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ABSTRACT
Autonomous vehicle technology provides the means to opti-

mize motion planning beyond human capacity. In particular,the
problem of navigating multi-lane traffic optimally for triptime,
energy efficiency, and collision avoidance presents challenges
beyond those of single-lane roadways. For example, the hostve-
hicle must simultaneously track multiple obstacles, the drivable
region is non-convex, and automated vehicles must obey social
expectations. Furthermore, reactive decision-making mayresult
in becoming stuck in an undesirable traffic position. This pa-
per presents a fundamental approach to these problems using
model predictive control with a mixed integer quadratic program
at its core. Lateral and longitudinal movements are coordinated
to avoid collisions, track a velocity and lane, and minimizeac-
celeration. Vehicle-to-vehicle connectivity provides a preview of
surrounding vehicles’ motion. Simulation results show a 79%
reduction in congestion-induced travel time and an 80 % de-
crease in congestion-induced fuel consumption compared toa
rule-based approach.

NOMENCLATURE
s Longitudinal position of the ego vehicle along the road.
v Longitudinal velocity of the ego vehicle along the road.
a Actual longitudinal acceleration of the ego vehicle along the

road.
l Actual lane of the ego vehicle. Fractional values indicate off-

centerline positioning.

∗Address all correspondence to this author.

r l Lane change rate of the ego vehicle over time.
u1 Commanded longitudinal acceleration of the ego vehicle.
u2 Commanded lane of the ego vehicle.
x Vehicle state vector.
τ Time constant between commanded and actual longitudinal

acceleration.
ξ Damping ratio between commanded and actual lane.
ωn Natural frequency between commanded and actual lane.
lveh Vehicle length.
wveh Vehicle width.
wl Lane width.
J Objective to minimize.
ε j Slack variable numberj for soft constraints.
ρ j Penalty on slack variable numberj for soft constraints.
N Prediction horizon length in timesteps.
mj Slope of maximum acceleration constraintj in

acceleration-velocity space.
b j Acceleration offset of maximum acceleration constraintj.
δ The maximum deviation, in units of lane widths, for a vehicle

to remain wholly in a lane.
M A large value used in the Big M method to render constraints

inactive.
µw Binary variable indicating whether the ego vehicle occupies

lanew.
β Binary variable for disjunctive constraints.
kb Move blocking factor.
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INTRODUCTION
The topic of automated ground vehicle motion planning

stands poised to alter the day-to-day lives of transportation users.
In 2015, the typical U.S. commuter lost 42 hours delayed in traf-
fic according to the Texas A&M Transportation Institute’s Ur-
ban Mobility Scorecard [1]. Rather than replicating this perfor-
mance, automated driving could instead strive for superhuman
results through optimization. The problem of optimizing lon-
gitudinal motion to alleviate traffic jams and/or reduce fuel use
through drag reduction is an important topic that has received a
great deal of research attention [2,3,4], but many roads including
the majority of the U.S. Interstate Highway System have at least
2 lanes. In fact, the site of the recent pedestrian fatality involving
an experimental self-driving vehicle [5] occurred on such aroad-
way. Optimal use of the lateral dimension provides an additional
avenue to reduce speed fluctuations and avoid obstacles, leading
to improved efficiency, safety, and travel time.

The technology to track a given path was famously demon-
strated in events like the DARPA Grand Challenge [6]. Com-
mercial lane-keeping [7, 8, 9] and lane-changing systems [10]
have proved the commercial viability of relevant motion control.
Such commercial systems typically rely on sensor data to deliver
an immediately collision-free trajectory. However, the develop-
ment of data-driven prediction models and the use of far-reaching
information from connectivity could enable a more anticipative
approach to 2D motion planning. In the off-road space, anticipa-
tive optimal control has been applied to path planning to notonly
avoid obstacles, but also to accomplish more advanced long-term
objectives such as avoiding geographic traps [11]. Researchers
have recently applied model predictive control (MPC) to multi-
lane road driving. Weiskircher et al. [12] avoided obstacles with-
out directly selecting a lane by approximating them as elliptic
constraints. Kamal et al. [13] proposed a lane controller that re-
duced computation time by only considering one lane change
during prediction.

