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ABSTRACT ri Lane change rate of the ego vehicle over time.
Autonomous vehicle technology provides the means to opti- uyy Commanded longitudinal acceleration of the ego vehicle.
mize motion planning beyond human capacity. In particulse, u, Commanded lane of the ego vehicle.

problem of navigating multi-lane traffic optimally for trigime,
energy efficiency, and collision avoidance presents chgée
beyond those of single-lane roadways. For example, theveast
hicle must simultaneously track multiple obstacles, theatile
region is non-convex, and automated vehicles must obeglsoci
expectations. Furthermore, reactive decision-making reault

in becoming stuck in an undesirable traffic position. This pa Iven Vehicle length.
per presents a fundamental approach to these problems usingWen Vehicle width.

X Vehicle state vector.

T Time constant between commanded and actual longitudinal
acceleration.

& Damping ratio between commanded and actual lane.
o, Natural frequency between commanded and actual lane.

model predictive control with a mixed integer quadraticgnam w; Lane width.
at its core. Lateral and longitudinal movements are cooatiéal J Obijective to minimize.
to avoid collisions, track a velocity and lane, and miniméze g; Slack variable numbejrfor soft constraints.

celeration. Vehicle-to-vehicle connectivity providesraviiew of
surrounding vehicles’ motion. Simulation results show &&/9
reduction in congestion-induced travel time and an 80% de-
crease in congestion-induced fuel consumption comparead to m;
rule-based approach.

pj Penalty on slack variable numbgfor soft constraints.

N Prediction horizon length in timesteps.

Slope of maximum acceleration constraini in
acceleration-velocity space.

b; Acceleration offset of maximum acceleration constraint

NOMENCLATURE ® The maximum deviation, in units of lane widths, for a vehicle
s Longitudinal position of the ego vehicle along the road. to remain wholly in a lane.
v Longitudinal velocity of the ego vehicle along the road. M Alarge value used in the Big M method to render constraints
a Actual longitudinal acceleration of the ego vehicle along t inactive.

road. lw Binary variable indicating whether the ego vehicle occapie
| Actual lane of the ego vehicle. Fractional values indicdte o lanew.

centerline positioning. B Binary variable for disjunctive constraints.

ko Move blocking factor.

*Address all correspondence to this author. 1 Copyright © 2018 by ASME



INTRODUCTION

The topic of automated ground vehicle motion planning
stands poised to alter the day-to-day lives of transportatsers.

In 2015, the typical U.S. commuter lost 42 hours delayedaft tr
fic according to the Texas A&M Transportation Institute’s- Ur
ban Mobility Scorecard |1]. Rather than replicating thisfpe
mance, automated driving could instead strive for supegrum
results through optimization. The problem of optimizingdo
gitudinal motion to alleviate traffic jams and/or reducel fuse
through drag reduction is an important topic that has recka
great deal of research attentiori [2,3, 4], but many roadsdiirg
the majority of the U.S. Interstate Highway System haveadtle
2 lanes. In fact, the site of the recent pedestrian fatalitgliving
an experimental self-driving vehiclel[5] occurred on suchad-
way. Optimal use of the lateral dimension provides an aoiaiti
avenue to reduce speed fluctuations and avoid obstaclds)dea
to improved efficiency, safety, and travel time.

The technology to track a given path was famously demon-
strated in events like the DARPA Grand Challenge [6]. Com-
mercial lane-keeping [7]8] 9] and lane-changing systerd$ [1
have proved the commercial viability of relevant motion oh
Such commercial systems typically rely on sensor data igetel
an immediately collision-free trajectory. However, thevelep-
ment of data-driven prediction models and the use of fachieg
information from connectivity could enable a more antitiya
approach to 2D motion planning. In the off-road space, gaic
tive optimal control has been applied to path planning toomby¢
avoid obstacles, but also to accomplish more advancedtkrng-
objectives such as avoiding geographic traps [11]. Rebeesc
have recently applied model predictive control (MPC) to tinul
lane road driving. Weiskircher et al. [12] avoided obstaeléh-
out directly selecting a lane by approximating them as #dlip
constraints. Kamal et al. [13] proposed a lane controllat ta-
duced computation time by only considering one lane change
during prediction.

