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Paraburkholderia madseniana sp. nov., a phenolic acid-degrading
bacterium isolated from acidic forest soil
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Abstract

RP11Twas isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11" are aerobic, non-sporulating,
exhibit swimming motility, and are rods (0.8um by 1.4um) that often occur as diplobacillus or in short chains (3-4cells).
Optimal growth on minimal media containing 4-hydroxybenzoic acid (u=0.216 hr™') occurred at 30 °C, pH 6.5 or 7.0 and 0% salin-
ity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative
type strains identified as Paraburkholderia aspalathi LMG 277317, Paraburkholderia fungorum LMG 162257 and Paraburkholderia
caffeinilytica CF17. Strain RP117 is genetically distinct from P, aspalathi, its closest relative, in terms of 16S rRNA gene sequence
similarity (98.7%), genomic average nucleotide identity (94%) and in silico DNA-DNA hybridization (56.7%%2.8). The composition
of fatty acids and substrate utilization pattern differentiated strain RP117 from its closest relatives, including growth on phthalic
acid. Strain RP117 encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and
uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone
detected in strain RP117 was Q-8, and the major cellular fatty acids were C,, ,30H-C,, ..C.. cyclo,C  cyclo w8c, and summed
feature 8 (C,, ,@7c/wbc). On the basis of this polyphasic approach, it was determined that strain RP11" represents a novel
species from the genus Paraburkholderia for which the name Paraburkholderia madseniana sp. nov. is proposed. The type strain

is RP11T (=DSM 110123™=LMG 315177).

INTRODUCTION

The genus Paraburkholderia was established from a division
within the Burkholderia according to phylogenomic evidence
[1]. The two genera were subsequently subdivided into four
more genera, including Trinickia, Caballeronia, Robbsia and
Mycetohabitans 2, 3]. Five Paraburkholderia type strains were
transferred to the genus Cabellaronia (P. glathei, P. grimmiae,
P humi, P. sordidicola and P. zhejiangensis), three to Trinickia
(P. caryophylii, P. soli and P. symbiotica), two to Mycetohab-
itans (P. endofungorum and P. rhizoxinicia) and one to Robbsia
(P. andropogonis) 3, 4]. There are currently 64 type strains of
Paraburkholderia, with 53 available genomes, of which the
majority originate from soils (33 strains) or in associations
with plant roots (23 strains), including rhizosphere, endophyte

and root-nodulating species (Table S1, available in the online
version of this article). Few strains have been described from
aquatic environments with only a single freshwater [5], a
single marine [6] and two root-associated aquatic type strains
[7, 8]. Members of Paraburkholderia are of notable interest for
their capacity to degrade aromatic compounds and the ability
of some species to form root nodules that fix atmospheric N.,.

Paraburkholderia exhibit a range of metabolic capabilities, in
part, due to their large genomes (7-10 Mb) and capacity to
carry plasmids [9, 10]. Paraburkholderia have been described
as facultative anaerobes [11], facultative chemolithotrophs
[6, 12], acid-tolerant and alkalizing [7, 8, 13], metal-tolerant
[6, 14], mineral weathering and phosphate solubilizing
[14-16], polyaromatic hydrocarbon and xenobiotic degrading
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[10, 17], plant-growth promoting [18, 19] and nitrogen-fixing
[6, 8, 20-24]. Paraburkholderia nodulate diverse temperate
and tropical legumes (Fabaceae) [22, 25-33] or co-exist
as root endophytes [18], increasing plant growth [34] and
stress tolerance [35]. In soil, Paraburkholderia appear to play
a role in the decomposition of plant-derived aromatics as
evidenced by their capacity to degrade tannins and phenolics
[36, 37], by their frequent isolation from acidic soils of forest
and bogs [36, 38-44], and by their frequent isolation from
wood colonized by lignin-degrading white-rot fungi [45, 46].
The capacity of soil isolates to degrade polycyclic aromatic
hydrocarbons and halogenated phenols indicates a diverse
role in degrading soil aromatics [11, 17, 47, 48]. In addition,
aromatic- and phenolic acid-degrading Paraburkholderia
have been implicated as principle contributors to the soil
priming effect [49, 50].

