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3 | Epidemiology ® |

The study of the distribution and determinants of health-related states or
events in specified populations, and the application of this study to the
control of health problems [Last, 2001]

For more details, please reference the CDC’s Introduction to Epidemiology:
https://www.cdc.gov/csels/dsepd/ss1978/Lesson1/Section1.html#_ref1



https://www.cdc.gov/csels/dsepd/ss1978/Lesson1/Section1.html

4

Infectious Disease Nomenclature

Pathology of the Virus:

Viruses are named based on their genetic structure to facilitate the development
of diagnostic tests, vaccines and medicines.

Epidemiology of the Disease:

Diseases are named to enable discussion on disease prevent, spread,
transmissibility, severity and treatment.

Virus Disease

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) COronaVlrus Disease, 2019 (COVID-19)

[WHO, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-

2019)-and-the-virus-that-causes-it ]



https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
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Epidemiology Nomenclature

Doubling Time, T,
The expected amount of time for the number of cumulative infections to double.

Basic Reproduction Number, R,
The expected number of infections from one infected individual introduced into a population of 100%
susceptible individuals.

Replacement Number, R(t)
After the early stages of an epidemic has passed, the number of secondary infections is expected to
go down as the number of susceptible individuals goes down.

Herd Immunity, ¥
Implies the susceptible population is small enough, either through vaccination or immunity due to
infection and recovery, that the effective secondary infection rate is less than 1.

Non-Pharmaceutical Interventions
Social distancing, business & school closures, face masks, isolation, and quarantine.

Pharmaceutical Interventions
Vaccinations for the susceptible populations and/or therapeutics for the infected population.
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Infection to Infectious Timeline

[Childs, 2020] Symptoms after infectiousness
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7 | Timeline of Data Availability and Model Usefulness

Figure 3: Timeline of Data Availability for Models Compared to Usefulness of Modeling During an Outbreak.
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9 | Epidemiology Modeling Paradigms

Agent-based
/ Models

[ Compartmental }

Fidelity of Social Behavior
Modeling

Models To develop greater fidelity
models, we need time to
( CEVESENR learn and understand the
Inference characteristics that define
[Exponential the factors an.d Yectors for
Growth J transmission.
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10 - Epidemiology Modeling Paradigms
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11 | Exponential Growth ® |

As an early stage model, these models are typically used to derive the secondary infection rate, Ry, for an I
emerging epidemic.

T,; (Doubling Time) is observable from the case counts

U
Ro = In(2) /Ty

I(t) = Ipe®o [Bertozzi, 2020]




12 | Bayesian Inference ® |

From observable reported new cases, Bayesian models infer the infection rate curve (i.e. variable I
replacement number R) then push forward a predictive epidemic curve.

Infection Rate curve modeled as a
Gamma distribution with unknown shape
(k) and scale (6) parameters

InfR(t — ty)~T'(k,1/6)

The incubation rate is modeled using a log-
normal distribution with parameters based
on published results [Lauer, 2020]

\ncubation G |

IncR~Lognormal(u(&;),0(&,)%)

time

[Safta et al, 2011]
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Bayesian Inference

We can now learn the bend in the curve, when we start to move away from exponential growth.
Example: COVID-19 Reported Cases in U.S. from April 1st - April 14th 2020
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« Black symbols show data used for model inference and to generate forecasts
symbols display data observed after the forecast was produced
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Compartmental Model: Classic SEIR

[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered

System of ordinary differential equations (ODEs):

NOER N(( )) S(t)
E(®) =B N(( ))S@ S5 ()
[(t) = EE(t) — yI(t)
R(t) = yI(t)
Force of Infection Function: A(t) = f 1>

Average Incubation Period: =

§

. . 1
Average Infectious Period: >

N(t) = S(t) + E() + I(£) + R(t)



16 = Compartmental Model: Classic SEIR

[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered
System of ordinary differential equations (ODEs):

S(t) = - N(( )) NG
E(t) =B N(( )) S(t) = SE(®)
I(t) = EE(t) — yI(D)
R(t) = yI(t)
Force of Infection Function: A(t) = f 1>

Average Incubation Period: %

: . .1
Average Infectious Period: )—/ N(t) = S(t) + E(t) + I(t) + R(¢t)



17 I Compartmental Model: a little more detailed

[Hethcote, 2000]
Susceptible-Exposed-Infected(Asymptomatic)
-Infected(Symptomatic)-Recovered

System of ordinary differential equations (ODEs):
[Note: at times we drop the state dependence on time, for simplified notation]

: A+1
$=—Bc——S+ (R

: A+1

E=pc N S — (ea+$eDE

A= $paE — vaRA
= $piE — yirl — 01
R =y rA+ygl — (R

\ D =61 )

