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Summary

Understanding power system dynamics is essential for interarea oscillation analysis
and the detection of grid instabilities. The FNET/GridEye is a GPS-synchronized
wide-area frequency measurement network that provides an accurate picture of
the overall real-time operational condition of the power system dynamics, giving
rise to new and intricate spatiotemporal patterns of power loads. We propose to
model FNET/GridEye grid frequency data from the U.S. Eastern Interconnection
with a spatiotemporal statistical model. We predict the frequency data at unob-
served locations without observations, a critical need during disruption events where
measurement data are inaccessible. Spatial information is accounted for either as
neighboring measurements in the form of covariates or with a spatiotemporal corre-
lation model captured by a latent Gaussian field. The proposed method is useful in
estimating power system dynamic response from limited phasor measurements and
holds promise for predicting instability that may lead to undesirable effects such as
cascading outages.
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1 INTRODUCTION5

Ensuring the United States (U.S.) electrical system’s reliability is a significant concern for the U.S. Department Of Energy6

because it impacts the distribution of electricity to homes, businesses, and industries. Power grids in North America use alter-7

nating current, with the flow of electricity switching direction with a frequency of 60 cycles per second (Hertz, abbreviated Hz).8

If the frequency drops beyond a certain point, protection systems are designed to automatically disconnect components of the9

grid to prevent their damage, at the cost of sometimes disconnecting load. Because of the highly interconnected nature of the10

grid, a shutdown in one sector has a high probability of rapidly propagating to other sectors. Therefore, the ability to anticipate11

these frequency drops and provide early warnings of the grid instability to system operators is important for the reliability of12

the electrical system, from preventing a transmission line failure to triggering a systemwide power outage.13
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Power system frequency data is essential for understanding the power system dynamics and improving its operation and14

control. Recently, phasor measurement units (PMUs) and frequency disturbance recorders (FDRs) were introduced and installed15

at critical locations in the grid transmission system, providing a massive amount of high-accuracy data. With the rapid increase16

in the number of installed PMUs, extensive research using such data has been carried out. For instance, frequency prediction17

for early situation awareness was performed using multivariate time series models in Li et al. [21] and a space-state approach in18

Dong et al. [10]. Studies of the dynamics and stability analysis of the power system include Yamashita and Kameda [30], Diao19

et al. [8], and Kamwa et al. [17], using autoregressive models, decision trees, and artificial intelligence methods, respectively.20

Evidence showed that system instability results in a substantial increase in the autocorrelation, and variability of frequency21

response was found in Cotilla-Sanchez et al. [6].22

A limitation of the methods described above is that each installed PMU is treated independently, making it hard to generalize23

the conclusions to unobserved locations without any measurements. Having a technique that provides an overview of the process24

throughout the entire grid is vital to enhancing system stability and reliability. In practice, however, only a small subsample of25

the sensors (also denoted as buses) in the power grid network is monitored in real time; and even for the locations where the26

sensors are installed, measurements may be lost because of communication failure between the devices and the central operator27

or because of cyberattacks. Furthermore, spatial predictions are critical during disruption events where measurement data are28

inaccessible, compromising the entire power system dynamic stability.29

Cyberattack effects on smart grids are usually mitigated by using techniques for reconstructing missing data [13, 20, 7]. Since30

the spatial aspect of the problem is disregarded, however, such techniques can restore the data only at monitored locations. To31

extend the findings to new locations, Aminifar et al. [1] proposed the use of a power system dynamic state estimation, where32

the measurements at locations without PMUs were estimated via voltage and current measurements of adjacent buses. Instead33

of relying on the uncertainties of the circuit model, a different approach to the same problem is to use only a measurement-34

based model. Using FDR data for dynamic frequency, angle estimation, and voltage estimation, Bai et al. [2] proposed a purely35

data-driven approach that first describes the correlation between all the different locations using past data during a generation36

trip (also called an event) and then fits an autoregressive model with exogenous covariates (ARX) to predict the response at37

unobserved locations during a second event. This approach has the shortcoming that it relies on data from a similar event that38

has happened in the past, in order to calculate the correlations, and these events are not always available for every location.39

Motivated by a data set with ten observations per second from 70 PMUs in the U.S. Eastern inter-connection (EI), we propose40

and compare two statistical models for simultaneous probabilistic prediction of the frequency response at new buses during an41

event. The first is an ARX model where the exogenous predictors are chosen according to the geographical distance from the42

target location. This model is similar to the ARX proposed in Bai et al. [2] to estimate the frequency and angle in a missing power43

system dynamics. Instead of selecting the exogenous variables based on the correlations, we choose the buses with the smallest44
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distances to the target. As a result, we can predict even at locations that have never had PMUs installed. Because of its compute-45

intense nature, however, the ARXmodel can afford information from only a small number of predictors, thus limiting the spatial46

information to short ranges. Our second model overcomes this restriction by incorporating neighboring spatial information47

through a Gaussian random field with a Matérn covariance function, enabling longer spatial ranges dictated by the data features.48