ISOLATION AND ECOLOGY

Strain RP11" (NCBI Taxonomy ID: 2599607) was isolated
from the upper 1-5mm of the A horizon of a Typic Fragi-
ochrept soil (Inceptisol, pH 3.8-4.2) in an experimental forest
(Dryden, NY. 42.450945,-76.420638) planted with red pine
(Pinus resinosa Ait.). Its isolation was part of an effort to
characterize phenolic acid-degrading populations involved
in soil priming and was isolated by enrichment culturing with
4-hydroxybenzoate. Of several 4-hydroxybenzoate-degrading
bacteria isolated, strain RP11" was identified as a principle
agent of priming [50]. After serial dilution, a soil slurry was
spread plated onto mineral salts media containing 3 mM
4-hydroxybenzoate as the sole carbon source (MSM-PHB;
recipe in Table S2). Colonies appeared after 3 days of growth
at room temperature and strain RP117 was streaked for isola-
tion on MSM-PHB. For all subsequent chemotaxonomic
characterizations, strain RP11" was cultured on tryptic soy
broth (TSB) at 30°C and pH 7.0, while all characterizations
of growth and morphology were performed with 25mM
MSM+PHB broth at 30°C and pH 7.0 unless otherwise
specified.

PHYLOGENETIC AND GENOME FEATURES

Genomic DNA from strain RP117 was extracted according to
the protocol of Griffiths et al. [51] and submitted to the Cornell
University Sequencing Facility for sequencing using a single
lane of Illumina MiSeq (2x250bp). The genome assembly
is available via the NCBI BioProject: PRINA558488. Raw
sequencing data was quality preprocessed with Trimmomatic
(v. 0.32) [52] and FastX Toolkit (v. 0.7) [53] then assembled
with SPAdes (v. 3.10.1) [54]. The assembly was comprised
of 323 contigs, totaling 10067 686 bases (N, =84334; avg.
read depth=17x) and 9477 predicted open reading frames.
Genomes from eleven of the closest related type strains of
strain RP117 (based on 16S rRNA gene homology) were
downloaded from the National Centre for Biotechnological
Information. Prodigal was used to predict open-reading
frames (v. 2.6.2) [55] and oxidative genes were annotated
using hmmsearch [56] with custom hidden-Markov models

for laccases, aryl alcohol oxidases and dye-decoloring
peroxidases developed by Wilhelm et al. [57]. Genomes were
annotated using RAST [58] and grouped based on functional
gene content in KBase [59] or phylogenetic relatedness using
the BLAST Distance Phylogeny method implemented by the
TYGS pipeline [60]. A phylogenetic tree was constructed with
full-length 16S rRNA genes also based on BLAST Distance
Phylogeny implemented in TYGS. Cupriavidus necator N-17,
from the family Burkholderiacaea, served as the outgroup.
Genome G+C content and the DNA-DNA hybridization
values were predicted in silico based on genomic data [61].
The number of chromosomes, according to the number of
origins of replication present, and copies of the rrn operon
in strain RP11" were determined based on the relative depth
of unassembled sequencing reads mapping to annotated oriC
and 16S rRNA genes versus single-copy genes identified using
BUSCO [62].

The most closely related type strain to strain RP11T was
P aspalathi based on whole-genome phylogeny (Fig. 1la),
genomic average nucleotide identity, DNA-DNA hybridiza-
tion and functional gene content (Table 1 and Fig. S1). The
two strains also possessed the largest genomes and the lowest
G+C content of all eleven closest relatives (Table 1). The values
for average nucleotide identity and DNA-DNA hybridization
between the two strains were below the respective thresh-
olds (95 and 70%, respectively) for delineating new species
[63, 64]. The phylogenetic relationships among type strains
based on the 165 rRNA gene was inconsistent with the whole
genome phylogeny and had low bootstrapped branch support,
suggesting low resolution for this marker (Fig. 1b). The low
discriminating power of 16S rRNA gene-based phylogenies
for Paraburkholderia has previously been reported [13]. The
genome of strain RP117 encoded six copies of the rrn operon
and two origins of replication homologous to oriC present on
chromosome 1 and 2 of P. caffeinilytica.