The main contribution of this paper is a method of anticipa-
tively coordinating longitudinal control and lane switagiwhile
considering the possibility of multiple future lane chasbg the
host. To comply with socially-accepted traffic rules, thegomsed
controller only issues discrete lane commands. Mixed &iteg
quadratic programming (MIQP) is employed to handle the mult
input multi-output (MIMO) control problem with indicatoravi-
ables and disjunctive constraints. Schouwenaars et dlufet
mixed integer linear programming (MILP) for off-road patlap-
ning. Mukai et al.[[15] applied similar MIP techniques to an o
road obstacle avoidance problem, but the system was skeaulat
using a single obstacle and does not explicitly considereis
lane expectations. Furthermore, the Mukai et al. study did n
consider the possibility of a variable goal velocity. In @iloh to
addressing these issues, this paper will also discuss mitpehto
reduce computation time and compare results with a ruleébas
algorithm.

Subsequent content is organized as follows. First, the ar-
chitecture of the proposed system is introduced. The magleli
approach is then presented before control design is disduss
in detail. Control-related topics include the objectivadtion,
standard constraints, implementation of lane indicatoiatdes,
disjunctive collision-avoidance constraints, compuatatime re-
duction, and parameter selection. Simulation results shitw
performance in a multi-vehicle scenario with vehicle-thicle
(V2V) connectivity and one slow-moving obstacle. Finatlye
paper will conclude by summarizing findings and anticipgtin
future research on the topic.

ARCHITECTURE

The proposed system is designed for a connected and au-
tomated car-like vehicle with control of its axle torqui& via
powertrain and brakes and control of its orientation thtotrge
front wheel steering angle. It envisions a hierarchical scheme
as shown in Figurgl1 where a routing algorithm determines the
desired lanés and velocityves While sensors and vehicle-to-
everything (V2X) connectivity provide the ego vehicle st&j
and surrounding vehicle intentios. An MPC module plans
the vehicle’s commanded longitudinal acceleratiprand lane
up over a finite future horizon. The latter module is the focus of
this paper. It handles the tasks of smoothing the vehialejed-
tory, maintaining the desired velocity, placing the vediiti the
required lane for navigation, and avoiding collisions.

After the MPC determines the optimal trajectory, it would
pass its commanded acceleration and lane to low-level motio
controllers. One of these controllers would use the poartr
and brakes to deliver the commanded acceleration and tlee oth
would manipulate steering angle to track the lane. It is poss
ble to use standard path tracking techniques, for examplte, p
pursuit [16], to accomplish this. Because such issues ezady
considered in the MPC module, the motion controller woultl no
need to consider collision avoidance or other higher-lagHs.

MODELING

Because of the geometric feasible region’s non-convexity
and the expected use of integer-valued decision variabtes;
putation time is a potential challenge for this controliEhne hi-
erarchical approach of the previous section sacrifices lile a
ity to optimize lane change rate to simplify the model used fo
MPC. Because the controller is designed to perform comiteta
lane changes at higher speeds, the following linear modrsiad
where the longitudinal and lateral dynamics are decoupled.

s 010 0 O s 0 0

v 001 0 O v 00|
—lal=|00-2 0 o a+10[1}(1)
dt | 000 0 1 || 0 o | L

N 00 0 —w? —28wn| |1 0 Ku?
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FIGURE 1. SCHEMATIC OF THE PROPOSED SYSTEM WITH
HATCHED REGIONS HIGHLIGHTING THE FOCUS AREA.

TABLE 1. CONTROL MODEL PARAMETERS.

Parameter Unit Value
T sec 0.275
g — 1
Wn rad/s 1.091
K — 1
lveh m 4.52
Wyeh m 1.9
W m 3.7

Equation[(1) considers the vehicle’s longitudinal motisn a
a double integrator with time constanbetween the commanded
and actual acceleration. The lateral positipexpressed in units
of lane widths, is modeled as a critically-damped secomttior

system where the actual lane follows the commanded lane with
a static gairkK of 1. This is meant to model a naturalistic lane
change trajectory. The parameters of TdOle 1 are used in this
paper. Figurél2 depicts the responsetd a unit step iru; and

that ofl to a unit step iru,.

The road area that each vehicle occupies is approximated as
a rectangle of fixed lengthen and widthwyep. Each lane also
has a fixed widtlw;. Table] lists these geometric parameters.
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(a) Long. Response (b) Lat. Response
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FIGURE 2. LONGITUDINAL ACCELERATION AND LANE PO-

SITION STEP RESPONSES TO CONTROL INPUTSAND up, RE-
SPECTIVELY.

