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Abstract—Microservices are a powerful new way of building,
customizing, and deploying distributed services owing to their
flexibility and maintainability. Several large-scale distributed
platforms have emerged to serve the growing needs of data-
centric workloads and services in commercial computing. Con-
currently, high-performance computing (HPC) systems and soft-
ware are rapidly evolving to meet the demands of diversi-
fied applications and heterogeneity. The interplay of hardware
factors, software configuration parameters, and the flexibility
offered with a microservice architecture makes it nontrivial to
estimate the optimal service instantiation for a given application
workload. Further, this problem is exacerbated when considering
that these services operate in a dynamic and heterogeneous
HPC environment. An optimally integrated service can be vastly
more performant than a haphazardly integrated one. Existing
performance tools for HPC either fail to understand the request-
response model of communication inherent to microservices or
they operate within a narrow scope, limiting the insight that can
be gleaned from employing them in isolation.

We propose a methodology for integrated performance anal-
ysis of HPC microservices frameworks and applications called
SYMBIOSYS. We describe its design and implementation within
the context of the Mochi framework. This integration is achieved
by combining distributed callpath profiling and tracing with a
performance data exchange strategy that collects fine-grained,
low-level metrics from the RPC communication library and net-
work layers. The result is a portable, low-overhead performance
analysis setup that provides a holistic profile of the dependencies
among microservices and how they interact with the Mochi
RPC software stack. Using HEPnOS, a production-quality Mochi
data service, we demonstrate the low-overhead operation of
SYMBIOSYS at scale and use it to identify the root causes of
poorly performing service configurations.

Index Terms—microservices, storage, performance, tools

I. INTRODUCTION

Storage systems on today’s high-performance computing
(HPC) platforms are complex and rapidly evolving because
of the continuous adoption of new technologies in storage
hardware, networking infrastructure, memory, and compute
resources. On the application front, the traditional MPI-based
parallelism is increasingly supplemented by large-scale task
parallelism [1], [2]. The heterogeneity in hardware, diversified
application mix, and execution environments coupled with in-
creasing on-node parallelism complicates the task of managing
and optimizing I/O performance and meeting the application’s
data needs. Composability is a useful development paradigm
for this kind of complex environment; it allows distributed
services to be incrementally developed and improved in a
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Fig. 1: Mochi: Interaction between Distributed Components
and Software Stack

modular fashion. The Mochi project [3] is an example of an
HPC framework that embodies this principle. It structures and
catalyzes the development of customized HPC data services
through the use of microservices that can be rapidly composed
to meet application requirements.

As evidenced by ongoing efforts in the software industry [4],
this paradigm of using microservices to design distributed
software has the advantage of being highly maintainable and
flexible. However, this engineering approach complicates the
task of performance analysis and optimization. Basic questions
such as deciding on the optimal service configuration or
detecting resource saturation are nontrivial in the context
of microservices. The following questions, representing the
key analysis and tuning activities with HPC microservices,
motivate the need for an integrated performance infrastructure.

1) What combinations of dependent microservice opera-
tions have the greatest impact on performance? Con-
ceptually, the dependencies among the microservices are
represented as distributed callpaths through the system. By
analyzing the structure of the callpath, the distribution of
the call times, and the call counts, the developer can quickly
track down the most resource-intensive callpath and the
load distribution for that callpath. As opposed to mono-
lithic architectures where callpaths are local to a process,
generating callpaths for microservices is inherently difficult
because these callpaths can span across multiple processes
on different nodes. Microservices that make up a composed
service are loosely coupled, work on potentially different
scales, operate in a heterogeneous execution environment,



and are configured in myriad different ways. Figure 1
depicts a scenario where three microservices (A, B, and
C) interact to generate two distinct callpaths in the system:
A—B—C (shown in red) and A—C (shown in blue).
The microservices A, B, and C can be located on the same
process, on different processes within a node, or on entirely
separate nodes depending on how the service is configured.
Concerning the generation of callpaths, the microservice
model breaks the assumption that most HPC performance
tools make about the passage of control being limited to
addresses within a process.

2) How do resource utilization and time map to individual
steps in a microservice operation? Once the microservice
dependencies have been identified, it is imperative to
understand the relative contributions of various software
components and events that make up the remote procedure
call (RPC) on the client and the server. To tease out these
details, we need a way to integrate various sources of
performance data and timers gathered from different levels
in the stack and fuse that data with the distributed callpaths
as common reference points.

3) What hardware and software resources are being sat-
urated? Identifying a poorly performing service config-
uration involves the ability to detect resource saturation.
Resource saturation can occur on a hardware level or soft-
ware level. For example, tasking frameworks that manage
concurrency on the server place newly spawned tasks in
internal queues. Observing a backlog of tasks on these
queues is an indication that the tasking system is starved
of compute resources. Correlating these resource saturation
metrics with higher-level RPC callpath information can
help narrow down the cause for the task pileup.

4) Is there a better service configuration? Ultimately, the
goal of the performance analysis framework is to aid
in the generation of a better, more optimal service con-
figuration, if it exists. If resource saturation is detected,
the performance data must be suffiently able to indicate
what parameters could be changed in order to improve
performance.

