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Motivation: Discovering improved H, storage and generation
techniques will facilitate progress towards a hydrogen economy

Personal transportation Air Travel
(Toyota/Hyundai) (Airbus)
—— i = : T -

Home energy storage Utility-scale generation
(Lavo) (Shell)




SAND

Motivation: Do undiscovered materials exist that could improve
upon conventional H, storage and generation technologies?

» High H, gravimetric and/or volumetric density

* Fast, reversible release near ambient T

* Practical/cost-effective

“Conventional”
(Compressed gas)

VS.

Material X ?7?

Generation objectives:

« Water-splitting using only renewable energy
» Lower overpotentials than electrolysis
* Practical/cost-effective

“Conventional”
1.2V in theory Material Y ?7?
1.8 V in practice




Approach: How are new materials discovered?

Experiments

c

hemical intuition

v

Synthesize material

Characterize material

\/

Test Performance

~N

First-principles theory

Run simulation &
predict performance
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Machine/statistical learning (ML)

Featurize materials:

Train a model:;

ﬁraining data labels/values:
y; (from experiments or computation)

LaNis = x = {Vyq , Teop , X » -

\

J

\ / 9 = flx; i) and £ = £(9; — y)°
Run model &
Qredict performance j
« I I I I I >
Seconds Minutes Hours Days Weeks Months Years Forever
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Approach: Use of data science and machine learning techniques can...

1) Model material properties and provide interpretable predictions to improve
fundamental understanding ']

2) Elucidate the design rules (structure-property relationships) for optimal materials [1.2]

3) High-throughput screen large material space to identify top candidates orders of
magnitude faster than brute-force experiments or physics-based simulations [3.4.5.6]

4) Accelerate physics-based simulations (critical when experimental training data is
lacking) 1]

[1] Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020

[2] Witman, Ling, Stavila, Wijeratne, Furukawa, Allendorf. Mol. Sys. Des. & Eng., 5, 2020

[3] Ek, Nygard, Pavan, Montero, Henry, Sorby, Witman, et al. Inorg. Chem., 60 (2), 2021

[4] Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater., 2021, Accepted
[5] In preparation

[6] Ambrosini, Witman, McDaniel. Provisional Patent, 2020.

[7] In preparation



7 ‘ H, Storage: A data driven roadmap to discover optimal hydrogen storage alloys
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Milestone #1:

Develop an explainable ML framework to predict metal
hydride thermodynamics and understand design rules [l

Milestone #2:

Demonstrate our ability to identify and synthesize new hydrides
exhibiting targeted thermodynamic properties [4]

Milestone #3:

Discover the highest performing hydrides across multiple objectives
(i.e., Pareto optimal) from an intractably large alloy space [!

[1] Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
[4] Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater., 2021, Accepted

[5] In preparation
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Milestone #1: Explainable ML models predict metal hydride
thermodynamics and elucidate simple, first-order design rules

Ho @ Poq, T Metal Hydride
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*Intractable for rigorous, atomistic
simulation in high-throughput

Training data

HydPARK metal-hydride database

In(PS /Py) = — —m +—

R(25°0C)
400 out of 2500 are ML-ready...

Featurizing materials

Features derived only from
composition

e.g. Zro.04Tio.96Nbg 04aF€0.95 —

x ={Vpq,Teop X, } € RS

Vpa = Zfivi
[

f; = composition fraction
v; = ground state vol. per atom
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Milestone #1: Explainable ML models predict metal hydride
thermodynamics and elucidate simple, first-order design rules

Gradient boosting
trees performance Model explainability

Coy=mes/) x| [ _ High
Vpa :
yi = 2k=1 fre(x;) ML mean CovalentRadius :
mean Electronegativity :
1 mode NdValence :
L==@-y)* Loss
i

F‘pahmo valie

5 - _
. : m;gp.; 2_00'60) SHAP value (1mpact on model output)
b) o, (-0.70)
( 4 0 - Y% Cuevas (-0.97)
g IS [C] Smith (-1.00)
i - s | | |
- S 51 2% o First-order design rule applicable
i O & 5 = e | | across structural classes &
s 1 O @87 Ce e 2% _10- . "
e s w S =) o © diverse composition space!
ot 2 = @° @
= b = . :‘ 0
— (MAE) p¢sr = 1.52 —
—20 —10 0 15 20 25

. In(Pg,/Po) Exp. ) L V,q [A/atom] y,
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0o I Milestone #2: ML model rapidly screens for high entropy
alloy (HEA) hydrides with a desired thermodynamic stability

HEA overview:

(

\ Screening rHEA space:

(" (Novel, destabilized HEA hydrides | A

Y TiZrNbHf
e TiZrNbHfTa

TiVZrNbH{

» >4 elements, ~ equimolar
» Solid solution character necessitates a
compositional ML model j

/Fo)

O
eq

In(

E ={Al, Ti,V, Cr, Zr, Nb, Mo, Pd, Hf, Ta}

(1) +(5)+ (g) = 672 compos
4 5 6 — composiuons

Far too many for experiments...



