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Abstract— A commonly proposed method for improving traf-
fic flow on freeways is speed harmonization. The effectiveness
of current speed harmonization approaches, such as variable
speed limits, is extremely reliant on human driver compliance.
Connected and automated vehicles (CAVs) are expected to
come to market within this decade, offering the opportunity
to eliminate or reduce the reliance on human compliance.
However, extending current roadside infrastructure-based ap-
proaches of assigning centrally computed harmonization speeds
to individual vehicles is, costly. An alternative approach is to
have individual vehicles estimate the traffic state on-board and
make distributed decisions to achieve the harmonization goal
autonomously. In this work, we present a distributed algorithm
for estimating the current average speed of traffic. We couple
this with a distributed 2D maneuver planning approach. Then,
we study the impact on traffic efficiency in terms of energy
consumption and travel time at varying CAV penetration rates.

I. INTRODUCTION

Within densely populated areas in the United States, the
average commuter spends 71 hours of extra travel time per
year due to delays [1]. Almost 54% of congestion in these
dense areas occurs on freeways [1], presenting a need to
significantly decrease the amount of delay by utilizing the
existing freeway networks more efficiently. As connected and
automated vehicles (CAVs) become closer to reality, there is
an opportunity to directly influence individual vehicle control
to a level which is not possible with human drivers (HD).
However, as we will show later, if the control strategies are
not appropriately designed, average travel time can increase.
In this paper, we present a distributed control framework for
speed harmonization and 2D maneuver planning on multi-
lane freeways that exploits CAV technologies to improve
traffic efficiency.

A 2D maneuver (or simply maneuver) will be defined
as a combined longitudinal and lateral motion plan that
encompasses lane and speed selections by individual ve-
hicles. From an individual vehicle’s egoistic perspective,
optimization techniques are a popular method for solving
the maneuver planning problem. These generally fall into
three categories: graph search methods [2], [3], sampling-
based methods [4], [5], and model predictive control (MPC)
[6]–[9]. Graph search methods, such as A* [2], [3], do
not necessarily result in optimal plans due to the path
discretization. Additionally, graph search methods typically
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do not consider lane decisions. Sampling-based methods,
such as the rapidly-exploring random tree (RRT), have
been expanded in [4], [5] to consider lane decisions using
particle sampling techniques. RRT based methods do require
a complimentary collision checking algorithm, whereas MPC
techniques are able to explicitly and intrinsically handle
collision avoidance constraints.

Our early work posed an individual vehicle’s maneuver
planning problem as a hierarchical hybrid control scheme
[10] that used a rule-based finite state machine to force
a lane change when a set velocity threshold was met. In
[6], the problem was reformulated so that the lane decisions
were included in the MPC optimizations leading to a mixed-
integer problem (MIP) that utilized binary lane decision
variables to weight the lane reference speed and centerline
tracking costs. The framework was still hierarchical with
a reference speed assigner that utilized a set of rules to
assign the reference speed in each lane. The computational
complexity of this formulation, however, was found to have
high-order polynomial growth with respect to the number of
lanes and time steps of the prediction horizon. Therefore,
the lane decision variables were relaxed to be real-valued,
reducing the computational growth to low-order polynomial
[11]. Additional MIP formulations in the literature include
[7] and [8], which both attempt to change lanes in order to
minimize a desired velocity tracking error and accelerations.
These differ from our approach as they do not explicitly
associate a cost to a given lane. The benefit of assigning
a reference speed to track in each lane, is that it offers an
opportunity to harmonize traffic speed as we discuss next.

Currently implemented methods for speed harmonization
typically utilize infrastructure-based variable speed limit
(VSL) and variable messaging systems (VMS) to influence
human-driven vehicle (HDV) traffic [12], [13]. Results for
VSL mitigating slow-downs and/or increasing safety by
reducing the number of incidents have been mixed [13], [14].
The main reason for this is that they rely on HDs and their
compliance to the VSL [15]. The introduction of CAVs can
alleviate this issue as automated vehicles can be designed to
follow computed plans closely. However, as CAVs are likely
to be introduced in legacy traffic at different penetrations,
they will need to interact with mixed HDV and CAV traffic
without negatively impacting the flow. Through the use of
coordinated CAVs, the work in [16] was able to reduce speed
oscillations in HDV traffic, while [17] showed the potential
of speed harmonization through individual vehicle control
to reduce travel times by up to 30% via an optimal control
strategy with 100% CAVs and restricting lane changes.
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Fig. 1. Example traffic topology highlighting the sets of OVs
C1 = {c2, c3}, F1 = {ov1, ov3, c2, ov2, ov4}, and E1 =
{ov1, ov3, c3, c2, ov2, ov4} in the neighborhood of c1.

