text{Pb}_n\text{I}_{3n+1}$ RP phases with increasing n .¹⁰⁸ While they do not consider how this affects phonon speed, they 109 speculate that it will cause thermal conductivity to increase with 110 increasing n .⁴⁰ By contrast, through atomic-level simulations, a 111 separate study concluded that the thermal conductivity of a 112 SrTiO_3 -based RP phase should decrease with increasing n .⁴¹ 113 Clearly, more experimental thermal conductivity data are 114 required to understand the complex phonon physics and 115 thermal transport in RP phases.¹¹⁶

Here, we determine the cross-layer thermal conductivity of 117 thin film and single-crystal $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$ RP phases for $n =$ 118 1–6 using a high-resolution optical pump–probe technique 119 known as frequency-domain thermoreflectance (FDTR).⁴² In 120 doing so, we distinguish the relationship between the thermal 121 conductivity of these RP phases and that of MAPbI_3 to consider 122 the implications on the thermal performance and longevity of 123 devices that may implement this class of perovskite material. 124 Moreover, we experimentally observe a decrease in thermal 125 conductivity with increasing n in low- n RP phases of similar 126 orientation, suggesting that the contribution of coherent 127 phonons diminishes as the interface density decreases. We 128 reason that this phenomenon, coupled with the other tunable 129 properties of $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$, identifies pathways for 130 functionality in a wide variety of devices.¹³¹

Figure 2. (a) FDTR phase lag data (markers) and fits (lines) for $n = 1-4$ thin films and $n = 3-6$ single crystals. (b) Room-temperature thermal conductivity of $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$ as a function of n for $n = 1-6$. Downward and sideways facing triangles represent thin films that have layers of parallel orientation (PO) and normal orientation (NO) with respect to the substrate, respectively. Squares represent single crystals, and black diamonds represent the predicted thermal conductivity by a reduced-order lattice dynamics model. Semitransparent data are individual measurements, and opaque data are medians of all measurements for the respective sample, where error bars represent the 90th and 10th quantiles of fit distributions generated using a Monte Carlo estimation of uncertainty. The gray-shaded region indicates the range of thermal conductivities reported in the literature for MAPbI_3 . Period length of the respective structure is labeled on the top axis.

Figure 3. GIWAXS measurements (a-d) and structural interpretation (e-h) of $n = 1-4$ thin films. The $[0\ 1\ 0]$ crystal direction of $n = 1$ is oriented normal to the substrate, while this same direction in $n = 3$ and $n = 4$ thin films is loosely parallel to the substrate. $n = 2$ appears to be bimodal, possessing a 2:1 ratio of grains with the $[0\ 1\ 0]$ crystal direction oriented normal and parallel to the substrate.


RESULTS AND DISCUSSION

We examine thin films of $n = 1-4$ (thickness range of 40–240 nm) and single crystals of $n = 3-6$ (size range of 0.5–2 mm) (see Figure 1b). Single crystals of $n = 1, 2$ could not be repeatedly measured due to their typically smaller size (less than 200 μm), irregular shape, and rough surface topography. We measure thermal conductivity across numerous samples of both single crystals and thin films using FDTR. FDTR periodically heats the sample and monitors the phase lag of surface temperature to heat flux, which is fit using an analytical solution to the heat diffusion equation to extract the sample's unknown thermal conductivity (see Methods for details on sample preparation and FDTR). Fits based solely on thermal conductivities (κ) of RP phases, shown as solid lines in Figure 2a, consistently match the experimental phase lag data over a wide range of frequencies and support the accuracy of this approach.

The thermal conductivities (κ) of $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$ RP phases are shown as a function of n for $n = 1-4$ thin films and $n = 3-6$ single crystals in Figure 2b. Individual measurements are shown as semitransparent markers, whereas the central tendency, represented by the median, for each n is shown as an opaque marker. Upper and lower error bars represent the 90th and 10th quantiles of the distribution of fits generated by

Monte Carlo estimation method, which is used to assess the uncertainty in κ from measurement variability and propagated uncertainty from fitting parameters (see SI Section 2.5).^{43,44} The κ values of the thin film RP phases of $n = 1-4$ are ultralow at $0.37 \pm 0.13/0.12$, $0.17 \pm 0.08/0.07$, $0.21 \pm 0.05/0.04$, and $0.19 \pm 0.04/0.03$ W/m·K, and that of the single-crystal RP phases of $n = 3-6$ are even lower at $0.08 \pm 0.06/0.04$, $0.06 \pm 0.04/0.03$, $0.06 \pm 0.03/0.03$, and $0.08 \pm 0.07/0.04$ W/m·K. The κ values of the thin film RP phases initially decrease as n increases, consistent with increased coherent phonon contributions to thermal conductivity in lower n phases. The κ values of $n = 3-6$ single-crystal phases are among the lowest reported for fully dense solids.⁴⁵ Additionally, we note that κ values of thin films are larger than that of single crystals for $n = 3, 4$, contrary to the expectation of lower κ due to phonon boundary scattering in thin films.

To discern the origins of the discrepancy between thin films and single crystals, we perform grazing-incidence wide-angle X-ray scattering (GIWAXS) to assess the compositional purity and orientational control of thin film samples of $n = 1-4$. As a hybrid of wide-angle scattering and grazing incidence diffraction, in GIWAXS an X-ray beam is directed at an angle near that of total external reflection with respect to the film surface. Lengths on

Figure 4. (a) Phonon dispersion relationship of $n = 1, 3$, and 6 RP phases in the cross-layer $[0\ 1\ 0]$ direction. (b) Average cross-layer group velocity of $n = 1\text{--}6$ RP phases. (c) Total phase space, normalized to that of $n = 1$, of $n = 1\text{--}6$ RP phases.

