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Abstract. In a secure collaborative environment, tera-bytes of data gen-
erated from powerful scientific instruments are used to train secure ma-
chine learning (ML) models on exascale computing systems, which are
then securely shared with internal or external collaborators as cloud-
based services. Devising such a secure platform is necessary for seam-
less scientific knowledge sharing without compromising individual, or
institute-level, intellectual property and privacy details. By enabling new
computing opportunities with sensitive data, we envision a secure collab-
orative environment that will play a significant role in accelerating scien-
tific discovery. Several recent technological advancements have made it
possible to realize these capabilities. In this paper, we present our efforts
at ORNL toward developing a secure computation platform. We present
a use case where scientific data generated from complex instruments, like
those at the Spallation Neutron Source (SNS), are used to train a dif-
ferential privacy enabled deep learning (DL) network on Summit, which
is then hosted as a secure multi-party computation (MPC) service on
ORNL’s Compute and Data Environment for Science (CADES) cloud
computing platform for third-party inference. In this feasibility study,
we discuss the challenges involved, elaborate on leveraged technologies,
analyze relevant performance results and present the future vision of our
work to establish secure collaboration capabilities within and outside of
ORNL.
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1 Introduction

Scientific innovations and advancements are the result of sustained collaborative
efforts among scientists spread across multiple disciplines and institutions around
the world. However, an environment of stiff competition exists within a scientific
community to establish a leading edge in their respective domains. While the
former demands an open exchange of ideas, the latter persistently promotes
guarding of ideas as intellectual properties. Without a significant mechanism
to exchange shareable ideas while guarding non-shareable ones, the scientific
community would either result in a slow innovation rate or suffer from losing
hard-earned intellectual property.

In the era of artificial intelligence and big-data machine learning, institu-
tions hosting large scientific instruments have an opportunity to play a signifi-
cant role in hastening the innovation cycle. Dataset generation, either through
sophisticated scientific instruments or using high-fidelity simulations and their
subsequent analyses, are the core functionalities that are carried out in the pro-
cess of scientific exploration, which over time leads to scientific innovations. A
realization of long-term scientific goals involves several experiments that might
be independent or follow-on, and which generally result in a reduction of explo-
ration space. In this regard, insights from these complex, intermediary and, by
themselves, insufficient experimental steps performed during the course of sci-
entific exploration could be extremely helpful for the progress of domain science
innovations. Sharing such insights could significantly reduce the scientific explo-
ration space and experimental time of fellow researchers. Similarly, protecting
certain technical details and capabilities, while being able to share the experi-
mental insights with a peer researcher, is essential. With this approach, we not
only participate actively in the progress of science but also protect the intellec-
tual property of the enabling technology that helps to maintain a technical edge.
Cryptographic techniques, like secure multi-party computation and differential
privacy play a significant role in realizing such a secure sharing platform. In this
paper, we bring together existing cryptographic methods to demonstrate the fea-
sibility of a secure environment for unhindered exchange of information across
research facilities to accelerate innovations. We highlight, discuss, and demon-
strate secure information sharing use cases that utilize instruments from the
Spallation Neutron Source (SNS), high performance computing facility Summit
and ORNL’s private cloud, CADES.

1.1 Background and Motivation

Apart from the need to identify the significant scientific insights in the generated
data, a method is required to communicate such insights given relevant inputs.
To achieve this, the data needs to be learned to generate a machine learning
(ML) model. The expectation is that the ML model would impart additional in-
sights on the input data through prediction or classification. Such insights would
help the domain scientists to streamline their subsequent process of experimental
exploration. Several technologies need to come together to realize secure sharing
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of scientific knowledge. At the hardware level, this task touches upon experi-
mental facilities, high-performance computing (HPC) systems and commodity
clouds. At the software level, we need software implementations of cryptographic
techniques, ML models that support these techniques, scalable HPC implemen-
tations for training ML models and service-oriented architectures that support
and securely expose the ML models to the outside world for secure inferences.
Further, all of these wide-ranging technologies should interoperate to realize a
secure collaborative environment. We designed our platform around two privacy
computing capabilities: differential privacy and secure multi-party computation,
which are described in further detail below.