In this paper, we present a distributed reference speed
assignment algorithm to be coupled with a distributed ma-
neuver planner running on-board the individual CAVs, in
order to harmonize traffic flow without needing to invest in
roadside infrastructure. Further, we compare the proposed
distributed harmonization technique with a rule-based speed
assignment to understand how different methodologies of
distributed speed assignment may impact traffic. In order
to quantify the impacts of the distributed framework, we
analyze fuel consumption results, travel time results, and
lateral maneuver (lane change) occurrences from large scale
traffic microsimulations.

The remainder of the paper is organized as follows:
Section II presents the distributed maneuver planning and
reference speed assignment framework; Section III presents
some results and discussions; and Section IV provides con-
cluding remarks.

II. DISTRIBUTED CONTROL FRAMEWORK

We first define some notations: an object vehicle (OV)
may be either a CAV or an HDV, Ci is the set of all CAVs
cp (p 6= i) communicating with CAV ci, Fi is the set of all
OVs ovq within the assumed rectangular field of view (FOV)
of ci, and Ei = Ci ∪ Fi is the extended neighborhood of ci.
It should be noted that Ci ∩ Fi may not be empty. Figure 1
outlines these sets for c1 within an example traffic scene.

The overall distributed control framework to be imple-
mented on-board a given CAV ci is outlined with the block
diagram in Fig. 2 and select variables are defined in the
caption. At the beginning of each update step, ego-vehicle
ci receives an information matrix wp from CAV cp ∈
Ci (p 6= i), that includes a trajectory plan, and obtains its
own measurements of all ovq ∈ Fi. The object vehicle
state prediction (OVSP) block utilizes this information in
order to predict the future states, xj , of all ovj ∈ Ei. Any
appropriate synchronization and/or OVSP method may be
utilized for this purpose; in our simulations we utilize the
constant velocity synchronization method for all CAVs cp ∈
Ci, and the decoupled longitudinal and lateral kinematics
OVSP models for all ovj ∈ Ei \ Ci presented in [18]. The
next step in the framework is the reference speed assigner
(RSA) block, which utilizes shared information and predicted
trajectories to assign a reference speed to each lane. We will

Fig. 2. The control framework for CAV ci, where the dotted lines labeled
RBSA and HSA designate the differences in flow between the two RSA
approaches. Further, {wp}Ci

is the set of all information matrices from
CAVs cp ∈ Ci, xi is the predicted optimal state trajectory for ci, {xj}Ei
defines the set of predicted state trajectories for all ovj ∈ Ei, vd,i is
the desired velocity of ci over the prediction horizon,

{
vl,i

}
L is the

set of reference velocities estimated by ci for each lane l ∈ L over the
prediction horizon, where L is the set of lanes on the current link, zi are
the measurements about ci, {zq}Fi

is the set of measurements about all
ovq ∈ Fi, and um are the inputs associated with the motion dynamics
model.

present two methods, rule-based and harmonization-based
speed assignment (RBSA and HSA, respectively) in Section
II-B. Then the DMPC block receives the state measurements
of CAV ci, the predicted trajectories of each ovj ∈ Ei, and
the assigned reference speeds from the RSA block in order to
plan an optimal trajectory for the ego-vehicle. The details of
the DMPC formulation will be presented below. The optimal
control inputs are then passed to the lower level vehicle
dynamics controller.