Both of our models produce predictions that are based only on a subset of the spatial locations and can be calculated in real-time49

at several places simultaneously, once the model fitting and parameter estimation is performed offline. Another application of50

our techniques is related to reconstructing post-event analysis. For instance, spatial predictions are essential for forensic studies,51

which requires a precise comprehension of the power grid at any given location and time. We take advantage of the Integrated52

nested Laplace approximation (INLA) [24] to perform fully Bayesian inference and probabilistic prediction of the frequency53

response.54

While probabilistic predictions have proven to be a prerequisite for optimal decision-making under uncertainty, classical55

methods for analyzing PMU data provide only point predictions, that is, a single prediction value of some future observation.56

Point predictions have the advantage of the intuitive interpretation that a nonexpert can communicate with relative ease. However,57

because they provide no information as to how confident one can be, they are not informative enough for several applications58

that are subject to the inherent uncertainties in the data. The Bayesian approach taken in our analysis provides a predictive59

probability distribution instead of only a point prediction. With the full distribution, we can quantify the uncertainty in the60

predictions and give a summary of the model reliability in terms of quantiles, which is essential to secure the system stability61

and guide operational decisions.62

A significant challenge that arises frommodeling such a complex network as theU.S. EI is the high sampling resolution in time.63

For instance, a large spurious relationship between time series may occur when both are internally highly correlated. In other64

words, the significant correlations between two variables are often due to the history of the individual variables. Therefore, when65

the behavior across the PMUs is similar and the variability in the internal frequency response is minimal, strong correlations66

are observed even at long distances. To deal with this issue, our models contain a linear time trend common to all sites. As a67

result, the residuals from fitting the linear trend to the data encode mainly the spatial correlation that is left between the PMUs.68

Information about the power grid network and the generators’ location can be used to understand and quantify the remaining69

spatial correlations between the different buses. For security and privacy reasons, however, this information is rarely available;70

and models that rely only on the available data to define the correlations have to be used in practice.71

The remainder of this paper is organized as follows. In Section 2 we first present the FNET data and then describe the two72

hierarchical models used for fitting and predicting these data. The prediction performances of the two models are compared73

in Section 3, followed by an analysis of the spatial correlations in the FNET data. Conclusions and discussion about further74

improvements in our procedures are given in Section 4.75
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2 METHODS76

We start by describing the main features of the FNET data and by providing exploratory graphical support for our modeling77

choices, which are detailed in Section 2.1. In Section 2.2, we describe two different hierarchical models for predicting the78

frequency response from the FNET data. We begin with a simpler ARX model, where neighboring information is introduced79

through exogenous variables chosen according to geographical proximity. This model intends to provide a benchmark for the80

subsequent spatiotemporal model, in which a latent Gaussian field describes the spatial correlation with a Matérn covariance81

function and the temporal correlation with an autoregressive structure in time. The Bayesian estimation approach used to obtain82

probabilistic predictions of the frequency response is summarized in Section 2.3.83

2.1 The FNET data84

The power system Frequency Monitoring Network (FNET) is a wide-area and high-precision phasor measurement system oper-85

ated by the Power Information Technology Laboratory at the University of Tennessee. The FNET data uses high dynamic86

accuracy Frequency Disturbance Recorders (FDRs) to produce synchronized measurements of frequency, phase angle, and volt-87

age of the power system at ordinary 120 V outlets. The synchronization is performed by the Global Positioning System (GPS),88

and these measurements are transmitted through an Ethernet connection, giving accurate real-time monitoring of the smart grid.89

The data is essential for power system researchers and operators to understand the power grid dynamics, such as event detection,90

grid control input signals, and early warning of grid instability, which is critical for reducing blackout. Compared with model-91

based simulation, data from FDRs tend to be more reliable because they directly measure voltage and current waveforms instead92

of relying on model accuracy.93

We consider measurements of the frequency response from the FNET data with a sampling rate of 10 samples per second94

at 70 locations in the EI in the United States. The period covered ranges from 2017-08-01 01:00:53 to 2017-08-02 01:00:5295

Coordinated Universal Time (UTC), resulting in a total of 663,598 measurements for each bus. We focus on 200 measures (i.e.,96

20 seconds) from 2017-08-01 21:47:71 to 2017-08-01 22:07:71 UTC, which is the most significant frequency drop observed97

in the available data and when the power consumption peaks along the east coast of North America. The data are illustrated in98

Figure 1 (left), where each curve corresponds to a location in the maps in Figure 2 . A sudden drop in frequency is usually a99

result of a local disturbance that then propagates to other locations, potentially leading to a blackout. The measurements at the100

different buses are clearly related. We see that the changes in frequency are similar everywhere after the event has started, with101

a significant drop at every location during the 20 seconds.102

Figure 1 (middle) shows the empirical spatial correlations (time lag equal to zero) of the frequency response, which is103

calculated by using the 20-seconds of data shown in Figure 1 (left) and at all pairs of locations (see map in Figure 2 (left)).104
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While the spatial correlations at time lag zero between any two places are more than 0.92 even at a distance of 3000 km105

apart, a simple linear time trend removal (common to all locations) captures most of these high correlations, as indicated by106

Figure 1 (right). More important, even after the temporal trend removal, the residuals in Figure 1 (right) show a clear spatial107

pattern, with the strongest correlations still coming from smaller distances. The analysis of the correlations shown in this figure108

will motivate the choices of our models in Section 2.2.109
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FIGURE 1 Left: 20 seconds of the frequency response at the 70 locations in Figure 2 . Middle: Spatial correlations of the
frequency response between every pair of locations at temporal lag equal to zero. Right: Spatial correlations after removing a
common temporal linear trend to the 70 locations.

