SAND2019-13774

SANDIA REPORT
SAND2019-13774
Unlimited Release
November 2019

Networked-based Cyber Analysis using
Deep Packet Inspection (DPI) for High-
Speed Networks

Brian Van Leeuwen, Jason Hao Gao, Kevin Haikuo Yin, Benjamin Anthony, and Vincent
Urias

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof, nor
any of their employees, nor any of their contractors, subcontractors, or their employees, make
any warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods/

NS

National Nuclear Security Administration

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

SAND2019-13774
Unlimited Release
November 2019

Networked-based Cyber Analysis using
Deep Packet Inspection (DPI) for High-
Speed Networks

Brian Van Leeuwen (9315), Jason Hao Gao (8766), Kevin Haikuo Yin (8766), Benjamin
Anthony (9315), and Vincent Urias (9315)

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS0813

Abstract

Today’s networked systems utilize advanced security components such as Next Generation
Firewall (NGFW), Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and
methods for network traffic classification. A fundamental aspect of these security components and
methods is network packet visibility and packet inspection. To achieve packet visibility, a compute
mechanism used by these security components and methods is Deep Packet Inspection (DPI). DPI
is used to obtain visibility into packet fields by looking deeper inside packets, beyond just IP
address, port, and protocol. However, DPI is considered extremely expensive in terms of compute
processing costs and very challenging to implement on high speed network systems.

The fundamental scientific paradigm addressed in this research project is the application of greater
network packet visibility and packet inspection at data rates greater than 40Gbps to secure
computer network systems. The greater visibility and inspection will enable detection of advanced
content-based threats that exploit application vulnerabilities and are designed to bypass traditional
security approaches such as firewalls and antivirus scanners. Greater visibility and inspection are
achieved through identification of the application protocol (e.g., HTTP, SMTP, Skype) and, in
some cases, extraction and processing of the information contained in the packet payload. Analysis
is then performed on the resulting DPI data to identify potentially malicious behavior. In order to
obtain visibility and inspect the application protocol and contents at high speed data rates,
advanced DPI technologies and implementations are developed.

ACKNOWLEDGMENTS

The authors would like to acknowledge that this work was funded by the U.S. Department of
Energy under Sandia’s Laboratory-Directed Research and Development (LDRD) Program.

CONTENTS

Lo IEEOAUCTION. ..ttt ettt ettt et e bt e et e s bt e et e e abeeabeessbesabeensbeenbeesneesnseans 8
2. BACKEIOUNA......uiiiiiiiiieciii ettt ettt ettt et e st e e b e e s sbeentaesabeesseessseensaessseenseenssennsaens 8
3. DPI Hardware and Software Studied............cocoeiiiiiiiiiiiiiieeeee e 9
General architecture for Deep Packet InSpectioncceecvvevieeiiiiniieiieniecieeeeeeeeeee. 9
Hardware used for Deep Packet INSPection...........ccccvveeciiieiiieeiiieceeceee e 11

Cavium OCTEON IIL: ..o 11

INtel X8O PrOCESSOT: c..ueiiiiiiiieieeiie ettt 12

Software used for Deep Packet INSPECtioncccceevveerieeciienieeiiiecie e 13

The Zeek Network Security MONItOTL:.......coevviiriinieiinicienieececeseeeeee 13

PE RINGE: -ttt sttt sttt 13

B [53500F: 1 LS PSRRI 14

4. Cavium OCTEON IIL fOr DPIooiiiiiiiiiieiieieeeeee e 14
Simple Executive-based teStINGccueeeeriiriiiiiiiieieieeeteeeeeeeee e 14
OCTEON Linux-based testing With Zeekcccuerviriieniieiieeiieeecieeeece e 15
Measurements and Results of OCTEON III TeSting........ccccoeeveerienenvienicnennienieneennens 15

Traffic Source Tested:ooiiiiriiiieeeeee e 15

Simple Executive-based teSting:cceevuieriiiriieniieiierie e 15

OCTEON Linux-based testing with Zeek:ccoeviieiieniiiinieeieeeeeieeie, 16

Conclusions Of OCTEON III T@StNGcc.eeruieriieiieriieeieesiie ettt 16

5. INtel X8O FOI DPL ...ttt ettt 17
Load Balancers TeSted.........coiuiiiiiiiieiieiie ettt ettt et 17
Consumer SOftware TeStE.........ccoueriiriiiiiieieie e 18

Traffic Sources Used fOr TeStING.........eceviiieiiieeieecieeee et e e sereeearee e 18
Measurements and Results of 40 Gbps X86 TeStING........ccceeeverieeriierieeiienieeieesie e 19

Effect of Choice of Load-Balancer:............ccceviieniiiiiiiiiiiiiiieeieeeeeeee 19

Effect of Packet Rate and Packet Size:.........cceviiniiiiiiiniiiiieceeeee 27

Effect of SHUNtING:ooiiiiieiieeeeee e e 29

Initial investigations into 100 Gbps X860 TeStING........c.ccvvverireriieniieiienieeieeere e, 31
Conclusions OF X860 TESHINEcccuviieiiieeiiieeie ettt et et eesreeesreeesareeeseseeesaeeens 31

6. Encrypted Packets and DPIcccooiiiiiiiiiieiicie ettt 32
Initial testing with encrypted connections on OCTEON III..........ccccceevviiieiiieenieeenienne 32

Results and Conclusions of SSLi Testing on OCTEON IITcccoviieiieniieiienieeen, 33

7. CONCIUSIONS. ...ttt ettt ettt ettt e b e et e bt e e bt e bt e e bt e ssee et e e saeeenbeasbeeeabeesateenneennnas 34
BIDLIOZIAPIY ..ottt ettt ettt et e e et e ebeeenbeebaenabeenneennnas 36
DISTIDULION ...ttt et st e bt e e it e e bt e sabe et e e sateenbeesaeeeabeesnbeenneannnes 38

FIGURES

Figure 1. A typical cluster architecture for high-speed network traffic analysis. From [2]. 9
Figure 2. OCTEON III block diagram. From [9]. 12
Figure 3. Drop Rate with Random Traffic and Packet Counter. 20
Figure 4. Drop Rate with Random Traffic and Zeek. 21
Figure 5. Drop Rate with Realistic Traffic and Packet Counter. 22
Figure 6. Drop Rate with Realistic Traffic and Zeek. 23
Figure 7. Drop Rate with Imbalanced Traffic and Packet Counter. 24
Figure 8. Drop Rate with Imbalanced Traffic and Zeek. 25
Figure 9. Drop Rate Breakdown with Imbalanced Traffic and Packet Counter. 26
Figure 10. Drop Rate Breakdown with Imbalanced Traffic and Zeek. 27
Figure 11. Maximum packet rate obtainable with loss < 1% with light consumer. 28
Figure 12. Maximum packet rate obtainable with loss < 1% with no consumer. 29
Figure 13. Packets Assigned to Workers, With and Without Shunting. 30
Figure 14. OpenSSL asymmetric cryptography comparison between the 48-core OCTEON III
and the 36-core x86 systems. 33
Figure 15. OCTEON III SSL Transactions per second with Simple Executive SSL Server for
various cipher suites. 34

C2
CPU
DHCP
DMA
DNS
DPI
DSP
DUT
FPGA
GbE
HW
IoT
IP
M&S
NIC
RPS
RSS
SDN
SDR
SNL
SW
TS
oS
VM
WAN

NOMENCLATURE

Command and Control

Central Processing Unit
Dynamic Host Configuration Protocol
Direct Memory Access

Domain Name System

Deep Packet Inspection

Digital Signal Processor or Digital Signal Processing
Device Under Test

Field Programmable Gate Array
Gigabit Ethernet

Hardware

Internet of Things

Internet Protocol

Modeling and Simulation
Network Interface Card
Receive Packet Steering
Receive-Side Scaling

Software Defined Networking
Software Defined Radio

Sandia National Laboratories
Software

Traffic Source

Operating System

Virtual Machine

Wide Area Network

1. INTRODUCTION

DPI is a technology used to inspect packets transported over a network and is widely used for
computer network security. The inspection provides visibility into the headers of the packet but
also the payload of the packet. Initially with DPI the focus was to perform a content inspection
function to seek out viruses or malware that could be embedded in packet flows using a signature-
based detection approach. The signature-based approach is done using pattern-matching
algorithms and is effective at detecting known threats. However, the signature-based approach
used alone is ineffective against unknown threats, such as zero-day attacks and threats that evolve
over time or mutated threats. Additionally, the signature-based approach is not effective in
stopping threats that use evasion techniques that obfuscate malware.