A. Distributed Model Predictive Control Formulation

The multi-objective DMPC problem to be solved at each
CAV ci can be written compactly as:

min
ui

‖Fi‖2Pf,i
+ ‖Gi‖2Pg,i

+ ‖Hi‖2Ph,i
+ ‖ui‖2Ri

(1a)

s.t. xi,k+1 = f (xi,k, ui,k) , xi,k ∈ Xi, ui,k ∈ Ui (1b)
xi,0 = x̂i,0 (1c)

c(xi,k, ui,k) ≥ 0 (1d)
g(xi,k, xj,k) ≥ 0 ∀ ovj ∈ Ei, (1e)

where xi,k is the state vector of ci at the prediction time
step k, and ui =

[
ui,0 ui,1 · · · ui,Nh−1

]T
is the matrix

of control vectors ui,k over the prediction horizon with
Nh steps. The cost function is the sum of the weighted
2-norms of the lane-dependent Fi, the lane-independent
Gi and the predictability Hi output vectors, as well as,
the input vector ui, where we define the weighted 2-
norm ‖F‖2P = FTPF. The output vectors are of the
form Fi =

[
Fi,1, · · · , Fi,Nh

]T
, however, the predictabil-

ity output vector terminates at Nh − 1, as there is no
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terminal predictability cost. The respective weighting ma-
trices Pf,i, Pg,i, Ph,i and Ri are of the form Pi =
diag

{
Pi,1, · · · , Pi,Nh

}
with appropriate length, where

the weighting matrix at a given time step Pi,k is symmetric,
positive semi-definite, and of appropriate dimensions. The
optimal control problem is subject to the state dynamics
equation f (xi,k, ui,k), and to the admissible set of states Xi,
and inputs Ui, as noted in (1b). We have utilized the dynamic
particle motion model presented in [19] and modified in [18]
(see Fig. 3 for notations). However, other models, such as
the kinematic or dynamic bicycle model, may be used. Let
x̂i,0 in (1c) be the initial state estimate at the current time.
Further, the problem is subject to additional vehicle and
road constraints c (xi,k, ui,k) in (1d), and obstacle avoidance
constraints g (xi,k, xj,k) in (1e), whose discussion will be
omitted for brevity. The interested reader may find detailed
discussions of all constraints in [18], [19].

In the following, we will discuss the different components
of the cost function in further detail. In order to reduce
clutter, we will hereafter drop the time index k, and ego-
vehicle index i, except where we need to distinguish between
the ego and other vehicles.

1) Lane-Dependent Cost: The lane-dependent output vec-
tor is given by [11]:

F = [d1 (ye − ye,1) , · · · , dNl
(ye − ye,Nl

) ,

d1 (v − v1) , · · · , dNl
(v − vNl

)]T , (2)

where ye is the deviation from the path centerline of CAV ci,
v is the tangential velocity of CAV ci, and dl is a decision
variable that weights the tracking errors associated with the
given lane l. Further, ye,l and vl are the lane centerline and
lane reference velocity, respectively, while Nl is the total
number of lanes on the link. Figure 3 depicts a three lane
road to clarify select variables.

We define the lane decision variables to be constrained
such that dl ∈

[
0, 1

]
and:
Nl∑
l=1

dl = 1, (3)

in order to ensure a normalized weighting of lane tracking
errors. We then manipulate the lane decision variables with
the integrator dynamics:

dl,k+1 = dl,k + ul,k∆t ∀ l ∈ {1, ..., Nl − 1}, (4)

where ul for all l ∈ {1, ..., Nl − 1} are control variables
[11] and ∆t is the time step. In order to reduce the number
of control variables by one, we define the last lane decision
varible dNl

algebraically as:

dNl
= 1−

Nl−1∑
l=1

dl. (5)

2) Lane-Independent Cost: The lane-independent output
vector, is as follows [18]:

G =
[
v − vd, ζ − vd, 1−

∑Nl

l=1 d
2
l

]T
, (6)

where vd is the desired velocity of the ego-vehicle and ζ is a
slack variable to ensure a feasible and safe following distance

Fig. 3. Ego vehicle motion in the Frenet frame where s is the position
along the path, κ (s) is the road curvature as a function of s, ψ is the
deviation angle from the heading direction, and Og , Xg , and Yg are the
global origin, x-axis, and y-axis, respectively.

during normal driving. The slack variable has the dynamics
ζk+1 = ζk+uζ∆t, where uζ is its control variable. For a full
description of the function of ζ, see [19]. The last element
of G can be shown to have a minimum when a single lane
decision variable is equal to 1 and all others are equal to 0,
thereby penalizing tracking multiple lanes simultaneously.

