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ABSTRACT

There are significant economic, environmental, energy, and
other societal costs incurred by the road transportation sector.
With the advent and penetration of connected and autonomous
vehicles there are vast opportunities to optimize the control of in-
dividual vehicles for reducing energy consumption and increas-
ing traffic flow. Model predictive control is a useful tool to
achieve such goals, while accommodating ego-centric objectives
typical of heterogeneous traffic and explicitly enforcing collision
and other constraints. In this paper, we describe a multi-agent
distributed maneuver planning and lane selection model predic-
tive controller that includes an information sharing and coor-
dination scheme. The energy saving potential of the proposed
coordination scheme is then evaluated via large scale micro-
scopic traffic simulations considering different penetration levels
of connected and automated vehicles.

1 INTRODUCTION

In 2017, the transportation sector accounted for 29% of the
total energy consumed by the United States, and 55% of that was
used to power light-duty vehicles, including cars, small trucks,
vans, sport-utility vehicles, and motorcycles [1]. This means that
approximately 16% of all energy consumed in the United states
goes towards personal transportation. With the advent of con-
nected and automated vehicles (CAVs), there is great potential
to optimize the velocity and acceleration profiles of vehicles in

*Address all correspondence to this author.

Beshah Ayalew
Clemson University International Center for
Automotive Research
Greenville, South Carolina
Email: beshah@clemson.edu

order to minimize the overall energy consumption. This is partic-
ularly important on multi-lane roads, as approximately one third
of all vehicle miles traveled in the United States, between 2010
and 2015, were on multi-lane interstates or other freeways and
highways [2]. To this end, this paper presents an information
sharing and coordinated model predictive control (MPC) scheme
for CAVs within mixed traffic of human-driven passenger vehi-
cles and other CAVs on multi-lane roads.

We will begin by reviewing algorithms for lane decisions
with individualized or selfish objectives. These fall into three cat-
egories: rule-, behavioral-, and optimization-based algorithms.
Rule-based algorithms such as those described in [3-5], utilize a
set of rules and a finite state machine in order to trigger a lane
change when a given threshold is reached. These may be diffi-
cult to generalize and result in sub-optimal behavior due to the
potentially arbitrary nature of the thresholds. The next group, be-
havioral methods, typically rely on machine-learning techniques
in order to model the behavior of human drivers [6,7]. Meth-
ods based on partially observable Markov decision processes
(POMDP) can be computationally inefficient. However, there
is ongoing research into creating efficient online algorithms [7].
The last category, optimization-based algorithms, may utilize
search methods to find near optimal solutions, such as in [8], or
numerical optimization via mixed integer programming (MIP)
[9, 10] or non-linear programming (NLP) [11, 12] in a receding
horizon manner. These methods are typically advantageous due
to their ability to explicitly handle state and input constraints
while optimizing performance with respect to some cost func-
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tion. Further, there is already extensive work present in multi-
agent MPC [13, 14], which allows these methods to be expanded
to multiple vehicles within a traffic environment.

The three categories of multi-agent MPC include central-
ized, decentralized, and distributed MPC. Centralized MPC con-
sists of one central controller for all agents that results in optimal
system performance. Unfortunately, centralized control quickly
becomes intractable and computationally burdensome as the size
of the system grows, and it is ineffective at handling faults, which
is not ideal for safety critical systems [14]. Decentralized MPC
breaks the large scale system into decoupled subsystems that
each solve their own optimal control problem without knowl-
edge of the actions of other subsystems. This technique reduces
the computational burden for each subsystem, and is more flex-
ible to changes in the system topology, however, performance
can be significantly degraded with strong coupling between sub-
systems [13, 14]. Distributed MPC (DMPC) accounts for cou-
pling between subsystems by communicating information about
planned trajectories. This allows for a flexible and still scalable
subsystem-based control structure while maintaining good per-
formance in the presence of coupling between subsystems, mak-
ing this an ideal approach for CAVs [13, 14].