OPTIMAL CONTROL

The motion planner must balance the objectives of smooth
driving, maintaining a target velocity, and seeking theirdes
lane for navigation or etiquette. Furthermore, it must eradf
these goals while avoiding collisions and operating witme-
chanical and legal limits. In order to take advantage of any
available preview information from V2X or prediction model
an MPC framework with both continuous and integer-valued de
cision variables is used. This section will discuss the dbje
function and standard constraints first. The subsecticatSoi
low concern the use of integers to indicate lane occupatioh a
expresOR logic for collision avoidance. Move blocking helps
reduce computation time and the blocking scheme is outleed
fore listing the parameter values for simulation.

Objective

The quadratic cost of EqnlJ(2) is adapted from the authors’
prior car-following work in[17]. As in[[17], the commandedd
actual accelerations are penalized after multiplicatipthle tun-
ing parameteq,. Unlike car-following, multi-lane planning gen-
erally involves switching between following and free-flotates
during theN-step prediction horizon. Therefore, Eqnl (2) penal-
izes velocity tracking error in lieu of following distanaatking
error. With an appropriately set velocity reference, thisit en-
courages short travel times. Finally, the actual and conti@en
lane tracking errors are penalized. Like accelerationgaitt
and lane error terms are weighted by the tuning parameters
andq respectively. The indexin Eqn.[2 denotes the prediction
timestep.

J= v (V(N) = Vret (N))? + Gaa® (N) + G (1 (N) — et (N))?
N-1
+ 3 | = Vier (1)) + g (U () + @2 ()

@)
(U2 1) = lret 1))+ (1 () et (1))?)]
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Soft constraints on states ensure feasibility. The rewplti  TABLE 2. REQUIRED PERFORMANCE OF LANE INDICATOR

slack variables add to the final cdstas shown in Eqn[{3). This ~ VARIABLES.
cost is minimized in the MIQP.
Scenario W Value o Value
6 Ego vehicle wholly residesinlane 1. 1 0
Ja=3+3 pjg; 3) o
=1 Ego vehicle is between lanes1and 2. 1 1
Ego vehicle wholly residesinlane 2. 0 1

Standard Constraints

Several of the required constraints fit within a standard lin
ear MPC framework with continuous variables. Equati¢n,(4a under certain circumstances. For example, consider Haa). (5
@n), (4¢), [44),[(4e), an@ (4f) relate to longitudinal nooti Only whenpy = 0. If the ego vehicle resides in lane 1, thatis; 2— 9,
forward velocity beneath a constant maximum speed limikis the inequality is violated. However, if the decision valém =
permitted. Acceleration and its command obey a constant min 1 then the inequality is satisfied for sufficiently lafde Thuspy
imum ugmin (Maximum braking) and a piecewise-linear maxi- is constrained to equal 1 when the ego vehicle resides inlane
mum as a function of velocity. Further detail on these caiirsts as specified in Tablg 2.
can be found in [17].

— =M < —(2-3) (5a)
0—&2 <V < Vmax+ €3 (4a) |+ M <M+2—35 (5b)
U1 > Ugmin (4b)
ui < mv-+by (4c)
Uy < MoV 4 by (4d) [ — M <149 (6a)
—lI+Mp<-1-06+M (6b)
a<mv+b;+¢g (4e)
a<mpyVv+by+eg (4f)
1, k2 € {0,1} (7)
Imin—0 < U2 <lmax+0 (49)
i — 8 — €2 < | < It 34 5 (4h) Collision Avoidance

Consider a one-dimensional path with a single obstacle. The
(4i) drivable region in this case consists of the positions thate#

i>0 Vij . : L
&= J ther in front ofORbehind the obstacle, making it fundamentally
non-convex. This constraint can be formulated for integer p

When combined with an integrality constraint ag Eqn. gramming as follows.
(4g) limits the lane command to the roadway'’s usable langs
:ir:)rrc])ughlmax. Egn. [4h) does the same for the actual lane posi- $> Smin—M (1—B) (8a)
Lane Indicators S Smax+MP (8b)

Focusing on a roadway with two lanes per direction, this B e {0,1} (8¢)

section develops indicator variables to flag whether or raha
is occupied. These binary-valued variables will later etite
collision avoidance constraints to render them inactitkéfego
vehicle does not occupy the relevant lane. The indicataralgh
have the specified values in the scenarios listed in Table (2)
The following constraints result in the desired lane inttica
values. Using the Big M method [18], the indicators introgluc
slack in lane position constraints that are otherwise sifda $S>Snin—M(1-B)—-M(1—p) (9a)

In a multi-lane scenario, the constraints of Eda. (8) should
only be active if the ego vehicle occupies the lane in quastio
The lane indicator variablgg are introduced to deactivate the
constraints when appropriate.