3) Predictability Cost: The predictability cost is utilized
to ensure that CAV ci does not deviate significantly from the
prior plan shared with other CAVs cp (p 6= i) and its output
vector is defined as [18]:

H =
[
s− s−, ye − y−e

]T
, (7)

where s− and y−e are the synchronized position along the
path and deviation from the lane centerline of the prior
plan. The constant velocity synchronization method used is
presented in [18].

4) Input Cost: The input cost penalizes the complete input
vector u =

[
um, uζ , u1, · · · , uNl−1

]T
in order to

ensure that motions are smooth or comfortable, where um
is the vector of inputs associated with the motion dynamics
model.

B. Reference Speed Assignment

1) Rule-based Speed Assignment (RBSA): The RBSA
seeks to assign the lane reference speed based on the
immediate traffic surrounding CAV ci; either reducing or
increasing, respectively, the reference speed to that of a
leading (ahead of and moving slower) or following (behind
and moving faster) OV. The rules which govern the RBSA
are presented in Algorithm 1 [18]. We omit the time index k
to reduce clutter, however, it should be noted that Algorithm
1 is performed for each step of the horizon. First, for each
lane l, the lane reference speed vl is initialized at the unique
base desired velocity vdo of CAV ci. Then, for each ovj in
lane l, the RBSA identifies if ovj is within a look-ahead
distance ∆sLA of CAV ci (Line 4), and if vj , the velocity
of ovj , is lower than the current vl or if vl has not been
modified from vdo (Line 5). If true, the RBSA checks if ovj
is leading, following, or alongside CAV ci (Lines 6 and 7)
and assigns vl to be the minimum of vj and the speed limit
v̄, accordingly.
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Algorithm 1 Rule-based speed assigner
1: for each lane l ∈ L do
2: vl = vdo
3: for each ovj ∈ E on lane l do
4: if |si − sj | < ∆sLA and
5: (vj < vl or vl = vdo) then
6: if (si − sj)

(
vi − vj

)
< 0 or

7: |si − sj | < ∆sij + bζ then
8: vl = min

(
vj , v

)
9: end if

10: end if
11: end for
12: end for

2) Harmonization-based Speed Assignment (HSA): The
lane reference speed is assigned in a distributed manner by
estimating the average speed of traffic in each lane via on-
board measurements and shared information. For each lane
l, CAV ci generates an estimate µv,li =

∑Nv,li

q=1 vq/Nv,li of
the average velocity of the Nv,li vehicles in lane l within
Fi. Further, we assume the information matrix shared by
each CAV cp (using, for example, the collaborative per-
ception schemes presented in [20]) will contain a limited
amount of information about the traffic environment, i.e.
wp =

{
wp

{[
µv,lp rlp rlp Nv,lp

]}
l∈{1,...,Nl}

}
. The

sub-matrix wp contains information used by the OVSP block
(see Fig. 2). While the remaining elements rlp and rlp are
the position of the forward and backward most OVs in Fp in
each lane l, respectively, (see Fig. 1), and Nv,lp is the number
of vehicles on each lane l in Fp. Using this information,
we are able to obtain an improved estimate of the average
velocity of traffic in a given lane via a weighted combination
of µv,li and each shared estimate µv,lp. It should be noted
that the following calculations are made using data from the
current time step.

To mitigate double counting vehicles, it is necessary to
estimate the number of unique vehicles, Nu,lp, in Fp. The
following assumptions are necessary, in order to estimate
Nu,lp using only the shared information:
• the FOV in each lane l is a rectangle with width of lane
l and with length bounded by rlp and rlp,

• OVs are evenly distributed within the FOV in lane l.
It should be noted that more elaborate descriptions of the
FOV are possible [21] at the cost of more complex compu-
tations. We then have:

Nu,lp =
Au,lp
Alp

Nv,lp, (8)

where Au,lp is the unique FOV area of cp in lane l, and Alp
is the total area of the FOV of cp in lane l. The unique area
Au,lp is calculated based on an ordered pairwise comparison
of the bounds rli, rli, rlp, and rlp for all CAVs cp ∈ Ci. The
lane reference velocity vl is then computed by CAV ci as:

vl =
1

Nv,li+
∑Np

p=1Nu,lp

Nv,liµv,li+ Np∑
p=1

Nu,lpµv,lp

 , (9)