While existing tools excel at the performance analysis of
a specific component or distributed architecture, they provide
only a disjoint or partial profile of microservice performance
at best. An integrated performance system that utilizes a
combination of different performance instrumentation and
measurement strategies is necessary to holistically evaluate
microservice performance and answer these questions. In
this paper, we present SYMBIOSYS, a system for capturing
distributed callpath information, observing key timing and re-
source saturation metrics, and fusing this data in a meaningful
way to glean insights into the behavior of distributed HPC
microservices. The contributions of our research work are as
follows:

o Design of distributed performance measurement and analy-
sis architecture for microservice-based HPC environments
e Design of a performance data exchange framework for

RDMA-based RPC communication libraries

« Development of a specific instantiation of the architecture
tailored for Mochi data services

o Experiments to analyze the root cause of Mochi service
performance inefficiencies on real-world HPC systems

Mochi has enabled the development of a wide variety
of HPC data services. Examples of such services include
FlameStore [3], a data service designed to support distributed
deep learning workflows; GekkoFS [5], a scalable POSIX-
like filesystem with relaxed semantics; and HEPnOS [3], a
storage service designed for high energy physics simulations.
We expect our performance framework to support this wide
range of HPC service and execution environments that are
enabled by Mochi. In Section §II we discuss related research.
In Section §III we provide an overview of the Mochi project.
This will set the stage for the SYMBIOSYS performance
infrastructure proposed in Section §IV. We also describe the
implementation of this framework in the context of Mochi.
In Section §V we demonstrate its use. An overhead study of
the performance framework is presented in Section §VI. In
Section §VII we give concluding remarks and briefly discuss
future work.

II. RELATED WORK

We present a brief overview of the analysis activities that are
central to HPC microservices and the effectiveness of different
classes of tools to address these requirements.

A. HPC Performance Tools

HPC performance tools excel at the performance analy-
sis of applications based on the distributed-memory parallel
programming model. State-of-the-art tools such as TAU [6],
ScoreP [7], CALIPER [8], and HPCToolkit [9] employ sophis-
ticated sampling, automatic compiler instrumentation, man-
val instrumentation, and library interposition techniques to
gather insights into application and communication library
performance. Typically, they build on the presence of an
MPI programming model to capture distributed performance
information. These tools implicitly assume that control is not
passed between applications. As a result, HPC performance
tools cannot be directly utilized to observe distributed mi-
croservice callpaths. While some HPC tools are capable of
working with user-level tasking frameworks such as Argobots
(e.g., APEX [10]), almost all are constrained to measuring
code performance within a node, with limited application in
the generation of distributed callpaths.

B. Cloud-Based Tools for Microservices

Within the general distributed systems community and in-
dustry, several efforts have been made to design performance
tools for microservice-based distributed services. Broadly
speaking, they employ some form of metadata propagation to
stitch together request trace events across processes to form
a complete picture. Distributed request tracing is effective in
detecting structural and empirical anomalies [11]. A compre-
hensive survey of the variety of tools available for distributed



tracing can be found in [12]. Dapper [13] from Google,
OpenZipkin [14], and Jaeger [15] are the notable industry
efforts at tracking requests and associated metadata through
a hyperscale distributed setup. Our distributed tracing imple-
mentation is compatible with the trace format of these tools.
Unlike these tools, however, SYMBIOSYS does not require
additional processes on the node for staging performance data.
Further, we find the need to extend their data model to support
the generation and capture of a rich variety of performance
data from across the stack.

C. Tools That Integrate Data Sources

A growing body of research employs techniques to ex-
change vital performance data between software layers. No-
tably, within the MPI community there are ongoing ef-
forts [16], [17], [18] to expose internal MPI counters and
events in order to gain a deeper insight into the distributed
communication performance. The OpenMP community is also
pursuing similar efforts [19], [20] to associate library-level
performance data with higher-level tasks. The PAPI software-
defined events [21] approach aims to standardize the exchange
of software-level performance metrics across layers through
accessor functions. Our performance data strategy is inspired
by the efforts in the MPI community, whereby tool support is
directly available in the communication library as opposed to
employing an external component.

III. BACKGROUND

The difficulty with enabling the analyses raised in Section I
lies in understanding how to combine a variety of instrumen-
tation and measurement techniques to present an integrated
analysis and profile. Observing distributed callpaths, for exam-
ple, involves tracking and forwarding RPC call ancestry across
distributed microservices by employing some form of request
metadata propagation. Attributing resource usage to individual
steps within a microservice operation involves exchanging per-
formance data across the software stack and orienting it around
appropriate reference points. Identifying resource saturation
requires the ability to correlate low-level performance metrics
with high-level callpath information. While these techniques
can be broadly applicable to any microservice environment,
we focus on a proof of concept using the Mochi software
stack. Section III provides a brief overview of the Mochi
RPC execution model and describes the instrumentation points
relevant to SYMBIOSYS performance analysis.

A. Mochi Overview

Mochi data services are built and composed by using the
RPC as the fundamental communication method between pro-
cessing elements, whether they are local or remote. A Mochi
client (referred to interchangeably as an origin entity) contacts
a service provider (referred to as a farget entity). The Mochi
ideology is to provide the tools and environment necessary to
enable the rapid development of HPC data services. This goal
is achieved by composing microservices to build higher-level,
customized functionality. Examples of microservices include

BAKE [22], a microservice for storing and retrieving object
blobs; SDSKYV, a microservice enabling RPC-based access to
multiple key-value backends; and REMI, a microservice to
enable the shifting of data between microservice instances.
For a full description of the microservices and the composed
services that are built on top of them, see [3].