DMPC strategies have been successfully implemented in
other multi-agent system applications. For example, [15]
presents and implements a DMPC strategy for unmanned aerial
vehicles, which utilizes a safety cost that penalizes deviations in
the plan transmitted to other agents in order to increase the pre-
dictability of agents. DMPC has also been successfully imple-
mented within vehicular platoons, such as in [16] for longitudi-
nal control while ensuring string stability. Lastly, [10] presents a
coordinated MPC formulated as a MIP that controls longitudinal
accelerations and commands a lane change based on tracking a
desired velocity and minimizing accelerations, without explicitly
considering coordination within the cost function.

This paper builds on the lane decision MPC presented in
[11,12], through addition of a sharing and coordination scheme
in order to implement the controller as a distributed MPC. For
the purposes of this paper, the communication between CAVs is
assumed to be present through currently available technologies
such as dedicated short range communication (DSRC) or cellu-
lar connections. In this work, we do not consider losses asso-
ciated with these connections but they can be included in future
investigations.

The structure of the remainder of the paper is as follows.
Section 2 presents an overview of the control framework and
sharing scheme; Sections 3-5 detail the modules of the frame-
work (object vehicle prediction, reference speed assigner, and
DMPC, respectively); Section 6 presents results and a discussion
thereof; and Section 7 provides concluding remarks and potential
future research. Throughout this paper, the phrases ego vehicle,
and CAV i will be used interchangeably.

MPC Agent
JEANO;

{wk,:o:mt—m”}

JEANO;
_____________________ 1
:CAVL ] I
| Object Vehicle !
| »| State Prediction I
| [ ;

|
| Vre—o- .
I {yk”o'mt}jfﬂi |  Reference Ver=onie-aeg | 1
I "| Speed Assigner [ |
|
: {vki:O:N\t}lH Va je;=0:N|t ]
I A 4 A 4 A\ 4 I
|
I Distributed MPC « :
|
I gk, |tl lwd,ki\t |
et |
| {Zk'lr}feoi CAV i —motion Ziey|t I
I (VISSIM) |
- T T ______ 1
FIGURE 1. CONTROL FRAMEWORK FOR THE i'" CAV

2 CONTROL FRAMEWORK AND

SHARING SCHEME

The control framework for a given CAV i in the group of
CAVs & is presented in Fig. 1. At a given time ¢, it is assumed
that CAV i acquires state measurements, {zki|,} j» of each object
vehicle (OV) j € 0;, where 0} is the set of OVs within the neigh-
borhood of CAV i, and k; is the prediction time-step index of
CAV i. These measurements are assumed to come from on-board
sensors, or vehicle-to-vehicle (V2V) or vehicle-to-infrastructure
(V2I) communication. Measurement uncertainties, data associa-
tion and fusion of sensed and communicated state measurements
are beyond the scope of this paper, however, interested readers
may find a potential framework within [17].

The j"* OV may be in one of two subsets of ¢;, the neighbor-
ing CAVs where j € o/ N 0}, or the neighboring human-driven
OVs where j € 0;\ «/. Moving forward, the OVs will be re-
ferred to as CAV j or HD j, respectively. From each CAV j,
CAV i receives a time-delayed plan via V2V communications in
the form of an information matrix {ijzo; Nji— A’w‘} j» where At ;
is the information time delay from CAV j, and N is the number
of steps in the prediction horizon. Fig. 2 presents a sample traffic
scenario showing the communication link between three CAVs,
therein the information matrix is represented as %/.

The object vehicle prediction block then predicts the tra-
jectories of the HD j, assuming decoupled constant lateral ve-
locity and constant longitudinal acceleration kinematics models.
Whereas, for each CAV j the OV prediction module shifts and
translates the shared plan, via linear interpolation between pre-
diction time-steps, to the current measurement {Zk,-\z}j using the
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FIGURE 2. TRAFFIC ENVIRONMENT ILLUSTRATING INFOR-
MATION SHARING

method in Sec. 3. The OV predicted output matrix {$,—o.y|; }; is
then passed to the reference speed assigner and distributed MPC
blocks for calculations of lane reference and desired velocities,
and enforcing collision avoidance constraints, respectively.