The main contribution of this paper is a method of anticipa-
tively coordinating longitudinal control and lane switching while
considering the possibility of multiple future lane changes by the
host. To comply with socially-accepted traffic rules, the proposed
controller only issues discrete lane commands. Mixed integer
quadratic programming (MIQP) is employed to handle the multi-
input multi-output (MIMO) control problem with indicator vari-
ables and disjunctive constraints. Schouwenaars et al. [14] used
mixed integer linear programming (MILP) for off-road path plan-
ning. Mukai et al. [15] applied similar MIP techniques to an on-
road obstacle avoidance problem, but the system was simulated
using a single obstacle and does not explicitly consider discrete
lane expectations. Furthermore, the Mukai et al. study did not
consider the possibility of a variable goal velocity. In addition to
addressing these issues, this paper will also discuss a technique to
reduce computation time and compare results with a rule-based
algorithm.

Subsequent content is organized as follows. First, the ar-
chitecture of the proposed system is introduced. The modeling
approach is then presented before control design is discussed
in detail. Control-related topics include the objective function,
standard constraints, implementation of lane indicator variables,
disjunctive collision-avoidance constraints, computation time re-
duction, and parameter selection. Simulation results willshow
performance in a multi-vehicle scenario with vehicle-to-vehicle
(V2V) connectivity and one slow-moving obstacle. Finally,the
paper will conclude by summarizing findings and anticipating
future research on the topic.

ARCHITECTURE
The proposed system is designed for a connected and au-

tomated car-like vehicle with control of its axle torqueTQ via
powertrain and brakes and control of its orientation through the
front wheel steering angleφ. It envisions a hierarchical scheme
as shown in Figure 1 where a routing algorithm determines the
desired lanelre f and velocityvre f while sensors and vehicle-to-
everything (V2X) connectivity provide the ego vehicle state x0

and surrounding vehicle intentionsx∗. An MPC module plans
the vehicle’s commanded longitudinal accelerationu1 and lane
u2 over a finite future horizon. The latter module is the focus of
this paper. It handles the tasks of smoothing the vehicle’s trajec-
tory, maintaining the desired velocity, placing the vehicle in the
required lane for navigation, and avoiding collisions.

After the MPC determines the optimal trajectory, it would
pass its commanded acceleration and lane to low-level motion
controllers. One of these controllers would use the powertrain
and brakes to deliver the commanded acceleration and the other
would manipulate steering angle to track the lane. It is possi-
ble to use standard path tracking techniques, for example, pure
pursuit [16], to accomplish this. Because such issues are already
considered in the MPC module, the motion controller would not
need to consider collision avoidance or other higher-leveltasks.

MODELING
Because of the geometric feasible region’s non-convexity

and the expected use of integer-valued decision variables,com-
putation time is a potential challenge for this controller.The hi-
erarchical approach of the previous section sacrifices the abil-
ity to optimize lane change rate to simplify the model used for
MPC. Because the controller is designed to perform comfortable
lane changes at higher speeds, the following linear model isused
where the longitudinal and lateral dynamics are decoupled.
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FIGURE 1. SCHEMATIC OF THE PROPOSED SYSTEM WITH
HATCHED REGIONS HIGHLIGHTING THE FOCUS AREA.

TABLE 1. CONTROL MODEL PARAMETERS.

Parameter Unit Value

τ sec 0.275

ξ — 1

ωn rad/s 1.091

K — 1

lveh m 4.52

wveh m 1.9

wl m 3.7

Equation (1) considers the vehicle’s longitudinal motion as
a double integrator with time constantτ between the commanded
and actual acceleration. The lateral positionl , expressed in units
of lane widths, is modeled as a critically-damped second-order
system where the actual lane follows the commanded lane with
a static gainK of 1. This is meant to model a naturalistic lane
change trajectory. The parameters of Table 1 are used in this
paper. Figure 2 depicts the response ofa to a unit step inu1 and
that of l to a unit step inu2.

The road area that each vehicle occupies is approximated as
a rectangle of fixed lengthlveh and widthwveh. Each lane also
has a fixed widthwl . Table 1 lists these geometric parameters.

0 1 2 3

Time [s]

0

0.5

1

a

(a) Long. Response

0 2 4 6 8

Time [s]

0

0.5

1

l

(b) Lat. Response

FIGURE 2. LONGITUDINAL ACCELERATION AND LANE PO-
SITION STEP RESPONSES TO CONTROL INPUTSu1 AND u2, RE-
SPECTIVELY.

