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ABSTRACT

Driven by the exceedingly high computational demands of simulating mechanical response in
complex engineered systems with finely resolved finite element models, there is a critical need to
optimally reduce the fidelity of such simulations. The minimum required fidelity is constrained by
error tolerances on the simulation results, but error bounds are often impossible to obtain a priori.
One such source of error is the variability of material properties within a body due to spatially
non-uniform processing conditions and inherent stochasticity in material microstructure. This
study seeks to quantify the effects of microstructural heterogeneity on component- and
system-scale performance to aid in the choice of an appropriate material model and spatial
resolution for finite element analysis.
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NOTATION

Variables
Symbol Definition
c Cauchy stress tensor
S Second Piola-Kirchhoff stress tensor (intermediate configuration)
F Deformation gradient
F¢ Elastic deformation gradient
EP Plastic deformation gradient
E° Elastic Green-Lagrange strain
c¢ Elastic right Cauchy-Green deformation tensor
1 Second-order identity tensor
C Elastic stiffness tensor
Sg Slip direction for slip system « in the reference configuration
5% Slip direction for slip system « in the current configuration
ng Slip plane normal for slip system « in the reference configuration
n® Slip plane normal for slip system « in the current configuration
5 Schmid tensor for slip system « in the reference configuration
p* Schmid tensor for slip system « in the current configuration
L Velocity gradient
L¢ Elastic velocity gradient
L? Plastic velocity gradient
LP* Plastic velocity gradient in the intermediate configuration
7* Slip rate on slip system a
g* Slip resistance for slip system «
¢ Resolved shear stress on slip system «
T Kirchhoff stress
e Orthonormal basis vector
R Orientation tensor




Variables (continued)

Symbol Definition

A Strain concentration tensor

Cx Volume fraction of constituent phase k
E Average elastic strain

E Deviation from average elastic strain
A Eigenstrain tensor

S Eshelby tensor

T Interaction tensor

o First Bunge euler angle

o Second Bunge euler angle

b, Third Bunge euler angle

P Orthonormal fourth-order tensor basis
E Fourth-order tensor basis with cubic symmetry
we Elastic strain energy

Ca Cubic anisotropy factor

A Zener anisotropy ratio

a Anisotropy measure

L Spatial length scale

dg Average grain size (diameter)

d? Pointwise plastic dissipation

Dp Total plastic dissipation

J Determinant of the deformation gradient
T Equivalent Kirchhoff stress

n Stress direction

fe Schmid factor

r Stress-space radial coordinate

0 Lode angle

t Time

&P Equivalent plastic strain rate

U Shear modulus

1 Invariant of the Cauchy stress tensor

J; Invariant of the deviatoric stress tensor
Y Fourth-order yield tensor

S; Principal deviatoric stress

¢ Critical resolved shear stress
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Symbol

Definition
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Symbol Definition
k Inverse rate sensitivity
Yo Reference slip rate
H Hardening modulus
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1. BACKGROUND

The mechanical behavior of structural metals is ultimately determined by atomic scale
interactions of constituents arranged in a crystal lattice populated with defects. Simulation of
these interactions requires resolution of length scales down to 10~!9 meters and timescales down
to 10715 seconds. Given these requirements it is generally infeasible to model engineering scale
components and systems with atomic resolution. To circumvent this problem of computational
intractability, the focus here is simulations of mechanical response with partial differential
equations defined on a continuum. For all but perhaps the most extreme modes of deformation
(such as shock loading) and strongly nonlinear processes (such as fracture), the continuum
approach is sufficient to deliver simulations of mechanical response to within error tolerances well
below those required for engineering calculations.

Approaches based on continuum mechanics are widely successful in engineering analysis, but a
question that must be answered for each individual analysis concerns the level of detail that is
required to capture the constitutive response of the material being deformed. When using a
continuum model for structural alloys, the lowest level of detail typically simulated is the crystal
grain, a region of uniform lattice orientation with length scales on the order of 1076 meters. The
analysis of a millimeter-scale component with this level of detail would require on the order of
one billion finite elements, which is not reasonable for informing decision-making in a product
design cycle. Thus, the nearly universal approach is to treat the continuum at an engineering scale
for analysis, driving the resolution of lower length scales up to the point where the simulation of
components becomes feasible, typically 10~ meters and above.

The strategy of employing millimeter length scales in analysis is successful because the
aggregated behavior of the underlying heterogeneous microstructure typically takes on a uniform
and scale independent form at lengths at least an order of magnitude below the analysis
resolution. Unfortunately, the terms ‘typically’ and ‘at least’ take on real significance in regions of
stress concentration and strain localization, exactly where models of failure require additional
detail to function as predictive tools. In these regions, accurate accounting of energy dissipation
due to plasticity and damage mechanisms becomes critically important to delivering robust and
meaningful predictions of the limits of material strength and ductility. In the absence of sufficient
information, analysis can become non-conservative, and the lack of certainty around these
calculations drives sub-optimal designs to achieve confidence around required performance.

Driven by the exceedingly high computational demands of finely resolved finite element models
for simulation of the mechanical response of complex engineered systems, there is a critical need
to optimally reduce the fidelity of such simulations. The minimum required fidelity is constrained
by error tolerances on the simulation results, but error bounds are often impossible to obtain a
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priori. Mesh refinement studies are commonplace in the optimization of a finite element mesh to
reduce geometric resolution while retaining solution accuracy. On the constitutive side, however,
this type of study is much harder to implement due to the labor-intensive process of model
calibration and limited software implementation of models of variable complexity. These two
limitations are being addressed by implementing algorithmic solutions for model calibration and
software design incorporating modular treatment of the various pieces of the constitutive
framework for plasticity and damage. This complementary effort seeks to quantify the effects of
microstructural heterogeneity through relating, for example, material and geometric length scales
to macroscale features of material response such as yield strength.

There are a number of ways to perform an assessment of microscale effects, including multiscale
modeling methods that rely on either coupled calculations of multiple scales during a single
simulation, or decoupled calculations that sample databases of micromechanical behavior [1]. In
contrast, the focus here is on methods for producing closed-form expressions that return
homogenized, macroscopic material behavior as a function of microstructural descriptors. The
goal in deriving such methods is to provide a path to insert micromechanics into typical material
models with a minimal increase in computational cost. This increase in cost is offset by the
possibility of deploying rigorous, quantitative analyses to estimate uncertainty in model
predictions. In addition, the results presented here include estimates of the diminution of
micromechanical effects at larger length scales, providing practical guidance on when and to what
degree a simulation-based prediction is uncertain with respect to microscale heterogeneity. For
example, the analysis presented here suggests that anisotropic material behavior is observable
even for nominally isotropic materials for length scales approaching 100xm. Thus, finite element
analysis requiring 100xm spatial resolution cannot proceed with confidence until an assessment
of the microstructural effects is made. These results, relating material microstructure to
system-scale performance, aid in the choice of the appropriate material model for given loading
scenarios and geometries relevant to the analysis of the mechanical response of engineering
systems, thus giving analysts practical guidance for model selection and evaluation.

In this study, the focus is on the micromechanics of elasticity and plasticity in crystalline
materials. In this context, ‘microstructure’ is taken to refer exclusively to grain morphology and
orientation, which are known to significantly affect elastic and plastic anisotropy in structural
metals. Grain morphology and orientation distributions can vary widely across engineering alloys
and product forms. Here we consider a limited subset of this variation, employing nominally
equiaxed grain geometries and sampling uniform orientation distributions. This largely ignores
the effects of distorted grain shapes and non-uniform texture, which can result from processing
such as rolling, but the conclusions and methodology remain informative. The approach is
detailed in Section 2, followed by a presentation of some results on elasticity in Section 3.1 and on
plasticity in Section 3.2.
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2. APPROACH

In order to deliver better-functioning engineering scale models and analyses, this study seeks to
quantify microscale uncertainty inherent in the analysis for a dual purpose: 1) Proper
quantification allows improvement in designs by driving down the factor of safety required to
achieve specified margins; 2) Identification of scenarios with unacceptable levels of uncertainty
enables application of more detailed models within a limited spatial or temporal scope to drive
down the inherent uncertainty in the calculation with an acceptable increase in computational
cost.