The reference speed assigner block also takes in state mea-
surements z;,, of CAV i from on-board sensors, and the prior
predicted trajectory from the DMPC i, —o.v|r—ar, ;» Where Aty is
the update rate of the MPC. With this information, a reference
speed, {vy,—o.v|; }1» i assigned to each lane [ € . over the pre-
diction horizon according to a set of rules presented in Sec. 3.4,
where 7 is the set of lanes on the current link. Concurrently, a
desired speed, vy r,—o.ns» is set for CAV i. The DMPC then plans
the optimal trajectory based on CAV i’s desired speed, the lane
reference speeds and the predicted states for each OV j € ;. The
DMPC block passes the desired longitudinal acceleration ag |,
and deviation angle from the lane centerline Y ;,|, from the first
time-step within the prediction horizon to the lower level motion
controller. Then, the process is repeated at the next MPC update.

3 Object Vehicle Prediction
3.1 Human-driven Object Vehicles

Due to the low computational cost, the HD j is modeled us-
ing decoupled constant velocity lateral and constant acceleration
longitudinal kinematics, as presented in (1).

1 A1, ; 3A22 00 s
0 1 A,; 00 vy
'fj}kﬁ“l\ki: 0 0 1 0 0 as (1a)

00 0 1A;| |y

00 0 01 Vel ik
S

Vikilki = | Ve ; (1b)
Vil jkilki

. " T
The states of HD j are £ = [s vs a5 ye vyg]j , where s;, v ;, and
ay,; are the position, velocity and acceleration along the path of
J» respectively, and y. ; and vy, ; are the lateral deviation from
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FIGURE 3. TIME SCALES FOR THE SIMULATION, CAV j, AND
CAV i

centerline and lateral velocity of j, respectively. In (1), Az, ; is
the prediction time-step and j are the relevant outputs for the
reference speed assigner and DMPC. The tangential velocity of

OV j, v j, is calculated as vy j .k, = V?,j,k,—\k,— +V>2rg.,j,k,-|k,»'

There are unfortunately errors associated with these decou-
pled kinematic models, as vehicles are actually nonholonomic,
dynamic systems, however, the relatively fast update rate of the
DMPC mitigates some of the errors associated with this assump-

tion.

3.2 Connected and Automated Object Vehicles

CAV | passes the information matrix {wy,—o.v)—ar, ; }; t0 i
with the following set {ykao,,v t—AtS,j}j, where §i;—o.v is the
output matrix of CAV j provided over the prediction horizon
kj =0:N. In general, the time delay may not be equivalent to
the size of a prediction horizon time-step Af,, as the update rate
of the DMPC and frequency of communications may be faster.
It is assumed that from the time the plan was made ¢ — At ; to
the current time #, CAV j has followed its planned trajectory. For
simplicity, it is assumed that the prediction time steps, prediction
lengths, and control update and communication rates are equiv-
alent for all CAVs, ie. At ;= At,; = At,, Nj=N; =N, and
Aty j = At ; = Aty, respectively. Fig. 3 illustrates the differences
in time.

Equation (2), presents the interpolation formula used to syn-
chronize a given state £ within the plan of CAV j from time-
steps kj = 0 : N — 1|t — A, ; to the current time-step of CAV i,
ki=0:N—1]|r.

Eiki = 2l forki=1 (2a)

Ajs; =&jkr1—Sjk; (2b)

Iy, = /Agj%ijrAt; (2¢)

A&y

6, =tan ' [ =22 2d

e; = tan ( A ) (2d)
Aty

Ejo=2j k) — ——hicos By (2e)
o = Ljkilt AL,

Eiki = aihiycos b, + 810 forki=2:N—1,  (f
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where hkj and ij are the Euclidean distance traveled and direc-
tion of travel in the 7-§ plane by j from kj to k; + 1, and &; , is
the translation term to move the start of the plan to the new mea-
sured position z; ;. At time-step N of , it is assumed the CAV
J follows the same trajectory as it did fromk; =N —1:N.