178 the order of tens of angstroms, corresponding to the d -spacing in
 179 solid-state materials, can be accessed because of the close
 180 distance between the detector and the sample. Additionally, the
 181 use of a 2D detector allows for the determination of the
 182 orientation of diffraction planes in the sample relative to the
 183 substrate based on the position along the angular axis χ in which
 184 the peak appears.^{15,46}

185 GIWAXS data are shown in Figure 3a for $n = 1\text{--}4$. The peaks
 186 present in the measurement for $n = 1$ indicate a high level of
 187 orientational consistency with layers oriented parallel to the
 188 substrate as shown in Figure 3e. This result confirms our
 189 observation of ultralow cross-layer thermal conductivity (κ_{\perp}) in
 190 this RP phase, since FDTR measurements primarily probe
 191 thermal transport properties normal to the substrate surface.
 192 Interestingly, small peaks at low q indicate that there are some
 193 impurities in $n = 1$ samples, possibly resulting from solvated
 194 phases created during film formation.^{47,48} Data for $n = 2$, shown
 195 in Figure 3b, appear bimodal, with the layers oriented normal
 196 and parallel to the substrate surface, with the normal orientation
 197 being about twice as common as depicted in Figure 3f. This ratio
 198 is determined through calculation of the area under the $(1\ 1\ 1)$
 199 peak for each orientation (see SI Section 3.2). Data for $n = 3, 4$
 200 shown in Figure 3c and d have layers oriented normal to the
 201 substrate depicted in Figure 3g and h. Notably, the $n = 4$ member
 202 has peaks that have been broadened along χ , the angular axis,
 203 which indicates that the layers deviate by a couple of degrees
 204 from perfectly normal. In this orientation, heat will flow along
 205 the layers for $n = 3, 4$. We expect that the in-layer κ of RP phases
 206 will more closely resemble that of bulk MAPbI_3 ($\kappa = 0.34\text{--}0.50$
 207 $\text{W}/\text{m}\cdot\text{K}$) as phonons travel along the inorganic lead iodide
 208 layers. Hence, higher measured values of thermal conductivity
 209 for $n = 3, 4$ thin films, relative to single crystals, are not a true
 210 reflection of κ_{\perp} , but are rather a consequence of the films' grain
 211 orientations.

212 In addition to GIWAXS, we characterize the composition and
 213 orientation of structures in $n = 1\text{--}4$ RP thin films using powder
 214 X-ray diffraction, or PXRD (see SI Section 4). We find that peaks
 215 in the $n = 1$ measurement correspond to planes parallel to the
 216 substrate and that there are no features consistent with other
 217 orientations. Our measurement of $n = 2$ corroborates the
 218 bimodal distribution of orientations observed in the GIWAXS
 219 measurement, with peaks being associated with planes both
 220 perpendicular and parallel to the substrate. The major peak
 221 found in the measurements of $n = 3, 4$ thin films corresponds to

222 the $(2\ 0\ 2)$ plane, and the minor peak is associated with the $(1\ 1\ 223$
 224 1) plane that lies at an angle with respect to the substrate. Given
 225 that the former peak is significantly stronger than the latter, we
 226 conclude that the majority of the structure is oriented
 227 perpendicular to the substrate in both films.

228 While our measurements are consistent with the value
 229 reported by Giri *et al.* for the $n = 4$ thin film with similar
 230 orientation ($0.19 \pm 0.04/0.03 \text{ W}/\text{m}\cdot\text{K}$ vs $0.17 \pm 0.03 \text{ W}/\text{m}\cdot\text{K}$),³³ we find lower values of κ_{\perp} in $n = 4$ single crystals due to
 231 transport being exclusively cross-layer. We measure a com-
 232 paratively higher κ_{\perp} in $n = 1$, or $(\text{CH}_3\text{NH}_3)_2\text{PbI}_4$, thin films than
 233 that reported by both Giri *et al.* for thin films ($0.18 \pm 0.04 \text{ W}/\text{m}\cdot\text{K}$)³³ and Rasel *et al.* for single crystals ($0.125 \pm 0.089 \text{ W}/\text{m}\cdot\text{K}$).³⁴ Notably, the steady-state temperature rise in samples of $n = 1$ resulting from our laser heating (14.6 K, see SI Section 2.6) is similar to that of Giri *et al.* (14 K) and is lower than that of Rasel *et al.* (30 K). It is possible that the lower thermal conductivity reported by Rasel *et al.* may arise from laser heating induced structural rearrangements that they hypothesize exist at and beyond ~ 325 K based on their heat capacity data. Such structural rearrangements could hinder phonon transport and therefore reduce apparent thermal conductivity. By comparison, the difference between our reported value and that of Giri *et al.* may originate from variation in film preparation, particularly the use of different solvents and substrate temperatures during deposition, which are well known to affect film morphology, homogeneity, and composition.^{31,48–50}

240 The overarching trend in Figure 2b is that κ_{\perp} (filled opaque
 241 data in Figure 2b; $n = 1, 2$ thin films and $n = 3\text{--}6$ single crystals)
 242 of the RP phases initially decreases as n and the interface spacing
 243 increases and levels off at higher n . Generally, our findings
 244 suggest that thermal conductivity is possibly related to layer
 245 spacing by way of coherent phonon transport. In any superlattice
 246 there will be a coexistence of emergent coherent phonons that
 247 transmit through interfaces, and incoherent phonons that
 248 maintain the character of one constituent layer and scatter at
 249 the interfaces. The particle description of phonons suggests that
 250 increased interface spacing enables longer phonon mean free
 251 paths and therefore higher thermal conductivity. Since we
 252 observe the opposite trend, it appears that coherent phonons
 253 may contribute significantly to the thermal conductivity of $n = 1, 2$ RP phases. We hypothesize that phonon coherence plays a less
 254 significant role in the thermal conductivities of $n = 3\text{--}6$ phases
 255 given their relative insensitivity to n .