Next, we investigate the overall relationship between the frequency data at different locations and identify possible clusters110

of regions with similar patterns. Figure 2 shows the spatial distribution of the mean (left) and standard deviation (right) of111

the frequency data from each time series displayed on the left side of Figure 1 . Examples of clusters with high frequency on112

average are located near Oklahoma, Ohio, Wisconsin, and Florida. Locations in the Northeast are the ones with the lowest mean113

values. We notice a heterogeneous cluster in the south of Florida, with somewhat different mean and standard deviation values114

even at short distances.115

2.2 Hierarchical models116

Hierarchical modeling provides a practical and straightforward approach for constructing complex spatiotemporal models by117

defining dependence through marginalization and conditioning, therefore allowing for fast computations. In this section, we118

formulate the hierarchical statistical models for the FNET data described in Section 2.1. We denote by Y (s, t) the frequency at119

location s ∈ s ⊂ ℝ2 and time t ∈ T ⊂ {1,… , T }, where ∣ s ∣= 70 and T = 200 with a temporal resolution of 0.1 seconds.120

For a spatiotemporal process, where a series of measurements are made at multiple locations, dependencies between series121

may exist on a range of scales. We propose using a stationary Gaussian dependence model for describing the temporal and122
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FIGURE 2 Maps of the mean (left) and standard deviation (right) calculated using the 20 seconds from the time series of the
frequency response in the left plot of Figure 1 .

spatial dynamics of the stochastic process with two different latent structures. We start with an ARX, which is a purely temporal123

model, and spatial information is added from neighbors in the form of covariates. Choosing the location and the number of124

neighbors in an ARX model is not trivial. Our second approach captures these dependencies through a spatiotemporal dynamic125

latent process instead of independent temporal models. The resulting separable space-time covariance enables longer spatial126

ranges and requires less training data than the ARX model does.127

The first layer of the hierarchical structure is the data model, in which Y (s, t) is assumed to be Gaussian and independent

conditional on the latent process �(s, t) and the precision parameter �y. The second layer specifies the model for the process �(s, t)

given the parameters �� . The final layer defines a model for the parameters. The different parts of the hierarchical formulation

are
Y|�,�y ∼

∏

s∈s;t∈T

 {Y (s, t)|�(s, t), �−1y },

� ∣ �� ∼ (�� ,Q−1
� ),

(�y,��) ∼ �(�y,��),

(1)

with Y = (Y1,… ,YT )⊤, and � = (�1,… , �T )⊤, where Yt = {Y (s1, t),… , Y (sn, t)}⊤, and �t = {�(s1, t),… , �(sn, t)}⊤, for128

t = 1,… , T , are the n-dimensional data and latent process vectors, respectively. The distribution of the underlying process129

� is assumed to be Gaussian, with mean vector �� and precision matrix Q� . The prior distribution for the parameters �y and130

�� is denoted by �. Hierarchical representations based on latent Gaussian models, such as in (1), are widely used to model131

spatiotemporal data and encompass a broad class of models, including non-Gaussian and nonstationary Rue et al. [25]. In what132

follows, we detail the parts of this hierarchical representation for our problem.133
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For location s at time t, the observations are connected to the linear predictor � as

Y (s, t) = �(s, t) + �(s, t), (2)

where �(s, t) ∼  (0, �−1y ) accounts for measurement error. The term � is where most of the modeling effort is placed in the

hierarchical formulation, since it characterizes the spatial and temporal dynamics of the process. For each s and t, we define

�(s, t) = �0 + �1t +W (s, t), (3)

where the intercept �0 is the same for all locations and time steps and �1 is the coefficient of a linear time trend, which is common134

to all sites. The inclusion of the linear temporal trend is motivated by the descriptive analysis in Figure 1 , which shows that135

most of the correlation between the frequency data at different locations is due to a common temporal dynamic. The residuals136

from removing this trend from the data (see the right plot in this figure) still have some space-time interaction that is captured137

byW (s, t), as it will be described in the following.138

Autoregressive with exogenous input latent process (ARX)139

This model is similar to the approach used in Bai et al. [2] to estimate the frequency observations at missing locations from140

disturbances in the FNET data described in Section 2.1. The exogenous variables in the ARX model were chosen according to141

the empirical Pearson correlation between the target location and the remaining ones. Bai et al. [2] showed results for the two142

and the four most correlated neighbors. Although that approach performed well in the scenarios considered, it relies on having a143

similar event in the past with data collected at the same locations where prediction is desired in order to derive the correlations.144

We propose an ARX model where neighboring information is selected based on geographical proximity to the target. Thus, in145

contrast to Bai et al. [2], it is applicable to new locations where data from a previous event have never been collected.146