Fig. 4. Schematic of the freeway

where Np is the number of CAVS communicating with ci.
Each CAV then computes the desired velocity vd, for both

the RBSA and HSA schemes, based on the lane reference
speed that is closest to vdo :

vd = arg min
vl

|vl − vdo |. (10)

A simple search over the Nl lanes is used to solve (10). It
should be noted that vdo is calculated by dividing CAV ci’s
desired travel time on the link (designated by a higher level
route planner) by the length of the link.

III. RESULTS AND DISCUSSIONS

In order to determine the effectiveness of the DMPC
framework and the two variations of distributed speed as-
signment, the framework was implemented within the traffic
microsimulation environment VISSIM [22]. The optimal
control problem formulated above was solved using auto-
generated code from the ACADO toolkit [23].

A. Simulation Setup

The analyzed freeway (or network), depicted in Fig. 4,
consists of a 5km straight link with three 3.5m wide lanes
and 0% road grade. Vehicles enter and exit the freeway at
a single input and single output node located at the left-
and right-most ends of the freeway, respectively. In order
to minimize boundary effects on entrance, we restrict the
vehicles from changing lanes for the first 30m of the freeway.
The desired velocity of vehicles on the link is distributed
about approximately 87km/hr utilizing the default VISSIM
velocity distribution. Simulations begin with the freeway
completely empty and last for 30 minutes of simulation
time. To allow for the network to saturate, we omit the time
from the start of the simulation scenario until the number
of vehicles on the freeway reaches 90% of the maximum
observed amount.

HDVs are assumed to follow the Wiedemann-99 (W-99)
psycho-spacing car-following model [24]. The VISSIM de-
fault parameters were used, except for the standstill distance
CC0 = 3.04m, and time headway CC1 ∼ N (1.45, 0.1).
For lane decisions, HDVs utilized VISSIM’s default rule-
based lane selection algorithm with default parameters [22].

We define CAV penetration rate (ρ) as the percentage
of the traffic fleet that are CAVs. Additionally, we define
traffic demand Q in vehicles per hour. In the following
discussions, the subscripts v, d, and r pertain to the specific

308

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on April 17,2022 at 23:29:03 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80 100

CAV Penetration (%)

0

5

10

15

20

25

30

35

R
ed

u
ct

io
n
 i

n

F
u
el

 C
o
n
su

m
p
ti

o
n
 (

%
)

RBSA Q
L

RBSA Q
M

RBSA Q
H

HSA Q
L

HSA Q
M

HSA Q
H

AFC%
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veh/hr for both the RBSA and HSA cases.

traffic demand Qd, CAV penetration ρr, and reference speed
assigner RSAv , respectively. Specifically:
• Qd : d ∈

{
L, M, H

}
→
{

2000, 4000, 6000
}

;
• ρr : r ∈

{
1, 2, ..., 10

}
→
{

10, 20, ..., 100
}
.

• RSAv : v ∈
{
R, H

}
→
{

RBSA, HSA
}

;

Additional baseline simulations were completed with 0%
CAV penetration and are designated with the subscript b
along with the respective traffic demand subscript d.

B. Results

1) Fuel Consumption: CAVs offer a unique opportunity
to reduce the consumption of fuel by mitigating unnecessary
accelerations. To determine whether our proposed frame-
work, with both RBSA and HSA, improves fuel economy,
we analyze the average fuel consumption rate (L/100km)
over each simulation run compared to the baseline. Fuel
consumption is calculated using the methods and parameters
presented in [25]. The observed percent reduction in average
fuel consumption rate FC% is calculated as:

FC%vdr = 100

(
1− FCvdr

FCbd

)
, (11)

where FC is the observed average fuel consumption rate of
the entire fleet, CAVs and HDVs, for the given scenario.

