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Abstract

RP11T was isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11T are aerobic, non-sporulating, 
exhibit swimming motility, and are rods (0.8 µm by 1.4 µm) that often occur as diplobacillus or in short chains (3–4 cells). 
Optimal growth on minimal media containing 4-hydroxybenzoic acid (µ=0.216 hr−1) occurred at 30 °C, pH 6.5 or 7.0 and 0% salin-
ity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative 
type strains identified as Paraburkholderia aspalathi LMG 27731T, Paraburkholderia fungorum LMG 16225T and Paraburkholderia 
caffeinilytica CF1T. Strain RP11T is genetically distinct from P. aspalathi, its closest relative, in terms of 16S rRNA gene sequence 
similarity (98.7%), genomic average nucleotide identity (94%) and in silico DNA–DNA hybridization (56.7 %±2.8). The composition 
of fatty acids and substrate utilization pattern differentiated strain RP11T from its closest relatives, including growth on phthalic 
acid. Strain RP11T encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and 
uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone 
detected in strain RP11T was Q-8, and the major cellular fatty acids were C
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 cyclo, C
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feature 8 (C
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 ω7c/ω6c). On the basis of this polyphasic approach, it was determined that strain RP11T represents a novel 
species from the genus Paraburkholderia for which the name Paraburkholderia madseniana sp. nov. is proposed. The type strain 
is RP11T (=DSM 110123T=LMG 31517T).

Introduction
The genus Paraburkholderia was established from a division 
within the Burkholderia according to phylogenomic evidence 
[1]. The two genera were subsequently subdivided into four 
more genera, including Trinickia, Caballeronia, Robbsia and 
Mycetohabitans [2, 3]. Five Paraburkholderia type strains were 
transferred to the genus Cabellaronia (P. glathei, P. grimmiae, 
P. humi, P. sordidicola and P. zhejiangensis), three to Trinickia 
(P. caryophylii, P. soli and P. symbiotica), two to Mycetohab-
itans (P. endofungorum and P. rhizoxinicia) and one to Robbsia 
(P. andropogonis) [3, 4]. There are currently 64 type strains of 
Paraburkholderia, with 53 available genomes, of which the 
majority originate from soils (33 strains) or in associations 
with plant roots (23 strains), including rhizosphere, endophyte 

and root-nodulating species (Table S1, available in the online 
version of this article). Few strains have been described from 
aquatic environments with only a single freshwater [5], a 
single marine [6] and two root-associated aquatic type strains 
[7, 8]. Members of Paraburkholderia are of notable interest for 
their capacity to degrade aromatic compounds and the ability 
of some species to form root nodules that fix atmospheric N2.

Paraburkholderia exhibit a range of metabolic capabilities, in 
part, due to their large genomes (7–10 Mb) and capacity to 
carry plasmids [9, 10]. Paraburkholderia have been described 
as facultative anaerobes [11], facultative chemolithotrophs 
[6, 12], acid-tolerant and alkalizing [7, 8, 13], metal-tolerant 
[6, 14], mineral weathering and phosphate solubilizing 
[14–16], polyaromatic hydrocarbon and xenobiotic degrading 
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[10, 17], plant-growth promoting [18, 19] and nitrogen-fixing 
[6, 8, 20–24]. Paraburkholderia nodulate diverse temperate 
and tropical legumes (Fabaceae) [22, 25–33] or co-exist 
as root endophytes [18], increasing plant growth [34] and 
stress tolerance [35]. In soil, Paraburkholderia appear to play 
a role in the decomposition of plant-derived aromatics as 
evidenced by their capacity to degrade tannins and phenolics 
[36, 37], by their frequent isolation from acidic soils of forest 
and bogs [36, 38–44], and by their frequent isolation from 
wood colonized by lignin-degrading white-rot fungi [45, 46]. 
The capacity of soil isolates to degrade polycyclic aromatic 
hydrocarbons and halogenated phenols indicates a diverse 
role in degrading soil aromatics [11, 17, 47, 48]. In addition, 
aromatic- and phenolic acid-degrading Paraburkholderia 
have been implicated as principle contributors to the soil 
priming effect [49, 50].

