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Paraburkholderia solitsugae sp. nov. and Paraburkholderia
elongata sp. nov., phenolic acid-degrading bacteria
isolated from forest soil and emended description of

Paraburkholderia madseniana

Roland C. Wilhelm™*, K. Taylor Cyle', Carmen Enid Martinez', David C. Karasz', Jeffrey D. Newman? and Daniel

H. Buckley!

Abstract

Two bacterial strains, 1N" and 5N', were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of
INT (0.65x1.85 pm) and 5N' (0.6x1.85 um) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods,
diplobacilli or in chains of varying length. During growth in dilute media (<0.1x tryptic soy broth; TSB), cells are primarily motile
with flagella. At higher concentrations (=0.3x TSB), cells of both strains increasingly form non-motile chains, and cells of 5N'
elongate (0.57x~7 um) and form especially long filaments. Optimum growth of TNT and 5N" occurred at 25-30 °C, pH 6.5-7.0
and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that TN" and 5NT'
were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP117, Paraburkholderia
aspalathi LMG 277317 and Paraburkholderia caffeinilytica CF17. The genomes of TN and 5N had an average nucleotide identity
(91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%+2.6 and 45.5%=+2.5) and differed in functional gene content
from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of
phenolic acids, also differentiated strains TN" and 5N' from each other and their closest relatives. The only ubiquinone present
in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C,, , 30H-C,, ,C,.  cyclo, C . , cyclo ®8c and summed
features 2 (30H-C,, ,/C,, ,isol),3(C,, , w6c/w7c) and 8 (C,, , w7c/wbc). A third bacterium, strain RL16-012-BIC-B, was iso-
lated from soil associated with shallow roots and was determined to be a strain of P madseniana (ANI, 98.8%; 16S rRNA gene
similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the
species description of P madseniana. Our polyphasic approach demonstrated that strains 1N" and 5N represent novel species
from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain TN'=DSM 1107217=LMG

317047) and Paraburkholderia elongata sp. nov. (type strain 5N'=DSM 110722"=LMG 31705") are proposed.

INTRODUCTION

The genus Paraburkholderia was recently established from the
division of Burkholderia, which is presently delineated into seven
genera: Burkholderia, Paraburkholderia, Caballeronia, Robbsia,
Trinickia, Mycetohabitans and Pararobbsia [1-5]. Currently,

Paraburkholderia contains the second greatest number of
described species (n=78, of which 71 are validly named) and has
expanded rapidly, with a doubling of newly described species in
the past 5 years. Nearly all Paraburkholderia have been isolated
from soil, rhizosphere or plant root tissues (Table S1, available
in the online version of this article). Many species are capable
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of root nodulation [6-16], or exhibit an endophytic lifestyle
[17-20]; and can perform symbiotic or asymbiotic dinitrogen
fixation [9, 21]. Notably, several nodule isolates were incapable
of nodulating the plant species from which they were isolated
[22]. Our understanding of the ecology and evolution of
Paraburkholderia can be improved by expanding the representa-
tion of species from this genus.

Most Paraburkholderia isolated from soil originate from forest
ecosystems (Table S1), where members of the genus have been
shown to fix dinitrogen [21], solubilize mineral phosphate
[23, 24], degrade lignin [25] and enhance the degradation
of soil organic matter [26, 27]. Two bacterial strains, 1N
and 5N, were isolated from forest soil as part of an effort
to characterize substrate preferences and uptake kinetics of
soluble organic matter [28]. These strains belong to a clade
containing both forest soil (Paraburkholderia madseniana)
and root nodule (Paraburkholderia aspalathi) isolates [29].
We identified a third isolate from this clade, strain RL16-
012-BIC-B (henceforth ‘RL16’), which was isolated from
the rhizosphere of a Digitalis species in a wooded city park
[30]. Our characterization of these three strains provides an
opportunity to expand understanding of the physiological
and genomic traits within a clade comprising species isolated
from both soil and roots.

ISOLATION AND ECOLOGY

Strains INT and 5NT were isolated from the upper 5 cm of
the B horizon of a moderately well-drained Dystrudept soil
(pH 4.3-4.5) from a hemlock stand at the Arnot research
forest (Van Etten, NY;42.278611° N, -76.634361° W) [31, 32].
After serial dilution, a soil slurry was spread plated onto
agar media prepared with soil-extracted, solubilized organic
matter (SESOM) derived from the overlying Oa horizon. The
chemical composition of SESOM (pH 3.55) was comprehen-
sively characterized by Cyle et al. [28] and contained total
organic carbon and nitrogen concentrations of 185.5mg 1™ C
and 11.3 mg ™' N, respectively. Colonies appeared after 7-14
days of incubation at room temperature and strains INT and
5NT were streaked for isolation on SESOM agar. Additional
details about the environmental source and growth attributes
of strain 1INT are provided in [28]. Strain RL16-012-BIC-B
(also referred to as ‘RL16-012-BSH-B’) was isolated by Haeckl
et al. [30] during the development of a genome-guided
method for isolating Burkholderia. Strain RL16-012-BIC-B
(henceforth ‘RL16’) was isolated from soil associated with the
roots of understory Digitalis in a mixed deciduous woodland
in a city park adjacent to Maple Place Towers in Burnaby,
BC (49.269418° N, 122.94937° W). The strain was enriched
using a base medium designed for isolating Burkholderia
supplemented with L-sorbose, hydroxyproline (1 g I™)
and antibacterials acriflavine and fusaric acid [30]. For all
chemotaxonomic and growth characterizations, the strains
were cultured on dilute tryptic soy broth (0.1x TSB; recipe in
Supplementary Methods) at 25 °C, salinity 0.1% (w/v NaCl)
and pH 7.0, unless otherwise specified.