Differential privacy (DP) employs a statistical strategy, where tunable noise
is introduced either to the inputs, outputs, or at certain steps within an algo-
rithm [1]. Using the TF Privacy library [18, 2], we utilize (ε, δ)-DP: Pr[M(D) ∈
S] ≤ eεPr[M(D

′
) ∈ S] + δ, where an algorithm (M) is run on adjacent in-

puts/databases (D and D
′
) to give any subset of outputs (S) and with ε and

δ as privacy parameters (ε = upper bound on privacy loss, δ = probability for
privacy guarantee to not hold). The addition of δ makes the method more gen-
erally applicable by relaxing the original ε-DP definition that only considers
very strong, worst case conditions. Distinct advantages of (ε, δ)-DP are sequen-
tial composability and privacy guarantees through the calculated privacy loss.
Algorithmic modules can be individually composed with (ε, δ)-DP and then se-
quentially constructed while maintaining privacy. With TF Privacy, this allows
us to introduce (ε, δ)-DP through the layers within the DL training models [2,
3], which we also have demonstrated for DL training on medical data scenar-
ios [5]. The quantified privacy loss of DP also sets the privacy guarantees, up to
the privacy budget threshold. Overall, DP for ML model training protects both
the model and training data from model inversion and membership inference
attacks, respectively [4].

Secure multi-party computation (MPC) is an encryption scheme that allows two
or more parties to jointly compute a function over their private inputs without
revealing these inputs [8, 9]. Here, we utilize the TF Encrypted library [19, 10],
which employs the SPDZ protocol [11] with additive secret sharing. Overall,
MPC offers robust security to compute on an open resource, like Cloud, but can
incur substantial communication overhead. We therefore leverage its capabilities
for secure ML model inferencing, where practical performance is achieved.

The secure MPC computation involves two entities A and B. A has a trained
model on certain data, called M . B holds another data D and wants to use
model M to obtain some helpful insights on their data. However, both A and B
consider their holdings M and D, respectively, as their intellectual property that
provide them a leading edge in their respective domains. Secure MPC allows such
interactions to happen using the encrypted model and data on an independent
set of servers. TF Encrypted [19] uses three servers S0, S1 and S2 for this purpose
and establishes secure communication MPC protocols over gRPC [21].
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1.2 Organization

In Section 2, we discuss the possible use case scenarios for secure information
sharing, with a detailed description of one particular case. In Section 3, we
discuss the ML model development and training process with and without DP.
We demonstrate how a trained ML model is securely shared among users, along
with the relevant performance results in Section 4. We summarize, discuss our
future work, and conclude the paper in Section 5.

2 Use Case Scenarios

Insights from physical experiments and computational simulations are known
drivers of scientific innovations. Regardless of whether the data from the ex-
periments and simulations are complementary or similar, they both contribute
informative results. The advancements in ML-based technologies have provided
a means by which significant insights from such datasets can be exposed through
classification or prediction models. The advancements in web technologies have
provided a means to share such models for inferencing across a wide community,
and audiences, around the world.

Such exchange scenarios include (a) Experimental or computational scientists
exchanging insights with their peers (b) Experimental scientists exchanging in-
sights with computational scientists for validation purposes (c) Computational
scientists exchanging insights with experimental scientists that could be helpful
for the design of experiments (d) Real-time steering of simulations or experi-
ments using insights from previous experiments or simulations, respectively (e)
Multiple collaborating groups can come together to train ML models that can
be shared without divulging any details of their datasets to each other.

As a more in-depth example, we consider a practical use case scenario for
a scientific user facility that involves secure collaboration between instrument
operators and facility users. A fundamental collaboration is required for data
quality assessment of neutron scattering instruments. We will also see that the
needs of this scenario brings together the experimental facilities, HPC and the
Cloud infrastructure resources.