Isolation and Ecology
Strain RP11T (NCBI Taxonomy ID: 2599607) was isolated 
from the upper 1–5 mm of the A horizon of a Typic Fragi-
ochrept soil (Inceptisol, pH 3.8–4.2) in an experimental forest 
(Dryden, NY. 42.450945,–76.420638) planted with red pine 
(Pinus resinosa Ait.). Its isolation was part of an effort to 
characterize phenolic acid-degrading populations involved 
in soil priming and was isolated by enrichment culturing with 
4-hydroxybenzoate. Of several 4-hydroxybenzoate-degrading 
bacteria isolated, strain RP11T was identified as a principle 
agent of priming [50]. After serial dilution, a soil slurry was 
spread plated onto mineral salts media containing 3 mM 
4-hydroxybenzoate as the sole carbon source (MSM-PHB; 
recipe in Table S2). Colonies appeared after 3 days of growth 
at room temperature and strain RP11T was streaked for isola-
tion on MSM-PHB. For all subsequent chemotaxonomic 
characterizations, strain RP11T was cultured on tryptic soy 
broth (TSB) at 30 °C and pH 7.0, while all characterizations 
of growth and morphology were performed with 25 mM 
MSM+PHB broth at 30 °C and pH 7.0 unless otherwise 
specified.

Phylogenetic and genome features
Genomic DNA from strain RP11T was extracted according to 
the protocol of Griffiths et al. [51] and submitted to the Cornell 
University Sequencing Facility for sequencing using a single 
lane of Illumina MiSeq (2×250 bp). The genome assembly 
is available via the NCBI BioProject: PRJNA558488. Raw 
sequencing data was quality preprocessed with Trimmomatic 
(v. 0.32) [52] and FastX Toolkit (v. 0.7) [53] then assembled 
with SPAdes (v. 3.10.1) [54]. The assembly was comprised 
of 323 contigs, totaling 10 067 686 bases (N50=84 334; avg. 
read depth=17×) and 9477 predicted open reading frames. 
Genomes from eleven of the closest related type strains of 
strain RP11T (based on 16S rRNA gene homology) were 
downloaded from the National Centre for Biotechnological 
Information. Prodigal was used to predict open-reading 
frames (v. 2.6.2) [55] and oxidative genes were annotated 
using hmmsearch [56] with custom hidden-Markov models 

for laccases, aryl alcohol oxidases and dye-decoloring 
peroxidases developed by Wilhelm et al. [57]. Genomes were 
annotated using RAST [58] and grouped based on functional 
gene content in KBase [59] or phylogenetic relatedness using 
the blast Distance Phylogeny method implemented by the 
TYGS pipeline [60]. A phylogenetic tree was constructed with 
full-length 16S rRNA genes also based on blast Distance 
Phylogeny implemented in TYGS. Cupriavidus necator N-1T, 
from the family Burkholderiacaea, served as the outgroup. 
Genome G+C content and the DNA–DNA hybridization 
values were predicted in silico based on genomic data [61]. 
The number of chromosomes, according to the number of 
origins of replication present, and copies of the rrn operon 
in strain RP11T were determined based on the relative depth 
of unassembled sequencing reads mapping to annotated oriC 
and 16S rRNA genes versus single-copy genes identified using 
BUSCO [62].