The potential to metabolize aromatic compounds differ-
entiated strain RP11" from its closest relatives, with its
genome encoding the greatest number of genes in the RAST
SEED subsystem category for the metabolism of aromatics
(Table 1) and the greatest number of aromatic-degrading
oxidases (Table S3). The genomes of both strain RP11" and
P aspalathi encoded a high number of oxidative enzymes
compared to their closest relatives, including the same array
of aryl alcohol oxidases, laccases and a DyP-type peroxidase
(Table S3). However, only strain RP11" encoded a phthalate
4,5-dioxygenase (EC 1.14.12.7) and was capable of growth on
phthalic acid (2.5mM) as a sole carbon source. All Parabur-
kholderia strains encoded at least one 3-hydroxybenzoate
4-monooxygenase gene (pobA; EC 1.14.13.23) consistent with
the capacity for all tested strains to grow on 4-hydroxybenzoic
acid. Only strain RP117, and the distantly related P. mega-
politana, encoded a second paralogous copy of pobA. Each of
RP117%s paralogs were homologous to a pobA whose structure
and function have been determined, namely Pseudomonas sp.
CBS3 (67% identity) and P. fluorescens (76%), with shared
identities at the key substrate binding and active site residues
described by [65-67]. Strain RP11" encoded several genes in
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Fig. 1. The phylogenetic relationships of strain RP11"T with closely related species of Paraburkholderia according to a whole-genome
phylogenetic tree based on BLAST Distance Phylogeny method using (a) genomes and (b) full-length 16S rRNA gene. Branch support
correspond to pseudo-bootstrap values [60]. The scale bar corresponds to substitutions per nucleotide position. Accessions for
genome assemblies and full-length 16S rRNA genes, respectively: P aspalathi (GCF_900116445.1); P. caffeinilytica (GCF_003368325.1,
NR_152088.1); P fungorum (GCF_000685055.1, NR 025058.1); P aromaticivorans (GCF_002278075.1, NR_163658.1); P phytofirmans
(GCF_000020125.1, NR_102845.1); P sediminicola (GCF_900104005.1, NR_044383.1); P xenovorans (GCF_000013645.1, NR_074325.2);
P rhynchosiae (GCF_002879865.1, NR_116248.1); P. dilworthii (GCF_000472525.1, NR_125580.1); P. phenazinium (GCF_900100735.1),
P pallidirosea DHOK13" (NR_152705.1); P megapolitana (GCF_900113825.1; NR_042594.1) and Cupriavidus necator (GCF_000219215.1,
AF191737.1). If an accession is not specified, the 165 rRNA gene was recovered from the genome assembly indicated.

the oxygen-independent, beta-oxidation pathway for aromatic
ring-cleavage (Fig. S2), also present in P. aromaticivorans, but
neither genome encoded the complete pathway, nor did strain
RP11" exhibit anaerobic growth under any test condition.

Neither strain RP117 nor its three closest relatives encoded the
nitrogenase iron protein gene (nifH), which was present in P
xenovorans, P. aromaticivorans and P. rhynchosiae.
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Table 1. Phylogenetic and genomic characteristics that differentiate strain RP11T from its eleven most closely related type strains. Bolded values
indicate closest matches to strain RP117. Columns were ordered by average nucleotide identity

Strains: 1, P madseniana sp. nov. RP11T; 2, P aspalathi LMG 277317, 3, P. caffeinilytica CF17; 4, P fungorum LMG 162257; 5, P aromaticivorans BN5"; 6, P
phytofirmans PsJNT; 7, P sediminicola HU2-65WT; 8, P xenovorans LB400T; 9, P rhynchosiae WSM39377; 10, P. dilworthii WSM3556"; 11, P. phenazinium

NCIB110277; 12, R megapolitana A3".