In the current scope, attention is focused on two key aspects of material behavior, anisotropy and
lode-angle-dependence. At the sub-grain scale (microscale), the material behavior is always
anisotropic, and the amount of anisotropy varies widely among structural alloys. At the
engineering scale (macroscale), the material behavior of structural alloys is mostly considered to
be isotropic. This assumption is invalidated in two key ways: 1) The material is ‘textured’,
meaning that processing conditions have produced a microstructure where the crystal lattice has a
preferred orientation; 2) The length scale of the deformation is of similar order to the grain size,
for example due to large gradients near stress concentrators. In the first case, mesoscale modeling
can be used to determine parameter values for anisotropic material models from microstructural
information, supplementing uniaxial test data and eliminating the need for additional testing. In
the second case, mesoscale modeling can be used to inform the choice of an anisotropic model
where required due to the nature of the analysis. In this way, mesoscale modeling is the bridge
between expensive, accurate microscale modeling and inexpensive, approximate macroscale
modeling.

In addition to the assumption of isotropy, the assumption of lode-angle-independence is often
made in engineering analyses. Under this assumption, constitutive models are unable to properly
account for differences in yield behavior for uniaxial, shear, and bi- or triaxial stress states with
equal equivalent (von Mises) stress. It is well-known that this assumption is violated for some
structural alloys even at the engineering scale, and it is violated to some degree for all structural
materials at the microstructural scale. Mesoscale modeling can be used to probe deviations from
the assumption of lode-angle-independence and quantify the effects on energy dissipation for
loading paths of interest. A practical implication of this type of investigation is criteria for the
selection of the appropriate yield surface and flow rule and their parametrization, as suggested by
the results presented in Section 3.2.3.

Various aspects of the effects of microscale heterogeneity have been studied extensively in the
literature. One such study [2], [3], found two effects that are especially relevant to the current
study. First, the authors found that while a macroscale model accurately reproduced the mean
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stress found in the microscale simulation, the macroscale model under-predicted the mean strain
[2]. Second, the macroscale model over-predicted the stress near a mild geometric
stress-concentrator, compared with the microscale model [3]. Part of the thrust of the current
study is to extend the understanding gained in these previous two efforts by quantifying these
effects as functions of microstructural and structure geometry parameters. This is important to
studying localization preceding damage, which is governed as much or more by the extreme
values as the mean values of the mechanical fields. The long-term impact of the current study will
be realized when these analyses are applied to study the impact on simulations of mechanical
behavior in realistic scenarios.

To study the relationships between the aggregated response of a microscale model and the best-fit
macroscale model requires first interrogating an ensemble of microstructural configurations and
extracting a volume-averaged response. Second, the response of the microscale model must be
analyzed in terms of deriving optimal macroscale model parameters. Last, scaling of the response
with various microstructural descriptors must be determined in order to provide a direct link
between the microstructural descriptors and the parameter values for the macroscale model.

2.1. Microscale Constitutive Model

This study focuses on the micromechanics of crystalline solids, with particular emphasis on
materials with cubic symmetry, with some specific focus on austenitic stainless steel, which has a
face-centered cubic (FCC) crystal lattice. The material model, detailed below, has three essential
features: hyperelasticity based on the Green-Lagrange strain, power-law viscoplasticity, and a
saturating nonlinear strain hardening model.

2.1.1. Crystal Elasticity

The kinematics of the crystal elasto-plasticity model is based on a well-established continuum
formulation and follows multiplicative decomposition of the deformation gradient. The total
deformation gradient F is decomposed into elastic and plastic parts.

F=FF 2.1)

Here, F® and F” are the elastic and plastic part of the total deformation gradient, respectively. The

elastic Green-Lagrange strain is given in terms of F° as

Ee — % <l::;eT _1::;6T _l> — % (ge _l> (22)

where C° is the elastic right Cauchy-Green deformation tensor. The elastic constitutive law relates

the second Piola-Kirchhoff stress in the intermediate configuration to the elastic Lagrangian strain
as
S=C:E° (2.3)

16



Figure 2-1. Slip system configurations within a unit cell for FCC (left) and BCC (right) crystal lattices.

where C is the elastic stiffness tensor. Solving Equation (2.1) for F¢,

Fe—F. (Fp)_l 2.4)

it is seen that the stress S can be obtained for a given F, given a solution for F?. The plastic
constitutive relations developed in the following section produce a set of equations to obtain F?
for a given F¢, forming a coupled set of equations. The solution to these equations is a split of F
into F® and F” such that Equation (2.1) holds.

2.1.2. Crystal Plasticity

Here, crystal viscoplasticity is modeled as the collective effect of dislocations gliding on
well-defined slip systems defined by a slip direction, s, and a slip plane normal, n. A typical
model includes 12 {111} (110) slip systems for FCC materials and 24 {110} (111) slip systems
for BCC materials, as depicted in Figure 2-1 and listed in Table 2-1. The Schmid tensor in the
reference configuration, and in the intermediate configuration, assuming F? does not change the
slip geometry, is

Ps = si @1 (25)

Here, §g and Q(")‘ are the initial unit vectors in the slip direction and the slip plane normal direction
on a-th slip system, respectively. As the crystal deforms, lattice is stretched and rotated according
to F¢. Therefore, the slip direction and slip plane normal of the slip system « in the current

configuration are given by

(2.6)



Table 2-1. 12 FCC and 24 BCC slip systems.

Twelve FCC slip systems

a System a System
1 (110)[111] 4  (110)[111]
2 (011)[111] 5  (101)[111]
3 (A0D[111] 6 (O1D[111]

System a System
(110)[111] 10 (110)[111]
O1D[111] 11 (10D[111]
(10D)[111] 12 (01D[111]

O 0 | K

Twenty-four BCC slip systems

System a System a System a System
O1D)[111 7 (OID[111 13 (01D[111] 19 (O1D[111]
(10D)[111 8 (0oD[111 14 d0oD[111] 20 (10D)[111]

(10D)[111 10 (10D)[111 16 (10D)[111] 22 (10D)[111]
(O1D)[111 11 (O1D[111 17 (O1D[111] 23 (01D[111]
(110)[111] 12 (110)[111] 18 (110)[111] 24 (110)[111]

] ]
] ]
(110)[111] 9 (110)[111] 15 (11(_))[111] 21 (110)[111]
] ]
] ]

AN kW =R

From the definitions in Equation (2.6), the Schmid tensor in the current configuration is
pr=s @t =B (E) @.7)
The velocity gradient, L in the current configuration is written as:
L=L‘+L’=EF-F' (2.8)

where, L® and L? are elastic and plastic parts of the velocity gradient, respectively, and can be

represented as follows:
L*=F-(E)" (2.9)
L =F°-L”*- (B9 (2.10)
Here, the plastic part of the velocity gradient in the intermediate configuration is given by
L =F - (")~ (2.11)

Assuming plastic deformation is caused by the dislocation slip, the plastic part of the velocity
gradient can be written in the current configuration as:

L= i"s"®n"= Y y"P" (2.12)
o o

or, in the intermediate configuration as

L =Yy si@ni =y j"P (2.13)
(04 o
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where 7“ is the slip rate on slip system @. Combining Equations (2.11) and (2.13), a governing
equation for F” is derived:

EP =LP* .= <Z 7(11:)8) -FP (2.14)
o

It is noted that in this form, an F? that is initially isochoric (det(F”) = 1) will remain isochoric

throughout the deformation. Care must be taken in the numerical solution of this equation to
preserve this feature of FP.