OPTIMAL CONTROL
The motion planner must balance the objectives of smooth

driving, maintaining a target velocity, and seeking the desired
lane for navigation or etiquette. Furthermore, it must trade off
these goals while avoiding collisions and operating withinme-
chanical and legal limits. In order to take advantage of any
available preview information from V2X or prediction models,
an MPC framework with both continuous and integer-valued de-
cision variables is used. This section will discuss the objective
function and standard constraints first. The subsections that fol-
low concern the use of integers to indicate lane occupation and
expressOR logic for collision avoidance. Move blocking helps
reduce computation time and the blocking scheme is outlinedbe-
fore listing the parameter values for simulation.

Objective
The quadratic cost of Eqn. (2) is adapted from the authors’

prior car-following work in [17]. As in [17], the commanded and
actual accelerations are penalized after multiplication by the tun-
ing parameterqa. Unlike car-following, multi-lane planning gen-
erally involves switching between following and free-flow states
during theN-step prediction horizon. Therefore, Eqn. (2) penal-
izes velocity tracking error in lieu of following distance tracking
error. With an appropriately set velocity reference, this term en-
courages short travel times. Finally, the actual and commanded
lane tracking errors are penalized. Like acceleration, velocity
and lane error terms are weighted by the tuning parametersqv

andql respectively. The indexi in Eqn. 2 denotes the prediction
timestep.

J = qv(v(N)− vre f (N))2+qaa
2 (N)+ql (l (N)− lre f (N))2

+
N−1

∑
i=0

[

qv(v(i)− vre f (i))
2+qa

(

u2
1 (i)+a2(i)

)

+ql

(

(u2(i)− lre f (i))
2+(l (i)− lre f (i))

2
)]

(2)
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Soft constraints on states ensure feasibility. The resulting
slack variables add to the final costJa as shown in Eqn. (3). This
cost is minimized in the MIQP.

Ja = J+
6

∑
j=1

ρ jε j (3)

Standard Constraints
Several of the required constraints fit within a standard lin-

ear MPC framework with continuous variables. Equations (4a),
(4b), (4c), (4d), (4e), and (4f) relate to longitudinal motion. Only
forward velocity beneath a constant maximum speed limitvmax is
permitted. Acceleration and its command obey a constant min-
imum u1,min (maximum braking) and a piecewise-linear maxi-
mum as a function of velocity. Further detail on these constraints
can be found in [17].

0− ε2≤ v≤ vmax+ ε3 (4a)

u1≥ u1,min (4b)

u1≤m1v+b1 (4c)

u1≤m2v+b2 (4d)

a≤m1v+b1+ ε6 (4e)

a≤m2v+b2+ ε6 (4f)

lmin− δ≤ u2≤ lmax+ δ (4g)

lmin− δ− ε4≤ l ≤ lmax+ δ+ ε5 (4h)

ε j ≥ 0 ∀ j (4i)

When combined with an integrality constraint onu2, Eqn.
(4g) limits the lane command to the roadway’s usable laneslmin

throughlmax. Eqn. (4h) does the same for the actual lane posi-
tion.

Lane Indicators
Focusing on a roadway with two lanes per direction, this

section develops indicator variables to flag whether or not alane
is occupied. These binary-valued variables will later enter the
collision avoidance constraints to render them inactive ifthe ego
vehicle does not occupy the relevant lane. The indicators should
have the specified values in the scenarios listed in Table (2).

The following constraints result in the desired lane indicator
values. Using the Big M method [18], the indicators introduce
slack in lane position constraints that are otherwise infeasible

TABLE 2. REQUIRED PERFORMANCE OF LANE INDICATOR
VARIABLES.

Scenario µ1 Value µ2 Value

Ego vehicle wholly resides in lane 1. 1 0

Ego vehicle is between lanes 1 and 2. 1 1

Ego vehicle wholly resides in lane 2. 0 1

under certain circumstances. For example, consider Eqn. (5a)
whenµ1 = 0. If the ego vehicle resides in lane 1, that is,l < 2−δ,
the inequality is violated. However, if the decision variable µ1 =
1 then the inequality is satisfied for sufficiently largeM. Thusµ1

is constrained to equal 1 when the ego vehicle resides in lane1,
as specified in Table 2.