In general, there is a trade-off between fuel consumption
and travel time. In order to account for this, we introduce the
required fuel consumption rate, RFC, or the fuel consumption
rate required to maintain a constant velocity at the observed
average velocity over an entire simulation. The time adjusted
percent reduction in fuel consumption rate, AFC%, is then:

AFC%vdr = FC%vdr − 100

(
RFCvdr − RFCbd

FCbd

)
. (12)

Based on this formulation, AFC% increases, compared to
FC%, if travel time decreases concurrently and decreases if
travel time increases.

Figure 5 shows FC%vd (solid) and AFC%vd (dashed) as
a function of CAV penetration for both RSA methods. In
general, there is a negligible difference between FC% and
AFC% for low and medium traffic demands, QL and QM ,
respectively, with the exception of HSA at 100% CAVs and
QM . There is also a negligible difference in performance
between RBSA and HSA at QL and QM . At high traffic
demand QH , however, the HSA consistently realizes an
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Fig. 6. Percent reduction in travel time versus CAV penetration rate at
traffic demands of QL = 2000, QM = 4000, and QH = 6000 veh/hr for
both the RBSA and HSA cases.

FC% and AFC% higher than RBSA at 40% CAVs and
below. As CAV penetration increases over 40% CAVs, the
fuel consumption benefits of HSA diminishes until at 100%
CAVs, where HSA realizes only a marginal improvement
over RBSA in AFC%. At high traffic demand, as CAV
penetration increases, AFC% increases compared to FC%
for HSA, whereas, RBSA does not follow this trend.

2) Travel Time: To see how AFC% correlates to travel
times, we will define the percent reduction in travel time
TT% in a similar manner to FC%:

TT%vdr = 100

(
1− TTvdr

TTbd

)
, (13)

where TT is the average travel time observed over the
simulation scenario. Figure 6 presents TT%vd as a function
of CAV penetration. For both RSA methods at QL and
for RBSA at QM , there is a negligible change in travel
time with respect to the baseline scenario. However, HSA
at QM realizes marginal improvements from 50% to 90%
CAVs, and significant improvements at 100% CAVs. The
performance gap between RBSA and HSA is even larger
at high traffic demand QH . HSA realizes improvements at
all levels of CAV penetration, ranging from 2% to 10%.
RBSA at high traffic demand, however, results in a significant
increase in travel time at CAV penetrations below 90%, with
TT% ranging from -1% to -10%. When CAV penetration
reaches ≥ 90%, RBSA starts to see an improvement in travel
time equivalent to the level of HSA at low CAV penetrations.

The difference in travel time between the RBSA and HSA
approaches may be attributed to the inherent differences in
the reference speed assigners; the rules within the RBSA
are designed so that in dense traffic the lowest observed
velocity of vehicles leading or following CAV ci is assigned
as vl for a given lane l, whereas the HSA assigns vl to
be the estimated average speed in the lane. It is important
to note that in order to avoid the DMPC planner choosing
multiple lanes simultaneously, lane reference speed tracking
is weighted higher than desired velocity tracking, therefore
lane reference speed tracking dominates. We will also note,
that as the length of the network is fixed, and there is only
one route through the network, discussing average observed
velocity over the length of the simulation is equivalent to
discussing average travel time. To better understand the
difference in RSA methods, we examine the spatial speed
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Fig. 7. Position-velocity state measurement pair density plot with a traffic demand of 6000 veh/hr for select CAV penetrations and RSA types; (a) baseline
scenario, (b) RBSA at ρ6 = 60% CAVs, (c) RBSA at ρ10 = 100% CAVs, (d) HSA at ρ6 = 60% CAVs, (e) HSA at ρ10 = 100% CAVs.