4 Distributed Model Predictive Control Formulation

The MPC for a given agent i € 7 is formulated in (3) below.
In the remainder of this paper, k or the subscript k is in reference
to the time discretization index k; of CAV 1.

Np Np—1
: 2 2 2 2
min Y (1l +1GulR ] + X |IHl5, + luclz]  Ga)
k=1 k=1

x=f(xu),xeX,uclU (3b)
c(x,u) >0 (3¢)

The cost function (3a) comprises of the lane-dependent output
tracking cost F; t, the lane-independent output tracking cost Gy,
a predictability cost Hy, and wg = [ug, ugs1, -, U T is the
control input trajectory over the prediction horizon. Py, Py, Py,
and R are the respective weighting matrices. Each term of the
cost function will be discussed in further detail in the following
subsections. Equation (3b) is the dynamics model of agent i,
X = f(x,u), subject to the state and output constraints, x € X
and u € U, where X and U are the sets of all permissible states
and control inputs, respectively. Finally, (3c) is the set of output
constraints c¢ (x,u) detailed below.

4.1 Ego Motion Model

A non-linear particle motion model within a path intrinsic
Frenet frame is used to describe the dynamics of a CAV utiliz-
ing the DMPC. The model is depicted in Fig. 4. The position
along the lane centerline is s, y, is the deviation from the lane
centerline, v, is the tangential velocity, y is the angle of the CAV
relative to the tangent of the lane centerline, k(s) is the curvature
of the lane as a function of s, and O, X,, and Y, are the origin, x-
axis, and y-axis of the global frame, respectively. The equations
governing the dynamics model are as follows [18]:

§ Vs (%)cosw 8 8
Ye v siny
= || = o +lo o ["’d], @)
4 ard
v —Ty Y Ty 0 '
ag _Ta,at 0 Tat

where q, is the tangential acceleration, and both y and a; are
assumed to have first order dynamics with time constants T, and

Lane centerline _ .

Ego vehicle

Path of ego vehicle
FIGURE 4. EGO VEHICLE MOTION IN THE FRENET FRAME

Tq,» and desired inputs Y, and a, 4, respectively. The outputs
passed to the reference speed assigner are then y = [s Ve vt]T

A 4""_order Runge-Kutta explicit integrator is used to descretize
and solve the model in (4) within the MPC.

4.2 State, Input, and Output Constraints
The CAV states, inputs and outputs are subject to the follow-
ing environmental, and physical limits:

Ye <Ve <3 (5a)

Ve < V. (5b)

&g <aq4<drg (5¢)

8,4 SVPK(S) VW <lpg (5d)

where y,, ¥, V1, 8, 4, G 4, 2, 4, and @, 4 are the right roadway
bound, left roadway bound, speed limit, tangential acceleration
lower and upper limits, and normal acceleration lower and upper
limits, respectively. For clarity the subscript k has been omitted
in (5) and will be omitted for the remainder of this section; how-
ever, it should be noted that the constraints are evaluated at each
step of the prediction horizon, unless otherwise mentioned.

The position of the CAV is also subject to collision avoid-
ance constraints that are posed in (6) as a hyper-ellipse centered
about the object vehicles position enlarged to account for both
the size of the ego vehicle and OV j.

4 4
Yei = Ve, ( Si =5 )
+ >1 (6)
< Ay;j ) Asij+alas

The axes of the hyper-ellipse in the s- and y,-directions are Ay;;,
and As;;, respectively. As presented in [18], both are determined
based on a minimum safe distance, and outer dimensions of the
ego vehicle and OV. The slack variable {a, is introduced as an
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additional state, with the dynamics {y, = ug,, and constraint
Cas > 0, where ug,, is a decision variable. {xy ensures a com-
fortable following distance during normal driving, but allows for
closer following in emergency situations. The coefficient a is a
tuning parameter that determines the magnitude of the slack dis-
tance.