The critical aspect of the single crystal constitutive equations in crystal plasticity model is how
the slip rate is related to the applied stress. One of the most widely used forms for a
viscoplasticity model is the power-law function:

k
sign(z%) (2.15)

'a_-a_a
J/ _}/0

g(x

Here, 7 is the reference shear rate, k is the inverse rate sensitivity factor, and g is the slip
resistance on slip system a. Assuming isochoric plasticity, the driving force 7% for slip on system
ais

% =det(F)g : P*=C-S : P¢ (2.16)

2.1.3. Strain hardening

The slip resistance g% on a slip system a evolves according to the following rule
§"=(H—-Ryg")7 (2.17)

where H is the hardening modulus, R is the rate constant for dynamic recovery, and y is the total
slip rate over all slip systems,

NSS
7= 17"l (2.18)
a=1
This model results in a saturating hardening behavior with an asymptotic value of g“,
g%t - o00)= H (2.19)
Ry

For a constant slip rate, y, Equation (2.17) has a closed-form solution,

wn_ H H .
8=+ <go - R—d) exp (—Ryi1) (2.20)

This illustrates the saturation of the strain hardening via exponential decay, and serves as a useful
tool in the numerical integration of (2.17), where a constant slip rate is assumed during a single
timestep.
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The model presented in this section is a useful tool for simulating the response of a material
region with a single crystal orientation and no variation in the relevant mechanical fields.
However, most engineering materials are composed of polycrystalline aggregates with spatially
varying orientation, and most engineering designs are subjected to spatially varying mechanical
fields during service. Therefore, it is necessary to generalize the model for realistic application.
The simplest path to this generalization is to apply the single crystal model at each point in a
domain, and solve the governing equations of mechanical equilibrium using, for example, the
finite element method applied with an element-wise specification of material orientation.
Numerous examples of this approach exist in the literature, but this path is computationally
intractable for typical components and systems with sizes of centimeters to meters. For these
applications, a model is required with drastically reduced detail in the treatment of the crystal
mechanics. In the following sections, a number of homogenization techniques are applied to
extract macroscale material behavior from detailed microscale descriptions of polycrystalline
materials without the need for direct numerical simulation (DNS) of the microscale.
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3. RESULTS

In a model of crystalline material, the spatial variation in the initial material state is commonly
taken to be determined solely by the spatial variation of the orientation of the crystal lattice. This
orientation is commonly defined as a tensor, R, that maps the laboratory (spatial) basis to the

material basis:

jal tial
E;rzalerza — 5 . gfpa la (3.1)
For example, in a face-centered-cubic material, the material basis is defined with respect to the
crystal lattice as shown in Figure 3-1. In a polycrystalline aggregate, grains are defined as regions
with uniform orientation:

G={X:R(X)=R | (3.2)

A typical grain morphology is shown in Figure 3-2. The main problem of homogenization in this
context is to derive effective material properties that represent the combined behavior of such
aggregates via an appropriate scheme to accumulate the pointwise material properties of the
constituents. This problem is treated separately for the elastic and plastic responses of a
polycrystalline material in the following.

3.1. Homogenized elasticity

For models that represent the elastic behavior of a material via Equation (2.3), the problem of
homogenizing the elastic response of a polycrystalline aggregate reduces to accumulating the
elastic response to construct an effective elastic tensor, C.¢; from the constituent elastic tensors
C,. Typically, the constituent tensors are identically defined with reference to the material basis,
but their components in the spatial basis vary due to differences in material orientation. In

general, the components of C in the spatial basis, Cis;;cal”al are then given in terms of the

. . : material
components in the the material basis, Cmnpq , by
spatial _ material
Cijkl = RiijanpR,qunpq 3.3)

The problem is then to construct the components of the effective elastic tensor in the spatial basis
from the spatial components of the constituent tensors. A number of methods to do this are
summarized in the following.
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Figure 3-1. The unit cell for an FCC material, along with the canonical material basis.

Figure 3-2. A polycrystalline aggregate is comprised of a number of grains, defined as regions of
uniform crystal orientation.
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Approximation of the Effective Elasticity Tensor

3.1.1.
In a region k of a composite material with uniform elastic properties, the elastic constitutive
(3.4)

relation given by Equation (2.3) is specified by
S =Cy 1 E;
If the volume fraction of region k is ¢, the average elastic strain in the body is
N
E' =) B (3.5)
k=1
The average stress is likewise
N N
SZ ch§k = Cka . gi (36)
k=1 k=1
Concentration tensors A are defined such that
B =A; : E 3.7)
Combining (3.6) and (3.7),
N N
Szzcksk: (chck . Ak) . Ee (38)
k=1 k=1
Following (3.8), the effective elastic tensor is defined as
N
Cerr = ), e Cy : Ay (3.9)
k=1
so that .
S=Ce : E (3.10)
From the case where the material properties are uniform, a constraint emerges:
N
1= cAy (3.11)
k=1
Now, assuming that E¢ = E°, gives A, =1, and
N
Cisostrain = %' ¢,Cy (3.12)
k=1
On the other hand, if assuming that S, = S, similar logic as above yields
N -1
jsostress _ -1
Céjf;‘s ress — <Z Cka > (313)
k=1
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An simple but effective approximation, based on the observation in [4] that
CLETeSS < Copp < CLE™, s an average of the two bounds:

bound s—mean __ 1 isostress isostrain
Ceff ) (Ceff + Ceff ) (3.14)

A class of approximations based on Equation (3.9) uses the notion of a homogeneous reference

medium with elastic tensor C,.;, and assumes the equivalence

C, : (Ee+g;)=«:ref : <E+E§—ék) (3.15)

where EZ is the difference between the average elastic strain and the elastic strain in constituent k,
and A, is an eigenstrain tensor that represents the mismatch between the elastic properties of
constituent k and the reference medium. The Eshelby [5] tensor S, is defined such that

EZ =S, 1 Ay (3.16)
From (3.15) and (3.16),
e -1 . -1 .
E'= (-7 -8 A (3.17)
The interaction tensor T, is defined so that
Ef =E°+E; =T, 1 E, (3.18)
Then from (3.17) and (3.18),
- -1
T =[1+S; : C : (C—Cryf)] (3.19)

A class of approximations use the Eshelby tensor S to derive a concentration tensor A that
produces an effective elasticity tensor. The dilute approximation assumes that each phase is an
isolated inhomogeneity, so that the reference strain is approximately equal to the average strain in
the body E°. Then, comparing Equations (3.7) and (3.18),

Al =T, (3.20)

The Mori-Tanaka approximation assumes that the reference strain is approximately equal to the
(uniform) strain gg in the matrix phase (k = 0), so that

E =T, 1 Ej (3.21)
Then
N N
E =) B =) ¢T, - E (3.22)
k=1 k=1
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Combining (3.21) and (3.22),

N -1
E =T, : <2cka> DB (3.23)

k=1

That is,

N -1
AT =T <Z cka> (3.24)
k=1

The self-consistent approximation assumes

Cref = Cegr (3.25)
e _ e
E;=E (3.26)

so that

AR =148, : (L -1)]™ (3.27)

where S is constructed using C,¢. These methods are applied to analyze the effective elastic
behavior of polycrystalline aggregates in the following sections.

3.1.2. Anisotropy

For an anisotropic material, the apparent properties of the material are dependent on the
orientation of the material. For example, the elastic behavior is often represented by a linear
elastic relationship embodied by an elastic tensor C. This elastic tensor has a canonical form
deriving from the symmetry of the material, typically specified by a set of components and a
tensor basis. The orientation of the material specifies a relationship between the material basis,
which is constructed with reference to preferred directions within the material, and the spatial
basis, which is commonly taken as a Cartesian frame of reference in a physical setting. A common
representation of material orientation is given by the Bunge Euler angle triplet, (qﬁl , D, qbz), which
can be used to construct the linear map R from the spatial basis to the material basis, as:

cos ¢ cosp,—cosDsingp;singp, —cose;sing,—cosdcos,sing;  sing;sin®
§(¢l,q),¢2) = | cos ¢, singp;+cosp; cos®Psing, cos¢p;cos®cosp,—sing;singp, —cos¢;sin® (3.28)

sin®sin ¢, cos ¢, sin® cos®

For real materials, with spatially varying orientation, it is often advantageous to compute an
approximation C, for the effective elastic tensor of the material. One method for producing such
an approximation is analyzed in the following.