2.1 Data Quality Assessment from Small-Angle Neutron Scattering
(SANS) instrument

Experiments involving sophisticated instruments usually are a multi-institutional
operation. Also, several types of instruments typically are hosted by an institu-
tional facility, like SNS at ORNL, and such instruments are made available to
experimental scientists either from academia or industry (outside users). These
experimental processes are a collaborative effort between the outside users and
instrument scientists at the facility. During such procedures, special scenarios
can exist where a user would like to guard all data generated. Examples are
industry partners that will generate proprietary data without intent to publish
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in the open literature, and scientific researchers working in a highly competitive
area where the new, timely results are sensitive. However, to ensure the efficient
use of the user’s beamtime, including collection of the highest quality results,
the instrument scientists need access to certain details on the collected data.
Hence, a security concern arises, as the data generators would not want to freely
share their datasets. Such a practical scenario can arise to create barriers and
ultimately prohibit the full utilization of a scientific instrument.

To frame the challenge within a specific example, consider a company or
industry partner is using the extended Q-range small-angle neutron scattering
(EQ-SANS) instrument at SNS [12, 13] to measure a series of proprietary phar-
maceutical formulations, and the data needs to be protected during collection.
However, the instrument scientists would like to assist, with their expertise, in
evaluating how the experiment is progressing and inform the decision making
(e.g. samples to prepare and run) during the data collection. If some samples
are showing very low signal-to-noise, they may need to be measured for longer
exposure times and/or prepared at higher concentration. If a sample appears to
show unanticipated results, like sample aggregation, early detection and rectify-
ing measures would be important. While these activities normally occur during
a conventional data collection, the challenge here with a sensitive-data user is to
maintain privacy of all data except the necessary information needed to prop-
erly assist in still performing an optimal experiment. Current practices with
industry users that plan to generate sensitive data without publishing involve
lengthy measures: the participating instrument scientists sign a non-disclosure
agreement (NDA), and isolation approaches are employed at the instrument and
with the data. A more efficient and versatile solution, which we propose, is to es-
tablish seamless data privacy computing methods within the experimental data
collection and initial analysis phases, such that only pertinent, pre-defined and
agreed upon information is shared. By incorporating privacy methods, we also
envision the capability to train ML models using multitudes of instrument data
that protects the training data privacy and can then inform on these sensitive
data experiments in real-time without disclosing the raw data information. Next,
we delineate these steps, and associated details, by training a privacy-enabled
ML model on SANS data, utilizing DP, to then perform secure inferencing on
the model using secure MPC. Of note, the dataset generated and used below is
meant to serve as a starting point for the given scenario. The chosen classes were
based on current data availability. For a real use case, we would include more
classes, along with more training examples per class. Stemming from this partic-
ular scenario, the privacy tools can be extended to afford general data sharing
and analytics among scientific user facility users with other collaborators and
researchers where concerns over data sensitivity are encountered.

2.2 Data Collection

The SANS data were obtained from the EQ-SANS instrument at SNS. A series
of standard calibration sample measurements, along with data from two unpub-
lished scientific experiments (data generated by C.S.), were used to construct
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Fig. 1. Representative SANS detector images for the 6 classes. These specific sam-
ple classes generalize to some of the common scattering patterns obtained in exper-
iments: peaks (agbeh), background/low intensity samples (bkgd), rod-like particles
(gmp), globular particles (hk), strong intensity samples (porasil), and transmission
measurements (trans).

the raw SANS detector image dataset. The standard samples included silver
behenate (AgBeh), porous silica (Porasil) [14], hydrogenated water (H2O), and
deuterated water (D2O). Scientific SANS data on a protein, hexokinase (HK),
and self-assembled structures of the guanosine derivative, 2’-deoxyguanosine-
5’-monophophate (dGMP), measured over multiple experiments also were in-
cluded into the dataset. The HK and dGMP experiments also had background
measurements, which were buffer and salt in H2O/D2O. The images for these
background runs were combined with the H2O and D2O standard run images to
form a background category (bkgd) in the dataset. In addition, a transmission
mode measurement is made on every sample, and those detector images were
included as a transmission category (trans) in the dataset.