PHYLOGENETIC AND GENOME FEATURES

Genomic DNA was extracted from strains 1N%, 5NT and
RL16 according to the protocol of Griffiths et al. [33] and
submitted to the Cornell University Sequencing Facility
for sequencing using three multiplexed runs of Illumina
MiSeq Nano (2x250 bp). Raw sequencing data was quality
preprocessed with Trimmomatic (version 0.32) [34] and
FastX Toolkit (version 0.7) [35] then assembled with SPAdes
(version 3.10.1) [36]. Assemblies were scaffolded with Ragout
using the P. madseniana RP11" genome for a reference [37].
Raw sequencing data and genome assemblies were acces-
sioned under the NCBI BioProject accession PRINA590275.
The phylogeny of strains were determined from a maximum-
likelihood tree based on a multi-locus sequence alignment
(MLSA) of 49 housekeeping genes (Table S2) using the KBase
[38] application ‘Insert Set of Genomes Into Species Tree’
(version 2.1.10), dependent on FastTree2 [39]. Based on the
MLSA phylogeny, genomes from 10 of the closest relatives
to IN" and 5N” were downloaded from the National Center
for Biotechnological Information. A maximume-likelihood
phylogenetic tree was reconstructed from full-length 16S
rRNA genes from close relatives using MEGA X [40] with the
Tamurai-Nei substitution model, a uniform substitution rate
and 200 bootstraps for branch support. Caballeronia glathei
DSM 50014 (GCA_000698595.1) served as the outgroup for
all phylogenetic analyses. The number of copies of the rrn
operon was determined based on the ratio of average read
depth for the consensus 16S rRNA gene versus single-copy
genes identified using Busco [41]. Single nucleotide polymor-
phisms (SNPs) in the 16S rRNA gene were manually identi-
fied using read mapping and visualized using the Integrated
Genome Viewer [42]. Genome G+C content and DNA-DNA
hybridization values were predicted in silico based on genomic
data using the Type (Strain) Genome Server [43]. Functional
gene annotations were performed on open-reading frames
predicted with Prodigal (version 2.6.2) [44] using RAST [45].
Specific catabolic genes were targeted with hmmsearch [46]
using hidden Markov models supplied by [25] for laccases,
aryl alcohol oxidases and dye-decolouring peroxidases.
Secreted proteins were identified based on signal peptide
sequence predictions from SignalP-5.0 [47] with a threshold
of p ... <0.05. Plant growth-promoting genes characteristic
of the endophyte, P. phytofirmans PsJN”, and root nodulating
species, P mimosarum LMG 23256, were manually annotated
with BLASTp (>40% similarity across >90% length), targeting
nitrogenase, nodulation factors, 1-aminocyclopropane-1-c
arboxylate (ACC) deaminase [48, 49], gibberellin [50] and
indole-3-acetic acid (IAA) synthesis pathways [51-53].
Annotations for all genes presented in Table 1 were manu-
ally verified based on homology with characterized enzymes.

Strains INT and 5N" were most closely related to type
strain P. madseniana RP117, although strain 5N” was most
closely related to proposed strain P. solitsugae INT on the
basis of average nucleotide identity (ANI), DNA-DNA
hybridization and functional gene content (Tables 1 and
S3). Measures of ANI and DNA-DNA hybridization were
below the respective thresholds (95 and 70%, respectively)
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Table 1. Phylogenetic and genomic characteristics that differentiate strains 1N, 5N" and RL16-012-BIC-B from their ten closest related type strains

Strains: 1, 1NT; 2, Paraburkholderia madseniana RP117; 3, Paraburkholderia madseniana RL16-012-BIC-B; 4, 5N'; 5, Paraburkholderia aspalathi LMG
277317, 6, Paraburkholderia caffeinilytica CF1T; 7, Paraburkholderia fungorum LMG 16225"; 8, Paraburkholderia sediminicola HU2-65WT; 9, Paraburkholderia
phytofirmans PsJNT; 10, Paraburkholderia aromaticivorans BN5"; 11, Paraburkholderia xenovorans LB400"; 12, Paraburkholderia bryophila 1518,
13, Paraburkholderia rhynchosiae WSM3937". In (A), all measures of phylogenetic relatedness use 1N' as reference and columns were ordered by
descending average nucleotide identity. In (B), all measures of phylogenetic relatedness are provided in reference to 5N™ and were also ordered by

descending average nucleotide identity.

A 1 2 3 4 5 6 7 8 9 10 11 12 13
Genome size (Mb) 11.1 10.1 9.6 9.7 9.89 8.32 8.7 7.31 8.21 8.91 9.73 8.01 8.03
Number of contigs 858 323 224 201 104 3 124 118 3 8 3 91 169
G+C content (mol%) 60.6 61.3 61.5 61.3 61.1 62.2 61.8 63.6 62.3 62.9 62.6 62.9 61.7
Average nucleotide identity

value (%) 100 91.6 91.5 91.4 90.7 90.7 89.7 86.9 86.7 86.6 86.6 86.2 85
DNA-DNA hybridization value 100 45.8 45.2 45.5 42.4 419 38.9 31.7 31.1 31.4 31.1 299 28.6
16S rRNA gene similarity (%) 100 99.3 99.3 98.6 98.8 98.7 99.1 98.9 98.7 98.2 98.8 98.7 98.4
Aromatic degradation genes* 130 105 98 113 99 85 88 66 76 88 97 64 88
Total dioxygenase genes 55 52 44 64 53 45 38 30 33 45 59 24 40
Phthalate 4,5-dioxygenase + + + + + - - - - - - - -
RuBisCO operon + - - + - - - + - + + - +
Soluble methane monooxygenase - + + - + - - - - - - - -
Nitrogenase iron protein (nifH) - - - - - - - - - + + - +
B 4 1 3 2 5 6 7 8 9 11 10 12 13
Average nucleotide identity

value (%) 100 91.4 9L.1 911 90.4 90.3 89.1 86.6 86.4 86.4 86.4 86 85
DNA-DNA hybridization value 100 45.5 43.6 43.8 41.1 40.5 36.8 31.3 30.7 30.9 30.7 29.5 28.5
16S rRNA gene similarity (%) 100 98.6 99.2 99.2 99.1 97.9 98.8 98.9 98.8 98.2 98.3 97.8 98.1