B. Mochi Core Framework

Mochi’s core components include Argobots [23], Mer-
cury [24], Margo, Thallium, and SSG (Scalable Service
Groups). For our study, we focus on the first three.

1) Argobots: Developed outside the scope of the Mochi
project, Argobots is a user-level threading library designed
for highly concurrent systems. Argobots decouples work to be
done (user-level threads, or ULTs) from the hardware resources
that perform that work (execution streams, or ESs).

2) Mercury: Mercury is an RPC framework designed for
HPC environments. Mercury takes advantage of RDMA-
enabled HPC networks for large data transfers and a callback-
driven completion model for concurrency.

3) Margo: As illustrated in Figure 1, Margo is the common
underlying layer for Mochi services to interact with RPCs and
RPC handlers. Margo eases the burden of Mercury callback
programming and Argobots concurrency management and
presents a unified model that leverages both technologies.
Margo operates in two modes: client and server. When used
in server mode, Margo allows the registration of one or more
providers. Essentially, a provider is an instantiation of a class
that implements a given microservice API. Clients forward
RPC requests to uniquely addressable microservice providers
within each service process.

C. Mochi RPC Execution Model

We describe the events that occur during the generation and
execution of a Mochi RPC call.

1) Request Generation: After the target provider address
has been acquired, the origin entity generates an RPC request.
The RPC request metadata is serialized inside Mercury and
sent over to the target eagerly. In the case that the eager buffer
overflows, Mercury employs an internal RDMA call to send
the additional request metadata. Margo installs a callback with
Mercury that is invoked when the response is available. These
actions correspond to steps t; to t3 in Figure 2.

2) Execution of the Request: When a target provider re-
ceives an RPC request, the main service provider execution
stream (progress ES) creates a new ULT to service the request
(tg). This request enters a pool of tasks waiting to run on
the next available ES. When the ULT is assigned an ES to
run on, it begins executing (ts) by first deserializing the input
metadata (tg to t7). The number of ESs available to the service
provider is specified during the initialization phase. These ESs
constantly dequeue ULTs from the various registered pools and
execute them as they arrive. If there are no ULTs to execute,
the ESs remain idle. The service provider transfers data from
the origin through Mercury’s bulk interface.
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3) Issuance of a Response: The target provider generates
a response (tg), and the output gets serialized inside Mercury
(ty to t19). The Margo library on the target registers a callback
handler for the response. This callback handler is triggered by
Mercury (ty3) when the response has been sent to the origin.

4) Receipt of a Response: Once the response is available at
the network layer on the origin (t11), at some later point in time
the Mercury progress engine adds the completion callback for
this request to the completion queue (t;2). Then the callback
for this request is triggered (ti4).

IV. SYMBIOSYS

SYMBIOSYS is an integrated performance instrumentation,
measurement, and analysis framework for HPC microservices.
SYMBIOSYS can capture distributed callpath information;
discover microservice request structure; and associate callpath
information with software and hardware resources from the
concurrency control, RPC library, and network layers depicted
in Figure 1.

A. Distributed Callpath Profiling and Tracing

Common industry practice [13] to enable portability is to
build these capabilities into the core communication libraries.
Doing so has the dual advantage of operating seamlessly and
not requiring end-user effort. Margo is the gateway to the
core communication library (Mercury) and the runtime system
(Argobots) managing execution on the compute node. Thus,
Margo is the ideal software layer to host the performance
measurement system.

1) Distributed Callpath Profiling: SYMBIOSYS tracks
RPC callpath ancestries to present a callpath profile summary.
This summary contains information about the total amount
of time spent along different callpaths (or callchains) in the
system. Each microservice instance keeps track of its callpath
ancestry and forwards this information along the request path.
This callpath information is maintained separately on the
origin and target entities. Further, for every callpath, each
origin entity making the call and each target entity servicing



the call are uniquely identified in the profile. During the
invocation of an RPC call, the RPC call name is hashed into a
64-bit value and sent along with the RPC request. This 64-bit
value denotes the callpath ancestry for the chain of RPCs. The
Margo instance invoking the RPC stores this hash value inside
Mercury at t; (see Figure 2) and retrieves it from a callback
argument at ty4. At this point, the Margo instance measures
the time it took for the RPC target to service the call. This is
referred to as the origin execution time.

The delay between the receipt of the RPC call at t3 and
the execution of the corresponding ULT at t4 is denoted as
the target ULT handler time and is stored in a ULT-local
key. The Margo instance receiving the RPC call at t3 unpacks
the incoming RPC request and stores the 64-bit hash value in
another key local to the ULT servicing that request. This is
important because this ULT can make another RPC call as a
side effect of the original one. If that is the case, the ULT
needs to pass the callpath ancestry to downstream operations
in order to maintain the correct chain of operations. The ULT
first performs a 16-bit left shift of the 64-bit value representing
callpath ancestry. It then hashes the name of the downstream
call RPC and performs a logical OR operation such that the
name of the downstream RPC call occupies the lowest 16
bits of the 64-bit value. The ULT then proceeds with making
the RPC request. Currently, Margo can store RPC callpath
lengths of up to four in the 64-bit hash value. When the
ULT servicing the request on the target completes, it measures
the time to service this request at tg. This is denoted as the
target ULT execution time. The delay between the issuance
of a response at tg and the triggering of the corresponding
completion callback at ty3 is stored in a ULT-local key as the
target completion callback time.