The physical detector on the EQ-SANS instrument is 1 x 1 m in size and pro-
vides 192 x 256 (nearly square) pixel resolution. All measurements comprised a
range of instrument settings, using 1.3 to 8 m sample-to-detector distance (SDD)
and 1 to 20 Å wavelength neutrons, with a nominal 3.5 Å bandwidth at each
setting. The detector images used to make the dataset were raw neutron counts,
covering the entire time-of-flight (ToF) and exposure time measured for each
sample, and summed for each detector pixel. Overall, the images were grouped
into 6 classes, with each image assigned one of the following single labels: agbeh,
bkgd, gmp, hk, porasil, trans (Figure 1). These classes can be generally con-
sidered as scattering patterns of: peaks, background (or low intensity samples),
rod-like particles, globular particles, strong intensity samples, and transmission
(direct beam) mode measurements, respectively.
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Fig. 2. Secure information sharing use case schematic involves data generated from
the EQ-SANS instrument used to train ML models on Summit, an HPC platform, and
finally securely shared among internal and/or external scientists through CADES, a
Cloud platform.

2.3 ML Models and Privacy

We used a convolutional neural network (CNN) to train on collected data, which
can be used to classify datasets from future experiments. The ML models that are
built by the operators classify the new set of incoming data from the experiments
to a certain category, which provides the operators necessary information for data
quality assessment. By using secure sharing methods, the experimental scientists
can ensure their data is protected from leakage while still gaining assistance and
insights from the instrument operators.

Using DP, the ML models can be trained to ensure the information privacy
of the ML model. However, training of the privacy models are more compute
intensive than their non-privacy models. This, along with the resolution and
volume of the incoming data, creates a demand for HPC resources. Once trained,
these models can be shared with the external world, as shown in Figure 2,
through application services hosted in a community Cloud platform. DP protects
the model and training data from model inversion and membership inference
attacks. However, since DP does not inherently provide collaborative setups
or secure a client’s test data, we use secure MPC protocols. The secure MPC
protocols that can be realized over public Cloud infrastructure ensures both
data and model privacy, addressing the privacy concerns of both data and model
owners.

3 Machine Learning Model Training

3.1 Model Setup

Data Pre-processing Images were first center-cropped to remove white-space,
resized to n× n (n = 64, 128, 224) and rescaled by the factor 1/255. Horizontal
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and vertical flip image data augmentation was applied to avoid the training algo-
rithm from learning on any characteristic detector patterns, like tubes turned off
or top/bottom edges, for any subset of the data. The data was split into train-
ing/validation/testing (64%/16%/20%), where the test data paths were saved
for each run to use the exact same samples for MPC inferencing.

Model To demonstrate the use case with scientific user facilities data, we per-
formed deep learning (DL) training, both without and with DP, on our generated
dataset of SANS detector images comprised of 6 classes (see Figure 3). For the
CNN model training on the SANS detector images, VGG9 (for n = 64) and
VGG16 (for n = 128, 224) models [22] were implemented with Keras in Tensor-
flow 2.4.1 [23]. For the standard, non-DP training, the runs used a learning rate
= 0.008, batch size = 16, epochs = 40, with a stochastic gradient decent (SGD)
optimizer. For DP training, the TF Privacy library (v0.5.1) [18] was used. Sim-
ilar settings to the standard training were used for comparison, along with the
additional privacy hyperparameters. The only adjustments were to use a learn-
ing rate = 0.004, epochs = 35, and the TF Privacy DPKerasSGDOptimizer.
Privacy hyperparameters used were noise multiplier = 0.76, L2 norm clip = 1.0,
and microbatches = 4. These settings were reached based on initial runs using
typical values and ranges described in TF Privacy, along with previous reported
settings [2].

To consider (ε, δ)-DP for machine learning, as we do here with TF Privacy,
ε specifies an upper bound on the probability for a model output to vary if
any single training sample is included or excluded. For many practical uses, ε
between 0.1-10 is typically used [6, 7]. The δ is set in the training and reflects
the leak rate probability of the sample training inputs, where δ ≤ 1/(training
size) is a typical range to target. Overall, we could continue to optimize across
the privacy parameters for the DL training, but these results fully satisfy the (ε,
δ)-DP conditions while also yielding reasonable accuracy. They also remain as
similar to the non-DP training for best baseline comparison.