Another approach is to use DPI for network analysis. In addition to pattern matching detection,
the DPI capability is used to enable full packet (i.e., through Layer 7) protocol and statistical
analysis. When performing network analysis, the DPI will collect metadata from fully decoded
protocols used in the packet flows and the metadata will be used in the overall analysis. Thus, a
more effective approach in applying DPI for cyber security is to not only perform signature-based
detection, but to employ flow correlation analytics and behavior analysis. This full-visibility
approach using DPI does come with the significant challenge of: How do you implement and
perform DPI on today’s high-speed networked systems used in enterprises and our Nation’s critical
infrastructures?

Our contribution:

Current domain knowledge indicates challenges with implementing an inline capability of packet
visibility and inspection at the high-speed network data flows and performing the DPI-based
network analysis. Our research identifies the key subsystems, both hardware (HW) and software
(SW), and compares and measures different options available to achieve the full-packet (i.e.,
through Layer 7) pattern-matching and metadata extraction in real-time. Various SW solutions
exist for performing DPI each with their benefits and limitations. No current SW solution will fully
meet our objectives and thus the SW solutions are extended, in careful concert with HW, to meet
our objectives.

We identified open-source software solutions (e.g., nDPI, Zeek/Bro, PF_RING, etc.) and hardware
solutions that can be deployed as high-throughput network packet processing systems. We target
the use of open-source software since commercial and closed-source DPI software toolkits are
often not extensible by end users and come with very expensive license and yearly maintenance
costs. In previous work, these open-source DPI software toolkits have been deployed on non-
specialized hardware and have resulted in DPI solutions with limited network speeds (e.g.,
maximum of 10 Gbps [6]). Our objective is to deploy the DPI software on specialized hardware
architectures designed for network processing to achieve DPI at higher data rates.

2. BACKGROUND

As processors become increasingly multi-core and parallelized, achieving higher-performance
network traffic analysis will require software that can take advantage of these multicore processors

by distributing work across many different instances of the traffic analysis software, known as
workers. Extensions to take advantage of multicore processors include one using Zeek [1]. They
describe scheduling strategies in this work [1] that take existing DPI analyses and automatically
parallelize their processing. The previously available open-source DPI toolkit known as OpenDPI
had issues with deployment as a multi-threaded application, and consequently, the successor open-
source project nDPI has addressed this problem and thus is better positioned for deployment on
modern, more parallelized computer systems [6]. Existing system architectures for distributing
traffic analysis work across workers to achieve high line-rates (e.g., 40 Gbps or 100 Gbps),
however, require the use of many levels of hardware and software parallelization [2], and thus
expensive compute clusters, racks, specialized network switches, and computational overhead, as
shown in Figure 1.

In from taps
Out to Bro

ESnet 100G TX/RX Arista 7504

[Ceeses s emE |

ESnet 10G TX/RX

Cenic 10G TX/RX (LAG) Link Aggregation Group
2% UCB 10G TX/RX tcp sessions span multiple links

Arista 7150
| |-

Symmetric Hashing via DANZ Shunt rules to Arista AP|
icp sessions one per link permit control packets
deny data packets

o
Bro host and
manager

Figure 1. A typical cluster architecture for high-speed network traffic analysis. From [2].

3. DPI HARDWARE AND SOFTWARE STUDIED

By leveraging specialized network interface hardware, increasing integration of modern computer
systems, and the high core counts of modern processors, our work eliminates most of the expensive
network switching and cluster infrastructure necessary to perform DPI at high line-rates, and
reduces the overhead of network traffic distribution to software workers performing the traffic
analysis.

General architecture for Deep Packet Inspection

To perform DPI on a stream of network traffic a system must perform a variety of tasks. These
tasks can be implemented in either HW or SW depending on the system configuration and
capabilities. At a high level, the system tasks include:

1. Packet ingest: Read incoming packets off the wire so they can be processed by the system.
. Flow steering: Determine which packets belong to which traffic flows.
3. Load-balancing: Distribute packets to various CPUs, CPU cores, and worker threads,
according to the flow to which the packet belongs.

4. Flow analysis: Execute worker threads, in a parallel fashion, to analyze the flows and
perform the DPI functions.

Further details on each of the above tasks are described below.

Task 1 - Packet ingest:
Packet ingest is performed by the NIC which has connectivity to the high-speed data stream.

Task 2 - Flow steering:
Flow steering can be performed in either HW or SW. In the case of HW it is performed on the
NIC. In the case of SW, flow steering is done on the host system.

Many NICs include HW features such as Receive-Side Scaling (RSS), Receive Packet Steering
(RPS), or other vendor-proprietary features that can be utilized to determine, in a reasoned manner,
which packets should be assigned to which flows and/or processing queues.

Flow steering can also be performed in SW running on the host system instead of utilizing the HW
NIC features. In this case, a SW program on the host machine examines every packet to determine
which flow it belongs to. This is often done in SW because HW-based features may not be
available, may not be flexible enough, or may consume other limited system resources (e.g., HW
interrupts).

Task 3 - Load-balancing:

The load-balancing task is the assignment of flows to specific worker threads. This task is closely
related to Task 2 and may be performed with the support of NIC HW features. In the HW case the
NIC itself may assign flows to specific queues that steer packets to various worker threads. In the
SW case, this task is performed purely in SW. The SW creates queues of packets in main memory
and make these queues available to various worker threads.

The advantage of performing load-balancing in SW is the increased flexibility of how flows are
assigned to worker threads. But there is also a disadvantage in that it requires a dedicated processor
core to run the SW load-balancer. This dedicated processor may not be able to keep up at high
throughputs. The advantage of HW load-balancing is that the NIC has dedicated hardware for
high-speed hashing of packets to assign them to worker threads. However, this HW approach has
the disadvantage of not being as flexible. Utilizing HW load-balancing requires creating multiple
NIC queues, which consume additional host processor resources such as HW interrupts.

The worker threads may be running on the same or different CPUs and/or cores as the CPU that is
receiving packets from the NIC. Even if HW flow steering is utilized in Task 2 the NIC is still
electrically connected to a specific CPU socket even in a multi-socket system. Thus packets must
transit that CPU before arriving at the eventual destination.

Task 4 - Flow analysis:

Flow analysis is the execution of the actual analysis SW and algorithms on a traffic flow. The SW
execution for each individual flow is run on a worker thread, which is a subset of the entire set of

10

traffic flows. The worker threads performing flow analysis operate in parallel to achieve the total
aggregate throughput of the system.

Hardware used for Deep Packet Inspection

Specialized HW was researched and tested with the objective of enabling a high-speed DPI SW
solution. Next, SW approaches that can be implemented on the specialized HW to implement full
packet parsing and production of metadata descriptions was researched. The SW approaches had
to have support to work with the range of protocols included in the packet flows. Current literature
describes advances being made in the domain of intelligent packet processing on hardware
platforms [3] [4] that support customization through software application programming interfaces
(APIs) as well as physical connectivity. However, there remain significant challenges to perform
DPI on high-speed networks with the full range of protocols. HW challenges include:

e Cache and memory latency: At speeds of 40 Gbps, packets are received in times shorter
than cache line access latencies [5].

e PCle bandwidth: 40 Gbps and 100 Gbps line rates begin to approach the theoretical
maximums of a PCI Express 3.0 x16 slot, which provides a theoretical maximum of 15.75
GB/s, or 126 Gbps [6].

o Interconnect bandwidth: Packets that are steered to processors cores on other sockets must
traverse the processor-to-processor interconnect. Intel’s UltraPath Interconnect (UPI)
provides a maximum theoretical unidirectional bandwidth of 20.8 GB/s, or 166.4 Gbps [7].

o Memory bandwidth: 1f load-balancing and steering of packets to other worker threads is
performed in software on a single core, this core must load and hash packet data at high
speed. The single-threaded memory bandwidth of a recent Intel Xeon Scalable processor
is only around 100 Gbps [8].

o Software architecture: Existing DPI software, such as Zeek, were designed in an era before
extreme parallelism, and is not architected to leverage modern hardware systems that
contain as many as 48 to 72 cores.