Given an approximation C, the difference between the actual and approximate elastic strain
energies for a given strain E° is

AW®=E*:C:E°-E*: C:E‘=E°: (C-C) : E (3.29)

25



The approximation that minimizes the absolute value of the expectation of the difference in elastic
strain energy between the true model and the approximate model is,

CE®)=argming (330)

Jpy Joo S S (D19, [C(1 @.52)~C(h1.@.007) ] - EF dpy d Dl hy

Here, the Bunge Euler angles {q’)] , D, q')z} are used as a convenient parametrization of the
orientation space, and f (¢, ®@,¢,) is the probability density at (¢, @, ¢, ). This can be
generalized by computing the expectation over all strains to obtain a single approximation for C,
as in

(3.31)

C=argming

/Ee ‘/¢l fcp /¢2 f(ge’d’l ’q)7¢2>£e : [C(¢1 ’CD’¢2)_C(¢1 ’(D’d)Z)] :E° dgedd)ld(bddh

Assuming that E® and {¢,®, ¢, } are independent, f(E*, ¢, D, ;) = f(E)f (¢, D. ), s0
that

(3.32)

C=argming

fEe f(Ee)Ee :f¢1 /q; /¢2 f(¢l 7<D9¢2)[C(¢1’<D’¢2)_C(¢1’q)’¢2)] d¢1d®d¢2 :Ee dEe

Commonly, the strain dependence of the approximation is ignored, effectively assuming a uniform
distribution, f(E®). In this case,

C = argmin (3.33)

/(p/q)/qsf(%cb,@) [C (¢, @.0,) —C (1, D, ;)] dpyd DA,

This approximation can be computed for an arbitrary material; materials with uniformly random
orientations approach an isotropic (orientation-independent) approximation in the limit. For such
materials, C is independent of (qbl ,<I>,q§2), and

Ciso:C:/(l)[D/(ﬁf((pl,q),(ﬁz)ﬂj((j)l,d),d)z) dpydDdh, (3.34)

Rather than evaluate this integral, an equivalent choice of C'*° can be obtained via the following
reasoning. First, the space of isotropic fourth-order tensors admits the orthonormal basis,

N N
Psph:%<zgi®gi>®<zgi®gi> (3.35)

N N
symdev _ 1 sph
P =N NN N2+N > [522 ¢ ®£j®£i®§j+£i®£j®£j®£i)—””” ] (3.36)

i=1 j=1
N

pskew = 3.37
2(N2 ), ‘ e®e ®e®e e®e ®e. ®e> ( )

where N is the number of spatial dimensions. Since elastic tensors C have minor symmetry (and
thus Pskew .. C =0), an isotropic elastic tensor can be written as

C= Csph[psph + Csymdevlpsymdev (338)
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Define an isotropic elastic tensor via
Ciso — ([Fpsph = C) Psph + (Psymdev = C) Psymdev (339)

Now, C = C"° 4+ C*, where the isotropic part of C* is null. Since any anisotropic part of C is
required to vanish for uniformly random orientations,

/¢ /q>/¢ [ (¢1,@,0,) C (¢, D, ;) depdPd e, (3.40)
=/¢ /q>/¢ [ (91, @,0,) [C*°+C* (¢, D, )| dpdDPd ¢, (3.41)
:CSPh[P’SPh+CSymdeU|]3>SymdeU+/ // f(¢1,‘1’,¢2) C* (d’laq)ad’z) dp,dDdep,

¢ /DIy
(3.42)
— Csphpsph_i_csymdevlpsymdev (3.43)

Thus, the tensor defined in (3.39) is equivalent to that defined in (3.34) for uniformly random
orientations.

3.1.3. Cubic materials

As an example, consider materials with cubic symmetry in three dimensions. For these materials,
the elastic tensor admits the following compact representation:

cie = € EMD + CpEM? + CyEYY (3.44)
where Cyy, Cy,, and C44 are material constants, and the orthogonal tensor basis is given by:
3
E'V =) e, ®¢ ®¢ ®c¢, (3.45)
i=1
E1? = Z Ze ®e, ®e ®e —EUD (3.46)
i= 1/
[E(44)—22e ®e Qe ®e +e, ®e ®e Qe — — 21D (3.47)
i=1 j=

with e, representing the i-th cube axis in the material. This representation brings out the
fundamental dependence of the material behavior on the constants Cy;, C;,, and Cyy. The
isotropic part of C¢“b¢ is

Ciso (Psph Ccubtc) Psph (Psymdev = Ccubic) Psymdeu (348)

= (Cy; +2C),) PP+ % (Cyy = C1p +3Cyy) Psymder (3.49)

=C1] <Psph+%lpsymdev>+C12<2Psph_%lpsymdev)+C44<%Psymdev> (350)
5 5 5
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That is,

c* =cy,EMV +Cl,EW? +C), EHY (3.51)
with
C) = é (3C11+2C), +4Cyy)
Cl,= % (C11+4C 1, —2Cyy) (3.52)
Cy, = % (C11—Cip+3Cyy)
It can be easily verified that {C 11 12, } satisfy the requirement of isotropy for an arbitrary
cubic material given by
C44=%(C11 -Cpp) (3.53)

By construction, the expectation of AW ¢ (Equation (3.29)) is 0, but an open question is how to
measure the fitness of this optimal approximation. Again, the difference in strain energy is

’ ’ .
AW Elej Elil (Cl,]kl Czljslgl> = ErennE;q (Cmnpq - C,if;:pq> (354)
with
E¢ = E‘R,R;, (3.55)

The difference between the cubic and isotropic tensors is

c-cvo=c, <[E(11) _ %[E(IZ) _ %[E(‘M))

5 (3.56)
C,= S (C11—C1,—2Cyy)
Inserting (3.56) into (3.54),
! / 1 1
AW = CyEf Efy (EOD - JE1D - Zp@)
A 2 2
. l N2 _pge . ge
=C, Z < ) —Sw(E) -E° 1 E (3.57)

W

_ 5 e 21 eN2 e . e
- C, 5Z(EH) ~SUE)-E B

Thus, the difference in elastic strain energy depends on the elastic constants through C,, the
orientation of the material through % 2132 ! (Ef;) , and the invariants of the elastic strain tensor

through %tr(g’)z +E° : E°
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Figure 3-3. The Zener anisotropy ratio for a range of cubic elastic constants. The dashed black line,
corresponding to A = 1 indicates an isotropic material.

3.1.4. A measure of anisotropy
Isotropy of a cubic single crystal requires that
1
C44 = 5 (Cll - CIZ) (358)

Given this criterion, a natural measure of anisotropy for cubic single crystals is the Zener
anisotropy ratio [6],

2C
A= oM (3.59)
C1—Cpp

Large or small values of A are supposed to indicate a significant degree of anisotropy, while A =1
for isotropic materials. This measure, although widely used, has an unfortunate disconnection
from the anisotropy of the material, as shown in Figure 3-3. As seen in the figure, in extreme
cases, there are materials with large (or small) anisotropy ratios that are (at least intuitively)
relatively isotropic. In any case, the lines of constant A are not parallel to A =1 in the elastic
constant space, indicating that comparisons among values of A for different materials are
problematic. The measure of anisotropy developed here does not suffer this pathology, as shown
in the following.