266 The cross-layer thermal conductivity can be expressed as

$$\kappa_{\perp} = \sum_{\beta} C_{\beta} v_{\perp, \beta}^2 \tau_{\beta} \quad (1)$$

267

268 where β indexes the phonon mode and C , v_{\perp} , and τ represent the
269 modal heat capacity, cross-layer component of group velocity,
270 and relaxation time. To quantitatively understand the effect of
271 coherent phonon group velocity on κ_{\perp} in $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$, we
272 perform a reduced-order harmonic lattice dynamics calculation.
273 To limit computational cost and modeling complexity,⁵¹ we
274 group atoms together to form octahedron-like and BA-like beads
275 (see SI Section 5.1) that interact harmonically according to the
276 equations of motion. Three spring constants are invoked to
277 generate the equations of motion in this system: octahedron–
278 octahedron, BA–BA, and BA–octahedron. The first is fit from
279 the experimental dispersion of MAPbI_3 ,⁵² whereas the other two
280 are derived from experimentally determined sound speeds.⁵³
281 These equations of motion are used in an assumed plane wave
282 solution to determine the coherent phonon dispersion
283 relations.^{54–57} With BA omitted, the model accurately
284 reproduces the acoustic phonon dispersion of MAPbI_3 (see SI
285 Section 5.3).⁵² By using a reduced-order model, we ignore high-
286 frequency incoherent phonon modes due to the localized
287 internal vibrations of the MAPbI_3 or BA molecules.

288 The nonintuitive trend in κ_{\perp} with n can be explained by the
289 lattice dynamics that capture the effects of emergent coherent
290 phonons. In Figure 4a we show the phonon dispersion
291 relationships for $n = 1, 3$, and 6 in the cross-layer [0 1 0]
292 direction. As n increases there is more band flattening at high
293 wavevectors and an increased number of phonon bandgaps
294 resulting from the increased bead number density. Generally,
295 this band flattening reduces the cross-layer coherent phonon
296 group velocities and is especially pronounced between $n = 1$ and
297 $n = 2$. The Brillouin zone averaged v_{\perp}^2 decreases by more than
298 60% from $n = 1$ to $n = 2$, then decreases more gradually with
299 increasing n , as shown in Figure 4b. Phonon scattering trends
300 with n may, however, produce a competing effect on thermal
301 conductivity. The fraction of the phonon frequency range
302 occupied by bandgaps increases with increasing n , which reduces
303 the phase space for scattering of coherent phonons (*i.e.*, the
304 number of possible three-phonon scattering events that
305 conserve energy and momentum) as shown in Figure 4c.
306 Reduced phonon phase space typically causes increased
307 relaxation times and thus increased thermal conductivity, but
308 the gradual reduction in phase space with n may be offset by
309 reduced v_{\perp}^2 and an 8% reduction in C_{β} (see SI Section 5.4) to
310 create a flat κ_{\perp} trend for $n = 3–6$.

311 Our harmonic model cannot be used to directly predict κ_{\perp}
312 since the average phonon lifetime $\bar{\tau}_n$ for $n = 1–6$ is not modeled.
313 However, the correspondence of κ_{\perp} data to the average v_{\perp}^2 and the
314 relative invariance of phase space led us to fit eq 1 to the κ_{\perp} data
315 by choosing a single $\bar{\tau}$ across all n that minimizes the mean
316 square error. We find a $\bar{\tau}$ for coherent phonons across $n = 1–6$
317 RP phases of ~ 100 ps, resulting in a predicted thermal
318 conductivity that agrees well with experimental data across all
319 n (excluding films with $n = 3, 4$), as shown in Figure 2b. While
320 phonon relaxation times typically span orders of magnitude, the
321 close fit of κ_{\perp} among all n to a single $\bar{\tau}$ suggests that those of
322 coherent phonons that may contribute heavily to κ_{\perp} have a
323 narrower distribution. An average relaxation time of 100 ps
324 corresponds to average cross-layer mean free paths ($\bar{\Lambda}_{\perp} = \bar{\tau} \sqrt{v_{\perp}^2}$)

) of coherent phonons spanning 7 nm for $n = 6$ to 12 nm for $n = 325$
1, which are larger than or similar to the period length.³²⁶

CONCLUSIONS

In summary, we determine thermal conductivity perpendicular to the layers, κ_{\perp} , of $\text{BA}_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}$ RP phases using FDTR and find that it decreases with increasing n , particularly at low n . We predict that the observed trend in κ_{\perp} is due to a reduction in coherent phonon transport in higher n RP phases. According to our measurements, single crystals of $n = 3–6$ all present ultralow thermal conductivities on the order of the lowest ever observed in fully dense solids. Our coarse-grain 3D lattice dynamics calculations reveal that the average of the square of cross-layer sound velocity, \bar{v}_{\perp}^2 , of coherent phonons decreases with n at a rate consistent with our experimental κ_{\perp} data. Our findings suggest that while these RP phases are more stable than MAPbI_3 at elevated temperatures, their ultralow κ_{\perp} may make maintaining serviceably low temperatures challenging. However, varying n allows for tunability in thermal conductivity and other material properties, which unlocks a myriad of possibilities for design in PV, OE, and thermal transport applications.