In our research and implementation of high-speed DPI we focused on two specific HW multicore
processors. First, we investigated and tested the Cavium OCTEON III MIPS64 processor. After
obtaining disappointing results from the Cavium OCTEON III we investigated and tested Intel x86
multicore processors.

Cavium OCTEON lII:

Our initial HW starting point was to leverage the Cavium OCTEON III, which supports over 100
Gbps of application processing in a single chip and supports multiple DDR3/4 channels and over
500 Gbps of I/O connectivity [9]. This HW platform provides a SW development kit that can
leverage four DDR3/4 memory controllers, a large L2 Cache, and complete application
acceleration for packet processing, encryption and decryption, and DPI with RegEx.

The OCTEON I1II is a family of processors based on MIPS64 compute cores and associated
hardware accelerators. In our research the specific processor that was evaluated is the Model
CN7890. This model is the largest configuration of the OCTEON III with 48 general-purpose
MIPS64 compute cores. The CN7890 is installed on a Liquid IO II Smart NIC in a PCI Express

11

daughter-card form factor. The OCTEON III NIC was installed in an x86 host computer for our
testing. Note that the specifications of the x86 host machine are not important as we performed all
our development and testing on the OCTEON I1I system itself, and the x86 host machine was only
used to interact with the OCTEON III bootloader to load binaries.

The OCTEON III is designed for high-performance packet switching tasks, and thus, its hardware
architecture, shown in Figure 2, is optimized for efficiently moving packets from the network
interfaces to main memory. Packets in main memory can then be operated on by the MIPS64 cores.
After processor operation, the packets are then sent back out to the network with rewritten IP
headers if it is performing IP forwarding and routing. For example, OCTEON III has dedicated
hardware blocks to handle packet input to and packet output from main memory called PKI and
PKO, respectively. Dedicated hardware in OCTEON III is used for hashing packet headers to
assign packets to flows and for multiplexing. Assigning packets from various flows to different
queues and cores is done in such a manner as to avoid the need for high-overhead memory access
synchronization mechanisms, such as locks.

Is«:vam || Authentik |[L merin

MIPS64 13

Integer Core |

:
1

;

:

1

;

:

1

1

) i

5T Frcens. ol | T (— ;
I 1 [l
0 |
1-*’ | :
[. d

| : 1 Low Latency i
> Crossbar at -
1 (St |
1

*-i’ j -" i podx |
— SA : E
"I-»_i ‘I Controller !
: -

R o o o st
I [B
“BooUFlash, eMMC, SPI,
GPID, UART, 12C, DDR3-2133 -

USE 3.0 wiPHY DOR4 L]

Figure 2. OCTEON Il block diagram. From [9].

Although the OCTEON III is designed for packet switching and not necessarily packet inspection,
the availability of many compute cores motivated our investigations into its potential as a DPI
platform. Unfortunately, these compute cores are not as performant as typical x86 compute cores.
Additionally, the existing OCTEON III products available have 40 GbE support but do not support
100 GbE. Thus, testing was done at 40GbE and no testing at 100 GbE was done on the OCTEON
III. Although Cavium believes that future releases of OCTEON III products will support 100 GbE.

Intel x86 Processor:

After investigating and testing the Cavium OCTEON III processor we determined it would not
suffice for 40 Gbps or 100 Gbps of DPI due to being compute-bound. Next, we turned to
investigating how to leverage commodity x86 processors to achieve the scale and throughput

12

needed. The Intel Xeon Scalable family of x86 processors are commodity processors widely
available on a variety of standard x86 server platforms, supporting multi-socket configurations
with up to 28 x86-64 cores per socket. Although a single Xeon CPU contains fewer cores than the
OCTEON III CN7890, each of these cores is more powerful (as shown in our results). Furthermore,
it is possible to utilize multiple CPUs in a single system with a multi-socket server. However, the
Xeon CPUs, being targeted at a broad range of applications, does not include network processing
features that are included with the OCTEON III, such as specialized hardware accelerators that
increase the speed of its packet processing.

For our tests at 40 Gbps, we purchased a current two-socket server with two Xeon Gold 6254
processors at 3.1 GHz base frequency and 192 GB of DDR4-2933 RAM. This server was equipped
with an Intel XL710 40 Gbps NIC. For our tests at 100 Gbps, we purchased a current four-socket
server with four Xeon Gold 6254 processors at 3.1 GHz base frequency and 1.5 TB of DDR4-2933
RAM. This server was equipped with a Mellanox ConnectX-5 100 Gbps NIC. In both systems, the
NIC is electrically connected to a single CPU socket on the system via a PCI Express 3.0 x16 slot.
This configuration provides a maximum of 15.75 GB/s of throughput.

Software used for Deep Packet Inspection

Several open-source SW approaches for DPI were researched. The SW approaches investigated
were able to be implemented on the specialized HW with the objective to obtain full packet parsing
and production of metadata. The SW is described in the following sections.

The Zeek Network Security Monitor:

The Zeek software distribution is an open-source network traffic analysis framework originally
developed at Lawrence Berkeley National Lab [10]. It performs flow analysis as described in
Task 4 above. Each Zeek worker is a thread of computation to analyze the traffic flows assigned
to it. The various analyses that Zeek can run on traffic flows are called analyzers. Zeek includes
multiple default analyzers such as application layer decoding, TCP connection analysis, DNS
traffic analysis, signature detection, etc.

Zeek was deployed and tested on both the OCTEON III and x86 systems for testing the flow
analysis capability.

PF_RING:

PF RING [11] is set of software tools and components that perform Tasks 1, 2, & 3 noted above.
The tasks are packet ingestion, flow steering, and load balancing. PF_RING includes open-
source SW but also includes some proprietary and closed-sourced SW components. Some
PF_RING modules and components are described below.

1. PF RING Zero Copy (ZC): A Linux network driver for specific, supported NICs that
enables more efficient packet ingest by bypassing the Linux kernel’s network stack.

2. PF RING: A Linux kernel module that improves the efficiency of packet ingest by
applications from the kernel and provides a specific API to user-space applications.

13

3. zbalance ipc: A SW load-balancing program provided as part of the PF_ RING SW
distribution. This load-balancer distributes packets to various worker threads via Inter-
process Communications (IPC) in a flow-aware manner.

PF_RING was used only for the x86-based testing and was not used for the OCTEON III
implementation and testing.

Netmap:

Netmap [12] is a SW framework and set of tools analogous to PF_RING. Netmap provides
drivers for efficient packet ingest by bypassing the kernel network stack and SW load-balancing
capabilities. Similar to PF_RING Zero Copy, Netmap only supports specific NICs, and utilizes
various techniques to improve performance, such as careful memory management and pre-
allocation, kernel bypass, and modification of device drivers.

Netmap was used only for the x86-based testing and was not used for the OCTEON III
implementation and testing.

4. CAVIUM OCTEON Ill FOR DPI

We implemented and conducted testing of the Cavium OCTEON III in two phases: 1) using the
bare-metal Simple Executive SDK to implement a basic Layer-1 through Layer-5 metadata
extraction program, and 2) using the OCTEON Linux SDK to run the Zeek network analyzer
SW.