At the end of the prediction horizon the hyper-elliptical con-
straint is enlarged to ensure stability. As an example, the en-
largement of the s-axis will be presented and it is noted that an
analogous method may be used for the y,-axis. The goal is to en-
sure that the ego vehicle can obtain a zero relative velocity with
the OV beyond the prediction horizon before entering a collision
state. By assuming decoupled constant acceleration kinematics
for the ego vehicle and OV, the time #y s, required for the ego
vehicle to obtain zero relative velocity is:

Vs,i = Vs,j
tsafe = . @)
ds,j —ds,i

The acceleration of the ego vehicle ay; € {a,;,ds,} where a is
the braking limit and @, ; is the upper acceleration limit of CAV i.
It can be seen from (7) that sign (vs; — vy, ;) = —sign (ay,; — ay.i)
for a positive safe time to obtain zero relative velocity, and ay;
is chosen accordingly. The safe distance, Dy e, required for the
ego vehicle to obtain a zero relative velocity with OV j at the end
of the prediction horizon is then:

(VSJ - Vs.j)2
2(as,j—agi) |

Dsafe = 3

Therefore, the major axis at the end of the prediction horizon is
Asijn = Asijn, + Dsafe, Where As;j y, is the base size of the axis
calculated as previously mentioned.

4.3 Cost Function

The four different terms of the cost function (3) (lane-
dependent cost F x, lane-independent cost Gy, predictability cost
Hg, and input (energy) penalty) will be discussed in further detail
here.

4.3.1 Lane-dependent Cost The

cost is defined as follows:

lane-dependent

[ di g (Yek—yerx) ]

dn, k (ye,k'* YeN; k)
dig (Vixk —vig) ©)

L dnpi (Vi — v i)

where dj g, with [ € {1,...,N;}, is a decision variable that is 1
when the CAV is choosing the lane / and zero otherwise. Fur-
ther, y,  « is the position of the lane centerline relative to the road
center, and v; is the reference velocity associated with the re-
spective lane, which is assigned through rules described in Sec.
5. In order to solve the MPC as a non-linear program, instead of
a mixed integer program, the lane decision variables have been
relaxed [11, 12], with the following dynamics and constraints:

d'l)k:ude vie{l,---,N;—1} (10a)
N1
Y dix <1 Vd€0,1] (10b)
=1
(10c)

dy e =1— Z dp i,
=

where ug,, is the control variable for the respective lane. This
results in a blending of the costs for tracking each lane. Say,
for example, CAV i is tracking lane [ = 2 well, without any error,
then the minimum of (9) will occur withd, =1 and d; =0 VI #£ 2,
so that the other non-zero lane tracking terms will drop out.

4.3.2 Lane-independent Cost The lane-independent
cost is defined as follows:

T
Ge= [k —vax Cax—vix 1-X1L 3], aD

where v, 1 is the desired velocity of CAV i. The first term in (11)
is the desired velocity tracking term, the second term explicitly
makes the collision avoidance slack variable, {a,, velocity de-
pendent, and the last term is utilized to help ensure the controller
chooses one lane (eventually, at the optimum).