METHODS

Sample Preparation. Thin film RP phases with thicknesses of 40–240 nm are spin coated onto Si substrates. Single crystals, typically 0.5–2.0 mm in major dimension (as shown in Figure 1b), are precipitated from aqueous solution and epoxied to SiO_2 substrates. Single crystals are exfoliated using Kapton tape to expose a pristine layer of material. Thin films and single crystals are then sputtered or evaporated with 60–110 nm of Au. Profilometry is used to determine the thickness of the deposited Au layer, as well as that of the underlying perovskite layer in the case of the thin films. Samples are kept in a dark Ar glovebox environment except for transport, metal deposition, and measurement to minimize the possibility of contamination or exposure.

FDTR. In FDTR, the sample is heated by a 488 nm continuous-wave (CW) pump laser that is intensity-modulated over frequencies ranging from 100 kHz to 5 MHz. Periodic heating generates a periodic change in the sample's surface temperature, with a phase lag that depends on the thermal conductivity of the RP phase sample. Thermoreflectance of the Au coating causes modulation of a reflected 532 nm CW probe laser, and its phase lag relative to the pump is monitored by a lock-in amplifier. The phase lag of the probe to pump (temperature to heating) is fit to a solution of the heat diffusion equation for a periodically heated layered structure to determine the unknown RP phase thermal conductivity, as shown in Figure 2a.⁵⁸

The analytical solution used to fit the FDTR data relies on thermophysical properties of the sample such as its thickness and specific heat. The RP phases' volumetric heat capacities are not directly measured, so they are estimated based on the molar heat capacities of the structure's three constituent materials (BA, MAPbI_3 , and PbI_4) and the volume of the unit cell. In the case of the thin films, the fit solution is insensitive to this parameter within the range of our measurements (see SI Section 2.4), so imprecision in this approximation does not significantly impact the quality of fit, quantified as a mean-squared error.

GIWAXS. GIWAXS is performed at Beamline 12-ID-B of the Advanced Photon Source at Argonne National Laboratory. A PerkinElmer XRpad (PerkinElmer Inc.) detector is employed with the sample-to-detector distance set to 18 cm. The energy of X-ray radiation is 13.3 keV. The samples used in GIWAXS measurements are deposited on silicon wafer substrates. The substrates are first aligned to be parallel to the X-ray beam, and the GIWAXS data are collected at an X-ray beam incidence angle of $\sim 0.1^\circ$. Curves are fit to the data using the LineFit toolbox, while plots are generated using the GIXSGUI program.⁵⁹ Simulations of MAPbI_3 and BA at different orientations are created by LeeTool, a MATLAB-software package written by

389 Byeongdu Lee, available at the 12-ID-B beamline of the Advanced
390 Photon Source (APS) at Argonne National Lab.

391 ASSOCIATED CONTENT

392 Supporting Information

393 The Supporting Information is available free of charge at
394 <https://pubs.acs.org/doi/10.1021/acsnano.0c03595>.

395 Sample preparation and characterization, frequency-
396 domain thermoreflectance model parameters, sensitivity,
397 uncertainty, heating analysis, GIWAXS and PXRD
398 acquisition and analysis, lattice dynamics model frame-
399 work ([PDF](#))

400 AUTHOR INFORMATION

401 Corresponding Authors

402 **Alexander D. Christodoulides** — Department of Mechanical
403 Engineering, Carnegie Mellon University, Pittsburgh,
404 Pennsylvania 15213, United States; Email: achristo@andrew.cmu.edu

405 **Jonathan A. Malen** — Department of Mechanical Engineering,
406 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
407 United States; Department of Materials Science, Carnegie
408 Mellon University, Pittsburgh, Pennsylvania 15213, United
409 States; orcid.org/0000-0003-4560-4476;
410 Email: jonmalen@andrew.cmu.edu

412 Authors

413 **Peijun Guo** — Center for Nanoscale Materials, Argonne
414 National Laboratory, Lemont, Illinois 60439, United States;
415 Department of Chemical and Environmental Engineering, Yale
416 University, New Haven, Connecticut 06520, United States;
417 orcid.org/0000-0001-5732-7061

418 **Lingyun Dai** — Department of Mechanical Engineering,
419 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
420 United States

421 **Justin M. Hoffman** — Department of Chemistry, Northwestern
422 University, Evanston, Illinois 60208, United States

423 **Xiaotong Li** — Department of Chemistry, Northwestern
424 University, Evanston, Illinois 60208, United States;
425 orcid.org/0000-0001-7107-7273

426 **Xiaobing Zuo** — X-ray Sciences Division, Argonne National
427 Laboratory, Lemont, Illinois 60439, United States

428 **Daniel Rosenmann** — Center for Nanoscale Materials, Argonne
429 National Laboratory, Lemont, Illinois 60439, United States

430 **Alexandra Brumberg** — Department of Chemistry,
431 Northwestern University, Evanston, Illinois 60208, United
432 States; orcid.org/0000-0003-2512-4686

433 **Mercouri G. Kanatzidis** — Department of Chemistry,
434 Northwestern University, Evanston, Illinois 60208, United
435 States; orcid.org/0000-0003-2037-4168

436 **Richard D. Schaller** — Center for Nanoscale Materials, Argonne
437 National Laboratory, Lemont, Illinois 60439, United States;
438 Department of Chemistry, Northwestern University, Evanston,
439 Illinois 60208, United States; orcid.org/0000-0001-9696-8830