1 2 3 4 5 6 7 8 9 10 11 12
Genome size (Mb) 10.1 9.89 8.32 8.7 8.91 8.21 7.31 9.73 8.03 7.68 8.6 7.61
Number of contigs 385 104 3 124 8 3 118 3 169 141 56 32
G+C content (%) 61.3 61.1 62.2 61.8 62.9 62.3 63.6 62.6 61.7 61.8 62.3 62.1
Average nucleotide identity (%) 100 94 91.6 89.3 86.7 86.7 86.7 86.5 84.9 84.6 83.1 81.8
DNA-DNA hybridization 100 56.7 44.9 36.9 31 28.6 31.3 31.8 28.4 27.8 25.8 23.8
16S rRNA gene similarity (%) 100 98.7 98.4 99.4 98.8 99.1 98.6 98.6 98.5 98.1 97.9 98.5
Aromatic degradation genes* 191 186 158 158 185 133 104 186 159 136 122 133
Nitrogenase iron protein (nifH) - - - - + - - + + - - -
Cellulose synthase operon + + + + + + - + + + + -

*Total RAST SEED subsystem feature counts.

PHYSIOLOGY AND CHEMOTAXONOMY

Physiological and chemotaxonomic characterizations were
performed for strain RP117 and its three closest relatives,
Paraburkholderia aspalathi LMG 27731%, Paraburkholderia
fungorum LMG 16225" and Paraburkholderia caffeinilytica
CF1". Determinations of enzyme activity and oxidation of
carbon sources were performed using plate-based, colori-
metric assays: API ZYM strips (bioMérieux, France) and
Biolog GEN III plates (Biolog, USA), respectively, according
to manufacturers’ instructions. The capacity for growth on
phenolic compounds was assessed in MSM media with 2.5 mM
concentrations of benzoic acid, guaiacol, vanillin, syringic
acid, ferulic acid, phthalic acid, salicylic acid and 0.3 mM
4-coumaric acid, due to low solubility. Growth was assessed
according to differences in optical density (\=600 nm) versus
uninoculated controls. Cellular fatty acids were extracted
from cells grown on nutrient agar for two days at 30°C and
methylated according to [68] using an Agilent 6850 gas
chromatograph configured by Microbial ID Inc. (MIDI)
with the Sherlock Microbial Identification System (v6.1)
and the RTSBA6 database. Major respiratory quinones were
determined by analysis of acetone extracts on an Agilent 6545
LC/Q-TOF MS using a modification of the methods described
by [69] (details in Supplementary Methods). Oxidase activity
was tested using Oxistrips (MilliporeSigma). Catalase activity
was assessed based on the production of bubbles after mixing
a drop of 3% H,0, (v/v) (Wards Scientific) with a loop full
of active culture. Gram-staining was performed according to
the method of Smibert and Krieg [70]. Cell morphology and
Gram-stain phenotype were observed by light microscopy
(Olympus CX41).

For characterization of growth optima, RP11" was cultivated
aerobically in filter sterilized (0.22 um) mineral salts medium
(MSM) with 10mM PHB or p-glucose as the sole carbon

source. Prior to completion of final volume, the medium
was brought to a pH of 7 using 1M HCL. Prior to growth
assessments, all strains were passaged at least three times
in MSM+PHB at pH 7. For each assay, cultivation of RP117
was performed in triplicate in 20ml test tubes bearing
10ml MSM incubated at a slant for aeration and shaken at
180r.p.m. on an orbital shaker. For determination of pH
optima, MSM+PHB was prepared at pH 3, 4, 5, 6, 6.5, 7, 8
and 9 using buffer systems described in the Supplementary
Methods. For determination of salinity optima, a concen-
trated stock solution of 5M NaCl was used to bring the NaCl
concentration of the MSM+PHB broth to approximately 0.5,
1, 2 and 3% w/v in MSM+PHB at pH 7. For determination
of growth temperature optima, RP11" was cultivated at 5,
23, 30 and 37°C in test tubes. Cell morphology was deter-
mined at a magnification of 1600x using a Zeiss Axioskop
2 and the program Axiovision v4.6.3. Cell dimensions were
measured with the Axiovision length tool for 10 individuals
at stationary phase.