N=S+E+A+I+R




18 | Model Ry: An intuition based assessment I

Practical Assessment:
- When R, > 1, we expect the disease to persist
and spread throughout the population
- When R, < 1, we expect the disease to die out

A(D)+I(t)

Force of Infection Function: | A(t) = fc N(t)

- the force of infection function can help guide us in understanding
the model R,




19 | Model Ry: An intuition based assessment

Practical Assessment:
- When R, > 1, we expect the disease to persist
and spread throughout the population
- When R, < 1, we expect the disease to die out

A(D)+I(t)

Force of Infection Function: | A(t) = B¢ N(t)

- the force of infection function can help guide us in understanding
the model R,

Recall when A(t) = 8-2 the SEIR model R, = S (+
N(t) y

Qualitatively, this implies:
Ry = (“infection rate”)x(“average infectious period”)




20 | Model R,y: An intuition based assessment I

Practical Assessment:
- When R, > 1, we expect the disease to persist
and spread throughout the population
- When R, < 1, we expect the disease to die out

A(D)+I(t)

Force of Infection Function: | A(t) = B¢ N(t)

- the force of infection function can help guide us in understanding
the model R,

Recall when A(t) = 8-2 the SEIR model R, = S (+
N(t) y

Qualitatively, this implies:
Ry = (“infection rate”)x(“average infectious period”)

BUT... our new force of infection function also has:
» ¢: average number of daily contacts
» A(t): Asymptomatic-Infectious population |



21 | Model R,y: An intuition based assessment I

A(t)+I(t)

Force of Infection Function: | A(t) = fSc N(t)

Qualitatively, this implies:

R, = (“infection rate”)x(“average number of daily contacts”)
X (“average infectious period”)




22 | Model Ry: An intuition based assessment

Force of Infection Function: | A(t) = g2+ ®

N(t)

Qualitatively, this implies:

R, = (“infection rate”)x(“average number of daily contacts”)
X (“average infectious period”)

So what is the “average infectious period”?

We need to first understand
 Residence Time and
 Population Flow Fractions.




23 | Model R,y: An intuition based assessment I

A(t)+I(t)

Force of Infection Function: | A(t) = fSc N(t)

Qualitatively, this implies:

R, = (“infection rate”)x(“average number of daily contacts”)
X (“average infectious period”)

Residence Time and Population Flow Fraction through “Exposure”

» Residence time in “Exposure”:
$EItéEA

» Fraction “Symptomatic Population” :

_ Sm
Ji = Ser t+ SEa

» Fraction “Asymptomatic Population” :

_ SEa
1=/ = $er + SEa I
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Model Ry: An intuition based assessment

Force of Infection Function: | A(t) = g2+ ®

N(t)

Qualitatively, this implies:

R, = (“infection rate”)x(“average number of daily contacts”)
X (“average infectious period”)

f;: Fraction of the population that become “Symptomatic”

» Residence time “Symptomatic”:
S+YIR

(1 — f;): Fraction of the population that become “Asymptomatic”

c c c 1
» Residence time “Asymptomatic”: e
AR




25 | Model R,y: An intuition based assessment I

A()+I(t)

Force of Infection Function: | A(t) = fSc N(t)

Qualitatively, this implies:

R, = (“infection rate”)x(“average number of daily contacts”)
X (“average infectious period”)

f;: Fraction of the population that become “Symptomatic”

» Residence time “Symptomatic”:
S+YIR

(1 — f;): Fraction of the population that become “Asymptomatic”

c c c 1
» Residence time “Asymptomatic”: e
AR

THEN...

Ro = Bc (f, (5 +1y,R) F(1-f) (%)) |
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Compartmental Model: As a Tree with Residence Time
(1= fu) (1= fr)

(1= fu) fr

(1= fa)

E

NaA@) + 1) + nyH ()
N(t) fa

A(t) == fc

Ro = Bc(fanaTay + (1 — f)(A = fu)MaTa + T)) + (1 = f) fuMaTa + T; + nyTy))

Where T, represents the residence time for each respective state.
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Compartmental Model: As a Tree with Residence Time
(1= fu) (1= fr)

(1= fu) fr

(1= fa)

E

NaA@) + 1) + nyH ()
N(t) fa

A(t) == fc

Ro = Bc(fanaTa + (1 — f)(A = fu)MaTa + T)) + (1 = f) fuMaTa + T + nyTy))

Where T, represents the residence time for each respective state.
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Compartmental Model: As a Tree with Residence Time
(1= fu) (1= fr)

(1= fu) fr

(1= fa)