We assume here that each location receives a common signal, which is denoted byW . Therefore, we use the notationW (t)

instead of W (s, t) to define the interaction in (3). We focus on the first-order Markov in time, also called an autoregressive

process. This representation is widely used in time-series approaches and parametrized by a single parameter denoted by �,

which represents the correlation of the process with its previous value. A higher-order Markov model can be used, with the

price of increasing the dimensionality of the problem. Temporal information from the closest neighbors is included in the form

of covariates. We write

W (t) =
∣Ns∣
∑

i=1
�iY (si, t) + �W (t − 1) + �(t), (4)

where t = 2,… , T , |�| < 1 is common to all locations andW (1) ∼ (0, {��(1 − �2)−1}, which is the stationary distribution of147

the process. The frequency value at the ith neighbor of the target location s is denoted by Y (si, t), whereas ||Ns
|

|

is the cardinality148
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of the set of neighbors, and �i is the linear coefficient for the ith neighbor at time t. The measurement error term �(t) ∼ N(0, �−1� )149

is assumed uncorrelated withW (t − 1).150

With the first-order-Markov property of W (t), the joint distribution of �(W ∣ �, ��) = �{W (1)}�{W (2) ∣

W (1)},… , �{W (T ) ∣ W (T − 1)} is given by

W ∣ �, �� ∼ (�W ,Q−1
1 ), (5)

whereW = (W1,… ,WT )⊤,�W is themean vector with each element equal to
∑∣Ns∣
i=1 �iY (si, t), andQ1 is the tridiagonal precision

matrix of an autoregressive process of order 1 [23]:

Q1 = ��

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −�

� 1 + �2 −�

⋯ ⋯ ⋯

−� 1 + �2 −�

−� 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6)

Recall that we select the exogenous variables among the set Ns, s ∈ s in (4) based on the spatial separation to the target151

location s. A small cross-validation study showed little improvement after the two most correlated neighbors are used; therefore152

we fix |
|

Ns
|

|

= 2.153

Spatiotemporal dynamic latent process (ST)154

Whereas the ARXmodel in (4) accounts for neighboring information using lagged exogenous variables, here we present a model155

that explicitly considers the spatiotemporal dependence among different buses. Compared with the ARX previously described,156

this model not only enables longer spatial ranges for the correlations but also has the advantage that the fit is done in just one step.157

The first step of ARX is not needed because neighboring information is dictated by the estimated spatial correlations directly,158

and pairwise geographical distances or correlations do not have to be precalculated. Therefore, predictive distributions for the159

ST model can be derived from multiple locations simultaneously.160

A convenient way of introducing space-time correlation is through temporal hierarchical dynamical models. Storvik et al.

[27] showed how to build a time autoregressive spatial model through a convolution kernel

W (s, t) = ∫
ℝ2

ℎ(x)W (s + x, t)dx + �(s, t), s, x ∈ s, t ∈ T , (7)

where ℎ(x) is usually assumed to be a Gaussian kernel. The innovation � is a stationary zero-mean Gaussian field that accounts

for the small-scale dependence. It is assumed to be independent of W (s, t), uncorrelated in time but correlated in space. A

separable space-time model can be formulated as a special case of this representation when ℎ(x) = ��(x), where �(x) is the Dirac
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delta. An attractive property of separability is its representation in a dynamic, autoregressive form. Assuming that W (s, t) ∼

 {0,Q−1
1 (∣ t − t

′ ∣) ⊗ Q−1
2 (‖s − s′‖)}, where ⊗ denotes the Kronecker product, Q1 is the precision matrix for the temporal

model, and Q2 is the precision matrix for the purely spatial process, then one can show that

W (s, t) = ��(s, t − 1) + �(s, t), (8)

where �(s, t) ∼  {0, (1 − �2)Q−1
2 } and Q1 is of the form Q1(|t − t′|) = �−∣t−t′∣ (see Equation (6)). In terms of the spatial

dependence, we assume a Matérn covariance function for Q−1
2 , parametrized in terms of three parameters

Q−1
2 (‖s − s′‖) = �2�

1
Γ(�)2�−1

(�‖s − s′‖)��(�‖s − s′‖), (9)

where �2� denotes the marginal variance.Whereas in the R-INLA parametrization, the scaling parameter � is used; a more natural161

interpretation of this parameter is the range r, defined as the distance at which the observations are nearly independent. The162

empirically derived definition r =
√

8�∕� gives an explicit formula connecting the scaling and the range, which corresponds163

to a correlation of 0.13 at the distance r for all � > 1∕2 [22]. We denote by � the modified Bessel function of the second kind164

of order �, where � is a smoothness parameter. The parameter � determines the mean-square differentiability of the field, and165

it is difficult to identify from data [9]. In R-INLA, the default value is � = 1, and its accuracy for different 2-dimensional data166

problems has been extensively tested, showing to capture a broad class of spatial variation [22]. Examples of fixing � = 1 in167

spatial and spatiotemporal modeling include Cameletti et al. [5] and Ingebrigtsen et al. [16].168

The full covariance matrix is separable and given by the Kronecker productQ−1
1 ⊗(1−�

2)Q−1
2 . Its Kronecker product structure169

makes it efficient to handle from a computational perspective [14]. While realistic representations of the spatiotemporal process170

should respect the fact that interactions between space and time are necessary for dynamic propagation, separable models are171

widespread since they decrease the number of parameters in the covariance matrix, resulting in a substantial reduction of the172

computation time [14]. Besides the computational aspect, recent studies have showed significant chances of model overfitting173

when a high degree of flexibility is imposed in the covariance structure when the information in the data is weak [11].174

Prior specification175

The last step before performing inference with the models described previously consists of defining the prior distributions for the176

parameters (see the last layer of (1)). We use the concept of Penalized Complexity (PC) to construct informative priors reflecting177

our belief on the data [26]. This approach prevents model overfitting by penalizing complex models over a parsimonious one.178