The most closely related type strain to strain RP11T was 
P. aspalathi based on whole-genome phylogeny (Fig.  1a), 
genomic average nucleotide identity, DNA–DNA hybridiza-
tion and functional gene content (Table 1 and Fig. S1). The 
two strains also possessed the largest genomes and the lowest 
G+C content of all eleven closest relatives (Table 1). The values 
for average nucleotide identity and DNA–DNA hybridization 
between the two strains were below the respective thresh-
olds (95 and 70 %, respectively) for delineating new species 
[63, 64]. The phylogenetic relationships among type strains 
based on the 16S rRNA gene was inconsistent with the whole 
genome phylogeny and had low bootstrapped branch support, 
suggesting low resolution for this marker (Fig. 1b). The low 
discriminating power of 16S rRNA gene-based phylogenies 
for Paraburkholderia has previously been reported [13]. The 
genome of strain RP11T encoded six copies of the rrn operon 
and two origins of replication homologous to oriC present on 
chromosome 1 and 2 of P. caffeinilytica.

The potential to metabolize aromatic compounds differ-
entiated strain RP11T from its closest relatives, with its 
genome encoding the greatest number of genes in the RAST 
SEED subsystem category for the metabolism of aromatics 
(Table  1) and the greatest number of aromatic-degrading 
oxidases (Table S3). The genomes of both strain RP11T and 
P. aspalathi encoded a high number of oxidative enzymes 
compared to their closest relatives, including the same array 
of aryl alcohol oxidases, laccases and a DyP-type peroxidase 
(Table S3). However, only strain RP11T encoded a phthalate 
4,5-dioxygenase (EC 1.14.12.7) and was capable of growth on 
phthalic acid (2.5 mM) as a sole carbon source. All Parabur-
kholderia strains encoded at least one 3-hydroxybenzoate 
4-monooxygenase gene (pobA; EC 1.14.13.23) consistent with 
the capacity for all tested strains to grow on 4-hydroxybenzoic 
acid. Only strain RP11T, and the distantly related P. mega-
politana, encoded a second paralogous copy of pobA. Each of 
RP11T’s paralogs were homologous to a pobA whose structure 
and function have been determined, namely Pseudomonas sp. 
CBS3 (67 % identity) and P. fluorescens (76%), with shared 
identities at the key substrate binding and active site residues 
described by [65–67]. Strain RP11T encoded several genes in 
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the oxygen-independent, beta-oxidation pathway for aromatic 
ring-cleavage (Fig. S2), also present in P. aromaticivorans, but 
neither genome encoded the complete pathway, nor did strain 
RP11T exhibit anaerobic growth under any test condition.

Neither strain RP11T nor its three closest relatives encoded the 
nitrogenase iron protein gene (nifH), which was present in P. 
xenovorans, P. aromaticivorans and P. rhynchosiae.