harmonization. Figure 7 presents vehicle counts at position-
velocity pairs for the case of high traffic demand QH . In
dense traffic, as a downstream vehicle brakes, the disturbance
can move upstream and sometimes magnify. Although RBSA
CAVs have a smoothing effect on the traffic, the population
of CAVs tend to slow more than an equivalent population
of HDVs, as vl is assigned to be the lowest observed
downstream velocity. This effect is most prominent at 60%
CAVs when there is still a significant number of HDVs
causing braking disturbances and an insufficient number of
CAVs to smooth the disturbances, as seen by comparing Fig.
7(a) and (b). At lower penetrations, the traffic is governed
more by HDVs so TT% increases. Similarly, as more CAVs
are introduced at higher penetrations, the disturbances from
fewer HDVs in traffic are smoothed, until at 100% CAVs
the disturbances from HDVs are removed and the smoothing
effect results in an improved TT over the baseline. The HSA
approach smooths traffic more efficiently than the RBSA ap-
proach, as it assigns the estimated average velocity, instead of
the lower extreme, as seen when comparing Fig. 7(d) to (b).
Finally, from Figs. 7(c) and (e), at 100% CAVs penetration,
we observe that the HSA CAVs settle to a velocity closer to
the mean of the desired velocity distribution (87km/hr), than
the RBSA CAVs, which track a lower end of the desired
velocity distribution (80km/hr).

3) Lane Changes: To analyze the impact the two RSA
methods have on lane decisions, we plot the average number
of lane changes per vehicle (NLC/veh) in Fig. 8. The
maximum NLC/veh is observed at QM , as can be seen by
comparing the baselines in Figs. 8(a), (b), and (c). At low
demands, lane changes are infrequent as there are not many
vehicles to impede motion and make lane changes beneficial.
Conversely, at high demand the traffic is too dense, therefore,
a safe lane change is not possible. For both RBSA and
HSA at all traffic demands, as CAV penetration increases the

number of lane changes per vehicle for the fleet decreases
until it approaches or reaches 0 at 100% CAVs.

Now we will focus on how the distributed CAVs impact
the lane decisions of HDVs within the traffic. In Fig. 8(a), for
both RSA approaches, the lane changes per HDV decreases
at similar rates as CAV penetration increases. Then, as CAV
penetration increases in Fig. 8(b), the number of lane changes
per HDV for both RSA methods reduces at approximately the
same rate, however, the HDVs in the HSA case change lanes
on average roughly 0.2 fewer times. The difference is greater
at QH (Fig. 8(c)), as the HDVs in the HSA case change
lanes on average 0.3 fewer times. A noteworthy observation
in Fig. 8(c) is that, with RBSA CAVs, the HDVs change
lanes more frequently than the baseline at CAV penetrations
≤ 60%. RBSA CAVs maintain larger following distances
and are traveling on average slower than a population of
HDVs, therefore incentivizing lane changes and leading to
an increase in lane changes per vehicle.

Lastly, we will analyze how the CAVs themselves change
lanes. Across all traffic demand levels CAVs utilizing the
RBSA change lanes more frequently than CAVs using the
HSA. The average speed in a given lane is subject to the
distribution of the desired velocity of vehicles in that lane.
Since there is no difference in the distribution of desired
velocities for vehicles populated in each lane, the average
speed will trend towards the same mean. As a result, there
is little incentive to change lanes for HSA CAVs, as noted
by the fact that the NLC/veh is less than 0.2NLC/veh for all
scenarios. Conversely, as the RBSA assigns the extremes of
the observed velocity, it is more likely that the DMPC will
decide that a lane change is cost effective. Therefore, at lower
penetrations, particularly at higher demands, significantly
more lane changes are observed. Still, as CAV penetration
increases the incentive to change lanes reduces, as all RBSA
CAVs are governed by the same control framework with each
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Fig. 8. Number of lane changes per vehicle versus % CAV penetration at
traffic demands (a) QL = 2000, (b) QM = 4000, and (c) QH = 6000
veh/hr.

CAV only having a unique vdo .

IV. CONCLUSIONS

In this paper, we have proposed a distributed approach
for harmonizing speed with a two-dimensional distributed
motion planner for CAVs. By implementing the approach
in large scale microscopic traffic simulations we have shown
how an appropriately designed distributed control framework
for CAVs can improve fuel consumption and traffic flow.
We capped off the discussion with an investigation into how
reference speed assignment impacts the incentives to change
lanes.

On-going investigations are looking at how the distributed
control framework with both the RBSA and HSA perform
when a bottleneck is introduced in the network, in particular,
a speed reduction zone. A shortcoming of the HSA is that
it only estimates the instantaneous average velocity on a
given lane. Future work will investigate a more complete
traffic state estimation that will account for predicted lane
choices of the ego-vehicle and object vehicles, as well as,
the uncertainties in shared state estimates.
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