The PC concept is used for the autoregressive coefficient �; the Matérn covariance parameters range r, and the marginal variance179

�� . We define the prior such that P(� > 0) = 0.9, which is motivated by the highly unlikely negative temporal correlation. The180

joint PC priors introduced in [12] are used for r and �� , with probabilities P(r < r0) = 0.5 and P(�� > �0) = 0.5, respectively.181
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We fix r0 = 1700 km, which is half of the domain size and �0 = 0.01.We assume a zero-mean prior Gaussian distribution with182

a small precision for the intercept �0 and the exogenous variables’ coefficients �i’s. A moderately informative prior distribution183

is used for the precision �y, such that the probability of observing a standard deviation larger than 0.01, the empirical standard184

deviation in our data, is 10%.185

2.3 Bayesian inference and prediction186

In this section, we set up the Bayesian framework used for performing inference and prediction with the models described in

Section 2.2. Let � ≡ (�y,��)⊤ denote the vector of all model parameters in (1). The joint posterior distribution of the latent

process � and the parameters � given observations Y (with components Y (i), i ∈ , for some index set ) is given by

�(�,� ∣ Y) ∝ �(�)�(� ∣ �)
∏

i∈
�{Y (i)|�(i),�}

∝ �(�)|Q�|
1∕2�1∕2y exp

[

− 1
2

{

(�⊤ − ��)⊤Q�(� − ��) + �y(Y − �)⊤(Y − �)
}]

,
(10)

where �� andQ� are the mean and precision matrix of �, respectively (1). The posterior distribution of the parameters given the

data, that is, �(� ∣ Y), before normalization can be written as

�(� ∣ Y) ∝ �(�)�(Y ∣ �,�)�(� ∣ �)
�(� ∣ Y,�)

, (11)

where the priors for the parameters �(�) are given in the end of Section 2.2, whereas both �(� ∣ �) and �(y ∣ �,�) are Gaussian187

distributed (see (1)). The denominator in (11) can be easily computed from the joint distribution (10), by ignoring the terms that188

do not depend on �, since Y and � are considered fixed in �(� ∣ Y,�).189

The main objective is to obtain predictions by computing the posterior marginal distributions for the elements i of the latent

field given the data, that is, �(� ∣ Y). Starting from the joint posterior in (10), this task is achieved by averaging over the posterior

distribution:

�{�(i) ∣ Y} = ∫ �(�(i) ∣ Y,�)�(� ∣ Y)d�, (12)

where �(� ∣ Y) on the right-hand side of (12) is computed as in (11). The posteriors in (12) and (11) for the ST and ARX190

models described in Section 2.2 are computed through the integrated nested Laplace approximation approach implemented in191

the R-INLA package (see Krainski et al. [19] for details).192

After the inference is performed, samples of the predictive posterior distribution of the frequency response at location s and193

time t can be obtained by first sampling a set of parameters and then, conditional on these parameter values, sampling from the194

Gaussian distributions arising from the latent process. For each model, we have implemented this simulation procedure to obtain195

5,000 samples of the frequency response at unobserved locations. Values of point prediction are obtained by taking either the196

mean or the median of the posterior samples, depending on the loss function to be minimized [3].197
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3 RESULTS198

We assess the ARX and ST models’ adequacy to predict the frequency response at new unobserved locations. A comparison199

of the performance from the models in Section 2.2 is performed in terms of both point- and probabilistic-prediction skills.200

Moreover, we highlight the cases where spatial information improves prediction. We also discuss the specific instances when201

the models fail to capture the data characteristics, and we suggest how this issue can be addressed when knowledge of the power202

grid is available. Details of the evaluation scheme are described in Section 3.1, and results from fitting our models to the FNET203

data are described in Section 3.2.204

3.1 Evaluation framework205

We show the results to several windows of the dataset described in Section 2.1. Specifically, we compare two different scenarios.206

We first divide the entire day worth of data into 4120 non-overlapping windows of 20-seconds. The first scenario comprises the207

windows with the most extreme drops. These windows are found by fitting a linear model �0+�1t to each window, and selecting208

the 20 the most negative estimated �1’s. The second scenario is a random sample of 50 windows. While the first scenario intends209

to compare the models in the case of a disturbance, the second deals with the bias in pre-selected samples. The randomness210

captures how the models perform overall throughout the dataset. The scores for each model will be shown separately for the two211

scenarios in Section 3.2.212

For each scenario and each selected window, we perform location-specific leave-one-out cross-validation. The data in which213

window are split such that the training set consists of the 20-second time series data from all the locations except the bus where214

prediction is desired, which is the testing set. Both the training and testing sets comprise 20 seconds of the frequency response,215

equivalent to 200 time points, which is a typical length of a generation trip [2]. In total we fit each model 4900 times, with data216

from 70 windows and 70 different training sets, and in each case we predict the entire 20-second window at the location left out217

during estimation. The forecast performance is obtained by combining the estimates from the 4900 datasets.218

To speed up computations, we parallelize the code using the PARDISO sparse library for fast numerical matrix computations219

[18] with 10 INLA threads on 10 cores. The optimization relies on different processors that calculate different parameter sets.220

The parallelization speeds up computation considerably, so that each evaluation takes less than a minute.221