Fig. 1. The phylogenetic relationships of strain RP11T with closely related species of Paraburkholderia according to a whole-genome 
phylogenetic tree based on blast Distance Phylogeny method using (a) genomes and (b) full-length 16S rRNA gene. Branch support 
correspond to pseudo-bootstrap values [60]. The scale bar corresponds to substitutions per nucleotide position. Accessions for 
genome assemblies and full-length 16S rRNA genes, respectively: P. aspalathi (GCF_900116445.1); P. caffeinilytica (GCF_003368325.1, 
NR_152088.1); P. fungorum (GCF_000685055.1, NR 025058.1); P. aromaticivorans (GCF_002278075.1, NR_163658.1); P. phytofirmans 
(GCF_000020125.1, NR_102845.1); P. sediminicola (GCF_900104005.1, NR_044383.1); P. xenovorans (GCF_000013645.1, NR_074325.2); 
P. rhynchosiae (GCF_002879865.1, NR_116248.1); P. dilworthii (GCF_000472525.1, NR_125580.1); P. phenazinium (GCF_900100735.1), 
P. pallidirosea DHOK13T (NR_152705.1); P. megapolitana (GCF_900113825.1; NR_042594.1) and Cupriavidus necator (GCF_000219215.1, 
AF191737.1). If an accession is not specified, the 16S rRNA gene was recovered from the genome assembly indicated.
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Physiology and chemotaxonomy
Physiological and chemotaxonomic characterizations were 
performed for strain RP11T and its three closest relatives, 
Paraburkholderia aspalathi LMG 27731T, Paraburkholderia 
fungorum LMG 16225T and Paraburkholderia caffeinilytica 
CF1T. Determinations of enzyme activity and oxidation of 
carbon sources were performed using plate-based, colori-
metric assays: API ZYM strips (bioMérieux, France) and 
Biolog GEN III plates (Biolog, USA), respectively, according 
to manufacturers’ instructions. The capacity for growth on 
phenolic compounds was assessed in MSM media with 2.5 mM 
concentrations of benzoic acid, guaiacol, vanillin, syringic 
acid, ferulic acid, phthalic acid, salicylic acid and 0.3 mM 
4-coumaric acid, due to low solubility. Growth was assessed 
according to differences in optical density (λ=600 nm) versus 
uninoculated controls. Cellular fatty acids were extracted 
from cells grown on nutrient agar for two days at 30 °C and 
methylated according to [68] using an Agilent 6850 gas 
chromatograph configured by Microbial ID Inc. (MIDI) 
with the Sherlock Microbial Identification System (v6.1) 
and the RTSBA6 database. Major respiratory quinones were 
determined by analysis of acetone extracts on an Agilent 6545 
LC/Q-TOF MS using a modification of the methods described 
by [69] (details in Supplementary Methods). Oxidase activity 
was tested using Oxistrips (MilliporeSigma). Catalase activity 
was assessed based on the production of bubbles after mixing 
a drop of 3 % H2O2 (v/v) (Wards Scientific) with a loop full 
of active culture. Gram-staining was performed according to 
the method of Smibert and Krieg [70]. Cell morphology and 
Gram-stain phenotype were observed by light microscopy 
(Olympus CX41).

For characterization of growth optima, RP11T was cultivated 
aerobically in filter sterilized (0.22 µm) mineral salts medium 
(MSM) with 10 mM PHB or d-glucose as the sole carbon 

source. Prior to completion of final volume, the medium 
was brought to a pH of 7 using 1M HCl. Prior to growth 
assessments, all strains were passaged at least three times 
in MSM+PHB at pH 7. For each assay, cultivation of RP11T 
was performed in triplicate in 20 ml test tubes bearing 
10 ml MSM incubated at a slant for aeration and shaken at 
180 r.p.m. on an orbital shaker. For determination of pH 
optima, MSM+PHB was prepared at pH 3, 4, 5, 6, 6.5, 7, 8 
and 9 using buffer systems described in the Supplementary 
Methods. For determination of salinity optima, a concen-
trated stock solution of 5M NaCl was used to bring the NaCl 
concentration of the MSM+PHB broth to approximately 0.5, 
1, 2 and 3 % w/v in MSM+PHB at pH 7. For determination 
of growth temperature optima, RP11T was cultivated at 5, 
23, 30 and 37 °C in test tubes. Cell morphology was deter-
mined at a magnification of 1600× using a Zeiss Axioskop 
2 and the program Axiovision v4.6.3. Cell dimensions were 
measured with the Axiovision length tool for 10 individuals 
at stationary phase.

The capacity for anaerobic growth on PHB or nutrient-rich 
media was tested in Balch tubes using 20 mm chlorobutyl 
stoppers and aluminum crimp seals. For nutrient-rich 
media, 5 ml aliquots of freshly prepared tryptic soy broth 
(DSMZ medium 92) and nutrient broth (DSMZ medium 
1) were degassed using 20 cycles of vacuum and ultra-high 
purity N2 gas (AirGas, PA), sealed and autoclave sterilized 
for 20 min. For minimal media tests, 5 ml of filter sterilized 
MSM with or without 25 mM PHB was added to pre-
sterilized Balch tubes and degassed as above under sterile 
conditions. All anaerobic tests used an inoculum (2 % v/v) of 
actively growing aerobic cultures. Anaerobic respiration was 
also tested using 20 mM glucose, 20 mM acetate or 25 mM 
PHB in MSM with 20 mM sodium nitrate as the terminal 
electron acceptor.