Milestone #2: ML model rapidly screens for high entropy

alloy (HEA) hydrides with a desired thermodynamic stability

AITiVNbTa & AITiVCr synthesis

(As synth.

~N

No
— elemental
segregation

SAND

ML model & design rule confirmed by experiments

-

ln(Pqu/Po) Exp.

|

In(PZ,/P») ML

10% ~ D
101 _ A
Successfully targeted | % ;40
o . Q
destabilized hydrides R
(increase in Pg,) @ 1070 '~ AITiVCr
1072 1 =1~ AITiVNbTa
290 °C = TiVZrNbHf
I I I I I
0.0 0.5 1.0 1.5 2.0
H Concentration [wt%)]
.- MAE(2.2) R * R?(0.90)
. ~ Validated ML model
8 o0 B
B 2 m NN & design rule
—12 */// - \\\\
| | | | | | *
—12 -8 —4 15.0 16.5 18.0
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12 ‘ Milestone #3: Identify the Pareto optimal hydrides from
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an expansive space of ~21,000 candidate HEAs [3

Screening a novel, expansive HEA space

4 E ={Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, A
Cu, Zn, Zr, Nb, Mo, Pd, Hf, Ta}
E E E -
( ) + ( ) + ( ) — 20,944 compositions
4 5 6
. Y,
H/IM AH
(MAE)v4; = 0.14 , (MAE)v o = 5.45
5
5 R
8 2
o o
= 2.

True Value

True Value

Identification of ~100 Pareto optimal materials

(Objectives / Quantity to maximize: )
» Optimal thermodynamics ->  —|AH — 27|
» High volumetric capacity -> H/M
» High gravimetric capacity -> Hwt%
» Low Cost ->  -cost [USD/kg]
0 -
Paretqg optimal
g —10 A
ml —20
4
I —30
—40 - T T T T T
0.50 0.75 1.00 1.25 1.50
\- H/M J

ML: Seconds to identify all Pareto optimal candidates

Experiment: Years to identify one by trial-and-error
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13 I Ongoing Milestones: Address the lack of robust,
standardized, and centralized hydrogen storage data

NREL Data Hub app for standardized Surrogate models for DFT in
experimental data reporting many element systems

/ > Better experimental reproducibility \ / Conventional vs. NN\
> More standardized data reporting 1 Accurate basis set:

> More efficient data collection 15N2 + 80N ("11)

» Better ML models!

# input features

TiVNbCr PCT
Experimental parameters/metadata (string fields): 100
1. Composition = TIVNbCr 348K
2. Mechanical preparation = Arc Melting 373K S H I b 1 t .
3. Branch = Desorption 388K " I Ip e aSIS Se .
..TBD 10
PL#10 T — 6* N 2
ialty p: / data (string fields): = —;
1. If nanoscale hydride: N/A 31 | #ﬁ >
2. If nanoscale hydride: N/A = Ls & 81 _ Pt.#9 | | | |
3. If nanoscale hydride: N/A
..TBD 01 1 2 3 4 5 6
© PL#9

Thermodynamic data (variable row data table):

CICECCC OO | o N (# atom typeS)

(des1_348K.csv, 16) 348K 0202 142 075 125 175
47 122 (des2_373K.csv,9) 373K 0.600  1.39 1 H/M
(des3_388K.csv10) 383K 108 143
Capacity data:

ey 5 element system... 027
1. Total capacity [H/M] = 1.9 )

. H I
2. Total reversible capacity [H/M] = 0.9 T e ., W/a CCU rate pote ntl a :
M . . — y=-5.66E+03x + 1.47E+01
- — # of steps/rows must equal o

max of Step col above -2 7

In(P/Po)

Kinetic data:

. TBD Data that is actually plotted on PCT:

(Each csv has col1=H/M, col2 = P)
des2_373K.csv
des1_348K.csv
pct3_388K.csv

EcgenN [eV]

Raw PCT instr ion file for ducibility:
(User responsible for creating *.csv above from this file)

des2_373K.dat
des1_348K.dat
des3_388K.dat

I I
0.0 0.2
EppT [eV] )
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Research Aspirations (in 5 years can we confidently say that we have...)

Storage
* Performed truly comprehensive HEA screening for Pareto optimal hydrides?

 An ML framework to identify optimal metal oxides for thermochemical water-
splitting?

Data

 Created standardized data management tools for hydrogen storage
experiments?

Simulations
ML driven simulations that can predict physical/chemical properties of many-
element hydrogen/material systems?

More data & better ML methods leads to

» Improved models

» More accurate materials predictions

» Faster experimental success

»  Quicker hydrogen technology adoption

SAND
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Thank you for your attention.
Questions?

Contact: mwitman@sandia.gov