2) Distributed Request Tracing: While callpath profiling is
useful for gathering a quick summary of service performance,
information about individual requests is lost. Traces can span
across multiple nodes (and processes) and contain rich per-
formance information that can be analyzed for correlations of
various performance metrics with time. The key idea lies in
propagating request metadata (typically a unique request ID)
through the system and then having a postprocessing system
collect and stitch the individual trace events after execution
has completed. Distributed tracing involves the generation of
trace events at t;, tj4 on the origin and ts, tg on the target.
The end-client (typically the user application) generates a
globally unique request ID and propagates this ID along with
a counter representing the order of the event in the individual
trace. We implement Lamport’s algorithm [25] to mitigate
clock skew in the system. For every trace event generated,
the current timestamp is stored along with a rich variety of
performance data gathered from the RPC API, RPC library,
and concurrency control layers.

B. Performance Data Exchange with the RPC Library

Associating higher-level callpaths with events from the
RPC library and concurrency control layers is critical to
form a complete picture of RPC performance. Typically, each

TABLE I: Performance Variable Classes

\ PVAR Class | Description
STATE Represents any one of a set of discrete states
COUNTER Monotonically increasing value
TIMER Interval event timer
LEVEL Represents the utilization level of a resource
SIZE Represents the size of a resource
HIGHWATERMARK | Highest recorded value
LOWWATERMARK | Lowest recorded value

software item in the RPC stack behaves like a black box,
preventing the exchange of vital performance data that can
aid in understanding performance and can present optimization
opportunities. The MPI community has attempted to standard-
ize the exchange of performance data through the MPI Tools
Information Interface [16]. Our architecture for performance
data exchange with the RPC library takes inspiration from
these efforts.

1) Performance Variables: From the viewpoint of perfor-
mance, several important events occur inside the Mercury
communication library. We identify and implement several key
performance variables (PVARs) in Mercury that capture these
events. We introduce the concept of PVAR classes to represent
the variety in the types of PVARs that can exist. For example,
the PVAR class STATE is used to represent the current state
of a particular Mercury resource or metric. Table I presents
a list of PVAR classes currently available, and Table II lists
some of the various PVARs that are currently implemented.
The PVAR num_posted_handles represents a PVAR of
the STATE class. Similarly, the PVAR class COUNTER repre-
sents a monotonically increasing value, and the PVAR classes
HIGHWATERMARK and LOWWATERMARK denote the highest
or lowest values recorded for a particular metric.

The other key concept we introduce is the notion of PVAR
bindings. Many PVARs have a “global” scope and represent
a counter or metric that has a wide temporal and spatial
presence across the entire Mercury library. Such PVARs have
a bind type NO_OBJECT. An example of a PVAR of this
type is the completion_gqueue_count representing the
current length of the Mercury completion queue. Other PVARs
are short-lived and have a much narrower scope. Every RPC
call is internally associated with a Mercury handle object.
We introduce the bind type HANDLE to represent PVARs
bound to internal Mercury handles. Once the particular RPC
has completed, these PVARs go out of scope, and their
values are lost forever. Examples of such PVARs include
the timers representing the input and output serialization and
deserialization times on the origin and the target.

2) Performance Tool Interface: We introduce a PVAR in-
terface in Mercury to externally sample these Mercury PVARs.
Briefly, the steps taken by an external tool to access and sample
the PVARs are as follows:

« Initialize a PVAR session: Each tool querying the Mercury
PVAR interface is assigned a unique session_handle.
o Query the interface for the supported PVARs: Once a session
is initialized, the external tool queries the interface to gather



TABLE II: List of Available Performance Variables

PVAR Name | Description | PVAR Class | PVAR Binding |
num_posted_handles Number of currently posted RPC handles LEVEL NO_OBIJECT
completion_queue_size Number of events in Mercury’s completion queue STATE NO_OBIJECT
num_ofi_events_read Number of OFI completion events last read LEVEL NO_OBIJECT
num_rpcs_invoked Number of RPCs invoked by instance COUNTER NO_OBJECT
internal_rdma_transfer_time Time taken to transfer additional RPC metadata through RDMA TIMER HANDLE
input_serializaton_time Time taken to serialize input on origin TIMER HANDLE
input_deserializaton_time Time taken to de-serialize input on target TIMER HANDLE
origin_completion_callback_time | Delay between the arrival of RPC response and invocation of completion callback TIMER HANDLE
information about the number, type, binding, and count of Margo Mercury
all the PVARs eXpOrted. Callpath | e e P_\!A_R_ _________ Completion
Proa'ﬂe :- Interface : Queue Info
o Allocate handles for PVARs: Once the relevant PVARs have : ot -
been identiﬁed, the tool must allocate pvar_ha.ndles for . Performance Performanca lfi— "tre FOVA
the PVAR§ it wishes to read. The interface provides an API Tace. I I S AN
call for this purpose. Resources

« Sample PVARs: At any point after the handle has been
allocated, the external tool can sample (read) the value of
the PVAR by providing the pvar_handle as input to the
sampling API. If this PVAR is bound to a Mercury handle,
the tool must provide the Mercury handle as input.