Table 1. Phylogenetic and genomic characteristics that differentiate strain RP11T from its eleven most closely related type strains. Bolded values 
indicate closest matches to strain RP11T. Columns were ordered by average nucleotide identity

Strains: 1, P. madseniana sp. nov. RP11T; 2, P. aspalathi LMG 27731T; 3, P. caffeinilytica CF1T; 4, P. fungorum LMG 16225T; 5, P. aromaticivorans BN5T; 6, P. 
phytofirmans PsJNT; 7, P. sediminicola HU2-65WT; 8, P. xenovorans LB400T; 9, P. rhynchosiae WSM3937T; 10, P. dilworthii WSM3556T; 11, P. phenazinium 
NCIB11027T; 12, P. megapolitana A3T.

1 2 3 4 5 6 7 8 9 10 11 12

Genome size (Mb) 10.1 9.89 8.32 8.7 8.91 8.21 7.31 9.73 8.03 7.68 8.6 7.61

Number of contigs 385 104 3 124 8 3 118 3 169 141 56 32

G+C content (%) 61.3 61.1 62.2 61.8 62.9 62.3 63.6 62.6 61.7 61.8 62.3 62.1

Average nucleotide identity (%) 100 94 91.6 89.3 86.7 86.7 86.7 86.5 84.9 84.6 83.1 81.8

DNA–DNA hybridization 100 56.7 44.9 36.9 31 28.6 31.3 31.8 28.4 27.8 25.8 23.8

16S rRNA gene similarity (%) 100 98.7 98.4 99.4 98.8 99.1 98.6 98.6 98.5 98.1 97.9 98.5

Aromatic degradation genes* 191 186 158 158 185 133 104 186 159 136 122 133

Nitrogenase iron protein (nifH) – – – – + – – + + – – –

Cellulose synthase operon + + + + + + – + + + + –

*Total RAST SEED subsystem feature counts.

http://doi.org/10.1601/nm.26959
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.29116
http://doi.org/10.1601/nm.26959
http://doi.org/10.1601/nm.29116
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.31571
http://doi.org/10.1601/nm.26993
http://doi.org/10.1601/nm.26993
http://doi.org/10.1601/nm.27001
http://doi.org/10.1601/nm.27015
http://doi.org/10.1601/nm.26995
http://doi.org/10.1601/nm.26970
http://doi.org/10.1601/nm.26990
http://doi.org/10.1601/nm.26985
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Strain RP11T cells were Gram-negative and rod-shaped 
(0.8±0.1 µm by 1.4±0.2 µm), non-sporulating and oxidase- 
and catalase-positive. Cells grew as rods, occurring 
primarily as diplobacillus, but also individually or in short 
chains (3–4 cells). Cells were predominantly non-motile 
with increased proportions of cells exhibiting swimming 
motility during stationary phase. Motility was observed 
in all three type strains tested, contrary to the previous 
characterization of P. caffeinlytica as non-motile [11]. 
Strain RP11T did not produce a visible biofilm like strain P. 
fungorum which formed a surface biofilm and flocculated 
during growth in TSB. The metabolic fingerprint for strain 
RP11T was unique, and most closely resembled that of P. 
aspalathi, its nearest phylogenetic neighbour. Strain RP11T 
was unique in metabolizing pectin, sucrose and raffinose 
and not inosine and myoinositol (Table 2). Strain RP11T 
uniquely used phthalic acid as a sole carbon source for 
growth. Strain RP11T exhibited enzyme activity character-
istic of related strains, including acid phosphatase, alkaline 
phosphatase, esterase (C4), esterase lipase (C8), leucine 
arylamidase and napathol-AS-BI-phosphohydrolase 
activities. The major fatty acids in strain RP11T were C16 : 0, 
3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c, and summed feature 
8 (C18 : 1ω7c and/or C18 : 1ω6c). The abundances of C16 : 0, C17 : 0 
cyclo and summed feature 8 discriminated strain RP11T 
from related species (Table 3). The sole respiratory quinone 
observed in strain RP11T was ubiquinone Q-8, which was 
consistent with reports for all related species [11, 45, 71].