E

naA() +1(t) + nyH (1)
N(t) fa

A(t) == fc

Ro = Bc(fanaTa + (1 — f)(A = fu)MaTa + T)) + (1 = f) fuMaTa + T; + nyTy))

Where T, represents the residence time for each respective state.
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Compartmental Model: As a Tree with Residence Time
(1 —fu) (A = fr)

(1= fu) fr

(1= fa)

E

NaA®) + 1) + nyH ()
N(t) fa

A(t) == fc

Ro = Bc(fanaTy + (1 — f)(A = fu)MaTy + T1) + (1 = f) fuMaTs + T + nyTy))

Where T, represents the residence time for each respective state.
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Compartmental Model: As a Tree with Residence Time
(1= fu) (1= fr)

(1= fu) fr

(1= fa)

E

naA@) +1(t) + nyH ()
N(t) fa

A(t) == fc

Ro = Bc(fanaTa + (1 — f)(A = fu)MaTa + T)) + (1 = f) fuMaTs + T + nyTy))

Where T, represents the residence time for each respective state.
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Notional Results: S— E—-A—-I—R—H—-D

Nominal Parameter Values:

—HH State Trajectories:
¢ Tg ' 4 ||

| 741 075 | Ta 6 || fa . 03 |
I [ 2T
(e 001 | Ty 5 || fu 1 0.04 ]
L0 I Tr 1365 ] fr 1 0.94]

No 10,000
Time Horizon ' [0, 365]

Time (since day 0)
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Notional Results: S— E—-A—-I—R—H—-D

Nominal Parameter Values:

—HH State Trajectories:
¢ Tg ' 4 ||

| 741 075 | Ta 6 || fa . 03 |
I [ 2T
(e 001 | Ty 5 || fu 1 0.04 ]
L0 I Tr 1365 ] fr 1 0.94]

Time (since day 0)
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Notional Results: S— E—-A—-I—R—H—-D

Nominal Parameter Values:

State Trajectories:

141 075 | Ta 6 | fa 1 03
I Y |
(i 001 | T 5 || fur 1 0.04
0 [ Tr 1365 ] fr 1 0.94

Time (since day 0)
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Notional Results: S— E—-A—-I—R—H—-D

Nominal Parameter Values:

State Trajectories:

141 075 | Ta 6 | fa 1 03
I Y |
(i 001 | T 5 || fur 1 0.04
0 [ Tr 1365 ] fr 1 0.94

No

Time Horizon ' [0, 365]

Ry for this parameterization ic 2.0187248 |

Time (since day 0)
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Notional Results: S— E—-A—-I—R—H—-D

Nominal Parameter Values:

State Trajectories:

141 075 | Ta 6 | fa 1 03
I Y |
(i 001 | T 5 || fur 1 0.04
0 [ Tr 1365 ] fr 1 0.94

Time Horizon ' [0, 365]

Ry for this parameterization ic 2.0187248 |

How Do We Know We Have Derived
the Correct Model R,??

Time (since day 0)
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Model R, Verification: S —E—A—-I—-R—-—H-D

When R, > 1, we expect the disease to persist When R, < 1, we expect the disease to die out

Parameter Changes: Parameter Changes:

0.07 0.065

0984128
1

100 100
Time (since day Q) Time (since day 0)




37 | Model R, Verification: S— E—-A—-1—R—-—H—-D

When R, > 1, we expect the disease to persist When R, < 1, we expect the disease to die out

Parameter Changes: Parameter Changes:

Cc

1
R, i 1.05983 < 4

B! 0.065

Ry 1 0984128 <
1

100 100
Time (since day Q) Time (since day 0)

A subtle change in 8 alone can make all the difference in whether or not we simulate a
persistent disease or a controlled disease




3 | Uncertainty Quantification (UQ) and Global Sensitivity Analysis (GSA) @ I

Quantity of Interest (Qol):
Our analysis needs to target a particular output of our model (e.g. Ry, max(H(t)))

Forward Uncertainty Quantification:

With a measured uncertainty coming from the nominal values in our parameterizations, we want to
measure the uncertainty of our Qol.

Uncertainty in our context is measured by the variance in our model inputs (parameters) and
outputs (Qols)

Global Sensitivity Analysis:

When the uncertainty of our Qol is high, it is often the case that we want to determine what
sources of uncertainty are the most influential.

What is the sensitivity of our Qol with respect to the parameter uncertainties.




