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Unit Cell1 = RE12(µ3-OH)16(C8O6H4)8(C8O6H5)4  RE = Y, Eu, Tb, Yb

Acid Gas Environments
• Flue streams are chemically harsh and can 

degrade materials.
• Flue gas composition:

13% CO2, 6% H2O, ~4% O2, 50 ppm CO, 
420 ppm NO2, 420 ppm SO2, and 76% N2.4

1. Vogel, D.J., et al. Phys. Chem. Chem. Phys. 2019, 21,23085
2. Sava Gallis, D.F., Vogel, D.J., et al. ACS Appl. Mater. Interfaces 
2019, 11, 46, 43270
3. Vogel, D.J., et al. ACS Appl. Mater. Interfaces 2020, 12, 4, 4561
4. Rezaei, F. et al. Energy Fuels 2015, 29(9), 5467

Can we predict gas-MOF interactions 
and separations using advanced 

computational techniques?
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DFT Calculated Binding Energies and AIMD Gas Mixtures
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Rare Earth Metals Gas Molecules (#) Gas Composition

Eu, Tb, Y, Yb 1 H2O or NO2

Eu, Tb, Y, Yb 12 H2O or NO2

Eu, Tb, Y, Yb 2 H2O + NO2

Eu, Tb, Y, Yb 12 6 H2O + 6 NO2
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Binding Energies Across Lanthanide Series

1

Specific RE metals and Gas Species

• Calculated individual gas binding energies resulted in strength trends 
of NO2 < H2O < SO2.

• In binary acid gas mixtures of humid NOx, H2O expected to bind to 
metal sites and NO2 to the MOF framework.

• Varying concentrations of H2O and NO2 provide greater gas-
framework reactivity.



Competitive Adsorption of H2O and NO2 During AIMD
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Gas Adsorption at RE Metal Sites NO2 Interactions

• H2O binds more favorably to RE metal sites than NO2
• Number of gas-metal binding follows pore volume trend.

• NO2 interacts with DOBDC to form new species.
• HONO forms in all calculated AIMD trajectories.



Reactive HONO Formation in RE-DOBDC MOFs

Reaction Scheme
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Reaction Visual H Atom Interaction Distances

• NO2 interactions with DOBDC hydroxyl groups result in HONO formation.
• Monodentate DOBDC linkers have an extra hydroxyl group due to non 

bonded carboxyl O atom.
• Extra hydroxyl provides H atom to help facilitate HONO formation.
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H Atom Interaction Distances

• The interaction energy decreases as HONO forms and moves 
away from deprotonated O.

• The interaction energy of ~ -0.2 eV classifies the resulting 
HONO interaction as physisorption.

Average HONO Binding Energy:
• 0.0-0.0125 ps: -0.86 eV
• 0.375-0.5 ps: -0.65 eV
• 2.6-2.8 ps: -0.47 eV

HONO Dissociation Energy
• 3.75 ps: -0.2 eV



Strong NO2-DOBDC Interactions ACS Spring 2021 7

Desorption and Linker Interaction Linker Interaction and Adsorption Nitro Formation
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• NO2 interaction energies are dynamic along AIMD trajectories.
• Time dependent binding energies highlight NO2-framework interactions are stronger than at metal sites.
• New nitro group formation is calculated to be strong and has been validated with experimental FTIR.
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• Ab initio molecular dynamic simulations of humid NOx in 
RE-DOBDC MOFs highlights reactivity of acid gases at 
metal and linker sites.

• Predicted site selectivity of H2O-metal and NO2-linker is 
observed along AIMD trajectories.

• Multiple strong NO2 interactions were observed for 
desorption, adsorption, nitro formation, and linker 
interactions.

• New HONO formation mechanism has been identified, 
which is facilitated by unique DOBDC linker coordination.
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