The optimal growth rate for strain RP11T was observed at 
30 °C, pH 6.5–7.0 and 0 % NaCl. In optimum conditions, 
strain RP11T reached a specific growth rate 0.216 hr−1 that 
was comparable to its closest relative P. aspalathi, but higher 
than both P. fungorum and P. caffeinilytica (Fig. 2 and Table 
S4). Growth of RP11T was diminished when growth media 
contained 0.5 % NaCl and no growth was observed above 
0.5 %. RP11T showed minimal growth at 37 °C and slower 
growth at 5 °C, reaching peak cell density in approximately 
120 h. Aeration was important for growth on MSM+PHB, 
likely due to the oxygen-dependent enzymes involved in 
PHB catabolism. Strain RP11T exhibited an alkalinizing effect, 
raising the pH of MSM+PHB (25 mM) from 7.0 to 8.15 by 
stationary phase. This effect was previously reported for 
Paraburkholderia bannensis [13].

Discussion
Results from our polyphasic approach established that strain 
RP11T constitutes a novel species in the genus Paraburk-
holderia. Strain RP11T met all phylogenetic and chemot-
axonomic criteria for a new species and exhibited notable 
functional differences to closely related strains. The name 
Paraburkholderia madseniana sp. nov. is proposed.

P. madseniana most closely resembled P. aspalathi in all 
genomic and functional comparisons, and P. fungorum in 
16S rRNA gene similarity, though the latter indicator is not 
highly discriminatory for species of Paraburkholderia [1, 13]. 
The similarity between P. madseniana, a forest soil isolate, 

Table 2. A summary of phenotypic characteristics that differentiate 
strain RP11T from closely related species in the genus Paraburkholderia. 
All data are from this study

Strains: 1, P. madseniana sp. nov. RP11T; 2, P.aspalathi LMG 27731T; 3, P. 
fungorum LMG16225T; 4, P. caffeinilytica CF1T.