4.3.3 Predictability Cost The predictability cost is
designed to penalize the CAV for deviating from its prior plan.
The goal is to penalize unpredictable behaviour in order to mit-
igate oscillations due to adjacent CAVs recursively re-planning
according to the shared plan of the other CAVs from the prior
time-step. The predictability cost is formulated as:

T
Hi=[sk =S g Yek—Yer i) - (12)

where s,- ; and y,,-; are the shifted and translated position
along the path and lateral deviation from the road centerline from
the plan of CAV i at time-step t — Az;. A similar linear interpola-
tion method as presented in Sec. 3 is used to shift and translate
the planned trajectory of CAV i.
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4.3.4
izes the
up = lara Wa ug,, ta, .- ud,]T. The penalty on a;, mini-
mizes the longitudinal acceleration and is used to supplement a
direct cost on energy. The cost on y; may be tuned to obtain
desired lateral dynamics when changing lanes, while the costs
on iy, ... Uy, may be tuned to optimize lane decisions. Lastly,
the penalty on u¢, is present to guarantee there exists a unique
solution to the optimal control problem.

Input
control

Cost The input cost term penal-
inputs over the prediction horizon,

5 Reference Speed Assigner

The reference speed assigner, adopted from [11], utilizes a
set of rules to determine the reference speed of a given lane. Al-
gorithm 1 outlines the rules that are applied for each OV j within
each lane [ at each step of the prediction horizon. Line 1 of the
algorithm checks if the vehicle is within a distance of interaction
based on v; ; and a time headway #;,;. Then line 2 checks if the
CAV is leading/following OV j, or if it is alongside OV j. If the
result of line 2 is true, then line 3 checks if OV j is going below
the speed limit. If OV j is travelling at a velocity less than the
speed limit, then the lane reference speed is set to v; jx, other-
wise it is set to the speed limit. If the result of line 2 is false, then
the lane reference speed is set to the base desired speed of the
vehicle v, . After each lane has a set reference speed the CAVs
desired speed v, is updated to the lane reference speed that is
closest to v, k, in order to mitigate choosing multiple lanes.

Algorithm 1 Lane reference speed assigner

1: if (‘Sk — Sj,k| < t,-mvtvk) then

2 if ((sk—sjx) (Ve —vijk) <0)
or (|sk — Sol’,kl < Asl’j + agAs) then

3: if Ve ik < Vik then

4: Vik = Vt,jk

5: else

6: Vik = Vik

7: end if

8:  else

9: Vl,k = Vdmk

10:  endif

11: end if

6 RESULTS AND DISCUSSION

Our coordinated DMPC scheme was implemented within
the traffic micro-simulation software package VISSIM [19] us-
ing the external driver model utility. We used the ACADO toolkit
and qpOASES solver [20] to solve the online optimization prob-
lem of the DMPC at each CAV. The traffic network consisted
of a straight section of 3 lane one-way highway ~ 3000m long.

Vehicle Outlet

Human Driven

1 o z ':';':E:_/:E':EE/:E:: =
e B ‘ s :2222233:':': i\

FIGURE 5. SNAPSHOT OF A SAMPLE* VISSIM SIMULATION;
CAVs ARE ORANGE, AND HUMAN DRIVEN VEHICLES ARE
BLACK (*Image shown has 4 lanes, while link utilized in simulation

has 3 lanes)

The desired speed of vehicles was distributed about ~ 86.5km/h
(or 24m/s). The link had a prescribed vehicle flow rate of 2250
veh/hr or 750 veh/lane/hr. The relative portion (penetration) of
CAVs in the flow was 0%, 25%, 50%, and 100%. The human
driven object vehicles were simulated using the Wiedemann car
following model and VISSIMs rule-based lane decision algo-
rithm [19]. Fig. 5 shows a snapshot of the traffic network in
VISSIM. Each simulation was run for approximately 10 minutes
of traffic with vehicles freely entering and exiting the network at
the inlet and outlet nodes.

In order to negate the impacts of transients associated with
vehicles entering and exiting the network, fuel and travel time
calculations were performed on data from 500m to 2500m, omit-
ting the first and last 500m. Additionally, to allow the network
to reach a steady state at the prescribed veh/hr flow rate, vehicles
that entered the network prior to the first vehicle exiting were ig-
nored in fuel and travel time calculations. Further, vehicles that
did not reach 2500m before the simulation ended were also omit-
ted. In all 135 vehicles were evaluated for each of the 10 minute
simulations. Fuel calculations were made using the methods and
engine specifications from [21].