3.2 Model Training

With a VGG16 model architecture and images resized to 224×224 input size, the
standard (no DP) training achieved ∼99% accuracy after 40 epochs (Figure 3).
In comparison, the DP settings (see Methods for details) reached a plateau of
∼88% accuracy by 35 epochs (see Figure 3) and additionally provided a (ε, δ)-
DP privacy guarantee of (9.35, 1.79e−3)-DP. The reduction in training accuracy
is expected when adding DP, as this is part of the privacy-utility tradeoffs of the
method. We also performed training runs using VGG16 and 128×128 input size,
and a smaller network and input size (VGG9 and 64×64, respectively), for com-
parison and for MPC inferencing, described below. The corresponding accuracy
curves are shown in Figure 3b and Figure 3c. The VGG16 model training with
128×128 input size and DP was trained for 35 epochs and also achieved (9.35,
1.79e−3)-DP. The VGG9 model training with DP was trained for 40 epochs and
achieved (10.11, 1.79e−3)-DP.
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(a) VGG16, 224×224 data (b) VGG16, 128×128 data (c) VGG9, 64×64 data

Fig. 3. VGG training accuracy curves that compare without and with DP, and for
different image input sizes. The privacy-utility balance is noticeable in all cases, where
each DP training plateaus at a lower accuracy compared to no DP (specific DP settings
used are listed in the main text).

We make the following observations on the model training with DP, compared
to the non-DP case:

1. A lower learning rate was required to maintain a stable and monotonic accu-
racy growth (and commensurate loss function decay) due to the added noise
and gradient clipping.

2. The ε increases with the number of training epochs, so we performed a
series of runs with varying epochs to reach 35 for DP training of the VGG16
network, which yielded a reasonable privacy-utility balance. Fewer epochs
did not reach sufficient accuracy and more epochs resulted in ε > 10.

3. We performed training runs with larger noise multiplier values (> 0.67),
but they often resulted in sub-optimal accuracy and, therefore, utility. This
is reasonable, given the relatively small training size we are using for our
example here. DP is best for generalizing over large data, so it is expected
that utilizing larger, aggregated datasets would provide more utility along
with capacity for higher privacy settings in real use cases.

Further, when performing inferencing on the test data, we observe a loss
in accurately predicting certain classes (bkgd, gmp, hk). This can be seen by
comparing the confusion matrix for non-DP and DP training (Figure 4a, 4b,
respectively).

3.3 Differential Privacy Cost

To assess training performance, we also varied image input size (from 64×64
up to 320×320) for non-DP and DP training with the VGG network (Figure 5).
Again, the 64×64 input used a smaller, VGG9, model while the other input sizes
used the VGG16 model. We found a strong divergence in the DP training time,
relative to the non-DP, for increasing input size. Also, the DP training failed at
the highest input size (320×320) due to GPU device memory limitations.

At the input size used for the results shown above (with 224×224), DP train-
ing is ∼2× slower compared to non-DP training. We observed that adjusting DP
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(a) non-DP (b) DP

Fig. 4. Confusion matrix plots for VGG16 testing (224×224 data) that show accuracy is
maintained in DP models for some classes (agbeh, porasil, trans) but with a discrepancy
in accurately predicting certain other classes (bkgd, gmp, hk).

Fig. 5. Cost of training VGG network with DP. The DP training was observed to be
almost 2× slower compared to non-DP training and could get much slower for increased
privacy levels.

parameters for increased privacy levels (e.g. increasing noise multiplier) can im-
pact training speed even further, with ∼5× slower training times compared to
non-DP. With the incremental, step training time for the 224×224 input size
and DP settings used here (503 ms for batch size = 16), 100K images with 40
epochs would require ∼35 hr of training time on a single V100 GPU.

