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Personal transportation 
(Toyota/Hyundai)

Utility-scale generation 
(Shell)

Home energy storage 
(Lavo)

Air Travel 
(Airbus)

Motivation: Discovering improved H2 storage and generation 
techniques will facilitate progress towards a hydrogen economy
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Motivation: Do undiscovered materials exist that could improve 
upon conventional H2 storage and generation technologies?

• High H2 gravimetric and/or volumetric density 
• Fast, reversible release near ambient T
• Practical/cost-effective

700 
bar vs.

Material X ?? Material Y ??
“Conventional”
1.2 V in theory
1.8 V in practice

“Conventional”
(Compressed gas)

Storage objectives: Generation objectives:

• Water-splitting using only renewable energy
• Lower overpotentials than electrolysis
• Practical/cost-effective

vs.
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Approach: How are new materials discovered?

Chemical intuition

Synthesize material

Characterize material

Test Performance

Experiments

First-principles theory

Run simulation & 
predict performance

Physics-based simulations

Seconds     Minutes        Hours           Days          Weeks        Months         Years         Forever

Experiments
Physics-based simulations

ML

Training data labels/values:
𝑦! (from experiments or computation)

Featurize materials: 
LaNi5 → 𝒙 = 𝜈̅"# , 𝑟̅$%& , 𝜒̅ , …

Train a model:
+𝑦! = 𝑓 𝒙!; 𝜃 and ℒ = ∑(+𝑦! − 𝑦!)'

Run model & 
predict performance

Machine/statistical learning (ML)
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Approach: Use of data science and machine learning techniques can…

1) Model material properties and provide interpretable predictions to improve 
fundamental understanding [1]

2) Elucidate the design rules (structure-property relationships) for optimal materials [1,2]

3) High-throughput screen large material space to identify top candidates orders of 
magnitude faster than brute-force experiments or physics-based simulations [3,4,5,6]

4) Accelerate physics-based simulations (critical when experimental training data is 
lacking) [7]

[1] Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
[2] Witman, Ling, Stavila, Wijeratne, Furukawa, Allendorf. Mol. Sys. Des. & Eng., 5, 2020
[3] Ek, Nygard, Pavan, Montero, Henry, Sorby, Witman, et al. Inorg. Chem., 60 (2), 2021
[4] Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater., 2021, Accepted
[5] In preparation
[6] Ambrosini, Witman, McDaniel. Provisional Patent, 2020.
[7] In preparation

6



SAND

H2 Storage: A data driven roadmap to discover optimal hydrogen storage alloys7

Milestone #1:
Develop an explainable ML framework to predict metal 
hydride thermodynamics and understand design rules [1]

Milestone #2:
Demonstrate our ability to identify and synthesize new hydrides 
exhibiting targeted thermodynamic properties [4]

Milestone #3:
Discover the highest performing hydrides across multiple objectives 
(i.e., Pareto optimal) from an intractably large alloy space [5]

[1] Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
[4] Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater., 2021, Accepted
[5] In preparation
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Milestone #1: Explainable ML models predict metal hydride 
thermodynamics and elucidate simple, first-order design rules
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Training data

HydPARK metal-hydride database

ln(𝑃789 /𝑃9) = − :;
<(=>!?)+

:@
<

400 out of 2500 are ML-ready…

𝐥𝐧(𝑷𝒆𝒒𝒐 /𝑷𝒐) target property

*Intractable for rigorous, atomistic 
simulation in high-throughput

H2 @ 𝑃!", 𝑇 Metal Hydride
Featurizing materials

Features derived only from 
composition

e.g. Zr0.04Ti0.96Nb0.04Fe0.95 →

E𝝂𝒑𝒂 =G
!

𝑓!𝜈!