*Total dereplicated RAST SEED subsystem feature counts.

for delineating new species [54, 55]. The MLSA phylogeny
placed IN" and 5N" in the same clade as P. madseniana
and P. aspalathi (Fig. la). The 16S rRNA gene-based
phylogeny broadly lacked branch support and was deemed
unreliable (Fig. 1b), consistent with observations that the
16S rRNA gene is an unreliable indicator for delineating
species of Paraburkholderia [1, 29, 56]. Strains 1N, 5NT
and RL16 each contained six copies of the 16S rRNA gene
with sequence heterogeneity evident among copies (see
Supplementary Methods). This heterogeneity offers one
possible explanation for the poor resolving power of the
16S rRNA gene-based phylogeny, which may be an artefact
of comparing varying consensus sequences.

The genome assembly for strain INT was substantively
larger than its closest relative, P. madseniana RP11T and is
among the largest of published Paraburkholderia genomes,
totalling 11075000 bases (N50 value, 64800; read depth,
24x) with 10636 predicted open reading frames and the
lowest G+C content of all 11 related strains (Table 1). The
functional gene content of strain 1N" differed from RP11"
(Table S4), including the presence of the complete ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCO) operon

and the absence of a soluble methane monooxygenase
(Table 1). The genome assembly for strain 5N* was consid-
erably smaller than 1N, its closest relative, with a total
of 9667127 bases (N50 value, 86400; read depth, 21.3x)
and 8930 open reading frames. Functional gene content of
strain 5NT also differed from 1NT (Table S5), including the
presence of genes encoding a toluene-4-monooxygenase
and a type IV secretion system. Strain 5N encoded the
greatest number of dioxygenases (n=64) of all Paraburk-
holderia genomes examined (Table 1) and also encoded the
RuBisCO operon. Conversely, strain 5N' encoded among
the fewest secreted oxidases of any genome, while strain
INT encoded the greatest number, including laccases, an
aryl alcohol oxidase and a DyP-type peroxidase (Table S6).

Strain RL16 was closely related to P. madseniana RP117 in
terms of 16S rRNA gene sequence (100 % identity), ANI
(98.8%) and DNA-DNA hybridization values (90.3%2.1).
The RL16 genome was slightly smaller than P. madseniana
RP117, totalling 9594840 bases (N50 value, 127114; read
depth, 42.9x) with 9620 predicted open reading frames
(Table 1). The consensus 16S rRNA gene sequence of strain
RL16 contained three single nucleotide polymorphisms
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Fig. 1. The phylogenetic relationships of strains 1N, 5N"and RL16

-012-BIC-Bwith closely related species of Paraburkholderia according to

maximume-likelihood phylogenetic trees based on a multi-locus sequence alignment of (a) 49 concatenated house-keeping genes and (b)
the full-length 16S rRNA gene. The scale bar corresponds to substitutions per nucleotide position. Accessions for genome assemblies and

full-length 16S rRNA genes, respectively: P aspalathi (GCF_9001

16445.1); P caffeinilytica (GCF_003368325.1, NR_152088.1); P. fungorum

(GCF_000685055.1, NR 025058.1); P bryophila (GCF_003269035.1); P aromaticivorans (GCF_002278075.1, NR_163658.1); P phytofirmans

(GCF_000020125.1, NR_102845.1); P. sediminicola (GCF_900104

005.1, NR_044383.1); P xenovorans (GCF_000013645.1, NR_074325.2);

P rhynchosiae (GCF_002879865.1, NR_116248.1); P dilworthii (GCF_000472525.1, NR_125580.1); P phenazinium (GCF_900100735.1);

P megapolitana (GCF_900113825.1; NR_0425%94.1); P phymatum

(GCF_000020045.1) and Caballeronia glathei (GCF_000698595.1). If an

accession is not specified, the 16S rRNA gene was recovered from the genome assembly indicated.

absent in P. madseniana RP11", indicating a maximum
potential 16S rRNA gene dissimilarity of 0.2 % (1465/1468
nt; see Supplementary Methods). Like other members of
its clade, strain RL16 encoded a high number of aromatic
degradation genes (1=98) and secreted oxidases, but slightly
fewer than P. madseniana RP11" (n=105), including one
fewer laccase. Strain RL16 did not encode a paralog of the
3-hydroxybenzoate 4-monooxygenase gene (pobA), which
was deemed a characteristic of P madseniana [29]. The
functional gene content of strain RL16 also differed from
P. madseniana RP11" in several ways, including the absence

of alarge number of oligo and dipeptide ABC transporters,
several amino acid biosynthesis and scavenging pathways,
and xylose and ribose sugar utilization (Table S7). Neither
strain encoded canonical plant growth-promoting genes
for the synthesis of nitrogenases, nodulation factors,
gibberellin or IAA. All Paraburkholderia genomes encoded
the AAC deaminase operon and indoleacetamide hydrolase
(iaaH), but only P. phymatum and P. phenanzium encoded
the accompanying tryptophan 2-monooxygenase (iaaM)
essential for indole-3-acetamide mediated synthesis of
TAA.
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PHYSIOLOGY AND CHEMOTAXONOMY