3.2 Prediction comparison222

In this section, we show the results from fitting the ARX and the ST models described in Section 2.2 to predict the frequency223

response at a new location from the FNET using the framework outlined in Section 3.1. In addition, we introduce a benchmark224
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method, which we denote by Neighbor Mean, such that the prediction of the frequency at location si and time t, i.e. Y (si, t), is225

defined as ŶA =
1

N−1

∑

j≠i Y (sj , t), the average of the frequency among the all but the i-th location at time t.226

The benchmark Neighbor Mean can only provide point predictions, which is assessed using the root mean squared error227

(RMSE) and mean absolute error (MAE). Probabilistic predictions are essential in decision-making problems, and we show228

results in terms of predicted quantiles with reliability diagrams. The MAE, RMSE, and reliability diagrams are the combined229

results from all the 70 sites used in our leave-one-out spatial cross-validation at each window.230

Figure 3 shows examples of four predicted frequency time series from the ARX and ST models at different locations, respec-231

tively numbered 1, 2, 3 and 4 in Figure 2 . Location 1 is in New York state (upper left plot in Figure 3 ), location 2 in Florida232

(upper right plot in Figure 3 ), location 3 in Tennessee (lower left plot in Figure 3 ) and location 4 in Minnesota (lower right233

plot in Figure 3 ). The black lines in this figure show the actual frequency data, whereas the shaded areas correspond to the234

95% central interval of the predictions from the ARX model (green) and the ST model (red). The ST model outperforms the235

ARX for all four locations, and especially at peaks at roughly 5 and 15 seconds for the disturbance in New York, with the 95%236

confidence interval always covering the actual observations for model ST. For both models, the 95% confidence intervals for the237

predictions in Florida do not cover the true value for most time points. Surprisingly, the models are not able to predict well at238

this location, and, in fact, the predictions are shifted by around one or two seconds from the actual values. In the next section,239

we explore further the reasons for and the implications of the uncalibrated predictions generated by our models at this specific240

bus, which we call the target location.241

Calibration is critical in practical applications and is assessed here by using a reliability diagram [15]. To construct the242

diagram, we compute the proportion of times that the nominal coverage from the predictive distributions of both models matches243

the actual observations. For a calibrated prediction, it is expected that a nominal proportion � covers the observations �% of the244

time, which would result in points in the reliability diagram aligned to the diagonal. Reliability diagrams with nominal quantiles245

from 5% to 95% in steps of 5% for the ARX and ST models are presented in Figure 4 . This figure’s left plot corresponds to the246

first scenario, where the windows with the most massive drops are selected, and the right side is for the second scenario with247

the randomly selected windows. In both scenarios, the predictions by model ST are better calibrated than those of the ARX248

model, with points close to the diagonal for most quantiles. The average time for obtaining inference and predictions in a single249

processor Intel Core 8-Core i9/2.4 GHz machine with the ARX and ST models are 12 and 59 seconds for the first scenario and 9250

and 63 seconds for the second scenario, respectively. Moreover, because INLA uses the mesh nodes for fitting spatio-temporal251

models, the spatial dimension has less impact on the models’ running time. A small experiment showed that our models scale252

reasonably well with the time window length, inference, and prediction using 3000-time points (i.e., 5-minutes of frequency253

data) and the ST model, taking around 17 minutes on the same machine.254
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FIGURE 3 Examples of the predicted frequency response during a 20-seconds disturbance at four different locations: New
York (left, upper) and Florida (right, upper), Tennessee (left, lower) and Minnesota (right, lower). The RMSE and MAE at
these four locations are 0.0008, 0.0016, 0.0012, 0.0011 and 0.0004, 0.0010, 0.0009, 0.0008, respectively, for the ST model and
0.0011, 0.0026, 0.0014, 0.0016 and 0.0004, 0.0014, 0.0011, 0.0013 for the ARX model. Point-wise 5% and 95% quantiles of
the predictive distributions are shown as the green shaded area for the ARX model and red for the ST model. The solid black
curve is the true frequency disturbance.

To complement the probabilistic prediction evaluation in Figures 3 and 4 , we assessed the point prediction with RMSE255

and MAE values. The RMSE values are obtained as {Y (s, t) − Ŷ (s, t)}2, where Y (s, t) is the frequency response at location s256

and time t, whereas Ŷ (s, t) is taken as the mean of the predicted posterior distribution of Y (s, t), since the RMSE is a quadratic257

loss function [4]. Similarly, the MAE values are computed as MAE(t) =∣ Y (s, t) − Ŷ (s, t) ∣, where Ŷ (s, t) is the median of the258

predicted posterior distribution, as the cost function of the MAE is symmetric and linear [4].259

Figure 5 presents boxplots of RMSE in the left plot and MAE in the right plot from the predictions given by the ARX and260

the ST model in each scenario (drops and random). Windows with the most significant drops are shown in red, and the random261

samples of the windows are in green. When comparing the three models, we can see that Model ST has a superior performance262
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FIGURE 4 Reliability diagrams of the predicted frequency response from the ARX (green) and the ST (orange) models for the
20 windows with the largest drops (left) and 50 randomly selected windows (right). In both scenarios, the diagrams are calculated
using the combined prediction results from the 70 sites used in our leave-one-out spatial cross-validation at each window.