To frame these data volumes and compute timings within a possible SANS
data collection, there are three high-throughput SANS instruments at ORNL:
EQ-SANS at SNS, Bio-SANS and GP-SANS at the High Flux Isotope Reactor
(HFIR) and each can operate at a rate of ∼10 min/sample and these facilities
operate at up to ∼70% of the year. Given these trends, a large volume of over
100K images per year can be obtained by SANS experiments. Training CNN
models with and without privacy over such a large volume of data would demand
a significant amount of computational resources and such needs can be met using
an HPC system like Summit.
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4 Secure Inference

4.1 Secure MPC Setup

A secure MPC test setup was developed over CADES Cloud platform. To en-
able secure inference by an external entity on an internally hosted ML model,
we used TF encrypted, a python module that implements secure MPC proto-
cols. The setup prescribed by TF encrypted involves a ML model hosting server
(Ms) and a client with test datasets (Cd) that do not see each other but they
interact through three intermediate secure servers (S1, S2 and S3). We devel-
oped containers to host model, intermediate secure servers and the data owner
who performs inferences. Each of these containers were spawned on the virtual
machine (VM) instances of CADES cloud. Three different setups were used in
our experiments.

(a) Setup 1 (b) Setup 2

Fig. 6. Setup 1: single host for secure servers and Setup2: separate hosts for secure
servers on CADES for secure MPC evaluation.

– Setup 1: Each VM instance involved in the experiments were of type m1.2xlarge
supporting 16 virtual CPUs, 32 GB of memory and 40GB of disk space. VM
instances mpc model owner host container with Ms, mpc data owner hosts
a container with Cd and mpc secure server hosts a container with secure
servers S1, S2 and S3 listening on different ports. Figure 6a represents this
setup.

– Setup 2: Three VM instances (mpc secure server1, mpc secure server2 and
mpc secure server3 ) of type m1.2xlarge were used to host secure servers S1,
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S2 and S3. Two VM instances (mpc model owner and mpc model owner) of
type m1.large supporting 4 virtual CPUs, 8 GB of memory and 80 GB of
disk space, were used to host (Ms) and (Cd). Figure 6b represents this setup.

– Setup 3: Two VM instances (mpc model owner and mpc model owner) of
type m1.large supporting 4 virtual CPUs, 8 GB of memory and 80 GB of
disk space, were used to host (Ms) and (Cd). This setup was used to estimate
baseline performance without secure MPC.

4.2 Secure MPC Performance

We performed 100 random inferences over Cloud-based secure MPC setup on
CADES for both VGG models with and without differential privacy. At each
inference cycle, the client sends an encrypted single image over the network to the
intermediate secure servers. A model server executing as a service on a different
VM instance interacts with the intermediate secure servers to fulfill the inference
request of the client. To measure the performance, we polled the container Ms,
container with intermediate servers (S1, S2 and S3) and a container hosting Cd

using docker stats. The VGG9 network comprises only the first six convolutional
layers and 3 dense layers as opposed to 13 convolution layers and 3 dense layers
in the usual VGG16 network.

Table 1. Accuracy and Runtime performance

Diff-Privacy Accuracy Inference time

No 0.96 8.82 ± 0.43
Yes 0.66 8.3 ± 0.31

Secure Inference of VGG9 on 64×64 Data over CADES Setup 1 The
accuracy and inference time readings are tabulated in Table 1. A high accuracy
is observed for the model without DP. However, as anticipated, the accuracy of
the DP model is lower.

In Figure 7a and Figure 7b we show the instantaneous CPU and memory
utilization percentages in the model host, data host and the secure servers. In
Figure 7c and Figure 7d we show the cumulative incoming and outgoing network
loads during inferencing ML models with DP and without DP.

From Figure 7c and Figure 7d, we see that the cumulative network loads
remain similar for inferencing on ML models with and without DP. This is
expected and we also observed similar trend in the CPU and memory utilization.
Hence, we show CPU and memory utilization plots for inferencing models using
DP, which is almost the same as the one without DP.