𝑓! ≡ composition fraction
𝜈! ≡ ground state vol. per atom

𝒙 = 𝜈̅"# , 𝑟̅$%& , 𝜒̅ , … ∈ ℝ-./
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Milestone #1: Explainable ML models predict metal hydride 
thermodynamics and elucidate simple, first-order design rules
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Model explainability
Gradient boosting 
trees performance

𝑦! = ln(P01% /𝑃%)

+𝑦! = ∑23-4 𝑓2 𝒙!

ℒ =
1
𝑛G

!

( +𝑦! − 𝑦!)'
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First-order design rule applicable 
across structural classes & 
diverse composition space!

𝐥𝐧(𝑷𝒆𝒒𝒐 /𝑷𝒐) ≈ 𝑪𝟏 /𝝂𝒑𝒂 + 𝑪𝟐
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⌫pa [Å3/atom]

�20

�15

�10

�5

0

5

ln
P

o e
q
(2

5o
C

)

Magpie (-0.60)

MP (-0.70)

Cuevas (-0.97)

Smith (-1.00)

250 500

Vcell [Å3]
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Milestone #2: ML model rapidly screens for high entropy 
alloy (HEA) hydrides with a desired thermodynamic stability
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HEA overview:

Ø > 4 elements, ~ equimolar
Ø Solid solution character necessitates a 

compositional ML model

Enumerating refractory HEA (rHEA) space:

𝐸 = {Al, Ti, V, Cr, Zr, Nb, Mo, Pd, Hf, Ta} 

𝐸
4 +

𝐸
5 +

𝐸
6 → 672 compositions

Far too many for experiments…
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Screening rHEA space:

Novel, destabilized HEA hydrides
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Milestone #2: ML model rapidly screens for high entropy 
alloy (HEA) hydrides with a desired thermodynamic stability
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AlTiVNbTa & AlTiVCr synthesis

Validated ML model 
& design rule
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Milestone #3: Identify the Pareto optimal hydrides from 
an expansive space of ~21,000 candidate HEAs [3]
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Screening a novel, expansive HEA space

𝐸 = {Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, 
Cu, Zn, Zr, Nb, Mo, Pd, Hf, Ta} 

𝐸
4 +

𝐸
5 +

𝐸
6 → 20,944 compositions

Multiple ML property predictions

True Value

M
L 
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tio

n
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𝜟𝑯H/M

Objectives / Quantity to maximize:
Ø Optimal thermodynamics 
Ø High volumetric capacity 
Ø High gravimetric capacity
Ø Low Cost 

->      − Δ𝐻 − 27
->     H/M 
->     Hwt% 
->     -cost [USD/kg]

Identification of ~100 Pareto optimal materials

Pareto optimal

ML: Seconds to identify all Pareto optimal candidates
Experiment: Years to identify one by trial-and-error
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Ongoing Milestones: Address the lack of robust, 
standardized, and centralized hydrogen storage data
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Any basis set

5 element system…
w/accurate potential:

NREL Data Hub app for standardized 
experimental data reporting

Conventional vs. Graph Convolutional NN

N (# atom types)

# 
in

pu
t f

ea
tu

re
s

Simple basis set:
6*N2

Accurate basis set:
15𝑁# + 80𝑁 $%&

#

2 3 4 5 61

Surrogate models for DFT in 
many element systems

Ø Better experimental reproducibility
Ø More standardized data reporting
Ø More efficient data collection
Ø Better ML models!
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Storage
• Performed truly comprehensive HEA screening for Pareto optimal hydrides?

Generation
• An ML framework to identify optimal metal oxides for thermochemical water-

splitting?

Data
• Created standardized data management tools for hydrogen storage

experiments?

Simulations
• ML driven simulations that can predict physical/chemical properties of many-

element hydrogen/material systems?

Research Aspirations (in 5 years can we confidently say that we have…)

More data & better ML methods leads to
Ø Improved models
Ø More accurate materials predictions
Ø Faster experimental success
Ø Quicker hydrogen technology adoption
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Thank you for your attention. 

Questions?

Contact: mwitman@sandia.gov

15