1 2 3 4

BIOLOG

d-Raffinose + - - -

Pectin + - - -

Sucrose + - - -

d-Saccharic acid - + + +

Inosine - + + +

Myo-inositol - + + +

α-Keto-glutaric acid - + - -

Troleandomycin* - + - -

Glycyl-L-proline + + - -

d-Malic acid + + - -

N-acetyl-D-galactosamine - - + +

l-Galacturonic acid lactone + + + -

d-Glucuronic acid + + + -

l-Serine + + + -

l-Lactic acid + + + -

α-Hydroxy-butyric acid + + + -

Acetic acid + + + -

d-Fucose - - - +

α-Keto-butyric acid + + - +

α-d-Glucose - - + -

d-Glucose-6-PO4 - + - +

d-Fructose-6-PO4 - + - +

d-Aspartic acid + + - +

d-Galacturonic acid - + + -

d-Fructose + - + +

Growth on phenolic acids

4-Hydroxybenzoic acid + + + +

Benzoic acid + + + +

4-Coumaric acid + + + +

Phthalic acid + − − −

Ferulic acid − − − +

Vanillin − − − +

Syringic acid − − − −

Salicylic acid − − − −

Guaiacol − − − −

*Tolerance to antibiotic,

http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.26959
http://doi.org/10.1601/nm.26959
http://doi.org/10.1601/nm.26959
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.29116
http://doi.org/10.1601/nm.26960
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26959
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.26974
http://doi.org/10.1601/nm.29116
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and P. aspalathi, isolated from a root nodule, suggests a 
degree of shared ecology between these related species. High 
levels of plant-derived phenolic acids are common in both 
habitats, with 4-hydroxybenoic acid occurring at comparable 
concentrations in litter and plant roots [72]. Phenolic acids 
act as strong chemoattractants for root nodulating bacteria 
[73] and broadly facilitate plant-microbe interactions, though 
evidence for this in Paraburkholderia is lacking [74]. The 
unique capacity of P. madseniana to degrade phthalic acid 
supports its role in decomposition, since phthalic acids are 
common by-products of lignin-degradation [75–77] and 
phthalate dioxygenase and phthalate transporter genes were 
among several to confer high-levels of fitness to soil bacteria 
[78, 79]. P. madseniana was shown to prime the degradation 
of soil organic matter [49, 50], raising speculation about the 
role of its oxidative enzymes in carbon cycling.

Defining the ecology of Paraburkholderia is made challenging 
by historical and persistent misclassifications in literature 
pertaining to the genus. Paraburkholderia are commonly 
misidentified as Burkholderia or indeterminately categorized 
as part of the ‘Burkholderia-Caballeronia-Paraburkholderia’ 
group [80]. Several studies of lignin or litter degradation 
and root- or fungi-associated bacteria report major trends 
in ‘Burkholderia’, but retrospective analysis reveals that these 
bacteria were actually Paraburkholderia and, to a lesser extent, 
Caballeronia (Table S5) [57, 81–90]. The problem of taxo-
nomic misidentification is compounded by the poor phylo-
genetic resolution of 16S rRNA gene-based classifications for 

Table 3. Cellular fatty acid compositions of strain RP11T and closely 
related species from the genus Paraburkholderia. Values are 
percentages of total fatty acids. Fatty acids that make up <1% of the 
total are not shown or are denoted as trace 'tr'. Bolded values indicate 
unique properties of strain RP11T. All data are from this study.

Strains: 1, P. madseniana sp. nov. RP11T; 2, P.aspalathi LMG 27731T; 3, P. 
fungorum LMG16225T; 4, P. caffeinilytica CF1T.

1 2 3 4

C12:0 2.7 2.56 tr 2.66

C14:0 1.35 1.5 5.64 1.36

C16:0 32.65 23.75 20.47 24.2

C16:1 2-OH 1.07 1.58 2.04 2.06

C16:0 2-OH tr 3.61 2.66 2.35

C16:0 3-OH 4.59 4.27 4.95 4.28

C17:0 cyclo 33.16 25.06 19.03 21.95

C18:1 2-OH tr tr 1.34 1.04

C19:0 cyclo ω8c 9.54 11.94 13.81 9.23

Summed feature 2 5.23 4.89 6.03 5.01

Summed feature 3 1.2 2.34 2.57 4.93

Summed feature 8 2.19 14.1 16.06 16.8

Total % 93.68 95.6 94.6 95.87

Fig. 2. Growth curves of strain RP11T and its closest related species of Paraburkholderia on MSM media with 4-hydroxybenzoic acid 
(10 mM) as the sole carbon source. All culturing conditions were selected for the optimum growth of strain RP11T (pH 7.0 and 30 °C and 
shaking at 180 r.p.m.).

http://doi.org/10.1601/nm.26959
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.1619
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.1619
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.28757
http://doi.org/10.1601/nm.26956
http://doi.org/10.1601/nm.26956
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Paraburkholderia. These taxonomic challenges call for the use 
of advanced genomic, phylogenetic and chemotaxonomic 
approaches when describing members of Paraburkholderia 
and the other five genera formerly belonging to Burkholderia.