4 Copyright © 2018 by ASME



S< Smax+ MB+M(1—p) (9b) A

k XOOXOOXOOX OO
Applying Eqn. [9) to lanes 1 and 2, adding a slack variable k+1 X OO X OO X OOX 0]
€, and converting to maximum form results in the following eon k+2 X OOXOOX OO0X 0]
straints for lané\ and obstaclé&. k+3 XOOXOOXOOX OO
Real Ti >
—S+MB+Mpy, < 2M -+ &1 (10a) 5 eatlime Cau
&AULAUZ
CMBs - M < M 10b «k XOOROOXROOXKOO
S=MB M < Stk M+ 51 (oD 1 DOXOOKOOKOOK
_ _ | 2 OXOOXOOXOOXO
Each potential surrounding obstacle that is reachabledy th k+3 YXOOXOOX OOX 0
ego vehicle at a given prediction step is allocated an eléfoen
each lane in the constraint matrices. If the surroundingcleh Real Time >

will occupy the lane during that step’n\,ﬁn and §\§ax are finite.
Otherwise, they are passed to the solver as infinite to rehder
constraint inactive.

FIGURE 3. COMPARISON OF (A) STANDARD INPUT BLOCK-
ING WITH (B) THE MULTI-TIMESCALE BLOCKING SCHEME
USED IN THE LANE SELECTION ALGORITHM.Au INDICATES
Move Blocking AN ALLOWED CHANGE IN THE CONTROL INPUT.

Mixed integer quadratic programs are NP-hard and the deci-
sion form is NP-complete [19]. Therefore, care must be taken TABLE 3. CONTROLLER PARAMETERS FOR MICROSIMULA-
that the problem resulting from the proposed formulation ca  TION.
be solved sufficiently quickly in practice. A later sectiofilw
show that computation time increases severely with resjpect

the length of prediction horizon and therefore the numbefesf Parameter Value Parameter Value

cision variables. However, a long horizon on the order of 10s N 25 M 104

is needed to predict through multiple lane changes and & shor

timestep is desirable to respond quickly to disturbanceevev Ga 300 0 0.1081

blocking offers a useful means of reducing the number ofelegr v 10 Vinax 36m/s

of freedom in the optimization while maintaining the cofiggs

predictive capability. a 10 Upmin  -8.5M)s’
Move blocking constrains blocks of consecutive control in- kp 3 my 0.285s1

puts to be equal to one another. Standard input blocking does

so in a fixed pattern. An example of this might allow a move at At 0.4s by 2.0nys

stage 0, but at stage 1 the move is held and a change is only al- p1 107 mp -0.1208s1
lowed at every other stage. As Cagienard et al. note in [Bg, t

strategy can significantly degrade closed-loop perforradres P2-6 10° bz 4.83nys?
cause the input sequencekat 1 cannot be produced by shifting

the input sequence & Similarly to Cagienard et al., the pro- ) L )
posed controller solves this problem using a time-varyiiogh- model guides the prediction time. Then, the timesigplock-
ing factorky,, and prediction horizomN are balanced to allow

ing scheme. Figurgl 3 depicts the move arrangement used here. L ) i .
The effect is thati; and the prediction model operate on a short generous: computanon time margin on ayeragg (F@Jre 8)h Wit
timestepAt andu, operates on a longer timestep equakgft the v_elocny weighty fixed, the acceleration weight, is set _to
whereky, is an integer. This allows the controller to react quickly obtain an occupantTaccep_tabIe_ peak free-flow accelerafon
to a disturbance using the brakes or powertrain while reduci @Y. the lane tracking weigly is used to reduce lane change
the number of integer-valued degrees of freedom, all within busyness while allowing passing maneuvers. Table 3 ligs th

same coordinated optimization. selected values.