Chemotaxonomic characterizations were performed for
strains INT, 5NT and RL16 along with their three closest
relatives: P. madseniana RP11%, P. aspalathi LMG 27731" and
P caffeinilytica CF1". Determinations of enzyme activity
and metabolic activity were performed using plate-based,
colorimetric assay API ZYM strips (bioMérieux) and Biolog
GEN III plates (Biolog), respectively, according to the manu-
facturers’ instructions. The composition of cellular fatty acids
was determined for cells grown on nutrient agar for 2 days at
22 °C and methylated according to [57] using an Agilent 6850
gas chromatograph configured by Microbial ID Inc. (MIDI)
with the Sherlock Microbial Identification System (version
6.1) and the RTSBA6 database. Major respiratory quinones
were determined by analysis of acetone extracts on an Agilent
6545 LC/Q-TOF MS using a modification of the methods
described by [58] (details in Supplementary Methods). Anti-
biotic resistance was assessed on nutrient agar plates at 22 °C
by measuring the zone of inhibition around filter paper discs
containing ampicillin (10 pg), cephalexin (30 pg), chloram-
phenicol (30 pg), ciprofloxacin (5 pg), clindamycin (2 pg),
erythromycin (15 pg), gentamycin (120 ug), kanamycin (30
ug), nalidixic acid (30 ug), penicillin (10 U), rifampicin (5 pg),
spectinomycin (100 pg), streptomycin (10 pg), sulfamethoxa-
zole (20 pg)+trimethoprim (4 pg), or tetracycline (30 pg) with
a diameter of 10 mm or less considered resistant. Oxidase
activity was tested using Oxistrips (MilliporeSigma). Catalase
activity was assessed based on the production of bubbles after
mixing a drop of 3% H,O, (v/v; Wards Scientific) with a loop
full of active culture. Gram staining was performed according
to the method of Smibert and Krieg [59].

Strains INT and 5NT were phenotypically different from each
other and their closest relatives according to the Biolog assay
(Table 2). Strain IN™ was uniquely able to metabolize acetic
acid, while strain 5NT was distinctly able to use b-glucose-6-
phosphate, p-fructose-6-phosphate and p-galacturonic acid
(Table 2). Strain 5NT was singularly susceptible to several
antibiotics (rifamycin, lincomycin and vancomycin) and
unable to metabolize oligo- and polysaccharides used by close
relatives (sucrose, raffinose and pectin). Strain 5N” differed
from 1N in its capacity to grow on ferulic acid and guaiacol,
though it did not grow on phthalic acid despite encoding a
phthalate 4,5-dioxygenase with high homology to 1NT (88
and 89% identity for a- and B-subunits, respectively). Strains
INT, RL16 and P. madseniana RP11" were capable of growth
on phthalic acid and were the only other strains to encode a
phthalate 4,5-dioxygenase (Table 1). Strain RL16 exhibited an
identical phenotypic profile as P. madseniana RP117 except for
the inability to metabolize several carbohydrates and organic
acids (Table 2).

Strain 1NT exhibited lipase (C14) and strain 5NT alkaline
phosphatase activity that were absent in close relatives,
but, otherwise, shared the characteristic enzyme activity of
related species, including acid phosphatase, esterase (C4),
esterase lipase (C8), leucine arylamidase and naphthol-
AS-BI-phosphohydrolase activities (Table S8). The major

cellular fatty acids profiles of strains INT and 5NT were
comparable to P. madseniana, which were substantially
higher in the proportions of C . jand C .  cyclo and lower
in 20H-C , than P. aspalathi and P caﬁezmlytzca (Table 3).
The fatty acid profile of strain 1INT differed from 5N the
proportion of summed features 3 (C,, | w6¢/®7c) and 8 (C
., 07cand/or C,, | w6¢). The fatty acid proﬁle of strain RL16
differed from P madseniana RP117 in the proportions of
summed feature 3 and 8 (full fatty acid methyl ester data in
Table S9). The only respiratory quinone observed in strains
IN?, 5N" and RL16, like all other relatives, was ubiquinone
Q-8. Cells of IN", 5N™ and RL16 were resistant to ampi-
cillin, penicillin and clindamycin (Table S9). Strain 5N” was
uniquely susceptible to vancomycin and lincomycin in the
Biolog assay.

Salinity, pH and temperature growth optima were deter-
mined in dilute (0.1x) TSB medium based on measure-
ments of optical density (OD at A=600 nm). All assays were
performed in duplicate in 20 ml test tubes bearing 10 ml
liquid media shaken at a slant at 180 r.p.m. on an orbital
shaker and monitored over a period of 72 h, except where
specified otherwise. Cultures were inoculated with 20 ul of
actively growing culture normalized to an OD_ of 0.5. The
pH optimum was determined over pH range 3, 4, 5, 6, 6.5, 7,
8 and 8.5 using buffer systems described in the Supplemen-
tary Methods. The temperature optimum was assessed at 4,
25, 30 and 37 °C. Salinity tolerance was tested at 0.5, 1, 1.5,
2 and 3% (w/v NaCl). The capacity for growth on benzoic
acid and phenolics (guaiacol, vanillin, syringic acid, ferulic
acid, phthalic acid, salicylic acid and 4-coumaric acid) was
determined in mineral salts media after a 1 week incubation
according to [29], except that growth substrates were filter
sterilized. The nutrient-dependent regulation of growth
morphology of strains IN”, 5N, RL16 and P. madseniana
RP11" was determined by assaying growth (OD_ ) across a
gradient of TSB (0.05, 0.1, 0.3, 0.6, 1 and 5x) with salinity
maintained at 0.1% NaCL