concerning RMSE and MAE values, as well as in both scenarios. We find that the random samples have a lower variance for263

all three models, indicating that extreme drops’ predictions are less consistent than for other frequency conditions. The largest264

MAE and RMSE values for the ST and ARX models, correspond to the predictions in Florida (see upper left plot in Figure 3 ).265

The conclusion for point predictions is in agreement with the conclusion for the reliability diagram on probabilistic predictions,266

with better results for the ST model. The south of the U.S. is known to suffer from under-generation. Therefore, it depends267

highly on generators from nearby regions, explaining the high spatial dependence at longer distances that are not well captured268

by classical spatial statistical models. Table 1 displays the mean RMSE and MAE values for models NeighborMean, ARX,269

and ST according to the two considered scenarios. The relative differences (in %) in RMSE and MAE values from the ARX and270

ST models with respect to the NeighborMean are shown between brackets. For instance, in terms of RMSE and for the scenario271

with the largest frequency drops, the ST model improves the NeighborMean by 9.5%, whereas the ARX worsens it by 2.3%.272

Scenario NeighborMean ARX ST

Drop RMSE 1.262 1.291 (-2.3%) 1.142 (9.5%)
MAE 0.917 0.932 (-1.6%) 0.804 (12.3%)

Random RMSE 1.223 1.231 (-0.7%) 1.092 (10.7%)
MAE 0.889 0.888 (0.1%) 0.772 (13.1%)

TABLE 1 Mean skill scores (RMSE and MAE ×1000) across all sites and broken down by scenario. The best scores are high-
lighted in bold. Between brackets are the relative differences (in %) in RMSE andMAE values with respect to theNeighborMean
model. Negative values indicate a worsening from the NeighborMean model.
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FIGURE 5 Boxplots of the RMSE (left) and MAE (right) for the 20 windows with the most extreme drops (orange) and 50
randomly selected windows (blue) from models ARX, mean of the neighbors, and ST. Each boxplot is composed of the results
from the 70 sites used in our leave-one-out spatial cross-validation, times the number of windows. The ST model produces the
smallest RMSE and MAE values.

3.3 Analysis of the spatial correlation273

In this section we investigate further the predictions from Florida (see the right plot of Figure 3 ), since this is the worst fit from274

all models. Whereas the predictions from New York, on the left plot of Figure 3 are close to the truth, predictions for Florida275

are shifted from the true values. Whereas Florida example shows that the models described in Section 2.2 do have limitations276

for predicting power grid frequency, it is clear that the ST model is able to provide sensible results and it overall outperforms277

both the simple neighbor average and the ARX models (see Section 3.1. Furthermore, if we had further information about the278

grid, we could improve our method.279

We investigated the reason for this shift by looking at the time series of the frequency response during the event at the target280

location as well as its closest neighbors. The target location is represented with the number 4 on the maps in Figure 2 , and281

its corresponding frequency response is shown as an orange dashed line in the time series in Figure 6 . The nearest and most282

correlated neighbors to the target are labeled with 5 and 6 in Figure 2 and have time series of frequency data plotted with dotted283

dark blue and solid yellow lines, respectively.284

A shift of about one second in predictions from both models on the right-hand side of Figure 3 is also seen in the time series285

with the dotted dark blue curve in Figure 2 . The covariance structure in (9) can explain this shift in predictions, where locations286

close by are assumed to have a higher correlation than those farther apart. In other words, the proposed models give more weight287

to the sites nearby and ignore the unobserved generator network from the correlation structure, which can be unsuitable for288

certain cases such as the one in Florida shown in Figure 2 .289

The empirical correlations between the frequency data at the target location and these neighbors are calculated after removing290

the linear temporal component (see Figure 1 ). We notice that the two closest neighbors have a relatively weak relationship to291
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the target, with values equal to 0.66 and 0.62. On the other hand, the frequency values from the two farther neighbors are more292

similar to the target location, with correlations values around 0.95.293
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FIGURE 6 Time series of the frequency response at three locations in the south of Florida marked with numbers 4, 5, and 6
on the maps in Figure 2 . The time series in orange dashed line is number 2 in Figure 2 , the dotted dark blue line is number 5,
and the solid yellow line is number 6.
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FIGURE 7 Left: Multitaper spectrum estimates of the residuals from removing a linear trend from the three time series in
Figure 6 . Right: Multitaper magnitude-squared coherence (MSC) curves between the curves on the left plot. The solid yellow
represents the MSC values between the dashed orange curve and the solid yellow, and the dotted dark blue is the MSC curve
between the dashed orange and the dotted dark blue lines. The MSC curves show an example where the geographically closest
neighbors are not the most correlated with the target.
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To substantiate these differences, Figure 7 (left) shows the multitaper spectrum estimates of the residuals after removing a294

linear trend from the three time series in Figure 6 . In contrast to the commonly used Fourier transform, this method performs295

spectral density estimation of a time series without assuming that the coefficients are well described by the amplitude and the296

phase of the frequency component. Instead, the multitaper method reduces estimation bias by averaging over several tapered297

spectra, with each taper being pairwise orthogonal to all other tapers and therefore independent estimates of the underlying298

spectrum [28].299

Recall that our sampling frequency in seconds is 10. The Nyquist rate is the highest frequency used to visualize a spectrum300