« Finalize the PVAR session: When the external tool is done
sampling PVAREs, it can free the allocated pvar_handles
and finalize the PVAR session.

C. Integrating Data Sources

The microservice callpath measurements are used to orient
and integrate performance data from the communication li-
brary. The Margo RPC API layer initializes a PVAR session
with Mercury inside its initialization routine. At the same
time, it also initializes all necessary PVAR handles. Figure 3
represents this interaction between the two layers of the Mochi
stack. Margo samples the Argobots layer for the number of
blocked and runnable tasks when generating a trace event. At
these instrumentation points, it also samples memory usage
and CPU utilization from the OS layer.

Although the OpenFabrics Network Interface [26] specifi-
cation does not allow us to read the instantaneous number of
events in its completion queue, we can gather a sense of the
size of the completion queue by sampling the number of actual
events last read in the form of the num_ofi_events_read
Mercury PVAR at ty4. When Mercury PVAR profiling is
enabled, it samples the num_ofi_events_read PVAR
and adds this data to the trace record. At the origin, Margo
reads the PVARSs holding the origin callback completion time
and input serialization time when measuring at tj4. Similarly,
at the target, the PVARs representing the target internal
RDMA transfer time, input deserialization rime, and output
serialization time for the particular RPC call are sampled
when measuring at ty3. These trace events and profile data
are consolidated, aggregated, and presented for visualization
at the end of the execution.

V. PROFILING CASE STUDIES

In this section, we present scenarios describing the usage
of SYMBIOSYS to aid with the key performance analysis

Fig. 3: PVAR Interface Between Margo and Mercury
TABLE III: Combining Instrumentation Strategies

| Interval Name | Interval Start | Interval End | Instrumentation Strategy |
Origin Execution Time t tis ULT-local key
Input Serialization Time t2 t3 Mercury PVAR
Target Internal RDMA Transfer Time t3 ty Mercury PVAR
Target ULT Handler Time ty ts ULT-local key
Input Deserialization Time te t7 Mercury PVAR
Target ULT Execution Time (exclusive) ts tg ULT-local key
Output Serialization Time to tio Mercury PVAR
Target ULT Completion Callback Time tg ti3 ULT-local key
Origin Completion Callback Time ti2 tis Mercury PVAR

activities discussed in Section I.

A. Mobject: Identifying Dominant Microservice Dependencies

1) Background: Mobject [3] is a distributed object storage
service that exposes a subset of the RADOS [27] API to
support concurrent, noncontiguous writes of objects. Each
Mobject provider node (service provider process) hosts three
types of providers—a Mobject sequencer provider, a BAKE
provider, and an SDSKV provider. The Mobject sequencer
provider translates the RADOS operations into the underlying
BAKE and SDSKYV operations. BAKE is used to store object
data through RDMA transfers between BAKE and client
memory. SDSKYV is used to store metadata information. We
note that the Mobject provider is the client-facing provider
and control always goes back to the Mobject provider after
the BAKE and SDSKYV operations complete. Figure 4 depicts
this structure.

3 Mobject Microservice
1 ' A Provider 1
P | !
Mobject Client leeees \ ——————————————————— / ------ i
Application Node BAKE | SDSKV |
| Microservice | | Microservice | |
| Provider | Provider |

Fig. 4: Mobject Illustration



2) Identifying Dominant Microservice Dependencies: I1den-
tifying dominant microservice dependencies or callpaths is a
crucial first step in performance analysis. It isolates resource-
intensive portions of the workload at a high level and helps
determine where to focus attention for further analysis and
optimization. Recall that RPC callpaths can cross process
boundaries. The SYMBIOSYS profile summary script ingests
all the profiles and performs a global analysis to identify
origin-target pairs for each callpath. The script summarizes
and sorts callpaths by cumulative end-to-end request latency
to identify the most dominant ones. For each of these dominant
callpaths, the SYMBIOSYS profile summary script generates
call count distributions for all the participating origin and
target entities. These distributed callpaths are used as a pivot
around which lower-level communication library data and
tasking library queue information is oriented. The results from
this profile summary can be used as a starting point for a more
detailed performance study.

We employ a single Mobject service provider node and
10 ior [28] clients colocated on the same physical node.
The ior benchmark has been modified to use Mobject for
reading and writing objects. For this setup, Figure 6 depicts
the top 5 most dominant callpaths by cumulative end-to-
end request latency. mobject_read_op is the most expensive
Mobject API operation overall. The profile suggests that the
mobject_read_op——>sdskv_list_keyvals_rpc is the dominant
component of the top-level mobject_read_op API call. Note
that for each of these callpaths, the breakdown of the indi-
vidual steps for each callpath such as the input serialization
time, internal RDMA transfer time, and target handler time
is shown. For this application setup, these individual steps
occupy a negligible time in the profile as compared with the
time taken to execute the request on the target.