A natural choice for a measure of anisotropy is

IC = Cisoll
o= —159° (3.60)
IC]]
so that
0<a<l1 (3.61)
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Figure 3-4. The anisotropy measure « for a range of cubic elastic constants.

Given Equation (3.57), for cubic materials,

‘l_ﬁ_zﬁ

C C C
o 1Gal_ 2 n (3.62)

ICII 5 cn\2 o \2
\/”z(c—“) it

For this measure, the anisotropy is plotted as a function of elastic constant ratios in Figure 3-4. In
the figure, it is seen that lines of constant @ are much closer to parallel to the a = 0O line.
Furthermore, a provides a quantitative basis for comparing the anisotropy of two materials of
different elastic constants: anisotropy is defined as a measure of Euclidean distance between the
anisotropic and isotropic elastic tensors, which is directly related to the error in approximating the
elastic strain energy for the real material and its isotropic approximation. In addition, it is shown
that a has a natural extension for materials without cubic symmetry. Given these intuitively

reasonable and mathematically relevant features, the measure a is adopted in the following
analysis of elastic anisotropy.

Stability of the crystal lattice requires [7]:

1 12
e <2 3.63
C
0< 2 (3.64)
Ci
Combining Equations (3.60), (3.63), (3.64),
0<a<+/3/5 (3.65)

That is a = 0 for isotropic materials, « — 4/3/5 for (%,%) — (—%,0), and @ — 4/2/5 for
11 11

Cu

— 0.
Cn
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Figure 3-5. Anisotropy of various cubic materials. Data from DFT simulations in [8] (x’s) and ultra-
sonic experiments in [9]-[20] (0’s).

1.0 10 10 L0 1.0
3505 0.5 3l50.5 0.5 3l50.5 0.5
0.0 0.0 0.0

%%5 00 o5 10 %5 00 05 10 %%5 00 05 1.0

i 2 o
1 Ci1 1

Figure 3-6. Averaged anisotropy, « of polycrystalline aggregates of cubic materials with 2 grains
(left), 8 grains (center), and 32 grains (right).

Practically, real cubic materials roughly obey

Ci2

0<—=<1 (3.66)
Ch
C

0< -4 < (3.67)
Chy

as seen in Figure 3-5.

For polycrystalline materials, there is no guarantee of cubic symmetry, even when the constituent
grains possess cubic symmetry. The scaling of @ with respect to the number of grains in a
polycrystalline aggregate illuminates the effects of single crystal anisotropy on polycrystalline
anisotropy. The contours of a for aggregates with 2, 8, and 32 grains are shown in Figure 3-6. The
scaling of the anisotropy is well-captured with a simple power law:

[\ O%}

3 -
a=ay—c,L2d, (3.68)

where L is the size of the aggregate, and d,, is the average size of the constituents. The scaling for
austenite is shown in Figure 3-7.
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Figure 3-7. Effective anisotropy of polycrystalline austenite as a function of number of grains.
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Figure 3-8. The effective Young’s modulus for a single crystal of austenitic stainless steel as a
function of crystal orientation.

3.1.5. Effective Young’s Modulus

One upshot of elastic anisotropy is that the effective Young’s modulus of the material depends on
the orientation of the loading with respect to the material basis. As shown in Figure 3-8, the
modulus of an austenitic stainless steel crystal varies widely depending on the orientation. For
polycrystalline aggregates, the effective Young’s modulus varies according to the constituent
orientations and morphology. Using the idealized morphologies shown in Figure 3-9, this effect is
now analyzed. Keeping the morphology fixed, orientations are drawn from a uniform distribution
and assigned to the constituent grains. The predicted Young’s moduli for a number of realizations
are shown in Figure 3-10. A number of features are evident in the figure. First, the isostrain
approximation produces an upper-bound prediction of modulus, while the isostress approximation
produces a lower-bound prediction. The average of these two predictions is an effective
prediction, and only slightly outperformed by the self-consistent method. Second, the average has
a weak dependence on the number of grains, increasing slightly with increasing numbers of grains
up to an asymptotic limit. The results are summarized in Figure 3-11. Last, the spread in
predicted (and observed) moduli is higher for the 8 grain morphology, as expected. This effect
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Figure 3-9. Idealized polycrystalline aggregates.
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Figure 3-10. Predicted effective Young’s moduli for 8 grain microstructures (left) and 27 grain mi-
crostructures (right).
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Figure 3-11. Average effective modulus as a function of morphology size.
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Figure 3-12. Coefficients of variation of elastic moduli as a function of morphology size, computed
via the isostress approximation (left), DNS (center), and the isostrain approximation (right).

was quantified for a range of morphology sizes, and the results are summarized in Figure 3-12. In
the figure, it is evident that the coefficients of variation for the apparent moduli scale with the
inverse square root of the number of grains in the microstructure. The scaling is well-captured

with a simple power law:
: 3 3
Coap = Conn —MapL2d, > (3.69)
Setting the threshold for significance at a coefficient of variation of 1%, microstructures with on
the order of 10° or fewer grains show significant variability. For a material with grain sizes on the
order of 10um, this corresponds to a spatial length scale on the order of 100um.

3.2 Homogenized Plasticity

For plasticity, the homogenization can be treated in a straightforward but computationally
demanding way: simulations of polycrystalline aggregates can be used as data to perform model
selection and calibration for a suitably inexpensive model. Numerous successful applications of
this approach can be found in the literature, but they suffer from the severe limitation that any
change in material properties necessitates a new set of expensive simulations for recalibration.
Advances in surrogate modeling and other machine learning techniques promise to reduce this
marginal cost, but a cheap, interpretable formulation is still required to rapidly turn data into
performance predictions or study the sensitivity of outputs to changes in microstructure. One such
formulation is detailed and explored in the following sections.

3.2.1. Definition of plastic yielding

The phenomenon of plastic yielding is somewhat hard to define. It is tempting to say that when a
material under load experiences any irreversible deformation, that material is yielding. However,
all materials undergo entropically-driven changes at finite temperature, and it is very difficult to
draw an atomically-sharp line between regimes of reversible and irreversible change. The simplest
models of plasticity do this by defining a scalar yield strength, Y, such that a scalar measure of
equivalent stress, c°?", indicates plastic yielding when the stress level reaches the yield strength,
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as in
oV =Y (3.70)

Some widely used criteria of this form are given in Appendix A. The behavior of real materials
does not conform to this simple model in a number of important ways. Here, we examine two
sources of such deviation: the rate-dependence and the orientation-dependence of plastic yielding.
In Appendix B, we consider alternative formulations that might address these issues. For the
analysis here, we adopt a criterion based on the fraction, ¢,,, of the applied power, W, that is
being dissipated by plasticity, D, and define the onset of plastic yielding as satisfaction of the
criterion

D =¢., W (3.71)

The choice of ¢, € (0, 1] is somewhat arbitrary; for rate-dependent plasticity or heterogeneous
materials, the choice impacts the shape of the yield locus. The scaling results derived below are
relatively insensitive to the choice of ¢,,, but some of the effects are noted in the analysis that
follows. As we show, adopting this criterion allows us to generalize the classical Schmid factor to
account for orientation-dependence and rate-dependence in plastic yielding in a
thermodynamically consistent fashion.

3.2.2. Generalized Schmid Factor

The generalized Schmid factor (GSF), detailed below, is a quantity that represents the orientation
dependence of plastic flow in a general polycrystalline material with well-defined slip systems.
The GSF extends the classical Schmid factor to account for rate-dependent plasticity, and predicts
the mean and variance in plastic yield, as defined by Equation (3.71) reasonably well across a
range of grain morphologies and material rate sensitivity.