Simple Executive-based testing

The Cavium-provided Simple Executive development environment provides a low-level C-based
API that allows user programs to access the HW directly without going through an operating
system kernel and the associated overhead. However, this comes with a cost of lacking the
operating system libraries and APIs that are more familiar to developers and provide pre-built
capabilities.

A typical operating system, such as Linux, on the other hand, provides a defined and cross-
architecture set of programming interfaces to the operating system known as system calls.
System calls are used when applications wish to interact with system resources, such as the
network interfaces or the file system. This eases development and increases code reuse, at the
cost of some indirection and overhead. Most existing network analysis tools, including Zeek, run
on top of an operating system and thus make heavy use of the operating system kernel APIs.

Thus, with just the Simple Executive environment we could not test Zeek since Zeek expects to
be run in an operating system environment. Zeek makes extensive use of kernel APIs and would
require extensive porting and refactoring to work in Simple Executive environment. This
extensive porting and refactoring were beyond the scope of our research. To overcome this we
implemented a simplified network analysis tool that operates on L3/L4/L5 packet-level metadata,
which we call our metadata extraction engine. With this simplified tool we can still test key
aspects of the performance of the OCTEON III for network traffic analysis.

14

OCTEON Linux-based testing with Zeek

The OCTEON III also supports a Cavium-provided minimal Linux environment called
OCTEON Linux. OCTEON Linux includes a MIPS64 Linux kernel and MIPS64 toolchain based
on gcc. Zeek and its various dependencies were cross-compiled for this target environment so
that the Zeek traffic analysis could run on the general-purpose MIPS cores of the OCTEON III.

There were several technical limitations to the OCTEON III environment that prohibited a full
end-to-end test of Zeek. First, we had to use an older version of Zeek, version 2.4, because later
releases of Zeek required language and compiler features that were not available in the provided
toolchain. Second, the OCTEON Linux drivers for the Ethernet interface limited the maximum
number of RSS queues to 32. This meant that it was not possible to use HW-based RSS to
distribute packets to all 48 MIPS cores on the OCTEON III adapter. Also, the lack of MIPS64
supports in the SW load-balancers we considered meant that we were unable to run end-to-end
full-load DPI measurements on the OCTEON III.

Thus, for our measurements, we characterized the performance of an individual MIPS core on a
sample Zeek dataset. From this characterization, an estimate of the best-case linear scaling to 48
cores was obtained. Additionally, an upper bound on the hypothetical fully-loaded end-to-end
DPI performance of Zeek on the OCTEON III was obtained.

Measurements and Results of OCTEON Il Testing

Traffic Source Tested:

For the OCTEON III tests we replayed a packet capture of typical enterprise traffic. This traffic
was labeled realistic traffic in our results. This packet capture was replayed at 40 Gbps to the
QSFP Ethernet interface of the OCTEON III. The packet capture contains 6 million packets, with
56,540 non-flow packets (e.g. UDP, ARP, etc.) and 5,943,460 flow packets (e.g. TCP) in
145,255 flows. The average packet size was 1260 bytes.

Simple Executive-based testing:

We initially tested the OCTEON III with our simplified network analysis tool, the metadata
extraction engine, described above. The tests ran under the Simple Executive-based
environment, which means that the compiled binary code interfaced directly to the HW units on
the OCTEON III without going through an operating system or system calls. Our tool reads and
extracts source and destination IP addresses, TCP/UDP port numbers, DNS traffic metadata, and
TLS/HTTPS traffic metadata from live traffic on the network interface of the OCTEON III.

The OCTEON III was able to analyze this traffic at the full 40 Gbps line rate without any
dropped packets. In this experiment the OCTEON III used two of the 48 MIPS cores. This
scenario exemplifies what the OCTEON III is particularly well-suited for, which is simple
inspection of packets at high packet rates, using the close-to-the-hardware Simple Executive
environment to avoid the overhead of an operating system.

15

This result was promising and indicated that the OCTEON III HW is able to handle the high
packet rates and raw throughput necessary to reach line rate. With these initial test results, we
moved forward to measurements with the more full-featured Zeek DPI analysis framework.

OCTEON Linux-based testing with Zeek:

Our metadata extraction engine validated the ability of the network hardware to handle the
packet rates and throughputs found in the realistic traffic capture but was not as full-featured as
a tool such as Zeek. Our next step was to measure the performance of the OCTEON III for more
extensive network analysis which would be more compute-bound. For our measurements of
Zeek performance on OCTEON 111, we used the same realistic traffic packet capture and
instructed a single Zeek worker process to read the PCAP file from a filesystem mounted as a
RAM disk. This eliminated the effect of the network interface and any storage system
bottlenecks on the test so that we could isolate the compute-bound performance of Zeek on the
OCTEON III.

On a single OCTEON III core, the Zeek worker achieve a throughput of 312 Mbps. Assuming
perfectly linear scaling and perfectly even load-balancing this indicates that the best-case
compute throughput we can expect, if all 48 cores are fully utilized, is 15 Gbps.

It was determined that 15 Gbps is an upper-bound on the total throughput of the OCTEON III for
more extensive traffic analysis using the Zeek. Because of the 15 Gbps limitation, we did not
move forward to conducting a full set of measurements with different traffic profiles, packet
sizes, etc., as 15 Gbps was not within the ballpark of line rates of 40 Gbps or 100 Gbps.
Additionally, the results caused us to eliminate the OCTEON III from consideration going
forward.

Our experience with attempts to develop a more full-featured network analysis tool for the
OCTEON I while remaining within the Simple Executive environment indicated that it would
be difficult to port something like Zeek to run under Simple Executive. Furthermore, the vendor
indicated to us that there are no plans for a future, higher performance successor to the OCTEON
IIT and that some of the software development kit components were no longer supported. The
vendor indicated they plan to take product development in a different direction. Thus, we
concluded that any resulting software from such an effort would not be well-supported or easily
maintained.

Conclusions of OCTEON lll Testing

Even though the OCTEON III’s raw packet throughput was able to achieve line rates, our
decision was to not perform further development for the following reasons:

- Relatively-limited general-purpose compute performance of the MIPS cores for DPI,

- Lack of a mature network stack under Linux,

- Difficulty of developing software for the card due to a limited toolchain and development
environment, and

- Lack of future releases of the OCTEON product line.

16

Thus, it was determined that it would not be viable for our purposes of developing robust,
maintainable, and performant high-speed deep packet inspection systems with the OCTEON III.

5. INTEL X86 FOR DPI

We implemented and conducted testing of the Intel x86 processors described in the HW section
of this report. For our experiments at 40 Gbps, the server is a recent (i.e., 2019) two-socket
server with two Xeon Gold 6254 processors each having 18 cores. The processors each had a 3.1
GHz base frequency and the server included 192 GB of DDR4-2933 RAM along with an Intel
XL710 40 Gbps NIC. A traffic source (TS) computer is used to generate test traffic and is also
equipped with an XL710 NIC. The TS was connected directly to the x86 server with a 40 Gbps
QSFP Direct Attach Copper cable. The server’s NIC is electrically connected to a single CPU
socket on the system via a PCle 3.0 x16 slot that provides a maximum of 15.75 GB/s of
throughput.

For all of our x86 experiments we refer to the source of network traffic as the traffic source (TS),
and the server receiving and analyzing the traffic as the device under test (DUT). The DUT is the
server on which we run the load balancer software and the “consumer” software (i.e., a Zeek
worker process or a simple packet counter).

To perform a single experiment run, we start the load balancer and consumer on the DUT, start
sending traffic from the TS, and observe the resulting packet drop rate.

Load Balancers Tested

The various load-balancing choices tested in our x86 experiments were:

e zbalance ipc: A software load balancer that runs on PF_RING,

e [b: A software load balancer that runs on Netmap,

e HW load balancing: Done on the DUT NIC. This is implemented and controlled via the
Receive-Side Scaling (RSS) hardware functionality of the NIC.

For tests with the software load-balancing:

- One core is dedicated to the load-balancing software, either zbalance ipc or Ib,

- One core is dedicated as a management core (i.e., Zeek management process), and

- Remaining thirty-four physical cores are dedicated to running the consumer software
(Zeek or packet counter).