Parameter Values BASELINE RULE-BASED ALGORITHM

Proper parameter selection is important to achieve the de- A reactive rule-based algorithm assuming no connectisity i
sired closed-loop performance. The time required to cotaple presented as a baseline. This controller uses the Intetligyéver
approximately 3 lane change maneuvers according to the plan Model (IDM) [21] for longitudinal control. The IDM computes

5 Copyright © 2018 by ASME
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FIGURE 4. TRAFFIC FLOW DURING A SAMPLE SIMULATION
CASE.

a desired following distancéyes that results in an acceleration
command using the ego vehicle’s states, the precedingle&hic
position, and the preceding vehicle’s relative velodity The
safe time headway,, minimum distancely, acceleration expo-
nentd,;, maximum accelerationy, and desired deceleratidn
from [21] are used in the equations below to determine

dges= do+ max<0,rhv+ (12)

v Av >
v4aghg

wnf (@) (=52)] o

The lane change command is calculated using Algorithm 1.
If during the course of car-following the ego vehicle’s &ty

Algorithm 1 RULE-BASED LANE SELECTION.
1: procedure DETERMINE LANE COMMAND

2: Itol < 0.1

3 vtol + 3m/s

4: ds< 6m

5: if sy >s—Ily—ds AND sy < s+I,+dsthen
6: vacant« FALSE

7: else vacant«— TRUE

8:

o: if | —1] <Itol OR |l —2| < Itol then

10: if || —lre| > Itol then

11 if no target vehicle OR ty> v— vtol then
12: if vacantthen

13: if uu(k—1)=1 thenreturn2
14 else return 1l

15: else returnuz (k—1)

16: else returnup (k—1)

17: else

18: if v<Ves—vtol AND u <0then
19: if vacantthen

20: ifup(k—1)=1 thenreturn2
21 else returnl

22: else returnuz (k—1)

23: else returnup (k—1)

24:  else returnuz(k—1)

in 4! = 24 total cases. A slow-moving open-loop vehicle that
always remains in lane 1 precedes the CAVs and moves at a ve-
locity of approximately 4.5m/s. Real traffic elements thast
approximates include disabled vehicles, constructiorhimacy,

and farm equipment. An animation visualizes the simulagd v
hicles’ motion [22]. Figuré¥ shows a sample frame of one such
animation during a passing maneuver.

Results were analyzed over a distance intebval 2300 m,
which each of the, vehicles running either algorithm type com-

drops from its reference by a small amount, a lane change out pleted in all cases. Assuming that all vehicles travel ait {hre-

of the reference lane is triggered. The ego vehicle then toi
thetarget vehiclethat is, the nearest vehicle ahead in the desired
lane. It will only return to the desired lane once the targgdtiele
either has an acceptable speed, vacates the desired laise, or
passed.

MICROSIMULATION
Scenario

Control performance is evaluated on a road with two lanes
that travel in the same direction. Four CAVs begin the simu-
lation in lane 1. Their reference lanes are always 1, but thei
reference velocity is either 35, 32, 29, or 26 m/s according t
a full-factorial simulation plan without repetition. Thigsults

ferred velocities for the duration of the trip results in aeal
congestion-free travel timé as shown in Eqn[{13).

2z

D
7 Vref,p

t* =

1
o (13)

p

The congestion-free travel time serves as a benchmark by
showing the minimum realizable travel time subject to vidjoc
preferences. Similarly, the fuel consumed during such teors
speed operation is also calculated and compared to each algo
rithm'’s performance in traffic.

Copyright © 2018 by ASME
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FIGURE 5. AN OPTIMAL PLAN TO PASS TWO VEHICLES
MOVING AT DIFFERENT SPEEDS. SHADED REGIONS INDI-
CATE OBSTRUCTED SPACE GIVEN THE OPTIMAL VELOCITY
TRAJECTORY.