− l −Mµ1≤−(2− δ) (5a)

l +Mµ1≤M+2− δ (5b)

l −Mµ2≤ 1+ δ (6a)

− l +Mµ2≤−1− δ+M (6b)

µ1,µ2 ∈ {0,1} (7)

Collision Avoidance
Consider a one-dimensional path with a single obstacle. The

drivable region in this case consists of the positions that are ei-
ther in front ofORbehind the obstacle, making it fundamentally
non-convex. This constraint can be formulated for integer pro-
gramming as follows.

s≥ smin−M (1−β) (8a)

s≤ smax+Mβ (8b)

β ∈ {0,1} (8c)

In a multi-lane scenario, the constraints of Eqn. (8) should
only be active if the ego vehicle occupies the lane in question.
The lane indicator variablesµ are introduced to deactivate the
constraints when appropriate.

s≥ smin−M (1−β)−M (1−µ) (9a)
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s≤ smax+Mβ+M (1−µ) (9b)

Applying Eqn. (9) to lanes 1 and 2, adding a slack variable
ε, and converting to maximum form results in the following con-
straints for laneλ and obstacleζ.

− s+Mβζ+Mµλ ≤ 2M− sλζ
min+ ε1 (10a)

s−Mβζ +Mµλ ≤ sλζ
max+M+ ε1 (10b)

Each potential surrounding obstacle that is reachable by the
ego vehicle at a given prediction step is allocated an element for
each lane in the constraint matrices. If the surrounding vehicle

will occupy the lane during that step,sλζ
min and sλζ

max are finite.
Otherwise, they are passed to the solver as infinite to renderthe
constraint inactive.

Move Blocking
Mixed integer quadratic programs are NP-hard and the deci-

sion form is NP-complete [19]. Therefore, care must be taken
that the problem resulting from the proposed formulation can
be solved sufficiently quickly in practice. A later section will
show that computation time increases severely with respectto
the length of prediction horizon and therefore the number ofde-
cision variables. However, a long horizon on the order of 10 s
is needed to predict through multiple lane changes and a short
timestep is desirable to respond quickly to disturbances. Move
blocking offers a useful means of reducing the number of degrees
of freedom in the optimization while maintaining the controller’s
predictive capability.

Move blocking constrains blocks of consecutive control in-
puts to be equal to one another. Standard input blocking does
so in a fixed pattern. An example of this might allow a move at
stage 0, but at stage 1 the move is held and a change is only al-
lowed at every other stage. As Cagienard et al. note in [20], this
strategy can significantly degrade closed-loop performance be-
cause the input sequence atk+1 cannot be produced by shifting
the input sequence atk. Similarly to Cagienard et al., the pro-
posed controller solves this problem using a time-varying block-
ing scheme. Figure 3 depicts the move arrangement used here.
The effect is thatu1 and the prediction model operate on a short
timestep∆t andu2 operates on a longer timestep equal tokb∆t
wherekb is an integer. This allows the controller to react quickly
to a disturbance using the brakes or powertrain while reducing
the number of integer-valued degrees of freedom, all withinthe
same coordinated optimization.

Parameter Values
Proper parameter selection is important to achieve the de-

sired closed-loop performance. The time required to complete
approximately 3 lane change maneuvers according to the plant

(A)(A)(A)

(B)
kk

kk

k+1k+1k+1

k+1k+1k+1

k+2

k+2

k+3

k+3

∆u1

∆u1,∆u2

Real Time

Real Time

FIGURE 3. COMPARISON OF (A) STANDARD INPUT BLOCK-
ING WITH (B) THE MULTI-TIMESCALE BLOCKING SCHEME
USED IN THE LANE SELECTION ALGORITHM.∆u INDICATES
AN ALLOWED CHANGE IN THE CONTROL INPUT.

TABLE 3. CONTROLLER PARAMETERS FOR MICROSIMULA-
TION.

Parameter Value

N 25

qa 300

qv 10

ql 10

kb 3

∆t 0.4 s

ρ1 107

ρ2–6 106

Parameter Value

M 104

δ 0.1081

vmax 36 m/s

u1,min -8.5 m/s2

m1 0.285s−1

b1 2.0 m/s2

m2 -0.1208s−1

b2 4.83 m/s2

model guides the prediction time. Then, the timestep∆t, block-
ing factor kb, and prediction horizonN are balanced to allow
generous computation time margin on average (Figure 8). With
the velocity weightqv fixed, the acceleration weightqa is set to
obtain an occupant-acceptable peak free-flow acceleration. Fi-
nally, the lane tracking weightql is used to reduce lane change
busyness while allowing passing maneuvers. Table 3 lists the
selected values.