The capacity for anaerobic growth on PHB or nutrient-rich
media was tested in Balch tubes using 20 mm chlorobutyl
stoppers and aluminum crimp seals. For nutrient-rich
media, 5ml aliquots of freshly prepared tryptic soy broth
(DSMZ medium 92) and nutrient broth (DSMZ medium
1) were degassed using 20 cycles of vacuum and ultra-high
purity N, gas (AirGas, PA), sealed and autoclave sterilized
for 20 min. For minimal media tests, 5 ml of filter sterilized
MSM with or without 25mM PHB was added to pre-
sterilized Balch tubes and degassed as above under sterile
conditions. All anaerobic tests used an inoculum (2% v/v) of
actively growing aerobic cultures. Anaerobic respiration was
also tested using 20 mM glucose, 20 mM acetate or 25mM
PHB in MSM with 20 mM sodium nitrate as the terminal
electron acceptor.
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Strain RP117 cells were Gram-negative and rod-shaped
(0.8+0.1 um by 1.4+0.2 pm), non-sporulating and oxidase-
and catalase-positive. Cells grew as rods, occurring
primarily as diplobacillus, but also individually or in short
chains (3—4cells). Cells were predominantly non-motile
with increased proportions of cells exhibiting swimming
motility during stationary phase. Motility was observed
in all three type strains tested, contrary to the previous
characterization of P. caffeinlytica as non-motile [11].
Strain RP117 did not produce a visible biofilm like strain P.
fungorum which formed a surface biofilm and flocculated
during growth in TSB. The metabolic fingerprint for strain
RP11T was unique, and most closely resembled that of P.
aspalathi, its nearest phylogenetic neighbour. Strain RP11”
was unique in metabolizing pectin, sucrose and raffinose
and not inosine and myoinositol (Table 2). Strain RP11"
uniquely used phthalic acid as a sole carbon source for
growth. Strain RP11" exhibited enzyme activity character-
istic of related strains, including acid phosphatase, alkaline
phosphatase, esterase (C4), esterase lipase (C8), leucine
arylamidase and napathol-AS-BI-phosphohydrolase
activities. The major fatty acids in strain RP11" were C,_,
30H-C . C,, cyclo, Cro. cyclo m8¢, and summed feature
8 (C,,,w7c and/or C , ®w6c). The abundances of C _ , C .
cyclo and summed feature 8 discriminated strain RP11T
from related species (Table 3). The sole respiratory quinone
observed in strain RP11" was ubiquinone Q-8, which was
consistent with reports for all related species [11, 45, 71].

The optimal growth rate for strain RP11" was observed at
30°C, pH 6.5-7.0 and 0% NaCl. In optimum conditions,
strain RP117T reached a specific growth rate 0.216hr* that
was comparable to its closest relative P. aspalathi, but higher
than both P. fungorum and P. caffeinilytica (Fig. 2 and Table
S4). Growth of RP11T was diminished when growth media
contained 0.5% NaCl and no growth was observed above
0.5%. RP11" showed minimal growth at 37°C and slower
growth at 5°C, reaching peak cell density in approximately
120h. Aeration was important for growth on MSM+PHB,
likely due to the oxygen-dependent enzymes involved in
PHB catabolism. Strain RP11" exhibited an alkalinizing effect,
raising the pH of MSM+PHB (25mM) from 7.0 to 8.15 by
stationary phase. This effect was previously reported for
Paraburkholderia bannensis [13].

DISCUSSION

Results from our polyphasic approach established that strain
RPI1" constitutes a novel species in the genus Paraburk-
holderia. Strain RP117 met all phylogenetic and chemot-
axonomic criteria for a new species and exhibited notable
functional differences to closely related strains. The name
Paraburkholderia madseniana sp. nov. is proposed.

P madseniana most closely resembled P. aspalathi in all
genomic and functional comparisons, and P. fungorum in
16S rRNA gene similarity, though the latter indicator is not
highly discriminatory for species of Paraburkholderia [1, 13].
The similarity between P. madseniana, a forest soil isolate,

Table 2. A summary of phenotypic characteristics that differentiate
strain RP117 from closely related species in the genus Paraburkholderia.
All data are from this study

Strains: 1, P madseniana sp. nov. RP117; 2, Paspalathi LMG 277317, 3, P
fungorum LMG162257; 4, P, caffeinilytica CF1T.