441 Complete contact information is available at:

442 <https://pubs.acs.org/doi/10.1021/acsnano.0c03595>

443 Notes

444 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

445 A.D.C., L.D., and J.A.M. acknowledge support from the Army
446 Research Office, Grant No. W911NF-17-1-0397, as well as
447 support from the Wilton E. Scott Institute for Energy
448 Innovation. A.B. acknowledges support from the National
449 Science Foundation Graduate Research Fellowship Program
450 under Grant No. DGE-1324585. M.G.K., A.B., and X.L.
451 acknowledge support from the Office of Naval Research
452 (ONR) under Grant N00014-20-1-2725. This work was
453 performed, in part, at the Center for Nanoscale Materials
454 using resources of the Advanced Photon Source, a U.S.
455 Department of Energy Office of Science User Facility, and
456 supported by the U.S. Department of Energy, Office of Science,
457 under Contract No. DE-AC02-06CH11357. 458

459 REFERENCES

- (1) Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. 460 Hybrid Organic-Inorganic Perovskites: Low-Cost Semiconductors with 461 Intriguing Charge-Transport Properties. *Nat. Rev. Mater.* **2016**, *1*, 462 15007. 463
- (2) Leguy, A. M. A.; Azarhoosh, P.; Alonso, M. I.; Campoy-Quiles, M.; 464 Weber, O. J.; Yao, J.; Bryant, D.; Weller, M. T.; Nelson, J.; Walsh, A.; 465 Van Schilfgaarde, M.; Barnes, P. R. F. Experimental and Theoretical 466 Optical Properties of Methylammonium Lead Halide Perovskites. 467 *Nanoscale* **2016**, *8* (12), 6317–6327. 468
- (3) Stranks, S. D.; Snaith, H. J. Metal-Halide Perovskites for 469 Photovoltaic and Light-Emitting Devices. *Nat. Nanotechnol.* **2015**, *10*, 470 391–402. 471
- (4) Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M.; Sum, T. C.; 472 Mathews, N.; Mhaisalkar, S. G. Perovskite Materials for Light-Emitting 473 Diodes and Lasers. *Adv. Mater.* **2016**, *28* (32), 6804–6834. 474
- (5) Raghavan, C. M.; Chen, T. P.; Li, S. S.; Chen, W. L.; Lo, C. Y.; 475 Liao, Y. M.; Haider, G.; Lin, C. C.; Chen, C. C.; Sankar, R.; Chang, Y. 476 M.; Chou, F. C.; Chen, C. W. Low-Threshold Lasing from 2D 477 Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perov- 478 skite Single Crystals. *Nano Lett.* **2018**, *18* (5), 3221–3228. 479
- (6) Du, M. H. Efficient Carrier Transport in Halide Perovskites: 480 Theoretical Perspectives. *J. Mater. Chem. A* **2014**, *2* (24), 9091–9098. 481
- (7) Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; 482 Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route to 483 High-Performance Perovskite-Sensitized Solar Cells. *Nature* **2013**, *499* 484 (7458), 316–319. 485
- (8) Miyata, K.; Meggiolaro, D.; Tuan Trinh, M.; Joshi, P. P.; Mosconi, 486 E.; Jones, S. C.; De Angelis, F.; Zhu, X. Y. Large Polarons in Lead Halide 487 Perovskites. *Sci. Adv.* **2017**, *3* (8), 1701217. 488
- (9) Herz, L. M. Charge-Carrier Dynamics in Organic-Inorganic Metal 489 Halide Perovskites. *Annu. Rev. Phys. Chem.* **2016**, *67* (1), 65–89. 490
- (10) Milot, R. L.; Sutton, R. J.; Eperon, G. E.; Haghighirad, A. A.; 491 Martinez Hardigree, J.; Miranda, L.; Snaith, H. J.; Johnston, M. B.; 492 Herz, L. M. Charge-Carrier Dynamics in 2D Hybrid Metal-Halide 493 Perovskites. *Nano Lett.* **2016**, *16* (11), 7001–7007. 494
- (11) Kim, H.; Lee, J.; Kim, B.; Byun, H. R.; Kim, S. H.; Oh, H. M.; 495 Baik, S.; Jeong, M. S. Enhanced Stability of MAPbI_3 Perovskite Solar 496 Cells Using Poly(*p*-Chloro-Xylylene) Encapsulation. *Sci. Rep.* **2019**, *9* 497 (1), 1–6. 498
- (12) Wang, S.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y. 499 Accelerated Degradation of Methylammonium Lead Iodide Perovskites 500 Induced by Exposure to Iodine Vapour. *Nat. Energy* **2017**, *2* (1), 1–8. 501
- (13) Berhe, T. A.; Su, W. N.; Chen, C. H.; Pan, C. J.; Cheng, J. H.; 502 Chen, H. M.; Tsai, M. C.; Chen, L. Y.; Dubale, A. A.; Hwang, B. J. 503 Organometal Halide Perovskite Solar Cells: Degradation and Stability. 504 *Energy Environ. Sci.* **2016**, *9*, 323–356. 505
- (14) Alberti, A.; Deretzis, I.; Pellegrino, G.; Bongiorno, C.; Smecca, E.; 506 Mannino, G.; Giannazzo, F.; Condorelli, G. G.; Sakai, N.; Miyasaka, T.; 507 Spinella, C.; La Magna, A. Similar Structural Dynamics for the 508 Degradation of $\text{CH}_3\text{NH}_3\text{PbI}_3$ in Air and in Vacuum. *ChemPhysChem* 509 **2015**, *16* (14), 3064–3071. 510