The plastic dissipation d” at a point is given as the sum of the slip-system-wise products of the
resolved shear stresses 7% and the plastic slip rates y*:

12
dr = z %% (z%) (3.72)

a=1

The volume averaged plastic dissipation of the body € is

1
DP:@/de(z) dv
: N (3.73)

grains

> /Qidp(w

i=1

Making the simplifying assumption that the plastic dissipation does not vary spatially within a

grain,
N

grains

Q|
DP = Z‘f ﬁdf’ (3.74)
1=
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with the help of (3.72). The yield criterion is then based on the fraction ¢,,. of the available
applied power being dissipated,
DP=¢,Z:L (3.75)

where X is a representative volume averaged stress, and L is the averaged velocity gradient.

The representative volume averaged stress and velocity gradient are approximated from the
volume average of the applied power density:

=g~ ) () =
W=—1/ ¢c:ldVr— odV ) : — ldV | =XZ:L (3.76)
@l J® LAV MV A A

For the problems considered here, which satisfy the Hill-Mandel condition [21], the equality is
exact.

1|

Together with (3.74) and (3.75), the yield criterion is then

Ngrains
D vd'=¢,E: L (377
i=1
with the volume fraction |Q |
i
= 3.78
Ul |Q| ( )

The criterion (3.77) becomes quite useful under various simplifying assumptions, as shown
below.

In the first case, the stress in each grain is equal to the macroscopic applied stress, an
approximation which goes back to [22]. Define the equivalent stress

T= /.1 (3.79)
And the direction -
n=——=1¢ (3.80)
z:z °
Then the Schmid factor is
¢ ¢
fé= =—=n:P" (3.81)
z:z *
The plastic dissipation at a point is then
NSS
d?= 3 [ () (3.82)
a=1

where the definition (3.81) has been used in (3.72). Assuming 7 = 7; is constant throughout each
grain i, (3.82) yields
N

S8

dl =7, ) £ (f7,) (3.83)

a=1
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and (3.74) becomes
N

grains

DP = Z Zf (3.84)

Assuming 7; = T is constant throughout the body

grams

D' =T Z Zf“ “(feT) (3.85)

Combining with (3.75), the yield criterion becomes:

grams

T Z Zf“ “(foT)=¢,Z: L (3.86)

Rearranging,
¢, 2 L
T= (3.87)
gra:m z (faT)

In general, (3.87) can be treated with an appropriate nonlinear solver to determine the value of 7.
Given the power law formulation (2.15) for y* (%), the functional form is independent of «, and

a1k
=70 sign (/) (3.88)
Inserting (3.88) into (3.87), and assuming that
Xx~Tn (3.89)
we have
1/k
d)crg : L T
= =
T = N s = 7 (3.90)
i=1 ’Za 13/() (x)
with the critical stress
¢on: L]V
rcr=g[ - ] (3.91)
and the GSF for the flow rule (3.88),
1/k
_ gmtm k+1
= Z Z 7ol £7| (3.92)

(,)
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where g > 0 is an arbitrary scalar stress value. Assuming g¥ = g is independent of grain and slip
system,

1/k
b0t L
T=g gmms e (3.93)
A Y
For a single crystal (with N, = 1 and v; = 1), the formula for the GSF yield strength
simplifies to
¢cr~ L— 1/k
=8|
[ 7/0 -
1k (3.94)

NSS
— Z |fa|k+1
a=1

There are a number of simplifications that permit straightforward calculation of the yield strength.
For example, taking the limit as k — oo, we recover the classical formulation for rate independent
plasticity:

g

T=—"—,
max,, f¢

T, =& (3.95)

Alternatively, if the stress rate 7" is known, we can use the fact that at yield, (3.75) holds, so that

T:L=X:L4+X:L’~X:L°+¢,XZ:L (3.96)
and thus |
L= L (3.97)
1_d)cr

The elastic part of the rate of deformation is approximately
D°~C':T=7C"':n (3.98)

Thus, the critical stress can be approximated as

1/k
1¢; Tn c! /
T, =g A (3.99)
Yo
In the case of rate-controlled uniaxial stress, we have that
1=¢,Q¢; (3.100)
so that
n:D=D; (nosummation) (3.101)
and thus,
1
D\
Tc,:g<m> (3.102)
Y0
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3.2.2.1. Verification for Single Crystal Yield Strengths

A series of crystal plasticity simulations were performed to assess yield strengths for single
crystals of various orientations. For each orientation, the complete yield locus was computed by
applying a combination of symmetry displacement boundary conditions and traction boundary
conditions with a linearly-ramped stress magnitude. Following (A.10), the stresses were applied
such that

T11=Tcos<0+%>

T5, =T'sin(0) (3.103)
Ty =T (9—E>

33 COS 6

with 7' = 600s~!. In the limit where k — oo, the simplification (3.95) is sufficient, in general, the
critical stress for these simulations is determined via (3.99).

Single crystal yield loci were generated by varying 6 over the interval [0, 179°] by increments of
1°. The constitutive formulation is tension-compression symmetric, so that angles in the interval
[180°,359°] are equivalent to the calculated angles. The rate exponents k were also varied, and
the results for k € [2,5,10,20] are shown in Figure 3-13. Figure 3-14 shows comparisons of the
predicted and simulated yield strengths for = Z, using .., as computed from the simulations. As
seen in the figure, the agreement is quite good, with the small deviations attributable to the
non-uniform stress state induced for orientations where the deformation is inhomogeneous due to
the symmetry boundary conditions.

3.2.2.2. Polycrystalline results

For polycrystalline aggregates, Equation (3.93) is only approximate, depending critically on the
assumption of uniform stress. Figures 3-15, 3-16, and 3-17 show the results of applying Equation
(3.93) for various grain morphologies and orientation distributions. In the figures, it is shown
that the approximation (3.93) is reasonable, despite a systematic bias toward over-predicting the
yield strength, and under-predicting variability due to microstructural differences. The bias in the
predictions is related to the violation of the assumption of uniform stress, and is relatively
well-behaved. First, it is noted that a simple linear model can be used to correct the bias, as shown
in Figure 3-18. In general, the slope of the linear model is a function of the number of grains in
the microstructure, as shown in Figure 3-19. This trend could be used to systematically correct
the GSF predictions, yielding a more accurate model. The linear model is a relatively good fit,
independent of microstructure, as shown in Figure 3-20. Although the goodness of fit decreases
with increasing microstructure size, all values are in the range [0.65,0.85], indicating a relatively
good fit across the range of microstructures. Also, larger microstructures exhibit less variability,
so that the lower fit quality for those aggregates is less concerning. The variability in the yield
strength is summarized in Figure 3-21, where it can be seen that the coefficient of variation has an
approximate inverse square root dependence on the number of grains. Furthermore, it is seen that
the scaling of the DNS and GSF predictions are comparable, indicating that the GSF
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Figure 3-13. Comparison of yield loci for values of the rate exponent k =2 (top row) and k =20 (bottom
row) for DNS (left column) and GSF calculations (right column). Note: axes in top and bottom rows
are scaled separately to show detail.
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Figure 3-14. Comparison of uniaxial yield strengths for values of the rate exponent k =2 (top row)
and k =20 (bottom row) for DNS (left column) and GSF calculations (right column).
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Figure 3-15. Predictions of yield strength via the GSF approximation (left) for an ensemble of poly-
crystalline aggregates with 5 grains each (right).
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crystalline aggregates with 20 grains each (right).
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Figure 3-18. Predictions of yield strength via the GSF approximation for an ensemble of polycrys-
talline aggregates with 5 grains each, both raw and with linear correction applied.
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Figure 3-21. Coefficient of variation for yield strength as a function of microstructure size for a range
of rate exponents, k; from DNS (left) and GSF approximation (right).

approximation is a useful tool for predicting the effects of length scale on the variability of yield
strength.

For the GSF approximation method, another promising result is found for the uncorrected
predictions, as shown in Figure 3-22. In the figure, it can be seen that the GSF approximations are
relatively good across a range of rate sensitivities and microstructures, and that these predictions
for ¢, = 0.95 are conservative, in the sense that the predicted yield strength is always lower than
the measured yield strength. Thus, the GSF method provides an effective way to predict yield
strength for polycrystalline aggregates.