Changes in population-level cell size distributions were
determined across the TSB gradient by phase-contrast
microscopy (Olympus CX41). We imaged five fields of view
per biological replicate (n=3) at X200 magnification with an
omax digital microscope camera (U3CMOS18000KPA) at
250 ms exposure. Cell size measurement was automated using
the image analysis software Image] (version 1.52a) [60] with
the Microbe] plugin (version 5.131) [61] (details in Supple-
mentary Methods; images in Supplementary Data package).
Scanning electron micrographs were taken of cells sampled
at late log-phase growth on 1x and 1 : 10x TSB media. A 1
ml sample of cells were fixed with glutaraldehyde, post-fixed
in osmium tetroxide and vacuum filtered onto Whatman #5
filter paper (protocol in Supplementary Methods). Critical
point drying was performed in a Bal-tec 030 (Bal-tec) and
samples were sputter coated with iridium in a Desk V thin
film deposition sample preparation system (Denton Vacuum).
SEM imaging was performed with a field emission scanning
electron microscope (Zeiss GeminiSEM 500) at the Cornell
Center for Materials Research.
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Table 2. A summary of Biolog profiles and substrate use that differentiate strains TN, 5N™ and RL16-012-BIC-B from the closest type strains of
Paraburkholderia

Strains: 1, 1NT; 2, 5NT; 3, Paraburkholderia madseniana RP11T; 4, Paraburkholderia madseniana RL16-012-BIC; 5, Paraburkholderia aspalathi LMG 277317;
6, Paraburkholderia caffeinilytica CF17. All data are from this study and the full assay results are provided in Table S9. A 'w' denotes ‘'weak growth' on a
phenolic compound, indicating marginal growth was observed after 2 weeks.

Biolog profile/substrate 1 2 3 4 5 6
Acetic acid + - - - - _
Glycyl-L-proline - + + + + -
Aztreonam + + - - _ _
a-Keto-butyric acid + + - - + +
Citric acid - - + + " +
D-Glucose-6-PO4 - + - - _ ¥
D-Fructose-6-PO4 - + — _ _ +
D-Galacturonic acid - + - - + _
Sucrose + - + + - _
p-Raffinose + - + + - _
Pectin + - + + - _
4-Hydroxy-phenylacetic acid + - + + + +
D-Aspartic acid + - + + + +
L-Aspartic acid + - + + + +
Rifamycin SV* + - + + + +
Lincomycin* + - + + + +
Vancomycin* + - + + + +
L-Galacturonic acid lactone - + + - + -
Dp-Glucuronic acid - + + _ + _
p-Malic acid - + + - + -
L-Rhamnose - + + _ + +
L-Serine + - + - + _
Formic acid + - + - + +
a-Hydroxy-butyric acid + + + - + -
Growth on phenolic acids

4-Hydroxybenzoic acid + + + + + +
Salicylic acid + + + + + +
Benzoic acid + + + + + +
4-Coumaric acid + + - - + +
Phthalic acid + - + + - _
guaiacol - + - - - -
Ferulic acid - + - - w +
Vanillin - - - - _ +
Syringic acid - - - - - w

*Tolerance to antibiotic.
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Table 3. Cellular fatty acid composition of strains TNT, 5NTand RL16-012-
BIC-B and closely related type strains from the genus Paraburkholderia

Strains: 1, 1N, 2, 5NT; 3, Paraburkholderia madseniana RP11T; 4,
Paraburkholderia madseniana RL16-012-BIC; 5, Paraburkholderia
aspalathi LMG 277317, 6, Paraburkholderia caffeinilytica CF17. Values are
percentages of total fatty acids. Fatty acids that make up <1% of the
total are not shown or are denoted as trace 'TR. Shading indicates a
property which distinguished strains. All data are from this study the
full assay results are provided in Table S9.

Fatty acid 1 2 3 4 5 6

C12:0 2.07 242 2.46 2.38 2.01 1.84
C14: 0 1.26 1.54 0.85 1.07 1.11 0.88
Creo 238 292 260 315 186 188
C,.,2-OH 164 108 116 09 252 082
C,,,2-OH TR TR IR 0 219 042
C,.,3-OH 386 437 437 477 434 437
C,,, cyclo 12.6 22.0 18.0 273 9.76 1.42
Ciio 057 08 10 108 058 095
C,.,2-OH 0.25 0.38 0.27 0 0.83 0.4

Croo cyclo w8c 3.23 4.18 4.2 5.24 35 0.43
Summed feature 2 4.43 4.86 5.14 5.28 4.79 5.01
Summed feature 3 22.6 11.3 16.6 9.04 14.4 25.8
Summed feature 8 20.7 15.2 18.1 8.75 334 38.0
Total 97 97.3 98.1 973 98.1 99.1

Cells of strains INT and 5N" are Gram-negative, rod-shaped,
non-sporulating, oxidase and catalase positive. Cells of strain
INT (0.65x1.85 um) and 5N' (0.6x1.85 um) grow as individual
rods, as diplobacillus (Fig. 2) or in chains (three to 10+ cells).
Cell morphology was found to vary depending on nutrient
concentration, pH and salinity (Table S10). Cells of strain of
strain 5NT became narrower, elongated (0.57x7.0 pm) and
filamentous (>10 cells per chain) at higher TSB concentra-
tions, pH and salinity (Fig. 3). Cells of strain RL16 grow as
slightly narrower rods (0.6x1.7 um) than P. madseniana RP11"
(0.65x1.7 um), and both grow as diplobacillus and occasionally
in short to long chains (two to 10 cells). Cells of all strains are
predominantly motile by flagella when growing in dilute TSB
and non-motile in more concentrated nutrient conditions. Cells
of INT and 5NT attach to surfaces at cell poles, evident in their
adherence to other cells (Fig. S1), and the glass and cellulose-
based mounts used in microscopy (Fig. 3).