1 2 3 4
BIOLOG
p-Raffinose +
Pectin + - _
Sucrose + - - -
D-Saccharic acid - + + +
Inosine - + + +
Myo-inositol - + + +
a-Keto-glutaric acid + - R
Troleandomycin* - + - _
Glycyl-L-proline + + - -
D-Malic acid + + - _
N-acetyl-D-galactosamine - - + +
L-Galacturonic acid lactone + + + -
p-Glucuronic acid + + + -
L-Serine + + + _
L-Lactic acid + + +
a-Hydroxy-butyric acid + + + -
Acetic acid + + +
p-Fucose - - - +
a-Keto-butyric acid + + - +
a-D-Glucose - - +
D-Glucose-6-PO4 - + - +
D-Fructose-6-PO4 - + - +
D-Aspartic acid + + R +
D-Galacturonic acid - + +
p-Fructose + - + +
Growth on phenolic acids
4-Hydroxybenzoic acid + + + +
Benzoic acid + + + +
4-Coumaric acid + + + +
Phthalic acid + — _ _
Ferulic acid - - - +
Vanillin - - - +
Syringic acid - - - -
Salicylic acid - - - _
Guaiacol - - _ _

*Tolerance to antibiotic,
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Table 3. Cellular fatty acid compositions of strain RP117 and closely
related species from the genus Paraburkholderia. Values are
percentages of total fatty acids. Fatty acids that make up <1% of the
total are not shown or are denoted as trace ‘TR Bolded values indicate
unique properties of strain RP117. All data are from this study.

Strains: 1, P madseniana sp. nov. RP11T; 2, Raspalathi LMG 277317, 3, P
fungorum LMG16225T; 4, P. caffeinilytica CF17.

1 2 3 4
C12:0 2.7 2.56 TR 2.66
C14:0 1.35 1.5 5.64 1.36
C16:0 32.65 23.75 20.47 24.2
Cl16:1 2-OH 1.07 1.58 2.04 2.06
C16:0 2-OH TR 3.61 2.66 2.35
C16:0 3-OH 4.59 4.27 4.95 4.28
C17:0 cyclo 33.16 25.06 19.03 21.95
C18:1 2-OH TR TR 1.34 1.04
C19:0 cyclo w8c 9.54 11.94 13.81 9.23
Summed feature 2 523 4.89 6.03 5.01
Summed feature 3 1.2 2.34 2.57 4.93
Summed feature 8 2.19 14.1 16.06 16.8
Total % 93.68 95.6 94.6 95.87

and P. aspalathi, isolated from a root nodule, suggests a
degree of shared ecology between these related species. High
levels of plant-derived phenolic acids are common in both
habitats, with 4-hydroxybenoic acid occurring at comparable
concentrations in litter and plant roots [72]. Phenolic acids
act as strong chemoattractants for root nodulating bacteria
[73] and broadly facilitate plant-microbe interactions, though
evidence for this in Paraburkholderia is lacking [74]. The
unique capacity of P. madseniana to degrade phthalic acid
supports its role in decomposition, since phthalic acids are
common by-products of lignin-degradation [75-77] and
phthalate dioxygenase and phthalate transporter genes were
among several to confer high-levels of fitness to soil bacteria
[78, 79]. P. madseniana was shown to prime the degradation
of soil organic matter [49, 50], raising speculation about the
role of its oxidative enzymes in carbon cycling.

Defining the ecology of Paraburkholderia is made challenging
by historical and persistent misclassifications in literature
pertaining to the genus. Paraburkholderia are commonly
misidentified as Burkholderia or indeterminately categorized
as part of the ‘Burkholderia-Caballeronia-Paraburkholderia’
group [80]. Several studies of lignin or litter degradation
and root- or fungi-associated bacteria report major trends
in ‘Burkholderia’, but retrospective analysis reveals that these
bacteria were actually Paraburkholderia and, to a lesser extent,
Caballeronia (Table S5) [57, 81-90]. The problem of taxo-
nomic misidentification is compounded by the poor phylo-
genetic resolution of 16S rRNA gene-based classifications for

—— P. aspalathi
— P. caffeinilytica
20| | — P. fungorum
P. madseniana

ODeso0o

In(ODéeoo)

Specific growth rate

Meateiniyica = 0.167
Utungorim = 0.167

madseniana = 0.216
Masparaii = 0.230

Time (hrs)

10 15 20

Time (hrs)

Fig. 2. Growth curves of strain RP117 and its closest related species of Paraburkholderia on MSM media with 4-hydroxybenzoic acid
(10mM) as the sole carbon source. All culturing conditions were selected for the optimum growth of strain RP117 (pH 7.0 and 30°Cand

shaking at 180r.p.m.).
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Paraburkholderia. These taxonomic challenges call for the use
of advanced genomic, phylogenetic and chemotaxonomic
approaches when describing members of Paraburkholderia
and the other five genera formerly belonging to Burkholderia.