3 | UQ/GSA for R

Parameter Uniform Uncertainties:

5 006,002 || Tp 1 (5]
(025,10 || Ty 2,04
[5,
H )

. 0.15,0.5] Parameter Influence* on R, Uncertainty:
Total Order Indices R_0

' || fa
¢ o [05,75] | Ty [5,20] |
i [0.005,0.1] || T T 2.2 || Ja | 00L,007
s 02,08 || pr 040 |
| Tr ' [210,600] ||

fr ' [0.9,0.99]

R, Uncertainty:
Uncertainty of RO

Sample A
Sample B

L
CH "rf

Ty Ty

H

i & P P, . T, T, T, Ty f, f,

H r]

Sobol’ indices were derived using Julia implementation of numerical methods
for variance based decomposition

Quasi-Monte Carlo Simulations were run to measure forward UQ



20 I UQ/GSA for max(H(t))

Parameter Uniform Uncertainties:

B 1 [0.06,012] [[ T, [3,5] [ . |
na | 025,10 || Ty ! [2,14] || fa | [0.15,0.5] | Parameter Influence on max(H(t)) Uncertainty:
¢ o 0575 [Ty, (520 || o, |

Total Order Indices Max Hospitalization

| [0.005,0.1] || Ty (2,95 || Fu 008,007
oo 02,08 || pr 04O
[ Te 210,600] || fn | [0.9,0.99]

max(H (t)) Uncertainty:

Uncertainty of Max Hospitalization

Sample A
Sample B

Sobol’ indices were derived using Julia implementation of numerical methods
for variance based decomposition

Quasi-Monte Carlo Simulations were run to measure forward UQ
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Notional Results: S— E—-A—-I—R—H—-D

Nominal Parameter Values:

State Trajectories:

141 075 | Ta 6 | fa 1 03
I Y |
(i 001 | T 5 || fur 1 0.04
0 [ Tr 1365 ] fr 1 0.94

Time Horizon ' [0, 365]

Ry for this parameterization ic 2.0187248 |

What is the difference between R,
and replacement number R(t)??

Time (since day 0)



2 | Ry Versus R(t) ®

Infected State Trajectories: What to Know:

R(t) = Ry, attimet =0
 t =0 is when the first
infected is introduced
to a fully susceptible
population.

R(t) = 1 at time t =95
(specific to this example)

* Implying that we can
reach herd immunity on
day 95 (after the first
infected is introduced)

200
Time (since day 0)




s | Herd Immunity in terms of Ry and R(t) @

Infected State Trajectories: What to Know:
R(t) = Ry, attimet =0

R(t) = 1 attime t =95

Herd Immunity =¥ = 1 — (Rio)
* When R, = 2, then
Y =0.5
e S(t) <0.5N(t) is
needed to control the
spread

N(t) = 10,000

At time ¢ = 95
200 « S(95) ~ 4854
Time (since day 0) « R(95)~=098<1

|
l. !
1
1
III
i1
|
i |
i1
| I
| 1
F 1A
) IllI II
|||
I
1
III
II I
|
|
|1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1




44

Outline

Introduction to Epidemiology

Epi Modeling Paradigms

Compartmental Model System Analysis

Modeling Mitigation Strategies



45 | Non-Pharmaceutical Interventions (NPI) ® I

Personal Protective Equipment (PPE)
« Face masks

Isolation
« |dentified infected individuals only.
« Those who have a positive test result, indicating that they have been infected by the virus.

Quarantine
« Contacts of an infected individual in isolation.
« |dentification and quarantine of presumptive positive cases is most critical to infectious
diseases where infectious onset occurs before symptom onset.



4 | Compartmental Model: NPI Intervention (Face Masks)
A—=fu) A —fr)

(1= fu) fr

(1= fa)

fa

pg + Effectiveness of Face Masks
nAA(t) T I(t) T nHH(t) pp : Probability the interaction between

N(t) two individuals is protected by Face Masks

A(t) = Bc(1 — ppXpp)
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Face Mask R,

naA(t) + 1(t) + ngH(t)
N(t)

A(t) = Bc(1 — pgXpp)

Ry = Bc(1 — ppXpp)
X(fanaTa + (1 — fA)(A = fr)MaTa + T)) + (1 — fA) fumaTa + T; + ngTy))




s | Compartmental Model: NPI Intervention (Isolation & Quarantine)

(1= fwfr

fa

‘ (1= fu)(A = fr)

o o | 0= @)~ fi) A~ fo)

fu

(1 — CIA(t)) (1—fa) (1 — QI(t))fH

(1-q,®)A - fa) fa

L A®) = Be(1 = ppxpp)
' AW 1) + 1B + (1= 0)(ade (O + 1) |

: i Qq : Effectiveness of Quarantine & Isolation i




49 | Evolution of Compartmental Model Complexity

To Develop a Credible Model:
1. Start with the Fundamentals
2. Methodically add Complexity
3. Provide Interpretable Results
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