The optimum growth conditions for strains INT and 5N
occurred at 25-30 °C, pH 6.5-7.0 and with <0.5% NaCl.
Strains IN" and 5NT exhibited a narrower tolerance range
to pH (4.0-8.0; <1% NaCl) compared to RL16 and P. madse-
niana RP11" (4.0-8.5; <1% NaCl). The optimal growth of
strains RL16 and P. madseniana RP11" occurred at 25-30
°C, pH 6.5 and with <0.5% NaCl. All strains could grow at
4 °C, but not at 37 °C. Above pH 7.0 and 0.5% NacCl, cells

of strain 5NT occurred predominantly in elongated and fila-
mentous forms. All strains grew to the highest cell density
at 0.1x TSB at mid log phase (Fig. 4a). P. madseniana RP11"
achieved the highest cell density of all strains in virtually all
media concentrations. In more concentrated TSB (>0.3x),
cells of strain 5N” existed predominantly in elongated
and filamentous forms, corresponding with decreased cell
density (Fig. 4). The frequency and length of filaments
increased with TSB concentration for strain 5N" and, to a
lesser extent 1N, but did not differ greatly over time (Fig.
S2a). Cells of strain RL16 and P. madseniana RP11" rarely
formed chains longer than six to 10 cells and the occurrence
of chained forms was invariant to TSB concentration (Fig.
S2a).

DISCUSSION

Our polyphasic approach establishes that strains 1IN and 5N”*
constitute novel species in the genus Paraburkholderia. The
strains met all phylogenetic and chemotaxonomic criteria for
new species and exhibited major physiological and functional
differences to related type strains. The names, Paraburk-
holderia solitsugae sp. nov. and Paraburkholderia elongata sp.
nov. are proposed.

The chain formation observed in strains 1N”, 5N7, RL16 and
P. madseniana RP117 is not a common morphological char-
acteristic of Paraburkholderia. Cells of Paraburkholderia are
primarily described as ‘rod-like’ and found to occur singly
and, for several species, as diplobacilli [21, 62-64], including
relatives of the strains characterized here [29, 65]. Chain
formation has only been reported for P madseniana [29],
though an earlier description of Paraburkholderia species
noted the occurrence of ‘irregular clusters’ of cells [66]
which was later included in the genus description [5]. Chain
formation may be specific to the clade of Paraburkholderia
examined here or may be more widespread but overlooked
due its occurrence under specific growth conditions. Cells
of Caballeronia, the neighboring genus to Paraburkholderia,
also grow in pairs and in short chains [67], indicating chain
formation in Burkholderiaceae may be paraphyletic and
more prevalent than currently understood. In any case, our
results demonstrate that chain formation does not distinguish
Caballeronia from Paraburkholderia as suggested by the genus
descriptions [5].

The regulation of cell motility, chain formation and elongation
in response to TSB concentration represents a newly described
characteristic of Paraburkholderia. In dilute media, all strains
exhibited flagellar motility, with cells becoming predomi-
nantly non-motile at higher nutrient concentrations. Cells
of IN" and 5N" formed long chains and were increasingly
adherent to surfaces and other cells at higher concentrations.
For 5N7, chain formation was accompanied by cell elongation.
In contrast, the cell morphology of RL16 and P. madseniana
RP117T was invariant across the growth conditions tested.
The greater sensitivity of INT and 5NT to nutrient concen-
trations in the range of a standard, nutrient-rich laboratory
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Fig. 2. Cell sizes of strains 1N (a), 5N (b), RL16-012-BIC-B (c) and P madseniana RP117 (d) revealed by SEM imaging. All images were
taken at late-log phase of growth on 1x TSB and at the same magnification (each panelis 4 um wide). Cells are mounted on filter paper

made from cellulose fibres.

medium may reflect their isolation from a medium designed
to approximate the soluble organic matter content of a forest
soil [28]. The SESOM medium contained less organic carbon
(0.18 g17! C) than the media used to isolate their closest rela-
tives P madseniana RP117 (0.32 g1 C) [29], RL16 (~1.4 g1
C) [30] and P, aspalathi (~4 g1"* C) [65].

Strain 5NT exhibited the most striking changes in cell
morphology in response to TSB concentration. In dilute
media (£0.1x TSB), cells resembled the morphology and
size of IN', RL16 and P. madseniana RP11". However,
within a relatively narrow concentration range (0.1-0.3x
TSB), cells of strain 5N” elongated to over double their
initial size and formed long filamentous chains. Above this
tipping point, the frequency of cell chains and chain length
was correlated with TSB concentration and corresponded
with reduced cell density, indicating lower biomass yield.
The underlying mechanism(s) regulating elongation and
chain formation were not determined in the present study,
but similar morphological changes were nutrient dependent
in Halomonas elongata, a fellow member of the Gammapro-
teobacteria [68]. H. elongata occur as single and paired cells
with polar flagella during log phase growth and form elon-
gated, ‘flexuous filaments of varying length’ at stationary
phase [68]. It remains to be determined whether the chained
and elongated morphotype of strain 5N* constitutes an

adaptive trait or reflects the pathological condition of cells
under stress. We can conclude that salinity and pH are not
the sole regulators of filamentation in strain 5N”, having
been controlled in the TSB gradient, indicating phosphate,
glucose and/or components of the peptone/soytone digests
also regulate the morphotypic differentiation.

