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Introduction to Rare Earth DOBDC MOFs ACS Spring 2021 2

Acid Gas Environments

Flue streams are chemically harsh and can
degrade materials.
Flue gas composition:
13% CO,, 6% H,0, ~4% O,, 50 ppm CO,
420 ppm NO,, 420 ppm SO,, and 76% N,.*

Can we predict gas-MOF interactions
and separations using advanced
computational techniques?

" Unit Cell* = RE,,(1y-OH)o(C4OgH,)s(C4OcHs), RE =Y, Eu, Th, Yb
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DFT Calculated Binding Energies and AIMD Gas Mixtures

Binding Energies Across Lanthanide Series

M-DOBDC MOF
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Specific RE metals and Gas Species

1 -
{_— - Rare Earth Metals | Gas Molecules (#) | Gas Composition
R X T " N
o — &~ o Eu, Tb, Y, Yb 1 H,0 or NO,
- m- Eu, Tb, Y, Yb 12 H,O or NO,
m = oo m-8-m g
3 - g O | =
E Eu, Tb, Y, Yb 2 H,O + NO,
£ 80|
S Eu, Tb, Y, Yb 12 6 H,0 + 6 NO,
,
& 100 |
* (Calculated individual gas binding energies resulted in strength trends
of NO, < H,0 < SO,.
* In binary acid gas mixtures of humid NOx, H,O expected to bind to
==r metal sites and NO, to the MOF framework.
Y La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu * Varying concentrations of H,0 and NO, provide greater gas-
— framework reactivity.
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Competitive Adsorption of H,0 and NO, During AIMD 4

Gas Adsorption at RE Metal Sites NO, Interactions

6 oo Gas Environments o L AL " ' Gas Environment

12NO, 6NO, +6H,0 NO, 12NO, NO,+H,0  6NO,+6H,0

Number of I"n'luf.)F-lwI{.)2 Interactions

Eu Tb Y Yb Eu Tb Y Yb Eu T Y 14 0 EuTb Y Yb EuTb Y Yb EuTb Y Yb EuTb Y Yb
[MHONO EMetal Einitro Minitrate]
* H,O binds more favorably to RE metal sites than NO, * NO, interacts with DOBDC to form new species.
* Number of gas-metal binding follows pore volume trend. e HONO forms in all calculated AIMD trajectories.
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Reactive HONO Formation in RE-DOBDC MOFs

Reaction Scheme Reaction Visual
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H Atom Interaction Distances

25

2_

Interatomic Distance, Ang.

T

1 sl -
* NO, interactions with DOBDC hydroxyl groups result in HONO formation.
* Monodentate DOBDC linkers have an extra hydroxyl group due to non 0 o5 1 15 2 25 3 35 4
bonded carboxyl O atom. Time, ps
* Extra hydroxyl provides H atom to help facilitate HONO formation.
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HONO Interaction Energies and Dissociation 6

H Atom Interaction Distances

' ' Average HONO Binding Energy:
* 0.0-0.0125 ps: -0.86 eV
* 0.375-0.5 ps: -0.65 eV
5 e 2.6-2.8 ps:-0.47 eV
c
<s,
% , HONO Dissociation Energy
g e 3.75ps:-0.2eV
.E 25-
< * Theinteraction energy decreases as HONO forms and moves
1o away from deprotonated O.
1 b OSSN - it * The interaction energy of ~-0.2 eV classifies the resulting
HONO interaction as physisorption.
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Strong NO,-DOBDC Interactions 7

Desorption and Linker Interaction Linker Interaction and Adsorption Nitro Formation
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* NO, interaction energies are dynamic along AIMD trajectories.
* Time dependent binding energies highlight NO ,-framework interactions are stronger than at metal sites.
* New nitro group formation is calculated to be strong and has been validated with experimental FTIR.
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Conclusions :

* Ab initio molecular dynamic simulations of humid NOx in
RE-DOBDC MOFs highlights reactivity of acid gases at Rare Earth Metals DOBDC
metal and linker sites. '

* Predicted site selectivity of H20-metal and NO2-linker is
observed along AIMD trajectories.

* Multiple strong NO2 interactions were observed for
desorption, adsorption, nitro formation, and linker
interactions.

* New HONO formation mechanism has been identified,
which is facilitated by unique DOBDC linker coordination.
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