For the tests with hardware load-balancing, the NIC was configured to hash traffic to thirty-five

RSS queues and dedicated each of the thirty-five cores to the consumer software. Thus, each
available physical core (other than the management core) is running a consumer thread.

17

Consumer Software Tested

Experiments were performed with three choices of consumer:

- Zeek,
- Packet counter (pfcount for PF_RING or pkt-gen for Netmap), or
- No consumer.

pfcount and pkt-gen are programs that read traffic coming out of the load balancer but do not
perform any analysis. These programs are used to test the performance with a lightweight
consumer. pfcount and zbalance ipc only work with PF_RING, and pkt-gen only works with
Netmap and /b.

Running tests with Zeek as the consumer represents the full end-to-end analysis stack. This
enables the measuring of the actual traffic inspection rate achieved, and at what packet loss rate.
Running tests with a simplified consumer (i.e., packet-counter applications) enables the isolation
and measuring of the performance of the network pipeline without the computational impact of
performing DPI. Running tests with no consumer enables the gauging of performance of the load
balancer and NIC by eliminating the impact of any interaction with the consumer application.

Traffic Sources used for Testing

Multiple traffic source types were used to measure different aspects of the system with regards to
packet size, packet rate, total throughput, and even or uneven distribution of packet flows to the
worker threads. The three different types of traffic were:

- Random traffic: Randomly generated traffic that is evenly distributed among randomized
source-destination IP addresses to ensure even distribution of traffic to consumer queues
and threads.

- Imbalanced traffic: Obtained from a test HTTP packet capture, and

- Realistic traffic: Obtained from a test enterprise traffic packet capture.

The random traffic can be varied with respect to packet sizes and throughputs. This enables
measuring the impact of different packet sizes on system performance, and also gives us a
uniform distribution of flows to the different worker threads during the load-balancing stage. The
generated packets have randomized source and destination IP addresses such that packets are
distributed evenly among the consumer queues and threads.

The imbalanced traffic is an HTTP packet capture with a few large “elephant flows” (i.e.,
singular flows that dominate the overall throughput and thus cause a few of the queues and
consumer threads to receive many more packets than the rest). This enables the characterization
of the performance in worst-case scenarios of uneven distribution of flows at the load-balancer to
the worker threads. It contains 16.9 million packets in 88,042 total TCP flows. The average
packet size is 1289 bytes.

The realistic traffic is a packet capture of typical enterprise network traffic and is used to test
performance in a realistic environment likely to be seen when deployed. This is the same packet

18

capture as used in our OCTEON testing and contains 6 million packets, with 56,540 non-flow
packets (e.g., UDP, ARP, etc.) and 5,943,460 flow packets (i.e., TCP) in 145,255 flows. The
average packet size is 1260 bytes.

Measurements and Results of 40 Gbps x86 Testing

The following subsections each describe one aspect of the DUT performance that we measured
and the accompanying test setup.

Effect of Choice of Load-Balancer:
To measure the impact of the choice of load-balancing on the system packet processing
performance and drop rate, we tested the following load-balancing setups:

e pfring 1 q: PF_RING with one RSS queue and software load-balancing via
zbalance ipc.

o pfring n_gs: PF_RING with hardware load-balancing via multiple RSS queues.

e netmap 1 g: Netmap with one RSS queue and software load-balancing via /b.

Note that we do not include a setup for a “Netmap with hardware load-balancing via RSS
queues” because Netmap still requires the use of the software load-balancer /b even when
utilizing RSS queues. In our testing, Netmap with hardware load-balancing via RSS queues
always performed worse than Netmap with software load-balancing via /b.

For each of these load-balancing setups we measured the system end-to-end packet drop rate
while varying the throughput for the three traffic sources (i.e., random traffic, imbalanced traffic,
and realistic traffic) and the consumer used (i.e., Zeek or the light consumers pfcount/pkt-gen).
We calculated the end-to-end packet drop rate by subtracting the total packets received by the
consumers from the number of packets sent by the traffic generator.

19

Random traffic:

Using random traffic and a simple packet counter as the consumer, we observed minimal packet
loss (i.e., 0 or < 1% in all cases) up to nearly line rate, which is shown in Figure 3. Our tests did
not fully reach 40 Gbps due to limits on the traffic generation that maxes out at 37.6 Gbps for
randomly-generated packets. Netmap’s packet loss rates rose slightly higher as we approached
40 Gbps, but were still minimal at 0.03%.

Drop Rate with Random Traffic and Packet Counter

o

—u—pfring_1_q

Packet Drop Rate
o o o
o

—e—pfring_n_gs

>

netmap_1 _q

© o o
R, N W

e m

0 5 10 15 20 25 30 35 40
Throughput (Gbps)

o
~

Figure 3. Drop Rate with Random Traffic and Packet Counter.

20

Figure 4 describes the results from Zeek workers as the consumer application when using
PF_RING with hardware load-balancing. The result describes increased packet loss at all speeds
and increasingly worse performance towards 40 Gbps. This indicates a consistent overhead
caused by using PF_RING with hardware load-balancing and Zeek. The other two software load-
balancing setups maintained less than 1% packet loss (at most 0.7%), even at up to 37.6 Gbps.

Drop Rate with Random Traffic and Zeek

S5 0.5 —=—pfring_1_q
< 0.4 —e—pfring_n_gs

0.3 netmap_1_q

0.1 45/

0 5 10 15 20 25 30 35 40
Throughput (Gbps)

e
k4

Figure 4. Drop Rate with Random Traffic and Zeek.

21

Realistic traffic:

Using realistic traffic, data for the same measurements as the random traffic was collected. In the
case of realistic traffic, reaching a line-rate of 40 Gbps was possible because packets were
replayed from a packet capture rather than dynamically generating packets.

With the light consumer, Netmap performed increasingly worse and dropped more packets. In
contrast, PF_ RING continued to perform well and maintained a packet loss of less than 1%. The
packet drop rate is shown in Figure 5. This indicates that Netmap and its load-balancer, /b, did
not handle realistic traffic well. The realistic traffic included some elephant flows (i.e., large
SMB transfers, HTTP downloads, etc.) and varying packet sizes (i.e., small packets such as
DNS, ARP, DHCP, etc.).

Drop Rate with Realistic Traffic and Packet Counter

© o o ©
o N o © ek

—m—pfring_1_q

—o— pfring_n_gs

o©
ES

Packet Drop Rate
o
"

netmap_1_q

© o o
RN W

.

- % ——%————%
0 5 10 15 20 25 30 35 40
Throughput (Gbps)

o

Figure 5. Drop Rate with Realistic Traffic and Packet Counter.

22

With the Zeek consumer, we observed PF_RING with hardware load-balancing showing
consistent overhead again, as is shown in Figure 6. However, Netmap performed far worse at
higher speeds, with packet drop rates near 80%. PF_RING with software load-balancing was the
only setup able to keep drop rates below 1% at the highest speeds. PF_ RING with hardware
load-balancing did relatively well, but with higher drop rates of 3.5% at 40 Gbps.

Drop Rate with Realistic Traffic and Zeek

—m—pfring_1_q
—&— pfring_n_gs

netmap_1_q

r—in—p * o 2 —t—— 22

5 10 15 20 25 30 35 40
Throughput (Gbps)

Figure 6. Drop Rate with Realistic Traffic and Zeek.

23

Imbalanced traffic:

With imbalanced traffic and the light consumer, the hardware load-balancing performed better
than both Netmap and PF_RING software load-balancing, as is shown in Figure 7. The relative
performance of PF_RING’s hardware versus software load-balancer inverted when compared to
the results with realistic traffic.

Also note that there was no longer the consistent minimum dropped packets that we saw
previously with PF_RING with hardware load-balancing. We believe this was due to the nature
of RSS functionality on the NIC. With imbalanced traffic, most packets were going to very few
NIC queues, and thus most of the other queues were no longer generating as many hardware
interrupts and consuming those resources.