Instantaneous CPU utilization curves in Figure 7a show regular spikes cor-
responding to consecutive inference activities. A very low (<10%) virtual CPU
utilization and almost negligible amount of memory utilization can be observed
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(a) CPU Utilization (b) Memory Utilization

(c) Cumulative incoming network load (d) Cumulative Outgoing network load

Fig. 7. Percent CPU, memory and network utilization in the data host, model host
and the secure servers during secure MPC inference. The plots suggest that the se-
cure servers are computationally intensive, while the model owners and data owners
computationally lightweight.

in the data owner and model owner. However, the VM hosting the secure servers
(S1, S2 and S3) appears to utilize almost all of 16 virtual CPU cores and around
30% (∼11GB) of memory.

The cumulative outgoing network load in Figure 7d suggest that the model is
communicated once to the secure servers by the model owner and the data owner
consecutively sends data at regular intervals for inferencing. Further, the outgo-
ing network load from the secure servers, which is an inference label, is almost
negligible. The cumulative incoming network load in Figure 7c suggest the se-
cure servers receives the network traffic from both data owner and model owner.
Hence, from the plots in Figure 7, we can conclude that much of the compu-
tational tasks are carried out on secure servers. A single CPU VM instance
with minimal memory 5% of their 32GB of memory (<3GB) should suffice the
computational needs of the model host and the data host for VGG9 network
inferencing data of dimension 64×64.

Observations (a) Similar runtime performance and resource utilization is ob-
served during secure inference of models with and without DP. (b) The secure
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(a) CPU (16 CPU-cores/server) (b) Memory (32 GB/server)

(c) Incoming (d) Outgoing

Fig. 8. Percent CPU, memory and network utilization across secure servers S0, S1 and
S2 during secure inference in a multi-node setup show that secure server computations
are compute-,memory- and network-wise expensive.

servers are computationally intensive, while the model owners and data owners
just communicate their encrypted model and data to the secure servers.

Secure Inference of VGG16 on 128×128 Data over CADES Setup 2
This test used the VGG16 model without DP support, since the performance
results were almost similar. The same experimental procedure of random image
inferences was performed over CADES Setup 1. However, after two successful se-
cure inferences, the execution stalled or significantly slowed down. This behavior
of significant slow down could be due to page swapping due to lack of memory
at the secure servers. The first run took around 200 seconds to complete and the
next run took almost 37 seconds for completion.

Splitting the secure servers into three different containers and having a large
resource allocation for each secure server overcomes this resource relevant prob-
lem. Hence, we use CADES Setup 2 to understand the CPU, memory and net-
work resource utilization among the secure servers with the larger ML model
VGG16 working on a larger dataset input size 128×128.
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We performed 50 random single image inferences over CADES Setup 2. In
Figure 8 instantaneous CPU and memory utilization percentages and cumula-
tive network load plots among secure servers (S0, S1 and S2) that are hosted as
separate containers on three different VMs. The regular spikes seen in Figure 8a
in all the servers correspond to the relevant computations. With a maximum
instantaneous percent utilization of 1600%, 1000% and 1600%, the servers seem
to significantly utilize all virtual CPU-cores. As seen in Figure 8b memory uti-
lization of S1 > S0 > S2, a maximum memory utilization of 47% (14.8 GiB),
54% (17 GiB) and 44% (10.6 GiB) was observed in servers S0, S1 and S2, re-
spectively. The cumulative network load measuring several hundreds of gigabytes
were observed to be exchanged between the servers for just 50 inferences. These
numbers indicate that the Tf encrypted implementation of secure MPC is not
only network-wise expensive but are also memory-wise and compute-wise expen-
sive. Further the turn-around time for inferencing a single 128×128 data image
over a CADES Setup 2 configuration was around 46 seconds on average. Com-
paring this runtime with our similar experiment on Setup 1, we can see almost
a fourth of the 46 seconds corresponds to network communications between the
servers hosted on different VMs.

Observations: (a) Secure MPC implementation of Tf encrypted is compute-,
memory- and network-wise expensive.