- 511 (15) Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; 512 Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, 513 S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. 514 M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. High-Efficiency 515 Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. *Nature* 516 **2016**, *536* (7616), 312–317.
- 517 (16) Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, 518 U.; Spiccia, L.; Cheng, Y. B. Degradation Observations of Encapsulated 519 Planar $\text{CH}_3\text{NH}_3\text{PbI}_3$ Perovskite Solar Cells at High Temperatures and 520 Humidity. *J. Mater. Chem. A* **2015**, *3* (15), 8139–8147.
- 521 (17) Abdelfageed, G.; Mackeen, C.; Hellier, K.; Jewell, L.; Seymour, 522 L.; Tingwald, M.; Bridges, F.; Zhang, J. Z.; Carter, S. Effect of 523 Temperature on Light Induced Degradation in Methylammonium 524 Lead Iodide Perovskite Thin Films and Solar Cells. *Sol. Energy Mater.* 525 *Sol. Cells* **2018**, *174*, 566–571.
- 526 (18) Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; 527 D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; 528 Mosconi, E.; Angelis, F. De; Boyen, H.-G. Intrinsic Thermal Instability 529 of Methylammonium Lead Trihalide Perovskite. *Adv. Energy Mater.* 530 **2015**, *5* (15), 1500477.
- 531 (19) Wu, C.; Li, H.; Yan, Y.; Chi, B.; Felice, K. M.; Moore, R. B.; 532 Magill, B. A.; Mudiyanselage, R. R. H. H.; Khodaparast, G. A.; 533 Sanghadasa, M.; Priya, S. Highly-Stable Organo-Lead Halide Perov- 534 skites Synthesized through Green Self-Assembly Process. *Sol. RRL* 535 **2018**, *2* (6), 1800052.
- 536 (20) Brinkmann, K. O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; 537 Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; 538 Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; 539 Riedl, T. Suppressed Decomposition of Organometal Halide Perov- 540 skites by Impermeable Electron-Extraction Layers in Inverted Solar 541 Cells. *Nat. Commun.* **2017**, *8* (1), 1–9.
- 542 (21) Ono, L. K.; Raga, S. R.; Remeika, M.; Winchester, A. J.; Gabe, A.; 543 Qi, Y. Pinhole-Free Hole Transport Layers Significantly Improve the 544 Stability of MAPbI_3 -Based Perovskite Solar Cells under Operating 545 Conditions. *J. Mater. Chem. A* **2015**, *3* (30), 15451–15456.
- 546 (22) Kim, N. K.; Min, Y. H.; Noh, S.; Cho, E.; Jeong, G.; Joo, M.; Ahn, 547 S. W.; Lee, J. S.; Kim, S.; Ihm, K.; Ahn, H.; Kang, Y.; Lee, H. S.; Kim, D. 548 Investigation of Thermally Induced Degradation in $\text{CH}_3\text{NH}_3\text{PbI}_3$ 549 Perovskite Solar Cells Using *in Situ* Synchrotron Radiation Analysis. 550 *Sci. Rep.* **2017**, *7* (1), 1–9.
- 551 (23) *Testing and Measuring Equipment/Allowed Subcontracting Thin- 552 Film Terrestrial Photovoltaic (PV) Modules-Design Qualification and Type 553 Approval*, 1st ed.; Committee of Testing Laboratories, Eds.; Interna- 554 tional Electrotechnical Commission: Geneva, 1998.
- 555 (24) Elbaz, G. A.; Ong, W.-L.; Doud, E. A.; Kim, P.; Paley, D. W.; Roy, 556 X.; Malen, J. A. Phonon Speed, Not Scattering, Differentiates Thermal 557 Transport in Lead Halide Perovskites. *Nano Lett.* **2017**, *17* (9), 5734– 558 5739.
- 559 (25) Ye, T.; Wang, X.; Li, X.; Yan, A. Q.; Ramakrishna, S.; Xu, J. Ultra- 560 High Seebeck Coefficient and Low Thermal Conductivity of a 561 Centimeter-Sized Perovskite Single Crystal Acquired by a Modified 562 Fast Growth Method. *J. Mater. Chem. C* **2017**, *5* (5), 1255–1260.
- 563 (26) Pisoni, A.; Jaćimović, J.; Baraćić, O. S.; Spina, M.; Gaál, R.; Forró, 564 L.; Horváth, E. Ultra-Low Thermal Conductivity in Organic–Inorganic 565 Hybrid Perovskite $\text{CH}_3\text{NH}_3\text{PbI}_3$. *J. Phys. Chem. Lett.* **2014**, *5* (14), 566 2488–2492.
- 567 (27) Heiderhoff, R.; Haeger, T.; Pourdavoud, N.; Hu, T.; Al-Khafaji, 568 M.; Mayer, A.; Chen, Y.; Scheer, H. C.; Riedl, T. Thermal Conductivity 569 of Methylammonium Lead Halide Perovskite Single Crystals and Thin 570 Films: A Comparative Study. *J. Phys. Chem. C* **2017**, *121* (51), 28306– 571 28311.
- 572 (28) Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; 573 Karunadasa, H. I. A Layered Hybrid Perovskite Solar-Cell Absorber 574 with Enhanced Moisture Stability. *Angew. Chem.* **2014**, *126* (42), 575 11414–11417.