The characterization of RL16 was undertaken to expand the
diversity of a clade of root- and soil-derived Paraburkholderia.
Strain RL16 was isolated from soil from shallow roots [30]
while its closest relative, P. madseniana RP11", was isolated
from the underlying O-horizon of forest soil in a study of
decomposition [29]. Our analyses determined RL16 is a
strain of P. madseniana which differed in several aspects
from the original species description. P. madseniana RL16
had a slightly smaller genome and encoded fewer dioxyge-
nases than the closest type strain, P. aspalathi LMG 277317
Strain RL16 also lacked paralogs of the 3-hydroxybenzoate
4-monooxygenase gene (pobA), proposed to differentiate
P. madseniana from several of its closest relatives [29]. Growth
on phthalic acid was a distinct feature of both strains of
P. madseniana compared to P. aspalathi, but not compared to
the newly described strain IN". Overall, strain RL16 encoded
fewer amino acid biosynthesis and scavenging pathways
than RP11" and, in all cases, lacked the ability to metabolize
compounds utilized by RP11". RL16 also exhibited a slower
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Fig. 3. Differences in cell morphology between strains 1N (AB) and 5N (CD) under high nutrient conditions where strain TN exist
predominantly as individual cells or diplobacillus and where 5N cells exist in elongated, chained, filamentous forms. All SEM images
were taken at late-log phase of growth on 1x TSB. The capacity of cells to adhere to the cellulose fibres of the filter paper mount was

evident in both TNT (b) and 5NT (d).

growth rate and achieved lower cell densities across the TSB
gradient. Neither strain encoded genes characteristic of plant-
growth promoting activity observed in P. phytofirmans and
P. mimosarum.

DESCRIPTION OF PARABURKHOLDERIA
SOLITSUGAE SP. NOV.

Paraburkholderia solitsugae (so.li.tsu'gae. L. neut. n. solum
soil; N.L. fem. n. Tsuga scientific name of hemlock; N.L.
gen. n. solitsugae of/from soil of a hemlock forest).

Cells are aerobic, Gram-negative, motile, non-sporulating
rods (0.65 um wide by 1.85 um long) that grow primarily
as motile, in dilute media (<0.1x TSB), or non-motile, in
more concentrated media (>0.3x TSB) bacillus or diploba-
cilli. Cells also grow in chains (three to 10 cells) at higher
nutrient/solute concentration. Optimal growth occurs on
0.1x TSB at 25 °C (range: >4-30 °C), pH 6.5-7.0 (4.0-8.5)
and salinity <0.5% NaCl (0-1.0%). Colonies are round,
convex, translucent white in colour and mostly regular in
shape with entire margins. Cells are resistant to ampicillin
(10 pg), penicillin (10 U), and clindamycin (2 pg). Posi-
tive reactions are observed for acid phosphatase, esterase
(C4), esterase lipase (C8), lipase (C14), leucine arylami-
dase and naphthol-AS-BI-phosphohydrolase. Tests were
negative for utilization of alkaline phosphatase, valine

arylamidase, cystine arylamidase, trypsin, a-chymotrypsin,
a-galactosidase,  B-galactosidase,  P-glucuronidase,
a-glucosidase, p-glucosidase, N-acetyl-p-glucosaminidase,
a-mannosidase and a-fucosidase. Tests were positive for
utilization of 4-hydroxy-phenylacetic acid, acetic acid,
bromo-succinic acid, p-arabitol, p-aspartic acid, p-fructose,
D-galactose, D-gluconic acid, p-lactic acid methyl ester,
p-mannitol, D-mannose, raffinose, D-saccharic acid,
D-sorbitol, formic acid, glycerol, L-alanine, L-arginine,
L-aspartic acid, L-fucose, L-glutamic acid, r-histidine,
lincomycin, L-lactic acid, L-malic acid, L-pyroglutamic
acid, L-serine, methyl pyruvate, mucic acid, myo-inositol,
N-acetyl-p-glucosamine, pectin, quinic acid, sucrose,
Tween-40, a-D-glucose, a-hydroxy-butyric acid, a-keto-
butyric acid, p-hydroxy-p,L-butyric acid, y-amino-butyric
acid, 4-hydroxybenzoic acid, salicylic acid, benzoic acid,
4-coumaric acid and phthalic acid. Tests were negative
for utilization of 3-methyl glucose, acetoacetic acid, citric
acid, cellobiose, dextrin, Dp-fructose-6-PO,, p-fucose,
D-galacturonic acid, p-glucose-6-PO,, p-glucuronic acid, -
malic acid, maltose, melibiose, D-salicin, D-serine, D-serine,
trehalose, turanose, fusidic acid, gelatin, gentiobiose, glucu-
ronamide, glycyl-L-proline, inosine, L-galacturonic acid
lactone, L-rhamnose, N-acetyl neuraminic acid, N-acetyl-
B-p-mannosamine, N-acetyl-p-galactosamine, propionic
acid, lactose, a-keto-glutaric acid, methyl p-p-glucoside,
guaiacol, ferulic acid, vanillin and syringic acid. The most
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Fig. 4. Growth characteristics of strain 5N differed from closest relatives across a gradient in TSB concentration. In (a), the maximum
cell density (OD, ) of strain 5N" occurred at lower TSB concentrations (0.05-0.3x) than other strains. In (b), cells of strain 5N" occurred
predominantly in elongated and chained forms at TSB concentration =0.3x, with chain length increasing at higher concentrations. In
(c), cells of 5NT were motile in dilute media (0.05-0.1x), evident in blurring of cells in phase-contrast images at x200 magnification),
with cells shifting to predominantly chained form at 0.3x TSB. Cells had begun to decrease in size by late-log phase in 0.05 and 0.1x,
indicating starvation (Fig. S2a).
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abundant cellular fatty acids (ordered by abundance) are

C,s.,, summed feature 3, summed feature 8, C, | cyclo,
summed feature 2, C,, ,3-OH, C,  cyclow8c,C, ,C
2-OH,C, ,C, ., C. 2-OHand C  2-OH. The major

respiratory quinone is ubiquinone 8.