4.3 Secure MPC Cost

To estimate the cost of secure MPC, we used CADES Setup 3 to perform in-
ference without secure MPC. We used Tensorflow Serving [20] to setup a SANS
inference service at model owner, which is accessed by the data owner using the
REST API for inference. In this setup, the data owner sends the input data of
dimension 128×128 for inference and the model owner performs are the requisite
computations and communicates the result to the data owner. Hence, the net-
work load is significantly low. We polled the container at the model owner VM
to obtain the runtime statistics using docker stats. We performed 100 random
single image inferences over CADES Setup 3. Figure 9a shows the instantaneous
CPU and memory utilization percentage. The cumulative network load mostly
corresponds to the communication of input images to the model host, which was
around 106 MB. This is seen from plots in Figure 9a with a maximum of 63%
of CPU load, maximum of 6.4% (540 MB) of memory load. From these readings
we can infer that the secure MPC inference operation is compute-, memory-
and network-wise extremely expensive in comparison with the regular inference.
Further, a regular inference is also extremely fast with a turn-around time of
0.24 seconds.

Figure 9b shows exactly how expensive in terms of runtime, CPU load, mem-
ory load and network load. The CPU and memory loads are over an order-
of-magnitude expensive, with memory load closer to two orders-of-magnitude.
Runtime performance is over two orders-of-magnitude slower. The network load
with over four orders-of-magnitude is the most expensive of all. These numbers
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(a) CPU and Memory (b) Secure MPC Cost

Fig. 9. Privacy cost in DP training and secure MPC inference.

were obtained from the results from the experimental runs carried out for secure
inference on CADES Setup 2 and regular inference on CADES Setup 3. A ratio
of per inference runtimes were used to determine relative runtime cost. The max-
imum instantaneous CPU and memory utilization from these two experiments
were used to determine relative CPU and memory cost. We aggregated the final
cumulative incoming network load values of all the secure servers and divided
them by the number of secure inferences performed (50) to obtain network load
per secure inference. This network load for regular inference corresponds to the
input data communicated by the data owner, which was ∼1MB. The ratio (net-
work load per secure inference) / (network load per regular inference) was used
to obtain relative network cost for secure inference.

5 Conclusion and Future Work

We started the paper highlighting the need for secure information exchange and
its feasibility using existing technologies. We showcased a practical use case sce-
nario of secure information exchange between EQ-SANS instrument operators
at SNS and facility users at academic institutions or industry. The informa-
tion exchange was formulated using a ML model, such that the privacy of the
model and the data were preserved. To achieve this a secure ML model using
DP algorithms and secure inference using MPC protocols were used. We per-
formed training of a deep learning VGG network with and without DP on a
Summit node. With the performance readings from the model training process
and the expected data resolution and volume, we emphasized the need for an
HPC facility to handle this compute-intensive model training process. We de-
veloped secure inference services using containers over VM instances from the
CADES Cloud platform. A performance study of MPC-based secure inference
involving multiple VM instances and containers were carried out and the results
were presented. With these tasks, we implemented a full life-cycle iteration of
a SANS use case scenario where privacy preserving algorithms were used. We
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successfully demonstrated its practical feasibility using ORNL resources namely,
the SNS EQ-SANS instrument, Summit HPC and the CADES Cloud infrastruc-
ture. Performance of DP and secure MPC training and inference were recorded.
The relative cost of privacy for training with DP and inference with secure MPC
were presented. Despite the higher resource cost and significantly slower run-
times, the training with DP and inference with secure MPC for privacy were
shown to be realistically feasible.

The presented SANS use case can be extended to other high-throughput
SANS instruments at ORNL: Bio-SANS and GP-SANS HFIR. This work can
also be extended to train an agent to automate the process of experimental
setup using reinforcement learning to a certain extent. Further, this method can
be used as a general template to achieve secure exchange of scientific knowledge
amongst local and non-local researchers. In this regard, we are working on secure
model and inference for a prediction class of supervised learning problems using
data from the reflectometry instruments at SNS [15, 16]. We are also working on
secure inference of an unsupervised learning class of problems with a convolu-
tional variational auto-encoder model using molecular dynamics simulation data
to identify and analyze the microstates in biomolecules [17].
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