- 576 (29) Myae Soe, C. M.; Nagabhusana, G. P.; Shivaramaiah, R.; Tsai, 577 H.; Nie, W.; Blancon, J. C.; Melkonyan, F.; Cao, D. H.; Traoré, B.; 578 Pedesseau, L.; Kepenekian, M.; Katan, C.; Even, J.; Marks, T. J.; 579 Navrotsky, A.; Mohite, A. D.; Stoumpos, C. C.; Kanatzidis, M. G. 580 Structural and Thermodynamic Limits of Layer Thickness in 2D Halide 581 Perovskites. *Proc. Natl. Acad. Sci. U. S. A.* **2019**, *116* (1), 58–66. 581
- 582 (30) Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. 2D Homologous Perovskites as Light-Absorbing 583 Materials for Solar Cell Applications. *J. Am. Chem. Soc.* **2015**, *137* (24), 584 7843–7850. 585
- 586 (31) Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden-Popper 587 Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. 588 *Chem. Mater.* **2016**, *28* (8), 2852–2867. 589
- 589 (32) Mao, L.; Kennard, R. M.; Traore, B.; Ke, W.; Katan, C.; Even, J.; 590 Chabinyc, M. L.; Stoumpos, C. C.; Kanatzidis, M. G. Seven-Layered 2D 591 Hybrid Lead Iodide Perovskites. *Chem.* **2019**, *5* (10), 2593–2604. 592
- 592 (33) Giri, A.; Chen, A. Z.; Mattoni, A.; Aryana, K.; Zhang, D.; Hu, X.; 593 Lee, S.-H.; Choi, J. J.; Hopkins, P. E. Ultralow Thermal Conductivity of 594 Two-Dimensional Metal Halide Perovskites. *Nano Lett.* **2020**, *20* (5), 595 3331–3337. 596
- 596 (34) Rasel, M. A. J.; Giri, A.; Olson, D. H.; Ni, C.; Hopkins, P. E.; 597 Feser, J. P. Chain-Length Dependence of Thermal Conductivity in 2D 598 Alkylammonium Lead Iodide Single Crystals. *ACS Appl. Mater. Interfaces* **2020**, *12*, 53705–53711. 600
- 600 (35) Ravichandran, J.; Yadav, A. K.; Cheaito, R.; Rossen, P. B.; 601 Soukiassian, A.; Suresha, S. J.; Duda, J. C.; Foley, B. M.; Lee, C. H.; Zhu, 602 Y.; Lichtenberger, A. W.; Moore, J. E.; Muller, D. A.; Schlom, D. G.; 603 Hopkins, P. E.; Majumdar, A.; Ramesh, R.; Zurbuchen, M. A. Crossover 604 from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide 605 Superlattices. *Nat. Mater.* **2014**, *13* (2), 168–172. 606
- 606 (36) Luckyanova, M. N.; Garg, J.; Esfarjani, K.; Jandl, A.; Bulsara, M. T.; Schmidt, A. J.; Minnich, A. J.; Chen, S.; Dresselhaus, M. S.; Ren, Z.; 608 Fitzgerald, E. A.; Chen, G. Coherent Phonon Heat Conduction in 609 Superlattices. *Science (Washington, DC, U. S.)* **2012**, *338* (6109), 936– 610 939. 611
- 611 (37) Mauck, C. M.; France-Lanord, A.; Hernandez Oendra, A. C.; 612 Dahod, N. S.; Grossman, J. C.; Tisdale, W. A. Inorganic Cage Motion 613 Dominates Excited-State Dynamics in 2D-Layered Perovskites 614 ($\text{C}_x\text{H}_{2x+1}\text{NH}_3$) PbI_4 ($x = 4–9$). *J. Phys. Chem. C* **2019**, *123* (45), 615 27904–27916. 616
- 616 (38) Thouin, F.; Valverde-Chávez, D. A.; Quarti, C.; Cortecchia, D.; 617 Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Srimath Kandada, A. R. 618 Phonon Coherences Reveal the Polaronic Character of Excitons in 619 Two-Dimensional Lead Halide Perovskites. *Nat. Mater.* **2019**, *18* (4), 620 349–356. 621
- 621 (39) Guo, Z.; Wu, X.; Zhu, T.; Zhu, X.; Huang, L. Electron-Phonon 622 Scattering in Atomically Thin 2D Perovskites. *ACS Nano* **2016**, *10* 623 (11), 9992–9998. 624
- 624 (40) Maity, P.; Yin, J.; Cheng, B.; He, J.-H.; Bakr, O. M.; Mohammed, 625 O. F.; Arabia, S. Layer-Dependent Coherent Acoustic Phonons in Two- 626 Dimensional Ruddlesden–Popper Perovskite Crystals. *J. Phys. Chem. Lett.* **2019**, *10*, 5259–5264. 628
- 628 (41) Chernatyński, A.; Grimes, R. W.; Zurbuchen, M. A.; Clarke, D. R.; 629 Phillipot, S. R. Crossover in Thermal Transport Properties of 630 Natural Perovskite-Structured Superlattices. *Appl. Phys. Lett.* **2009**, *95* 631 (16), 161906. 632
- 632 (42) Regner, K. T.; Majumdar, S.; Malen, J. A. Instrumentation of 633 Broadband Frequency Domain Thermoreflectance for Measuring 634 Thermal Conductivity Accumulation Functions. *Rev. Sci. Instrum.* **2013**, *84* (6), 064901. 635
- 635 (43) Bouger, T. L.; Yates, L.; Lo, C. F.; Johnson, W.; Graham, S.; 637 Cola, B. A. Thermal Boundary Resistance in GaN Films Measured by 638 Time Domain Thermoreflectance with Robust Monte Carlo 639 Uncertainty Estimation. *Nanoscale Microscale Thermophys. Eng.* **2016**, *20* (1), 22–32. 641
- 641 (44) Saha, D.; Yu, X.; Du, Y.; Guo, Z.; Xiong, F.; Gellman, A.; Malen, J. 642 Enhancing Thermal Interface Conductance to Graphene Using Ni–Pd 643 Alloy Contacts. *ACS Appl. Mater. Interfaces* **2020**, *12*, 59. 644
- 644 (45) Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, 645 A.; Kebbinski, P.; Zschack, P. Ultralow Thermal Conductivity in 646 Disordered, Layered WSe_2 Crystals. *Science (Washington, DC, U. S.)* **2007**, *315* (5810), 351–353. 647
- 647