The type strain, INT (=DSM 110721"=LMG 317047), was
isolated using a solubilized soil organic matter enrichment
from the upper 5 cm of the B horizon of a moderately well-
drained Dystrudept soil (pH 4.3-4.5) from a hemlock stand
at the Arnot research forest. The DNA G+C content of the
type strain is 60.6 mol%. The unassembled and assembled
genome sequencing data (WOEZ00000000) and 16S rRNA
gene (MN723156) were assigned to the NCBI BioProject:
PRJNA590275.

DESCRIPTION OF PARABURKHOLDERIA
ELONGATA SP. NOV.

Paraburkholderia elongata (e.lon.ga'ta. L. fem. part. adj. elon-
gata elongated, stretched, pertaining to cell elongation and
predisposition to form filamentous cell chains).

Cells are aerobic, Gram-negative, motile, non-sporulating
rods (0.6 pm by 1.85 um long) that grow primarily as motile
bacillus or diplobacilli at dilute nutrient concentrations
(<0.3x TSB) and as elongated rods (0.57x7.0 pm), forming
short (three to six cells) or longer chains (>10 cells) at higher
nutrient/solute concentrations. Optimal growth occurred on
0.1x TSB at 25 °C (range, 4-30 °C), pH 6.5-7.0 (4.0 to <8.0)
and salinity <0.5% (0-0.5%). Colonies are round, convex,
translucent white in colour and mostly regular in shape with
entire margins. Cells are resistant to ampicillin (10 pg), peni-
cillin (10 U) and clindamycin (2 pg). Positive reactions are
observed for acid phosphatase, alkaline phosphatase, esterase
(C4), esterase lipase (C8), leucine arylamidase and naphthol-
AS-BI-phosphohydrolase. Tests are negative for utilization
of lipase (C14), valine arylamidase, cystine arylamidase,
trypsin, a-chymotrypsin, a-galactosidase, p-galactosidase,
B-glucuronidase, a-glucosidase, B-glucosidase, N-acetyl-p-
glucosaminidase, a-mannosidase and a-fucosidase. Tests
were positive for utilization of 4-hydroxy-phenylacetic acid,
bromo-succinic acid, Dp-arabitol, D-fructose, D-fructose-
6-PO,, p-galactose, D-galacturonic acid, p-gluconic acid,
D-glucose-6-PO,, D-glucuronicacid, p-malicacid, p-mannitol,
D-mannose, D-saccharic acid, p-sorbitol, glycerol, glycyl-L-
proline, L-alanine, L-arginine, L-fucose, L-galacturonic acid
lactone, L-glutamic acid, L-histidine, L-lactic acid, L-malic
acid, L-pyroglutamic acid, L-rhamnose, methyl pyruvate,
mucic acid, myo-inositol, N-acetyl-D-galactosamine,
N-acetyl-D-glucosamine, quinic acid, Tween 40, a-D-glucose,
a-hydroxy-butyric acid, a-keto-butyric acid, pB-hydroxy-
D,L-butyric acid, y-amino-butyric acid, 4-hydroxybenzoic
acid, salicylic acid, benzoic acid, 4-coumaric acid, guaiacol
and ferulic acid. Test results are negative for utilization of
3-methyl glucose, acetic acid, acetoacetic acid, citric acid,
D-aspartic acid, cellobiose, dextrin, p-fucose, p-lactic acid
methyl ester, maltose, melibiose, raffinose, b-salicin, D-serine,
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D-serine, trehalose, turanose, formic acid, fusidic acid, gelatin,
gentiobiose, glucuronamide, inosine, L-aspartic acid, L-serine,
N-acetyl neuraminic acid, N-acetyl-B-p-mannosamine,
pectin, propionic acid, stachyose, sucrose, lactose, a-keto-
glutaric acid, methyl p-p-glucoside, phthalic acid, vanillin
and syringic acid. The most abundant cellular fatty acids
(ordered by abundance) are C  C  cyclo, summed feature
8, summed feature 3, summed feature 2, C,. , 3-OH, C
cyclow8c,C, ,C, ,C,. 2-OH,C, ,C, 2-OHandC
» 2-OH. The major respiratory quinone is ubiquinone 8.

The type strain, 5NT (=DSM 110722"=LMG 31705"), was
isolated using a solubilized soil organic matter enrichment
from the upper 5 cm of the B horizon of a moderately well-
drained Dystrudept soil (pH 4.3-4.5) from a hemlock stand
at the Arnot research forest. The DNA G+C content of the
type strain is 61.3 mol%. The unassembled and assembled
genome sequencing data (WOEY00000000) and 16S rRNA
gene (MN723157) were assigned to the NCBI BioProject:
PRJNA590275.

19:0

EMENDED DESCRIPTION OF
PARABURKHOLDERIA MADSENIANA
WILHELM ET AL. 2020

Description is as given in Wilhelm et al. [55] except that
cells are resistant to ampicillin (10 pg), penicillin (10 U) and
clindamycin (2 pg), and response is variable in Biolog GenIII
wells containing a-hydroxy-butyric acid, p-glucuronic acid,
D-malic acid, formic acid, L-rhamnose and L-serine.

The Paraburkholderia madseniana strain RL16-012-BIC-B
(=DSM 110723=LMG 31706) was isolated from soil adja-
cent to roots of understory Digitalis in a mixed deciduous
woodland in a city park adjacent to Maple Place Towers in
Burnaby, BC. The DNA G+C content of the strain is 61.5
mol%. The unassembled and assembled genome sequencing
data (WVHR00000000) and 16S rRNA gene (MK373450)
were assigned to the NCBI BioProject: PRJNA590275.
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