BASELINE RULE-BASED ALGORITHM
A reactive rule-based algorithm assuming no connectivity is

presented as a baseline. This controller uses the Intelligent Driver
Model (IDM) [21] for longitudinal control. The IDM computes
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FIGURE 4. TRAFFIC FLOW DURING A SAMPLE SIMULATION
CASE.

a desired following distanceddes that results in an acceleration
command using the ego vehicle’s states, the preceding vehicle’s
position, and the preceding vehicle’s relative velocity∆v. The
safe time headwayτh, minimum distanced0, acceleration expo-
nentδa, maximum accelerationa0, and desired decelerationb0

from [21] are used in the equations below to determineu1.

ddes= d0+max

(

0,τhv+
v ∆v√
4a0b0

)

(11)

u1 = a0

[

1−
(

v
vre f

)δa

−
(

ddes(v, ∆v)
d

)2
]

(12)

The lane change command is calculated using Algorithm 1.
If during the course of car-following the ego vehicle’s velocity
drops from its reference by a small amount, a lane change out
of the reference lane is triggered. The ego vehicle then monitors
thetarget vehicle, that is, the nearest vehicle ahead in the desired
lane. It will only return to the desired lane once the target vehicle
either has an acceptable speed, vacates the desired lane, oris
passed.

MICROSIMULATION
Scenario

Control performance is evaluated on a road with two lanes
that travel in the same direction. Four CAVs begin the simu-
lation in lane 1. Their reference lanes are always 1, but their
reference velocity is either 35, 32, 29, or 26 m/s according to
a full-factorial simulation plan without repetition. Thisresults

Algorithm 1 RULE-BASED LANE SELECTION.
1: procedure DETERMINE LANE COMMAND

2: ltol ← 0.1
3: vtol← 3m/s
4: ds← 6m
5: if stv > s− lv−ds AND stv < s+ lv+ds then
6: vacant← FALSE
7: else vacant← TRUE
8:

9: if |l −1|< ltol OR |l −2|< ltol then
10: if |l − lre f |> ltol then
11: if no target vehicle OR vtv > v− vtol then
12: if vacantthen
13: if u2(k−1) = 1 then return 2
14: else return 1
15: else return u2 (k−1)

16: else return u2 (k−1)

17: else
18: if v< vre f − vtol AND u1≤ 0 then
19: if vacantthen
20: if u2(k−1) = 1 then return 2
21: else return 1
22: else return u2 (k−1)

23: else return u2 (k−1)

24: else return u2 (k−1)

in 4! = 24 total cases. A slow-moving open-loop vehicle that
always remains in lane 1 precedes the CAVs and moves at a ve-
locity of approximately 4.5 m/s. Real traffic elements that this
approximates include disabled vehicles, construction machinery,
and farm equipment. An animation visualizes the simulated ve-
hicles’ motion [22]. Figure 4 shows a sample frame of one such
animation during a passing maneuver.

Results were analyzed over a distance intervalD = 2300m,
which each of thenv vehicles running either algorithm type com-
pleted in all cases. Assuming that all vehicles travel at their pre-
ferred velocities for the duration of the trip results in an ideal
congestion-free travel timēt∗ as shown in Eqn. (13).

t̄∗ =
1
nv

nv

∑
p=1

D
vre f ,p

(13)

The congestion-free travel time serves as a benchmark by
showing the minimum realizable travel time subject to velocity
preferences. Similarly, the fuel consumed during such constant-
speed operation is also calculated and compared to each algo-
rithm’s performance in traffic.
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FIGURE 5. AN OPTIMAL PLAN TO PASS TWO VEHICLES
MOVING AT DIFFERENT SPEEDS. SHADED REGIONS INDI-
CATE OBSTRUCTED SPACE GIVEN THE OPTIMAL VELOCITY
TRAJECTORY.