- 649 (46) Smilgies, D. M. Grazing-Incidence X-Ray Scattering of Lamellar
650 Thin Films. *J. Appl. Crystallogr.* **2019**, *52* (2), 247–251.
651 (47) Zhang, X.; Munir, R.; Xu, Z.; Liu, Y.; Tsai, H.; Nie, W.; Li, J.; Niu,
652 T.; Smilgies, D. M.; Kanatzidis, M. G.; Mohite, A. D.; Zhao, K.;
653 Amassian, A.; Liu, S. F. Phase Transition Control for High Performance
654 Ruddlesden–Popper Perovskite Solar Cells. *Adv. Mater.* **2018**, *30* (21),
655 1707166.
656 (48) Dahlman, C. J.; Decrescent, R. A.; Venkatesan, N. R.; Kennard,
657 R. M.; Wu, G.; Everest, M. A.; Schuller, J. A.; Chabinyc, M. L.
658 Controlling Solvate Intermediate Growth for Phase-Pure Organic Lead
659 Iodide Ruddlesden-Popper $(C_4H_9NH_3)_2(CH_3NH_3)_{n-1}Pb_nI_{3n+1}$ Perov-
660 skite Thin Films. *Chem. Mater.* **2019**, *31* (15), 5832–5844.
661 (49) Qin, Y.; Zhong, H.; Intemann, J. J.; Leng, S.; Cui, M.; Qin, C.;
662 Xiong, M.; Liu, F.; Jen, A. K. -Y.; Yao, K. Coordination Engineering of
663 Single-Crystal Precursor for Phase Control in Ruddlesden–Popper
664 Perovskite Solar Cells. *Adv. Energy Mater.* **2020**, *10* (16), 1904050.
665 (50) Stoumpos, C. C.; Soe, C. M. M.; Tsai, H.; Nie, W.; Blancon, J. C.;
666 Cao, D. H.; Liu, F.; Traoré, B.; Katan, C.; Even, J.; Mohite, A. D.;
667 Kanatzidis, M. G. High Members of the 2D Ruddlesden-Popper Halide
668 Perovskites: Synthesis, Optical Properties, and Solar Cells of
669 $(CH_3(CH_2)_3NH_3)_2(CH_3NH_3)_4Pb_5I_{16}$. *Chem.* **2017**, *2* (3), 427–440.
670 (51) Kmiecik, S.; Gront, D.; Kolinski, M.; Witeska, L.; Dawid, A. E.;
671 Kolinski, A. Coarse-Grained Protein Models and Their Applications.
672 *Chem. Rev.* **2016**, *116* (14), 7898–7936.
673 (52) Beecher, A. N.; Semonin, O. E.; Skelton, J. M.; Frost, J. M.;
674 Terban, M. W.; Zhai, H.; Alatas, A.; Owen, J. S.; Walsh, A.; Billinge, S. J.
675 L. Direct Observation of Dynamic Symmetry Breaking above Room
676 Temperature in Methylammonium Lead Iodide Perovskite. *ACS Energy*
677 *Lett.* **2016**, *1* (4), 880–887.
678 (53) Guo, P.; Stoumpos, C. C.; Mao, L.; Sadashivam, S.; Ketterson, J.
679 B.; Darancet, P.; Kanatzidis, M. G.; Schaller, R. D. Cross-Plane
680 Coherent Acoustic Phonons in Two-Dimensional Organic-Inorganic
681 Hybrid Perovskites. *Nat. Commun.* **2018**, *9* (1), 1–9.
682 (54) Maris, H.; Tanaka, Y. Phonon Group Velocity and Thermal
683 Conduction in Superlattices. *Phys. Rev. B: Condens. Matter Mater. Phys.*
684 **1999**, *60* (4), 2627–2630.
685 (55) Yang, B.; Chen, G. Lattice Dynamics Study of Anisotropic Heat
686 Conduction in Superlattices. *Microscale Thermophys. Eng.* **2001**, *5* (2),
687 107–116.
688 (56) Kiselev, A. A.; Kim, K. W.; Stroscio, M. A. Thermal Conductivity
689 of Si/Ge Superlattices: A Realistic Model with a Diatomic Unit Cell.
690 *Phys. Rev. B: Condens. Matter Mater. Phys.* **2000**, *62* (11), 6896–6899.
691 (57) Bies, W. E.; Radtke, R. J.; Ehrenreich, H. Phonon Dispersion
692 Effects and the Thermal Conductivity Reduction in GaAs/AlAs
693 Superlattices. *J. Appl. Phys.* **2000**, *88* (3), 1498–1503.
694 (58) Cahill, D. G. Analysis of Heat Flow in Layered Structures for
695 Time-Domain Thermoreflectance. *Rev. Sci. Instrum.* **2004**, *75* (12),
696 5119–5122.
697 (59) Jiang, Z. GIXSGUI: A MATLAB Toolbox for Grazing-Incidence
698 X-Ray Scattering Data Visualization and Reduction, and Indexing of
699 Buried Three-Dimensional Periodic Nanostructured Films. *J. Appl.*
700 *Crystallogr.* **2015**, *48* (3), 917–926.