Control Performance

A detailed example of the predictive algorithm'’s perfor-
mance during a multi-vehicle interaction is shown in Fighre
This data is taken from the fastest-moving CAV in the caserethe
the CAVS' reference velocities were ordered 29, 35, 26, 32 m/
Consequently, the host vehicle must pass the slow-moving im
peding vehicle and a faster-moving CAV. The prediction homi
is sufficiently long to plan a collision-free path aroundtbeehi-
cles. The controller comprehends the necessity to remaimein
passing lane longer, but still does so in order to maintaiaan
ideal velocity. Notice that the first obstructed region igu#e 5 is
larger than the second. This difference stems from the higde
locity and therefore longer pass duration for the CAV corapar
to the impeding vehicle. Although both controllers cometeall
24 cases collision-free, the MPC algorithm enabled by V2K-co
nectivity generally outperformed the rule-based one. Aswsh
in Figure[7, the model predictive controller simultanegus-
sulted in reduced travel time i.e. greater average velaity
reduced energy consumption. This indicates a strong effigie
improvement because the fuel consumption madel [17] adsoun
for increased aerodynamic drag as vehicle speed incre@kes.
efficiency improvement was associated with smoother loRgit

50 .

) Rule-Based
I MPC

40
Accel. in m/s2 x 1072

Jerk in m/s® x 1072
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FIGURE6. COMPARISON OF AGGREGATE RULE-BASED AND
MPC RESULTS.
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FIGURE7. COMPARISON OF AGGREGATE RULE-BASED AND
MPC RESULTS TO THE IDEAL FREE-FLOW CASE.

navigation and potential for platoon formation.

In Figurd 6% Time Passingndicates the percentage of time
when a vehicle was outside of its desired lane wisilgitches
indicates the number of lane changes. Fuelmetric in Figure
[dis expressed as the total fuel consumed by the averagderehic
over the course of one case.

Quantitatively, the MPC algorithm reduced fuel consump-
tion by 8.4% and travel time by 6.2%. Excess travel time, de-
fined as the increase in travel time over the congestionvakee
from Eqn. [I3), decreased by 79 % relative to the reactive-alg
rithm. Correspondingly, excess fuel consumption was reduc

dinal motion, although the MPC algorithm changed lanes more by 80 % compared to a baseline of 18.1 mL for the average vehi-

actively (Figure_®). It also spent more time in the desiretela
compared to the reactive algorithm, which brings advargage

7

cle. The ideal travel tim& was 7634 s with the MPC managing
a mean excess travel time of only 1.34 s due to congestion.

Copyright © 2018 by ASME
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Computation Time

To prepare for real-time implementation, the impact of pre-
diction horizon and move blocking on computation time is-pre
sented. As in standard continuous-variable MPC, incregasie
prediction horizon monotonically increases mean comjnrtat
time. Move blocking on the integer-valued second contrel in
put was found to effectively reduce computation time andéna
a longer prediction horizon for a given sampling time (Fi8}.

The simulation case where target velocities increased from
front to rear in the initial vehicle formation was used to mea
sure computation time. The hardware platform was a laptop PC
equipped with a 4 core, 2.7 GHz CPU and 16 GB RAM.

CONCLUSION AND FUTURE RESEARCH

Using mixed integer quadratic programming to handle the
necessary disjunctions and indicator variables, the #lgor
proposed herein coordinates longitudinal vehicular nrotidth
optimal lane planning. Preview information from vehicte-t
vehicle connectivity enables each host vehicle to optintézia-
jectory around moving obstacles to minimize perturbatiomf
the reference velocity. Computation time and a technique fo
its reduction were discussed. In simulated comparisongés a
active rule-based algorithm, the model predictive cofdrale-
sulted in more efficient travel times while simultaneousdy r
ducing fuel consumption. Longitudinal motion was also gign
cantly smoother with a moderate increase in the number ef lan
changes.

The fundamental techniques described here open expansive

opportunities for future research. Further developmeiitgen-
eralize the system to accommodate roadways with an anpitrar
number of lanes and enable safe interaction with uncondecte
vehicles. Probability modeling with online adaptation gmets
an alternative to directly communicated position trajeéein
the latter case. Error in the resulting previews could natéthe
use of chance constraints in MPC.

In addition to generalizing the algorithm, opportunity ex-
ists to improve the simulation platform as well. While peffo

8

mance results are promising when the controller’s intepieat
model is used for simulation, the model approximates the per
formance of nonlinear mechanical systems and low-leve} con
trollers. Therefore, future simulations should includest con-
trollers interacting with a nonlinear kinematic model fareying,
such as the popular bicycle model. The authors’ group is cur-
rently integrating the predictive algorithm with the traf§imu-
lation software VISSIM. The resulting package will allowedw-
ation of large-scale scenarios with hundreds of vehiclesgby
improving confidence in the realism of fuel and time savings.
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