Figure 7 shows Netmap with imbalanced traffic performing better and dropping fewer packets
than Netmap with realistic traffic at the same speeds. This is because it failed to finish testing at
higher speeds; thus the premature end of the data series for Netmap.

Drop Rate with Imbalanced Traffic and Packet Counter

0.9
0.8
0.7

ate

= 0.6

rop

5 0.5 —=—pfring_1_q

Packet

0.4 —o—pfring_n_gs

0.3 netmap_1_q

0.2

0.1

0 L el ———%— %
0 5 10 15 20 25 30 35 40
Throughput (Gbps)

Figure 7. Drop Rate with Imbalanced Traffic and Packet Counter.

24

Figure 8 shows the packet drop rate with Zeek and imbalanced traffic. The figure shows drop
rates increasing as expected. But with this result all configurations failed to maintain drop rates
below 1%. Although PF RING with hardware load-balancing still performed the best.

Packet Drop Rate

© ©
~ O

o
()

Drop Rate with Imbalanced Traffic and Zeek

© o o ©
o N o ©

o
[

1
—m—pfring_1_q
i —&— pfring_n_gs
/
i netmap_1_q
0.3
/ /
0 ’” =
0 5 10 15 20 25 30 35 40

Throughput (Gbps)

Figure 8. Drop Rate with Imbalanced Traffic and Zeek.

The results with imbalanced traffic was investigated further and two important observations were
identified:

1) Upon inspecting the NIC hardware packet counters, we realized that the NIC rx_dropped

2)

counter increased rapidly at higher speeds. This indicates that the software load-balancer
process was not servicing the NIC buffers fast enough when approaching 40 Gbps. Thus,
the software load-balancer itself was failing to keep up with distributing imbalanced
traffic. For realistic traffic or random traffic this was not the case. Note that rx_dropped
was zero or near zero for random traffic and realistic traffic in the corresponding
conditions.

Of the packets that did make it through to the software load-balancer process and the
consumer processes, 62% of those packets were sent to just three queues and associated
consumer processes. Additionally, packets were dropped from only the same three
queues. The other 31 queues were relatively unloaded consumer processes and had zero
packet drops. Thus, the increase in packet drops with Zeek versus the light consumer was
predominantly from the computational load of the DPI analysis outstripping the
computational capacity of those three cores.

25

In Figure 9 and Figure 10, the light consumer and Zeek consumer were used to show an
illustrative example of the points above. The total end-to-end drop rate of PF_ RING with
software load-balancing was separated into two components:

1. NIC Drop Rate: This was due to the software load-balancer not keeping up with

the service the NIC buffers.
2. Load Balancer Drop Rate: This was due to the consumer application not
consuming packets from the load-balancer queues fast enough.

Drop Rate Breakdown with Imbalanced Traffic and Packet Counter

0.4
0.35
0.3
0.25
0.2
0.15

Packet Drop Rate

0.1
0.05

0 5 10 15 20 25 30 35 40
Throughput (Gbps)

Load Balancer Drop Rate NIC Drop Rate

45

Figure 9. Drop Rate Breakdown with Imbalanced Traffic and Packet Counter.

26

Drop Rate Breakdown with Imbalanced Traffic and Zeek

0.4
0.35
0.3
0.25
0.2

Packet Drop Rate

0.15
0.1

0.05

0 5 10 15 20 25 30 35 40 45
Throughput (Gbps)

Load Balancer Drop Rate NIC Drop Rate

Figure 10. Drop Rate Breakdown with Imbalanced Traffic and Zeek.

In both cases, the NIC Drop Rate began to grow beyond 1% at data rate speeds above 37 Gbps.
This increasing drop rate is cause for concern, especially if targeting speeds beyond 40 Gbps.
From Figure 9, the plot shows that with the packet counter the Load Balancer Drop Rate
remained low. From Figure 10, the plot Zeek drop rate increased rapidly even at relatively low
speeds.

Effect of Packet Rate and Packet Size:

In addition to aggregate data throughput (measured in Gbps), the packet rate (measured in
packets per second (pps)) offered to the packet processing system can limit the overall
performance. The packet rate can limit performance because there is some overhead, both in
hardware and software, associated with the processing of each packet regardless of packet size.
Thus, at smaller packet sizes, the packet processing system may not be able to reach expected
aggregate data throughputs (i.e., line rate; 40 Gbps). In contrast, with larger packet sizes it is
possible to achieve expected aggregate data throughputs even at a lower packet rate. This effect
is because the total throughput is the average packet size multiplied by the packet rate.

To measure the impact of packet size on the ability of the system to handle high packet rates
while minimizing packet drop rate, we used the random traffic source. With the random traffic
source, the packet sizes generated were varied and tested. The experiments used packet sizes:

1200, 1000, 900, 800, 700, 600, 500, 400, 300, and 200 bytes

The experiments were performed with the packet-counter (i.e., pfcount or pkt-gen) as the
consumer. Experiments were performed with both:

- PF_RING + zbalance ipc + one RSS queue, and

27

- Netmap + /b + one RSS queue.

Also tested was a configuration with no consumer: just PF_ RING + zbalance_ipc, and Netmap

+ /b.

For each of the packet sizes, the packet rate was varied until the maximum packet rate was
achieved in Packets Per Second (pps), while maintaining < 1% packet drop rate. The results are
shown in Figure 11 and Figure 12.

Packets per Second

Millions

Max Packet Rate (Loss < 1%) with Light Consumer

N
(]

N
o

15

10
5 H

0 200 400 600 800 1000 1200 1400
Packet Size (bytes)

—@— Netmap —@— PF Ring

Figure 11. Maximum packet rate obtainable with loss < 1% with light consumer.

28

Max Packet Rate (Loss < 1%) with No Consumer

Millions
N
(9]

N
o

15

10

Packets per Second

0 200 400 600 800 1000 1200 1400
Packet Size (bytes)

Netmap PFRing

Figure 12. Maximum packet rate obtainable with loss < 1% with no consumer.

Figure 11 illustrates the performance of PF_ RING and the packet counter consumer. The figure
shows the system’s maximum packet rate is 6.9 million packets per second and drops off at
larger packet sizes. With Netmap and the packet counter consumer, the system’s maximum
packet rate is 5.3 Mpps. For all packet sizes, PF_ RING outperforms Netmap. Note that we were
not able to test Netmap with 1200-byte packets due to issues we encountered with Netmap’s
buffer allocation at larger packet sizes.

Figure 12 illustrates the performance without a consumer attached to the load balancer process.
In these cases, both PF_RING and Netmap achieve higher packet rates to varying degrees.
PF_RING was able to reach nearly 22 million packets per second, while Netmap was able to
reach nearly 8 million packets per second. PF_ RING’s significantly higher performance without
a consumer indicates that much of the bottleneck in system packet rate performance was at the
interface between the load-balancer and the consumer. This was also supported by our inspection
of the performance counters on the NIC during our end-to-end packet loss tests in the previous
section, which indicated zero or minimal (<0.01%) packet loss at the interface to the NIC itself,
and most of the packet loss occurring between the load-balancer and the consumers.

Effect of Shunting:

As noted earlier in this report, elephant flows are described as a few, high-throughput traffic
flows that dominate the bulk of the traffic and thus cause a small number of traffic analysis
workers to bear a disproportionate amount of the total work. This is because all the packets in an
elephant flow are hashed to the same worker, even if other workers remain relatively
underutilized.

29

One of techniques to mitigate the elephant flow phenomenon is called shunting. Shunting
discards later packets in large flows with the result that the computational cost of packet analysis
is only performed on the first N packets of a large flow.

The imbalanced traffic capture includes several elephant flows that dominate the majority of
total traffic throughput in the capture. This causes a few CPU cores to be flooded with a
disproportionately large portion of the packets such that they cannot keep up, resulting in a very
high drop rate. In our experiments with the imbalanced traffic, we observed that 62% of all
packets went to just three of the physical cores.