As a baseline for evaluating the performance of the proposed
control framework, we will define the desired fuel consumption
rate as follows: the desired fuel consumption is the fuel con-
sumption required to maintain a constant velocity (with 0 accel-
erations) equal to the vehicles desired velocity v,,. Similarly we
will define the desired travel time as the time required for a given
vehicle to traverse the link while maintaining a constant velocity
equal to vy, .

Figure 6 presents the percentage change in observed average
fuel consumption relative to the average desired fuel consump-
tion. At all tested CAV penetrations (25%, 50% and 100%), the
fleet (HDs and CAVs combined) outperformed the 0% penetra-
tion scenario. This resulted in a 4% reduction in fuel consumed
at 25% CAV penetration when compared to 0% CAV penetra-
tion. Similarly, there is respectively, a 5.2% and 7% reduction
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Comparison to Desired Fuel Consumption

A 2250 vehicles/hr.
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FIGURE 6. REDUCTION IN FUEL CONSUMPTION AT 0%, 25%,
50%, AND 100% CAV PENETRATION RELATIVE TO DESIRED.

Comparison to Desired Travel Time
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FIGURE 7. REDUCTION IN TRAVEL TIME AT 25% AND 50%
CAV PENETRATION RELATIVE TO 0% PENETRATION.

in the fuel consumed by the fleet at 50% and 100% CAV pene-
tration relative to 0% CAV penetration. The gains did come at a
nominal cost to the CAVs, which had a higher increase in travel
time relative to desired when compared to the HDs, as seen in
Fig. 7. Despite the longer travel times for CAVs the average
travel time for the fleet did reduce in Fig. 7 at 25% and 50%
CAV penetration, as the HDs traveled faster through the link.

It should be noted that the CAVs actually outperform the de-
sired case when it comes to fuel consumption in Fig. 6. When
CAV penetration increases, the CAVs are able to track their de-
sired velocities more closely (noted by the improved travel time
relative to desired in Fig. 7) and the reduction in fuel consump-

tion of CAVs relative to the baseline decreases in Fig. 6. This
makes the trade-off between travel time and fuel consumption
evident. As the controller is currently designed to track an arbi-
trarily prescribed desired velocity, there is opportunity to further
improve fuel consumption by either developing an optimized ref-
erence speed assigner based on desired arrival times, or by refor-
mulating the DMPC to track a desired arrival time instead of a
desired velocity.

7 CONCLUSION

An information sharing and coordination scheme was de-
veloped in order to implement the multi-lane maneuver plan-
ning algorithm presented in [12] in a coordinated and distributed
manner on multiple CAVs. When implemented within the traffic
micro-simulation software VISSIM, the coordinated distributed
control scheme shows promise for decreasing energy consump-
tion, however, more extensive and exhaustive scenarios with
higher traffic volumes, higher CAV penetrations, and a more
complex network, as well as a statistically relevant sample size, is
required to better understand the impact of the distributed MPC.
Additionally, as noted in Section 6, there may be possible further
fuel consumption gains realized by reformulating the DMPC to
track a desired arrival time instead of a desired velocity or by
prescribing an optimized reference velocity trajectory.

Further gains may be realized by incorporating a shared cost,
or a common goal to optimize the reference velocity of CAVs
for improved traffic flow and a reduction in energy consumption,
while still meeting travel time requirements. Additional future
work will include accounting for measurement noise, communi-
cation losses, and disturbances in order to make the coordinated
distributed control scheme robust to such uncertainties, as they
were not considered here. There are also significant issues with
object vehicle prediction: the kinematics models result in large
errors further into the prediction horizon. The development of a
computationally efficient prediction model that accounts for in-
teractions between other OVs, the ego vehicle, and the traffic
network (e.g. stop signs, traffic signals, changes in speed limits,
etc.) is another avenue for further research.
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