Control Performance
A detailed example of the predictive algorithm’s perfor-

mance during a multi-vehicle interaction is shown in Figure5.
This data is taken from the fastest-moving CAV in the case where
the CAVs’ reference velocities were ordered 29, 35, 26, 32 m/s.
Consequently, the host vehicle must pass the slow-moving im-
peding vehicle and a faster-moving CAV. The prediction horizon
is sufficiently long to plan a collision-free path around both vehi-
cles. The controller comprehends the necessity to remain inthe
passing lane longer, but still does so in order to maintain a near-
ideal velocity. Notice that the first obstructed region in Figure 5 is
larger than the second. This difference stems from the higher ve-
locity and therefore longer pass duration for the CAV compared
to the impeding vehicle. Although both controllers completed all
24 cases collision-free, the MPC algorithm enabled by V2V con-
nectivity generally outperformed the rule-based one. As shown
in Figure 7, the model predictive controller simultaneously re-
sulted in reduced travel time i.e. greater average velocityand
reduced energy consumption. This indicates a strong efficiency
improvement because the fuel consumption model [17] accounts
for increased aerodynamic drag as vehicle speed increases.The
efficiency improvement was associated with smoother longitu-
dinal motion, although the MPC algorithm changed lanes more
actively (Figure 6). It also spent more time in the desired lane
compared to the reactive algorithm, which brings advantages in

FIGURE 6. COMPARISON OF AGGREGATE RULE-BASED AND
MPC RESULTS.

FIGURE 7. COMPARISON OF AGGREGATE RULE-BASED AND
MPC RESULTS TO THE IDEAL FREE-FLOW CASE.

navigation and potential for platoon formation.
In Figure 6,% Time Passingindicates the percentage of time

when a vehicle was outside of its desired lane whileSwitches
indicates the number of lane changes. TheFuelmetric in Figure
7 is expressed as the total fuel consumed by the average vehicle
over the course of one case.

Quantitatively, the MPC algorithm reduced fuel consump-
tion by 8.4 % and travel time by 6.2 %. Excess travel time, de-
fined as the increase in travel time over the congestion-freevalue
from Eqn. (13), decreased by 79 % relative to the reactive algo-
rithm. Correspondingly, excess fuel consumption was reduced
by 80 % compared to a baseline of 18.1 mL for the average vehi-
cle. The ideal travel timēt∗ was 76.34s with the MPC managing
a mean excess travel time of only 1.34 s due to congestion.
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Computation Time
To prepare for real-time implementation, the impact of pre-

diction horizon and move blocking on computation time is pre-
sented. As in standard continuous-variable MPC, increasing the
prediction horizon monotonically increases mean computation
time. Move blocking on the integer-valued second control in-
put was found to effectively reduce computation time and enable
a longer prediction horizon for a given sampling time (Figure 8).

The simulation case where target velocities increased from
front to rear in the initial vehicle formation was used to mea-
sure computation time. The hardware platform was a laptop PC
equipped with a 4 core, 2.7 GHz CPU and 16 GB RAM.

CONCLUSION AND FUTURE RESEARCH
Using mixed integer quadratic programming to handle the

necessary disjunctions and indicator variables, the algorithm
proposed herein coordinates longitudinal vehicular motion with
optimal lane planning. Preview information from vehicle-to-
vehicle connectivity enables each host vehicle to optimizeits tra-
jectory around moving obstacles to minimize perturbation from
the reference velocity. Computation time and a technique for
its reduction were discussed. In simulated comparisons to are-
active rule-based algorithm, the model predictive controller re-
sulted in more efficient travel times while simultaneously re-
ducing fuel consumption. Longitudinal motion was also signifi-
cantly smoother with a moderate increase in the number of lane
changes.

The fundamental techniques described here open expansive
opportunities for future research. Further developments will gen-
eralize the system to accommodate roadways with an arbitrary
number of lanes and enable safe interaction with unconnected
vehicles. Probability modeling with online adaptation presents
an alternative to directly communicated position trajectories in
the latter case. Error in the resulting previews could motivate the
use of chance constraints in MPC.

In addition to generalizing the algorithm, opportunity ex-
ists to improve the simulation platform as well. While perfor-

mance results are promising when the controller’s internalplant
model is used for simulation, the model approximates the per-
formance of nonlinear mechanical systems and low-level con-
trollers. Therefore, future simulations should include these con-
trollers interacting with a nonlinear kinematic model for steering,
such as the popular bicycle model. The authors’ group is cur-
rently integrating the predictive algorithm with the traffic simu-
lation software VISSIM. The resulting package will allow evalu-
ation of large-scale scenarios with hundreds of vehicles, thereby
improving confidence in the realism of fuel and time savings.
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