Shunting was implemented with PF_ RING FT. PF_RING FT shunts remaining packets of a flow
beyond 1000 packets. Experiments were executed, and performance was measured. With
shunting, packet loss rates dropped considerably, as shown in Figure 13, which compares how
many packets were assigned to each CPU core, both before and after shunting. In Figure 13, the
maximum height of each bar shows the total number of packets assigned to each CPU core
without shunting; note that the heights are highly imbalanced across the CPU cores. The blue
portion of each bar is the number of packets processed by each CPU core with shunting enabled.
The packets processed with shunting are much lower in total and more evenly distributed across
CPU cores. The orange section of each bar is how many packets were shunted away and no
longer assigned to each CPU core for processing.

Packets Assigned to Workers, With and Without Shunting

()]

Millions

Number of Packets Assigned
w

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Worker Thread ID

With Shunting Without Shunting
Figure 13. Packets Assigned to Workers, With and Without Shunting.
The drawback to shunting, of course, is that analysis is no longer performed on the entirety of the

traffic. However, shunting has been widely considered to be effective, as the very beginning of a
connection contains enough information for meaningful security analysis to happen [13]. Thus,

30

while shunting significantly reduces the total number of packets analyzed, it does not
significantly reduce the ability of DPI to detect threats and attacks.

Initial investigations into 100 Gbps x86 Testing

Our initial research objective included developing a DPI capability for 100 Gbps data rates.
Ultimately, we were unable to perform experiments at 100 Gbps due to implementation issues
with the software and hardware stack for 100 Gbps. The following issues prevented the 100
Gbps implementation:

- PF_RING does not currently support a commodity 100 Gbps NIC (in our case, we tested
using a Mellanox ConnectX-5 100 Gbps NIC), and

- Netmap’s source code repository contains patches for the Mellanox ConnectX-5 driver
that correctly compiled and loaded. But when the drivers were switched into Netmap
mode, packets failed to be received on the interface. We verified that the NIC did operate
correctly when not using Netmap, and was instead operating through the Linux kernel
network stack, but unsurprisingly, this resulted in unusably high packet loss.

Our experiments indicated that software and hardware compatibility for kernel bypass with 100
Gbps drivers was still relatively early and immature. Whereas on the 40 Gbps NIC, we
encountered no significant issues with either PF_ RING or Netmap. We also conducted some
initial testing into newer kernel bypass technologies, such as the Linux kernel’s built-in AF_XDP
[14] interface, but AF_XDP support was even less mature and it did not have fully-accelerated
kernel bypass in the Mellanox ConnectX-5 driver yet. The result was significant performance
issues and limitations (i.e., restrictions on the size of packets). We anticipate that as time goes
on, the support for 100 Gbps NICs will improve, and the continued development of standardized
interfaces such as AF_XDP will ease implementation of future traffic analysis systems.

Conclusions of x86 Testing

Our implementation and testing of the various software and hardware configurations of kernel-
bypass to the NIC, load-balancer, and packet consumer proved that the use of x86-based
hardware and software platforms for high-throughput DPI is promising. Our experiments showed
that potentially high packet rates can be achieved, but system performance is currently hampered
by bottlenecks at the load-balancer and load-balancer to packet consumer / DPI worker thread
interface.

With the use of shunting, a single system can handle the computational workload of DPI at 40
Gbps line-rate with reasonable packet loss. This points to the need for improved load-balancing
performance, whether that is achieved through hardware and/or software optimizations.

With regards to ease of development and maintainability, compared to the OCTEON III

platform, the x86-based platform was significantly easier to work with at a system level due to
the wide availability of mature tooling and the broad used of x86-based system across

31

computing. Furthermore, the availability of existing DPI frameworks such as Zeek operated well
on x86-based systems. However, support for kernel-bypass drivers for NIC hardware beyond 40
Gbps was immature and lacking. Even for 40 Gbps NIC hardware, Netmap presented challenges
in finding a workable combination of configuration parameters and was slightly less stable than
PF_RING. Netmap had a major advantage over PF_RING in that it is fully open-source, while
PF_RING is not (e.g., the PF_RING ZC kernel-bypass drivers are closed-source and require paid
licenses to use).

We anticipate that the situation around configuration and compatibility concerns for both 40
Gbps and 100 Gbps NIC support will eventually be improved due to active interest and
development in high-speed network processing on x86 in the literature and in industry. This is
especially true around new cross-vendor kernel-bypass technologies such as AF_ XDP and the
wider adoption of 100 Gbps NIC hardware.

6. ENCRYPTED PACKETS AND DPI

Today’s networks carry a large amount of encrypted packets, which creates difficulty when using
DPI. For encrypted packets, it is not possible to do deep packet inspection. However, an
architecture can support DPI of encrypted data flows if the device performing DPI is also capable
of intercepting the encrypted packet and decrypting it, similar to a network man-in-the-middle
attack. Another method to perform DPI on an encrypted packet would be to place an appliance in-
path that brokers the key exchange between the sender and receiver. This way the appliance will
see the plain-text content of the communication and DPI can obtain packet visibility and
inspection. This approach is known as SSL interception (SSLi).

Initial testing with encrypted connections on OCTEON lli

Initial testing was performed of the OCTEON III’s ability to initiate and terminate encrypted
connections and measure its possible performance if used in an SSLi scenario. In an SSLi scenario
at scale, the SSLi appliance needs to act as both an SSL/TLS-enabled endpoint as well as an
SSL/TLS-enabled client. This is necessary since it must accept encrypted connection requests from
clients, open encrypted connections to eventual destinations on the Internet, and forward traffic
between the two.

The most computationally expensive part of an SSL/TLS connection is the initial key exchange,
which utilizes asymmetric cryptography. The bulk transfer of data uses symmetric encryption,
which is much less computationally expensive. In this research we are primarily interested in
benchmarking the performance of connection establishment, i.e., how many SSL/TLS transactions
per second (TPS) can be achieved on the system.

To characterize the OCTEON III’s SSL/TLS transaction performance, we performed two sets of
tests:

1) An initial test to measure raw asymmetric cryptography performance. This test used a build
of OpenSSL that leverages hardware acceleration on the OCTEON III in the OCTEON
Linux environment. We ran the “openssl speed” command to collect the typical OpenSSL
speed benchmarks for asymmetric cryptography performance for RSA and ECDH

32

operations. We ran as many parallel threads as there were processors on each respective
machine (i.e., 48 for the OCTEON III, 36 for the x86 system).

2) An end-to-end test that initiated SSL/TLS connections with the OCTEON III. We ran a
Simple Executive SSL server on the OCTEON III and established and closed connections
as quickly as possible with it from a cluster of x86 hosts running ApacheBench [15]. We
chose SSL/TLS configuration parameters for the connection that were reasonable for
modern encrypted connections, but not necessarily the strongest or most modern available.
We chose this configuration since in a real enterprise environment many clients and servers
support older cipher suites. These measurements were conducted with a variety of cipher
suites focusing on RSA and Elliptic Curve key exchange and authentication algorithms.

Results and Conclusions of SSLi Testing on OCTEON Il

The raw asymmetric cryptography performance of the OCTEON III and the 36-core x86 system,
as reported by OpenSSL, is shown in Figure 14. Across the board, the x86 system shows about
an order-of-magnitude higher performance than the OCTEON III system (as noted by the
vertical axis being logarithmic).

OpenSSL Assymmetric Crytography Performance

512-bit 1024-bit 2048-bit 4096-bit 512-bit 1024-bit 2048-bit 4096-bit 160-bit 192-bit 224-bit 256-bit
Private Private Private Private Public Public Public Public ECDH ECDH ECDH ECDH
RSA RSA RSA RSA RSA RSA RSA RSA

100000

10000

1000

10

o

1

o

[

Operations/second

0.

=

0.0

=

0.001

M Octeon 48-thread W x86 36-thread

Figure 14. OpenSSL asymmetric cryptography comparison between the 48-core OCTEON
lll and the 36-core x86 systems.