3.2.3. Yield Surface

To analyze plastic yielding in the microscale simulations performed here, three classical yield
models are examined. The Tresca model has a yield surface defined by (A.19). The von Mises
model has a yield surface defined by (A.18). The Hosford model has a yield surface defined by
(A.20). In the Hosford model, values of n =1 and n = oo recover the Tresca model, and values of
n =2 and n = 4 recover the von Mises model. Thus, the Tresca and von Mises models can be
thought of as special cases of the Hosford model.

This analysis starts with a maximally-reduced finite element representation (one element per
grain) of a highly idealized microstructure with 64 cubic grains arranged in a unit cube. To probe
the yield surface of this microstructure, 120 simulations are run under varying principal stress
configurations. An example of the stress-state produced is represented in Figure 3-23, where the
contour of the first principal stress is plotted.

The microscale model used here is a rate-dependent crystal plasticity model given in Section 2.1.
As discussed in Appendix B, it is not straightforward to define plastic yielding for such a model.
Here, the criterion (3.77) is adopted where the material is counted as yielding when the plastic
power reaches a specified fraction ¢, of the total applied power. The results are plotted in Figure
3-24. To analyze these results, the parameters (n,Y’) for the Hosford yield surface (A.20) are fit
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Figure 3-22. Predictions of yield strength via the GSF approximation for ensembles of polycrystalline
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19e+02

[ 150

— 100

L
1.7e+01

Figure 3-23. Stress contour on simplified microstructure.

Stress_01

Cauchy,

45



Figure 3-24. Yield loci for specified values {0.002,0.004,...,0.2} of ¢,.
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Figure 3-25. Hosford parameters (left, »; right, Y) fit to yield loci for specified values
{0.002,0.004, ...,0.2} of ¢,.

for each computed yield locus. The results are shown in Figure 3-25.

Some simple observations based on Figures 3-24 and 3-25 are made. First, for small values of
¢, the yield locus does not exhibit the six-fold symmetry of the isotropic macroscale models,
instead exhibiting only the mathematically required two-fold symmetry. For larger values of ¢,
the response approaches the six-fold symmetric character of the macroscale models. Second, the
parameter » fit to the microscale data takes on values in the range [6,7], indicating the aggregated
response is somewhere between that of the Tresca and von Mises models. The results of the same
analysis applied to a microstructure with 125 cubic grains is shown in Figure 3-26. For this case,
it is seen in Figure 3-26 that the lower symmetry behavior is less evident, the yield loci exhibiting
the expected six-fold symmetric behavior to a much closer approximation. The parameters fit to
the computed yield loci, shown in Figure 3-26 exhibit similar behavior to the 64-grain
microstructure, giving some limited confidence that the trends are not artificial. Specifically those
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Figure 3-26. Yield behavior for specified values {0.002,0.004,...,0.2} of ¢ for the microstructure with
125 grains: yield loci (left) and best-fit parameter values (», Y) for the Hosford model (right).

Figure 3-27. Yield loci for 1-grain (left), 4-grain (center), and 16-grain (right) microstructures. The
black lines represent the mean responses of the ensembles. Note: axes are scaled separately to
show detail.

trends are: 1) the yield locus grows from initial yield with a decreasing rate toward a saturated
value; 2) the Hosford exponent decays after a short initial growth, and is in the interval [6.0,7.5]
for all values of ¢,,.

Using the GSF approximation, yield surfaces are then generated for ensembles of 200
microstructures each for equal volume grain numbers in [1,2,4,8,16,32]. Results for 1-grain,
4-grain, and 16-grain microstructures are shown in Figure 3-27. In the figure, it can be seen that
the yield loci are well-represented by the Hosford yield criterion, and that the variability in yield
behavior across an ensemble decreases with increasing numbers of grains. This result is
summarized in Figure 3-28. In the left plot, the mean yield strength is plotted as a function of the
number of grains, indicating a small decrease in yield strength with increasing grain number. In
the right plot, the coefficient of variation in yield strength is plotted as a measure of anisotropy. It
is found that the anisotropy decays as the number of grains to the % power. The scaling is
well-captured with a simple power law:
_9

4

, 9
_ .single _ i
¢, =c, mLad,

(3.104)

It is evident from these results that microstructures must have on the order of 10? to 103 grains to
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Figure 3-28. Mean yield strength (left) and anisotropy (right) as a function of number of grains.

appear isotropic at a threshold of 1072 or less for the anisotropy measure used here. Again, this
suggests that 100um is an approximate threshold, below which the effects plastic anisotropy
should be evaluated for commonly used product forms of structural alloys such as annealed or
forged austenitic stainless steel. This threshold assumes an average grain size of 10um to 50um,
which is generally found in polycrystalline forms of these materials. The analysis here was
performed on microstructures with equiaxed grains and uniform texture, so additional study is
required to asses changes in the threshold size due to grain geometry and texture. In cases where
these effects are pronounced, a strategy very similar to that detailed here should yield the
appropriate conclusions with minor adjustments.
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4. CONCLUSIONS AND FUTURE WORK

This study suggests that there is an apparent anisotropy observable for a material microstructure
with a size on the order of 1 to 10 times the grain size, indicating that microtexture plays a role in
the 10um to 100um regime for a typical fine-grained alloy. This is significant, and suggests that
analysis with relevant length scales on the order of 100xm or less should assess the effects of
material anisotropy even for materials that are effectively isotropic.

This result suggests more extensive study into the effects of texture as a significant
microstructural descriptor. This appears to be especially relevant for accurate simulations of
mechanical response for the following reasons. First, some materials and some processing routes
tend to produce macrotexture, or the aligning of the crystal orientation throughout a material
region of significant extent, or even the entire body. The degree of this texturing controls, among
other things, the elastic and plastic anisotropy of the material.

Second, even for materials without macrotexturing, there will always be some length scale over
which the material has appreciable texture; here, this length scale is found to be in the
neighborhood of 10xm to 100xm. In analysis there is the potential for a loading on a body to
introduce a gradient in deformation such that the integral length of this gradient is of the order of
this microstructural length scale. Whenever this is the case, the finite element discretization must
have elements with characteristic lengths in this regime to accurately capture this gradient. Then,
the material in each element is no longer representative of the average material, but has much
stronger texture. To date, the impact of this discrepancy remains relatively unquantified, but is
almost certainly important, for example, in the run-up to ductile rupture. In order to enhance
confidence in the results of this type of analysis, it is necessary to quantify the effects of this
discrepancy and develop mitigation strategies when it is demonstrably significant.