3) Discovering Individual Request Structure: Once the
dominant callpaths have been identified, developers may be
interested in tracing the path of individual requests to identify
the exact microservice operations getting invoked as a result
of a higher-level operation. This sort of analysis is especially
useful for identifying root causes for performance anomalies
resulting from structural abnormalities in service requests.

For the same ior and Mobject setup described pre-
viously, Figure 5 represents the trace visualization for
a single invocation of the mobject_write_op callpath.
It discovers 12 discrete SDSKV and BAKE microser-
vice calls (e.g., mobject_write_op—>sdskv_get_rpc, mob-
ject_write_op——>bake_persist_rpc) that make up the higher-
level mobject_write_op request. Each of these 12 discrete
microservice calls has its own profiling data, so the user can
break down where time is spent and reason about request
performance. Without this trace data, the internal structure of
the request is completely opaque to the user. SYMBIOSYS
enables this Gantt chart visualization through an adapter
module that “stitches” the events with a common requestID
from different processes into a Zipkin [14] JSON trace file.

B. Sonata: Mapping Resource Usage to Individual Steps

1) Background: Sonata is a microservice for remotely
accessing and storing JSON objects. It is based on an Un-
QLite [29] database and offers the ability to remotely run
analysis on the stored JSON objects through Jx9 scripts.
While the BAKE microservice is optimized for large blobs of
unstructured data and the SDKSV microservice is optimized
for small key-value pairs, Sonata is instead optimized for
document storage, especially if there is a need to perform
complex, in-place queries on these documents.

2) Mapping Resource Usage to Individual Steps: The
JSON document to be stored is transferred as RPC metadata.
However, if Mercury’s eager buffer overflows, the additional
RPC metadata is transferred through an internal Mercury
RDMA operation (between tz and t4). With a large RPC
metadata transfer, it is imperative to understand the con-
tributions of (de)serialization and internal RDMA transfer
operations to the RPC execution time. We execute a simple
Sonata benchmark with one target and one origin entity on
separate compute nodes. The benchmark repeatedly invokes
the sonata_store_multi_ json API call to store a fixed-
length JSON record array in a set of batches. The batch size
benchmark parameter determines the size of RPC metadata
and the total number of RPC calls. Figure 7 depicts the
breakdown of the cumulative RPC execution time on the target
for a JSON record array of 50,000 entries and a batch size
of 5,000. While the target internal RDMA transfer time is
relatively low, the time to de-serialize the input accounts for
27% of the overall execution time on the target.

C. HEPnOS: Observing Resource Saturation and Identifying
a Better Service Configuration

1) Background: HEPnOS [3] is a Mochi storage service
designed for high energy physics experiments and simulations
at Fermilab. Data in HEPnOS is arranged in a hierarchy
of datasets, runs, subruns, and events. Events correspond to
serialized C++ data objects. HEPnOS distributes both object
data and metadata. Each HEPnOS service provider node hosts
one BAKE provider to store object data and one SDSKV
provider to store object metadata. Figure 8 depicts the structure
of the HEPnOS service. Client processes (physics simulation)
contact the BAKE and SDSKYV providers directly through a
C++ client APL

The production HEPnOS client application is a workflow
comprising multiple steps. In this study, we focus on the
“data-loader” step in which particle event data is loaded into
the system. We chose this step for evaluation since it is the
most mature and has the fewest external dependencies. The
data-loader reads HDFS5 files containing physics simulation
event data from a conventional file system. It then writes
this event data into the HEPnOS data service. A SYM-
BIOSYS profile of the data-loader client application suggests
that sdskv_put_packed is the only dominant RPC callpath
generated, regardless of scale. The sdskv_put_packed API is
used to store a key-value list (event data in HEPnOS) to a
backend database (LevelDB, BerkeleyDB, or map). This



MOBJECT_CLIENT: mobject_write_op
Duration: Ops Services: & Depth: 4 Total Spans: 12 Trace ID: 00000000000017128399103378587952

)

. e ~~
=} mabject vite_op
El

= T

E]

E]

=]

s

—»

mobject_write_op
sdskv_get rpc

API
Calls

sdskv_get_rpc
bake_create_rpc
bake_create_rpc
bake_write_fpc
bake_write_rpc

Microservice
Span

-

SDSKV_SERVER

Time Line >«

0.03336819012038798 0.066736380259195950s 010010457038879395

bake_persist_rpc
bake_persist_rpc
sdskv_put_rpe
sdskv_put_rpe

Fig. 5: ior + Mobject: OpenZipkin [14] Trace Visualization Depicting Discrete Steps for a Single mobject_write_op Request

Top-5 callpaths in descending order of cumulative time on origin

1750 Origin (Exclusive)

Origin Callback Completion Time
Origin Input Serialization Time

1500 Target ULT Execution Time (Exclusive)
Target ULT Handler Time

Target Callback Completion Time
Target Input Deserialization Time
Target Output Serialization Time
Target Internal RDMA Transfer Time

1250

mobject_read_op mobject_read_op

- read_ mobject_write_op
-> sdskv_list_keyvals_rpc

Callpath

mobject_read_op mobject_write_op
-> sdskv_list_keys_rpc  -> sdskv_list_keyvals_rpc