estimate, and it is half of the sampling frequency, namely, 5 Hz (see x-axis in Figure 7 ). The estimated spectrum is shown as301

dark blue dots in the left plot of Figure 7 ) and contains numerous harmonic oscillations with peaks at different frequencies302

that stand out from the other series. Peaks in multitaper spectra are known to be approximately square-shaped, with a particular303

width connected with the number of tapers used [28], as also shown in the spectrum estimates in Figure 7 . The right plot in this304

figure shows the magnitude squared coherence (MSC) values. The solid yellow line is the MSC between the dashed orange and305

the solid yellow curves on the left-hand side, and the dotted dark blue line is the MSC between the dashed orange and the solid306

yellow time series. The MSC values are computed by using a jackknife technique, and they are always a value between zero and307

one, equivalent to the cross-correlation between two time series [29]. This figure shows strong oscillations at low frequencies308

common to all series, as well as oscillations at 1.2 Hz, 2.4 Hz, and 3.0 Hz for the dotted dark blue line. In terms of seconds, the309

peak at 1.2 Hz corresponds to an oscillation with period 1/1.2 = 5/6= 0.83 seconds, for example. From these three instances,310

we notice that the two series representing farther-away locations (dashed orange and solid yellow) have larger MCS values than311

those that are placed closer together (dashed orange and dotted dark blue).312

Because the closest neighbors are not the most correlated with the location we want to predict, we have evidence that models313

based solely on geographical proximity are not the most appropriate to describe power grid data. In a power grid system,314

the measurements at different locations have underlying relationships that depend on how the network is designed and on the315

distribution of generators. Ideally, information about the grid network would be used to learn how to define a more suitable316

distance metric. Unfortunately such information in not available to us at this time. A necessary condition for building a new317

model is that the Matérn covariance in our ST model (see (9)) must result in a valid autocovariance function concerning this318

new metric. Nonetheless, grid information is often unavailable, and it is worth pursuing distance-based approaches as we did in319

this work. We also note that the Florida example we highlighted was the exception and not the rule; for most sites we observed a320

behavior close to the New York example in Figure 3 where the space-time model did a good job in predicting the unobserved321

response.322
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4 DISCUSSION323

We presented model-building strategies for predicting the frequency response during a disturbance in power grid systems at new324

locations, which takes into account the correlations between different buses across space and time. Our case study is based on325

data from the FNET/GridEye, a wide-area frequency measurement network. We used a Bayesian framework where the model326

components are specified hierarchically so that conditional independence applies and computations were feasible. The Bayesian327

framework makes it possible to simulate from the posterior distribution of unobserved data points and obtain not only point328

prediction but also quantiles, which are essential for assessing calibration.329

We proposed two types of interactions within the hierarchical formulation describing the spatiotemporal dynamics of the330

frequency response. In both cases, the linear predictor is composed of an intercept that is independent across location and time331

and a linear time trend that is common to all sites. Two types of interactions are introduced through latent Gaussian processes to332

model the correlations that are left. We started with an autoregressive with exogenous input model with neighboring information333

in terms of lagged frequency response. This model was inspired by the work in Bai et al. [2], where an ARX based on correlations334

from previous data was used to predict disturbances at unobserved locations. This approach avoids the issue caused by using335

distances to model correlations but relies on the assumption that there was a similar event in the past and therefore cannot predict336

at new unobserved locations.337

In the second model, space-time correlations were introduced for the underlying process, which varies in time with first-338

order autoregressive dynamics and has spatially correlated innovations given by a zero-mean Gaussian process with Matérn339

covariance. Although including exogenous input in the autoregressive model enables strength from neighbors to influence the340

predictions, the spatiotemporal model improved the predictive performance by letting the data dictate the length of the spatial341

correlation. We believe that a more dense spatial data set could substantially benefit from having the explicit spatiotemporal342

correlations in the model.343

Our approaches result in calibrated predictions; however, the ST model outperformed the ARX model in terms of point344

and probabilistic predictions. We noticed that both models do not always capture the underlying space-time correlation; this is345

especially true when there is a weak dependence with locations nearby compared with those farther apart. We conjecture that346

geographical distances are not sufficient to represent the dependencies across locations, given the complex power grid structure347

driving the underlying process. The case study shows that locations with the smallest distance to the target are not necessarily348

the most correlated. A more appropriate distance metric could be used if the information on the unobserved grid network is349

available.350

It has been demonstrated that the proposed ST model produces predictions that are a non-negligible improvement on com-351

petitive benchmarks in terms of several skill scores during both events and normal operations. The conventional benchmark352
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consists of the average frequency response among the neighboring location. However, it does not offer probabilistic information353

required for optimal decision-making under uncertainty, hence the move to more sophisticated approaches.354

Building on the work presented here, future studies may involve incorporating information about the grid structure, such355

as distance to generators, into the spatiotemporal correlations in our model. If this information is available, one could build a356

distance informed by the grid characteristics, or something like that a Matérn model with a different distance from the Euclidean357

could be used to model the frequency response at the various locations. A challenge with using a new metric is that the Matérn358

model should still give a valid (i.e., positive-definite) autocorrelation function concerning the new metric. Another interesting359

problem that can improve predictions is to consider whether the grid structure should affect the autoregressive coefficients since360

the evolution in time might also depend on the dynamic of the power grid system.361
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