For the phenomena studied here, it was found that quantitative measures of material anisotropy
and variability of apparent properties all decay with the number of grains in a microstructure, with
a scaling exponent between —1/2 and —3 /4. This implies that these quantities decay as the spatial
length scale of a calculation to a power between —3 /2 and —9/4. This result can be used, for
example, to approximately quantify the effects of apparent anisotropy and microscale variability
on quantities of interest in a finite element analysis. This type of approximation can then be used
to quantify uncertainty in simulation predictions based on realistic variability in material
behavior.
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APPENDIX A. Yield criteria

Three invariants of the Cauchy stress tensor are defined as

Il =tr(g)
1 2
I, =§[tr(g‘g)—tr(g) ]
The deviatoric stress is defined as |
S=0— —Ill
= = 3 =
The standard invariants of s are then defined as
J; =tr(s)=0
J —1[tr(s-s)—tr(s)2] L+l
2 _2 = = = — 42 3 1
1 2 3
Jo=dets) =1, +=-1,1,——1
3 =det(s) = I3 3127554

The Lode coordinates are given by:

3/2
0 :%arcsin { %J3 <J%> }

This coordinate system is convenient for stress analysis, as follows. The z-plane (deviatoric

plane) is normal to g, and is spanned by g, and 8, with

1
g = —[1.0,~1]
2 \/5
1
g =_[_192’_1]
g = —[1.11]

=3 \/5

51

(A.1)

(A2)

(A.3)

(A4)

(A.5)



The magnitude of the projection of the principal stress vector ¢ = [0}, 0,,03] onto g, is

c-g ZL(61+O'2+63>:L11:Z (A.6)

=3 \/5

The projection of the principal stress vector ¢ = [0, 0,, 03] in the plane normal to g, is

—11,63——11] (A7)

It is clearly seen in (A.7) that any stress vector in the plane normal to 8, is purely deviatoric. The
vector ¢ can be projected onto the orthogonal axes g, and g, of the z-plane to get

x 1 1
ol = — (01 —03) = —=(5; —53)

V2 V2 (A8)

7= L(—(71 +20'2—(73) = L(—Sl +2S2 —S3)
6

R

The polar coordinates for the z-plane are then:

r=\Je P+ = /s 42+l = V2T,

o) 1 —S;+2s5—53 (A.9)
¢ =arctan| — ) =arctan| ————
O'l \/5 Sl - S3
Using (A.8), (A.9), and s, = —(s; + s3), the deviatoric principal stresses can then be written as
§; = \/grcos (% +9)
2 A.10
Sy = grsm(e) (A.10)
53 = —\/grcos (% —9)

From (A.10) the angle 8 can be written in terms of the variants J, and J5 as,

0= Laresind B2 (A.11)
3 2 \ 7,

Thus, the cylindrical axis of (A.4) is parallel to the hydrostatic component of the stress, and the
deviatoric components can be plotted in the polar coordinates of the cylindrical cross-section.

(o3
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A general, quadratic yield condition is given by

f<g>=g:v:g—y2=o (A.12)
For an isotropic material,
Y=al@I+5bI*" (A.13)
For pressure-independent plasticity,
a+ %b =0 (A.14)
so that
Y b(usym—%m;) = ppdev (A.15)
Taking b = %,
%g e g_y2=0 (A.16)
In terms of the deviatoric stress s,
%§:§—Y2=O (A.17)

That is, the von Mises yield criterion is the pressure-independent. isotropic, quadratic yield
criterion. Since s : s = r2, the von Mises yield criterion can be written as

, = %y (A.18)

Clearly then, the von Mises yield criterion does not include Lode angle dependence, and including
such dependence in an isotropic criterion requires moving beyond a quadratic formulation.

The Tresca yield criterion is given by

2
rcos(6™) = iY
2 (A.19)
o* = d<0 f,f)—f, 0<6<2
mo + 6’3 3 < T
The Hosford yield criterion is given by
F(51.52,53) =271 [(s = 55)" + (51 = 53)" + (5, — 53)"] " _y =0 (A.20)

Equation (A.20) can be solved for r given 6 using (A.10) to produce a yield criterion in the form
of the Tresca (A.19) and von Mises (A.18) above. The cross-sections of the yield surfaces in the
z-plane are shown in Figure A-1. There, it can be easily seen that the three criteria agree in
general only for states of uniaxial stress.
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Figure A-1. Cross-sections of the Tresca (blue), von Mises (green), and Hosford, n=10 (red) yield

surfaces in the z-plane.

For cubic symmetry,

3
Y=a) EDQE+

I
—_
.
I
—
I
~

with

For pressure-independent plasticity,
a+2b=0

so that

3 3
i=1 j=1,i#j

i=1

3 3
@ij) ()]
> ;} ®F
=1,i#j

i=1j

(A.21)

(A.22)

(A.23)

(A.24)

This quadratic formulation introduces a measure of apparent Lode angle dependence, but it turns
out not to agree with single crystal yield behavior, as seen in Figure A-2. Even for the best case,

where k = 2, the best-fit quadratic approximation fails to represent the apparent lode angle
dependence of yield strength for a FCC single crystal.
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Figure A-2. Comparison of DNS results for yield strength with k =2 (top row) with a quadratic ap-
proximation via Equation (A.24) (bottom row). Results are shown as full yield surfaces plotted in the

z-plane (left column), and contours of uniaxial yield strength (right column).
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APPENDIX B. Alternative yield criteria

A simplified version of single crystal plasticity is examined, where the yield criterion is given
by

7—7% =  max { o P*

(XEl,...,Nshp

} - LY =0 (B.1)
V6

With the crystal aligned with the principal stresses, the single crystal yield cross-section coincides

with the Tresca cross-section, as shown in Figure B-1.

For a polycrystal-under the simplifying assumption of uniform stress—adopting the yield
criterion:

o:P”

1 —_—
}—EY—O (B.2)

T—7T = max
acl,..., NSlip

recovers Tresca-like behavior, as shown in Figure B-2. This is due to the selection of the weakest
link for yielding, which is by definition the single crystal in the aggregate that is most favorably
oriented for slip.

If, instead the following criterion is adopted:

%/sign(r—rcr)dV—Vcr=O

f— max {Q:E“} (B3)
ael,...,NShp - -
7 = lY
2

that is, yield occurs when a fraction V. of the material has yielded, the yield surfaces look like
those shown in Figure B-3. At low values of V., the weakest link is again identified, nearly
recovering the Tresca yield criterion. For large values of V_,, the strongest link is identified (and
the convexity of the criterion is lost). Neither extreme seems to be physically representative.
Following the results in Section 3.2.3, it appears that a value of V, =~ 0.5 is representative of the
DNS results.

Another choice for the definition of the point of plastic yielding is the point at which the plastic
power is a given fraction ¢, of the total applied power, that is

WP = g W (B4)

For plasticity models with a sharp yield point and a physically realistic hardening modulus, under
a uniaxial stress state, (B.4) is satisfied when the stress reaches the yield stress. For plasticity
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Figure B-1. Cross-sections of the single crystal (solid line) and Tresca (symbols) yield surfaces in
the z-plane.
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Figure B-2. Cross-sections of the polycrystal yield surface calculated from (B.2) (solid line) and
Tresca yield surface (symbols) in the z-plane.
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Figure B-3. Cross-sections of the polycrystal yield surface calculated from (B.3) with V. =
{0.01,0.3,0.5,0.7,0.9,0.99} in the z-plane.
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models with a smooth transition from elastic to plastic behavior, as in the microscale model used
defined in Section 2.1.2 and summarized here:

t
FP(1) = / L") -EP(thdr'
0

N, slip

L= ) 7P"
a

k
sign(z%)

. (B.5)

yo =

N, slip

g=(H-Ry2) ), 17"

(B.4) is satisfied roughly when the apparent hardening rate falls below a critical value. This is a
conceptual departure from the historical notion of yield stress defined with a 0.2% offset, which is
a criterion based on attaining a critical value of the plastic strain. However, this definition of yield
seems intuitive, and it can be used to compare model behavior in a straightforward and
physically-motivated way. Varying the value of ¢, in (B.4) changes the radius of the yield locus,
and changing the value of k in (B.5) changes the shape of the yield locus, as seen in Figure B-4.
Lower values of k correspond to lower values of n in Equation (A.20), with n increasing
monotonically with k, as seen in Figure B-5.

The analysis of the DNS results in the text above use the criterion (B.4). The DNS-derived yield
loci are qualitatively similar to those in Figure B-4, although some differences are expected and
observed due to the PDE-governed nature of the DNS problem compared with the algebraic
treatment in this Appendix.
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Figure B-4. Cross-sections of the polycrystal yield surface calculated from (B.4) with ¢.. = 0.99 and
k=5,15,30,100 in the z-plane.
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Figure B-5. Hosford parameters (left, »; right, Y) fit to yield loci for specified values {5,10,...,100} of
the rate exponent & in (B.5). Some instability in the fitting procedure is evident for large values of .
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