Fig. 6: ior + Mobject: Identifying the Dominant Callpaths

® Target Internal RDMA Transfer Time

B |nput De-serialization Time

® Target ULT Completion Callback Time
Target ULT Execution Time

N

10
8

Cumulative RPC Execution Time (seconds)
o

sonata_store_multi_json

Sonata API Call

Fig. 7: Sonata: Mapping Execution Time to Individual Steps

T BAKE Microservice
; Client Provider
Application Node | ™S T ‘
SDSKV Microservice !
Provider ‘
- HEPNQOS Provider Node

Fig. 8: HEPnOS Illustration

RPC call typically results in the target issuing a bulk data
transfer (refer to Figure 2) to pull in the key-value content.
The focus of our study is to analyze the performance of
the RPC component of the HEPnOS data-loader application.
We employ SYMBIOSYS to study the root causes of poorly
performing HEPnOS configurations and to determine better
service configurations to improve performance. Table IV en-
lists the various service configurations that are a part of this
study.

2) Too Few Execution Streams: It is difficult to estimate
beforehand the optimal number of target Argobots execution
streams (ESs) required for a given workload. However, by
observing delays in the execution pathway of the RPC call,
one can determine when these resources saturate, thereby
identifying a poorly performing service configuration. Recall
that on the target, a new ULT is spawned at t4 for every
incoming RPC request. We define the delay between events
t4 and ts in Figure 2 as the farget handler time. This is the
time spent by a newly spawned ULT in the Argobots handler
pool before an ES is available to pick it up for execution.
When the target is overloaded with RPC requests and lacks
the execution resources to dispatch the corresponding ULTs
promptly, the target handler time can contribute significantly
to the overall request latency and worsen performance.

Figure 9 demonstrates that C; suffers from a lack of
execution resources on the target. Avoidable delays inside the
Argobots handler pool (target handler time) account for 26.6%
of the total RPC execution time.

A Better Service Configuration: C, remediates this by
adding 15 additional execution streams (threads). Overall
cumulative RPC execution time improves by 53.3%, with the
target handler time contributing 14% to the overall time.

3) Too Many Databases: Each target provider node em-
ploys several databases to parallelize the writing of HEPnOS
event data. Specifically, in this study the target employs a map
backend. For the sdskv_put_packed RPC, the origin imple-
ments a hashing scheme using the key and the total number
of databases to identify the target database ID. Everything
else being equal, the greater the number of target databases,
the greater is the number of RPCs generated. Since the map
backend is not capable of parallel insertions, employing too
many target databases can create a flood of RPCs and cause
write serialization during bursty behavior. Configuration C,



TABLE IV: HEPnOS: Service Configurations

| Configuration | Total Clients; Clients Per Node | Total Servers; Servers Per Node | Batch Size | Threads (ESs) | Databases | Client Progress Thread? | OFI_max_events

Cy 32; 16 4;2 1024 5 32 X 16
C, 32; 16 4;2 1024 20 32 X 16
Cs 32; 16 4;2 1024 20 8 X 16
Cy 2; 1 4;2 1024 16 8 X 16
Cs 2; 1 4;2 1 16 8 X 16
(073 2;1 4;2 1 16 8 X 64
C7 2; 1 4;2 16 8 v 64
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suffers from this problem. The x-axis in Figure 10 denotes the
timestamp of when the request began execution on the target
at t4 (Figure 2), and the y-axis represents the total number
of blocked ULTs sampled from Argobots at this time. Each
colored dot represents a single request. Requests executed at
different targets are represented by different colors. Figure 10a
depicts this serialization problem during bursty behavior with
configuration C,. This pattern of vertical lines generated by
requests that arrived at the same time but complete in quick
succession (as opposed to simultaneously) is indicative of
serialization on a backend resource.

A Better Service Configuration: Counterintuitively, RPC
performance in this situation improves when reducing the
number of databases. RPC performance in Cj is better than C,
by 28.5%. Figure 10b also demonstrates that the severity of
serialization in C3 is much reduced as compared with C,. The
reduced number of RPCs generated with C3 also has the effect
of lowering the target handler time and the target completion
callback time—the ULTs are being processed quickly without
introducing unwanted delays.

4) Effect of a Low Batch Size on Client Progress:
HEPnOS clients batch key-value pairs containing HEPnOS
event data to improve RPC throughput when generating an
sdskv_put_packed request. A batch size of 1,024 (Cy) is
roughly 475 times more performant than a batch size of 1 (Cs).
Figure 11 suggests that instrumentation from the RPC API and
RPC library layers is insufficient to capture all components of
the cumulative RPC execution time for Cs (the unaccounted
portion is depicted by the blue color in Figure 11). We consider
the question of identifying this gap in instrumentation. We
also seek to improve RPC performance when low batch size
is an inherent property of the application setup and cannot be
controlled.