DESCRIPTION OF PARABURKHOLDERIA
MADSENIANA SP. NOV.

Paraburkholderia madseniana [mad.se.ni.a'na. N.L. fem.
adj. madseniana, named in honor of the late Dr. Eugene L.
Madsen, professor of microbiology at Cornell University,
beloved colleague, mentor, and friend, who isolated strain
RP11" in the year before his untimely passing].

Cells are Gram-negative, motile, non-sporulating, rods
(0.8pum by 1.4um) that grow primarily as diplobacillus or
in short chains (3-4cells). Colonies are circular and convex
with a smooth edge, appearing opaque, lustrous and cream/
off-white in colour. Optimum growth occurred at 30°C and
pH 6.5-7.0 on MSM and 10mM 4-hydroxybenzoic acid with
a specific growth rate of 0.216hr". The organism is phyloge-
netically related to the genus Paraburkholderia. Positive reac-
tions are observed for acid phosphatase, alkaline-phosphatase,
esterase (C4), esterase lipase (C8), leucine arylamidase and
napathol-AS-BI-phosphohydrolase. Negative reactions for,
N-acetyl-B-glucosaminidase, a-fucosidase, a-mannosidase,
a-galactosidase, B-galactosidase, a-glucosidase, B-glucosidase,
B-glucuronidase, lipase (C14), and cystine, trypsin and valine
arylamidase. Tests were positive for utilization of acetic acid,
a-D-glucose, a-hydroxy-butyric acid, a-keto-butyric acid,
B-hydroxy-p, L-butyric acid, bromo-succinic acid, citric acid,
D-arabitol, D-aspartic acid, p-fructose, D-galactose, D-gluconic
acid, p-glucuronic acid, b-malic acid, p-mannitol, D-mannose,
raffinose, D-saccharic acid, p-sorbitol, formic acid, y-amino-
butyric acid, glycerol, glycyl-L-proline, L-alanine, L-arginine,
L-aspartic acid, L-fucose, L-galacturonic acid lactone, L-glutamic
acid, L-histidine, L-lactic acid, L-malic acid, L-pyroglutamic acid,
L-rhamnose, L-serine, methyl pyruvate, mucic acid, N-acetyl-
D-glucosamine, pectin, 4-hydroxy-phenylacetic acid, quinic
acid, sucrose, Tween-40, benzoic acid, 4-hydroxybenzoate,
4-coumaric acid, and phthalic acid. Tests were negative for
utilization of 3-methyl glucose, acetoacetic acid, lactose,
a-keto-glutaric acid, B-methyl-p-glucoside, cellobiose, dextrin,
D-fructose-6-phosphate, D-fucose, D-galacturonic acid,
D-glucose-6-phosphate, D-lactic acid methyl ester, maltose,
melibiose, D-salicin, trehalose, turanose, gelatin, gentiobiose,
glucuronamide, inosine, myo-inositol, N-acetyl neuraminic
acid, N-acetyl-B-p-mannosamine, N-acetyl-D-galactosamine,
propionic acid, stachyose, vanillin, ferulic acid, guaiacol, sali-
cylic acid and syringic acid. The most abundant cellular fatty
acids (ordered by abundance) are C, cyclo, C , C,, cyclo
®8c, summed feature 2, C,0 3-OH, C,, summed feature 8,
C,,,» summed feature 3,C _ 2-OH,C  2-OHand C 2-OH.
The sole respiratory quinone is ubiquinone Q-8.

The type strain, RP11T (=DSM 110123"=LMG 31517")
was isolated from the A horizon of an acidic (pH 3.8-4.2)
inceptisol in a uniformly planted red pine forest (Dryden,

NY. 42.450945,-76.420638). The DNA G+C content of the
type strain is 61.3mol%. The unassembled and assembled
genome sequencing data (VOSW00000000) and 16S rRNA
gene (MN239497) were assigned to the NCBI BioProject:
PRJNA558488.
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