Description of Paraburkholderia 
madseniana sp. nov.
Paraburkholderia madseniana [​mad.​se.​ni.a′na. N.L. fem. 
adj. madseniana, named in honor of the late Dr. Eugene L. 
Madsen, professor of microbiology at Cornell University, 
beloved colleague, mentor, and friend, who isolated strain 
RP11T in the year before his untimely passing].

Cells are Gram-negative, motile, non-sporulating, rods 
(0.8 µm by 1.4 µm) that grow primarily as diplobacillus or 
in short chains (3–4 cells). Colonies are circular and convex 
with a smooth edge, appearing opaque, lustrous and cream/
off-white in colour. Optimum growth occurred at 30 °C and 
pH 6.5–7.0 on MSM and 10 mM 4-hydroxybenzoic acid with 
a specific growth rate of 0.216 hr−1. The organism is phyloge-
netically related to the genus Paraburkholderia. Positive reac-
tions are observed for acid phosphatase, alkaline phosphatase, 
esterase (C4), esterase lipase (C8), leucine arylamidase and 
napathol-AS-BI-phosphohydrolase. Negative reactions for, 
N-acetyl-β-glucosaminidase, α-fucosidase, α-mannosidase, 
α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, 
β-glucuronidase, lipase (C14), and cystine, trypsin and valine 
arylamidase. Tests were positive for utilization of acetic acid, 
α-d-glucose, α-hydroxy-butyric acid, α-keto-butyric acid, 
β-hydroxy-d, l-butyric acid, bromo-succinic acid, citric acid, 
d-arabitol, d-aspartic acid, d-fructose, d-galactose, d-gluconic 
acid, d-glucuronic acid, d-malic acid, d-mannitol, d-mannose, 
raffinose, d-saccharic acid, d-sorbitol, formic acid, γ-amino-
butyric acid, glycerol, glycyl-l-proline, l-alanine, l-arginine, 
l-aspartic acid, l-fucose, l-galacturonic acid lactone, l-glutamic 
acid, l-histidine, l-lactic acid, l-malic acid, l-pyroglutamic acid, 
l-rhamnose, l-serine, methyl pyruvate, mucic acid, N-acetyl-
d-glucosamine, pectin, 4-hydroxy-phenylacetic acid, quinic 
acid, sucrose, Tween-40, benzoic acid, 4-hydroxybenzoate, 
4-coumaric acid, and phthalic acid. Tests were negative for 
utilization of 3-methyl glucose, acetoacetic acid, lactose, 
α-keto-glutaric acid, β-methyl-d-glucoside, cellobiose, dextrin, 
d-fructose-6-phosphate, d-fucose, d-galacturonic acid, 
d-glucose-6-phosphate, d-lactic acid methyl ester, maltose, 
melibiose, d-salicin, trehalose, turanose, gelatin, gentiobiose, 
glucuronamide, inosine, myo-inositol, N-acetyl neuraminic 
acid, N-acetyl-β-d-mannosamine, N-acetyl-d-galactosamine, 
propionic acid, stachyose, vanillin, ferulic acid, guaiacol, sali-
cylic acid and syringic acid. The most abundant cellular fatty 
acids (ordered by abundance) are C17 : 0 cyclo, C16:0, C19 : 0 cyclo 
ω8c, summed feature 2, C16 : 0 3-OH, C12 : 0, summed feature 8, 
C14 : 0, summed feature 3, C16 : 1 2-OH, C16 : 0 2-OH and C18 : 1 2-OH. 
The sole respiratory quinone is ubiquinone Q-8.

The type strain, RP11T (=DSM 110123T=LMG 31517T) 
was isolated from the A horizon of an acidic (pH 3.8–4.2) 
inceptisol in a uniformly planted red pine forest (Dryden, 

NY. 42.450945,–76.420638). The DNA G+C content of the 
type strain is 61.3 mol%. The unassembled and assembled 
genome sequencing data (VOSW00000000) and 16S rRNA 
gene (MN239497) were assigned to the NCBI BioProject: 
PRJNA558488.
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