The HEPnOS data-loader client employs a Mercury
progress ULT to progress RPC communications within the

6 10
timestamp (s)

(b) C3
Fig. 10: HEPnOS: Sampling Blocked Tasks from Argobots for
sdskv_put_packed

client process. This progress ULT has two important tasks: (1)
read the OFI events containing notifications of RPC responses
from the network abstraction layer and add the corresponding
completion callbacks to the completion callback queue and
(2) trigger completion callbacks from the completion callback
queue. In order to prevent context switching overheads, by
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Fig. 11: HEPnOS: Unaccounted Component of RPC Execution

default, this progress ULT is executed within the context of the
main Argobots execution stream that also executes the ULTSs
issuing RPC requests. When the batch size is low, the progress
ULT can compete for CPU resources with the ULTs issuing
RPC requests. As a result, the completion callback queue or
the OFI event queue can clog up and introduce unwanted
delays. Every time it is scheduled to execute, the progress
ULT reads up to a maximum of OFI_max_events events
from the OFI interface. OFI_max_events has a default



user-defined value of 16, set inside the Mercury library. Fig-
ure 12a depicts a sample of the num_ofi_events_read
PVAR in configuration C4 where the batch size is optimal.
In this configuration, the OFI_max_events threshold is
never breached, implying that the OFI completion queue is
emptied at regular intervals. Figure 12b depicts a sample of the
same PVAR in configuration Cs where the batch size is low.
Clearly the number of OFI events read consistently breaches
the threshold value of 16, suggesting that the completion queue
is backed up.

A Better Service Configuration: Increasing the
OFI_max_events threshold from 16 to 64 with Cg
improves RPC performance by over 40% while reducing the
unaccounted time by 47%. The performance data gathered
from various layers in the software stack indicate that
employing a separate, dedicated execution stream for the
client’s progress thread is likely to improve performance.
Figure 11 confirms that RPC performance for C; improves by
a further 75% and the unaccounted time reduces by a further
90% as compared with Cg. From Figure 12d, we conclude
that the OFI event queue is no longer backed up.

VI. OVERHEAD EVALUATION

We present the overheads in employing the SYMBIOSYS
framework for performance measurement and analysis of the
HEPnOS storage service. We pay special attention to the
process of separating the overheads of adding instrumentation,
making the performance measurement, and analyzing the
generated data using the performance analysis scripts we have
developed.

A. Setup

1) Hardware: All the experiments were conducted on the
Theta ! system at the Argonne Leadership Computing Facility
(ALCF). Theta, a CrayXC40 system, hosts 4,393 Intel KNL
compute nodes, each of which hosts 64 processing cores. We
used the Intel KNL processors for all our experiments.

2) Software: All of our experiments were conducted using
the HEPnOS storage service along with a data-loader client
application setup. The Mochi components were installed using
the Spack [30] package manager. We employed 128 nodes for
our large-scale study. We used 32 HEPnOS service provider
processes spread evenly over 16 nodes. Each service provider
process was assigned 30 threads and 16 databases for storing
HEPnOS events. We employed 224 data-loader clients spread
over 112 nodes. The batch size was set to 8,192, and a separate
client progress thread was not employed for our experiments.

B. Results

We measured the execution time of the data-loader appli-
cation as the metric to compare the instrumentation and mea-
surement overheads in SYMBIOSYS. We used the following
terms to denote the various stages of the process:

o Baseline: This is the baseline execution time with instru-
mentation and measurement disabled.

Thttps://www.alcf.anl.gov/support-center/theta

TABLE V: HEPnOS: Analysis Overheads

[ Profile Summary (s) [ Trace Summary (s) | System Statistics Summary (s) |
\ 35.1 \ 2311 \ 734 \

o Stage 1: This is the execution time with instrumentation
turned on while no measurements are being made. In SYM-
BIOSYS, this corresponds to the addition of RPC callpath
and trace ID information in the RPC request.

o Stage 2: Callpath profiling, tracing, and system statistic
sampling are enabled, but Mercury PVAR collection is
disabled.

« Full Support: Callpath profiling, tracing, and system statistic
sampling are enabled. Mercury PVAR collection is turned
on, and the PVAR data is integrated on the fly with the
callpath profiles.

Figure 13 depicts the overheads involved in enabling various
stages of performance measurement using the HEPnOS setup.
Each entry in the table is the average of 5 execution times.
At large scale, the SYMBIOSYS tracing system collected
a total of 1 million samples. Even at this scale, enabling
profiling and tracing led to minimal overheads that were
indistinguishable from the run-to-run variation in execution
time. Table V presents the time taken to analyze the collected
performance data and generate visual plots. The profile and
system summary analysis scripts completed in a short amount
of time, while the trace summary script took a longer time to
run when applied to the large-scale performance data.

VII. CONCLUSION AND FUTURE WORK

This paper presented the SYMBIOSYS integrated perfor-
mance measurement and analysis infrastructure designed for
HPC data services. We have enabled the effective and portable
profiling and analysis of HPC microservices by tracking the
RPC callpath ancestry. By integrating data from the RPC com-
munication library through a data-exchange strategy, SYM-
BIOSYS was able to correctly attribute low-level events and
resource usage levels with higher-level interactions between
service entities. Further, we demonstrated that the performance
infrastructure was capable of operating with a low overhead
at scale.

Our future research will focus on in situ approaches for dy-
namic reconfigurability based on knowledge learned from the
experimental results and application studies. We envision the
creation of policy-driven mechanisms whereby rules governing
response to poor performance behavior can be formulated and
applied based on performance monitoring and models.
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