In the end-to-end testing with ApacheBench, the OCTEON III’s performance was most sensitive
to the choice of digital signature algorithm, which is indicated by the second field of the cipher
suite string. This divided the results into two clear classes of performance, as shown in Figure
15. The results show the cipher suites utilizing the Elliptic Curve Digital Signature Algorithm
(ECDSA) operated at between 3500-5000 transactions per second, and those utilizing RSA
operated at between 85000-90000 transactions per second. Within the cipher suites utilizing

33

ECDSA, the factor with the second largest impact was the choice between the Elliptic Curve
Diffie-Hellman (ECDH) vs. Elliptic-Curve Diffie-Hellman Ephemeral (ECDHE) key agreement
algorithm. Our testing showed performance differences of about 15% in favor of ECDH.

OCTEON Il SSL Termination vs. Cipher Suite

ECDH-ECDSA-AES256-GCM-...
ECDH-ECDSA-AES128-GCM-...
ECDH-ECDSA-AES256-SHA3...
ECDH-ECDSA-AES128-SHA2...
ECDHE-ECDSA-AES256-SHA...
ECDHE-ECDSA-AES128-SHA...
ECDHE-ECDSA-AES256-GCM...
ECDHE-ECDSA-AES128-GCM...
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA
DHE-RSA-AES256-SHA256
ECDHE-RSA-AES256-SHA38...
ECDHE-RSA-AES128-SHA2S...
ECDHE-RSA-AES256-GCM-S...
ECDHE-RSA-AES128-GCM-S...
DHE-RSA-AES256-GCM-SHA...
DHE-RSA-AES128-GCM-SHA...
ECDHE-RSA-AES256-SHA38...
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA

Cipher Suite

o
=
o
N
o
w
o
N
o
v
o
D
o
~
o
(o]
o

90 100

. Thousands
Transactions per Second

Figure 15. OCTEON Ill SSL Transactions per second with Simple Executive SSL Server
for various cipher suites.

7. CONCLUSIONS

From the OCTEON III results, we conclude that the traffic analysis functions necessary for DPI
are compute-bound. Our experiments and measurements showed the OCTEON III platform, which
is designed for packet-switching and routing, was unable to perform DPI at line rate. Although the
OCTEON III performs well at shuttling packets through the system at 40 Gbps, it did not have the
necessary general-purpose compute performance to perform analysis on that traffic at line rate. A
future platform utilizing the overall OCTEON III architecture, but with better performing general-
purpose compute cores, may be sufficient and worth investigating in the future. However, it was
determined that the hypothetical best-case DPI performance with Zeek was 15 Gbps, the cores
would need to have its performance improve by several-fold.

From the x86-based hardware results, we conclude that a single x86 system can now provide

enough compute density to enable 40 Gbps, and potentially 100 Gbps, line rate DPI traffic
analysis. This conclusion is based on experiments using realistic enterprise traffic in a multi-

34

socket system. However, our research showed the overall throughput was bottlenecked by the
load-balancing throughput in certain scenarios (i.e., highly-imbalanced traffic and with high
packet rates and small packets). These discoveries showed that, to achieve 100 Gbps DPI traffic
analysis on x86-based systems, potential research and development should focus on more
efficient design and implementation of load-balancing techniques. Candidate approaches could
be through a mix of leveraging NIC hardware features and software, a hybrid software-hardware
approach, or purely through more efficient and balanced load-balancing in software. This could
include new hashing, queuing, and scheduling algorithms and more efficient synchronization
mechanisms for interaction with the consumer threads. Our results motivate the need for novel
architectural, algorithmic, and implementation work for network traffic load-balancing.

Additionally, advances in load-balancing at 100 Gbps on commodity hardware is applicable
beyond DPI and traffic analysis to other domains that require high-speed load-balancing.
Advances in load-balancers are applicable to other network security appliances, content
distribution networks (CDN), cloud services, web application servers, software-defined
networking, and other cost, power, and space-sensitive applications that depend on high-
throughput packet processing on commodity hardware.

35

BIBLIOGRAPHY

[1] L.D. Carli, R. Sommer and S. Jha, "Beyond Pattern Matching: A Concurrency Model for
Stateful Deep Packet Inspection," in ACM Computer and Communications Security (CCS),
2014.

[2] Vincent Stoffer, Aashish Sharma and Jay Krous, "100G Intrusion Detection," Lawrence
Berkeley National Laboratory, 2015.

[3] R. Sommer, V. Paxson and N. Weaver, "An Architecture for Exploiting Multi-core
Processors to Parallelize Network Intrusion Prevention," Concurrency and Computation:
Practice & Experience - Multi-core Supported Network and System Security, vol. 21, no.
10, pp. 1255-1279, 2009.

[4] B. Haagdorens, T. Vermeiren and M. Goossens, "Improving the Performance of Signature-
based Network Intrusion Detection Sensors by Multi-threading," in Proceedings of the 5th
International Conference on Information Security Applications, 2005.

[5] P.Enberg, A. Rao and S. Tarkoma, "I/O Is Faster Than the CPU: Let's Partition Resources
and Eliminate (Most) OS Abstractions," in Proceedings of the Workshop on Hot Topics in
Operating Systems, 2019.

[6] Mellanox Technologies Ltd., "Understanding PCle Configuration for Maximum
Performance," 20 February 2019. [Online]. Available:
https://community.mellanox.com/s/article/understanding-pcie-configuration-for-maximum-
performance. [Accessed 19 September 2019].

[7] Microway, "Performance Characteristics of Common Transports and Buses," [Online].
Available: https://www.microway.com/knowledge-center-articles/performance-
characteristics-of-common-transports-buses/. [Accessed 19 September 2019].

[8] J.D. Gelas and I. Cutress, "Sizing Up Servers: Intel's Skylake-SP Xeon versus AMD's
EPYC 7000 - The Server CPU Battle of the Decade? - Memory Subsystem: Bandwidth,"
AnandTech, 11 July 2017. [Online]. Available:
https://www.anandtech.com/show/11544/intel-skylake-ep-vs-amd-epyc-7000-cpu-battle-of-
the-decade/12. [Accessed 19 September 2019].

[9] Marvell Technology Group, Ltd., "OCTEON III CN7XXX Family of Multi-Core MIPS64
Processors," [Online]. Available: https://www.marvell.com/embedded-
processors/infrastructure-processors/octeon-multi-core-mips64-processors/octeon-iii-
cn7xxx/. [Accessed 19 September 2019].

[10] V. Paxson, "Bro: A System for Detecting Network Intruders in Real-time," Computer
Networks: The International Journal of Computer and Telecommunications Networking,
vol. 31, no. 23-24, pp. 2435-2463, 1999.

[11] L. Deri, "Improving Passive Packet Capture: Beyond Device Polling," in Proceedings of the
Fourth International System Administration and Network Engineering Conference (SANE
2004), 2004.

[12] L. Rizzo, "Netmap: A Novel Framework for Fast Packet I/O," in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, 2012.

[13] J. M. Gonzalez, V. Paxson and N. Weaver, "Shunting: A Hardware/Software Architecture
for Flexible, High-performance Network Intrusion Prevention," in Proceedings of the 14th
ACM Conference on Computer and Communications Security, 2007.

36

[14] T. Heiland-Jergensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ahern and
D. Miller, "The eXpress Data Path: Fast Programmable Packet Processing in the Operating
System Kernel," in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, 2018.

[15] The Apache Software Foundation, "ab - Apache HTTP server benchmarking tool,"
[Online]. Available: https://httpd.apache.org/docs/2.4/programs/ab.html. [Accessed 19
September 2019].

37

ke

MS9158
MS0813
MS0813
MS0813

MS0899
MS0359

DISTRIBUTION

Jason Gao

Han Wei Lin
Vincent Urias

Brian Van Leeuwen

Technical Library
D. Chavez, LDRD Office

38

8766
9315
9315
9315

9536 (electronic copy)
1171

@ Sandia National Laboratories

