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Epidemiology3

The study of the distribution and determinants of health-related states or 
events in specified populations, and the application of this study to the 
control of health problems [Last, 2001] 

For more details, please reference the CDC’s Introduction to Epidemiology: 
https://www.cdc.gov/csels/dsepd/ss1978/Lesson1/Section1.html#_ref1

https://www.cdc.gov/csels/dsepd/ss1978/Lesson1/Section1.html


Infectious Disease Nomenclature4

Pathology of the Virus:

Viruses are named based on their genetic structure to facilitate the development 
of diagnostic tests, vaccines and medicines.

Epidemiology of the Disease:

Diseases are named to enable discussion on disease prevent, spread, 
transmissibility, severity and treatment.

[WHO, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-
2019)-and-the-virus-that-causes-it ]

Virus Disease

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) COronaVIrus Disease, 2019 (COVID-19)

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it


Epidemiology Nomenclature5

Doubling Time, 𝑇!
The expected amount of time for the number of cumulative infections to double.

Basic Reproduction Number,  𝑅"
The expected number of infections from one infected individual introduced into a population of 100% 
susceptible individuals.

Replacement Number, 𝑅(t)
After the early stages of an epidemic has passed, the number of secondary infections is expected to 
go down as the number of susceptible individuals goes down.

Herd Immunity, Ψ
Implies the susceptible population is small enough, either through vaccination or immunity due to 
infection and recovery, that the effective secondary infection rate is less than 1. 

Non-Pharmaceutical Interventions
Social distancing, business & school closures, face masks, isolation, and quarantine.

Pharmaceutical Interventions
Vaccinations for the susceptible populations and/or therapeutics for the infected population. 



Infection to Infectious Timeline6

[Childs, 2020]



Timeline of Data Availability and Model Usefulness7

[U.S. Government Accountability Office, https://www.gao.gov/products/gao-20-372]
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Epidemiology Modeling Paradigms9
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To develop greater fidelity 
models, we need time to 
learn and understand the 
characteristics that define 
the factors and vectors for 

transmission. 



Epidemiology Modeling Paradigms10
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Exponential Growth11

As an early stage model, these models are typically used to derive the secondary infection rate, 𝑅", for an 
emerging epidemic.

𝑅" = 2

Early 
Stage

Ca
se

s

Days

𝑇! (Doubling Time) is observable from the case counts

𝑅" = ln 2 /𝑇!

𝐼 𝑡 = 𝐼"𝑒#!$

⇒
⇒

[Bertozzi, 2020]



Bayesian Inference12

From observable reported new cases, Bayesian models infer the infection rate curve (i.e. variable 
replacement number 𝑅) then push forward a predictive epidemic curve.

[Safta et al, 2011]

• Infection Rate curve modeled as a 
Gamma distribution with unknown shape 
(k) and scale (𝜃) parameters

•The incubation rate is modeled using a log-
normal distribution with parameters based 
on published results [Lauer, 2020]

InfR t − t) ~Γ(𝑘, 1/𝜃)

IncR~Lognormal(𝜇 𝜉* , 𝜎 𝜉+ +)



Bayesian Inference13

April 1 April 2 April 3 April 4

• Black symbols show data used for model inference and to generate forecasts
• Red symbols display data observed after the forecast was produced 

April 5

April 6 April 14April 9April 8April 7

We can now learn the bend in the curve, when we start to move away from exponential growth.
Example: COVID-19 Reported Cases in U.S. from April 1st – April 14th 2020
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Compartmental Model: Classic SEIR15

[Hethcote, 2000]

𝑆̇(𝑡) = −𝛽
𝐼 𝑡
𝑁 𝑡

𝑆(𝑡)

𝐸̇(𝑡) = 𝛽
𝐼 𝑡
𝑁 𝑡

𝑆(𝑡) − 𝜉𝐸(𝑡)

Type equation here.
̇𝐼(𝑡) = 𝜉𝐸(𝑡) − 𝛾𝐼(𝑡)
.
𝑅̇(𝑡) = 𝛾𝐼(𝑡)

−𝛽
𝐼(𝑡)
𝑁(𝑡)

𝜉

𝛾

System of ordinary differential equations (ODEs):

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽 %($)
(($)

Average Incubation Period: )
*

Average Infectious Period: )
+ 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)

Susceptible-Exposed-Infected-Recovered



Compartmental Model: Classic SEIR16

[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered

𝑆̇(𝑡) = −𝛽
𝐼 𝑡
𝑁 𝑡

𝑆(𝑡)

𝐸̇(𝑡) = 𝛽
𝐼 𝑡
𝑁 𝑡

𝑆(𝑡) − 𝜉𝐸(𝑡)

Type equation here.
̇𝐼(𝑡) = 𝜉𝐸(𝑡) − 𝛾𝐼(𝑡)
.
𝑅̇(𝑡) = 𝛾𝐼(𝑡)

−𝛽
𝐼(𝑡)
𝑁(𝑡)

𝜉

𝛾

System of ordinary differential equations (ODEs):

Model 𝑅" = 𝛽 )
+

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽 %($)
(($)

Average Incubation Period: )
*

Average Infectious Period: )
+ 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)



Compartmental Model: a little more detailed 17
[Hethcote, 2000]

𝑆̇ = −𝛽𝑐
𝐴 + 𝐼
𝑁

𝑆 + 𝜁𝑅

𝐸̇ = 𝛽𝑐
𝐴 + 𝐼
𝑁

𝑆 − (𝜉,- + 𝜉,%)𝐸
Type equation here.

𝐴̇ = 𝜉,-𝐸 − 𝛾-#𝐴
Type equation here.

̇𝐼 = 𝜉,%𝐸 − 𝛾%#𝐼 − 𝛿𝐼
Type equation here.

𝑅̇ = 𝛾-#𝐴 + 𝛾#%𝐼 − 𝜁𝑅
Type equation here.

𝐷̇ = 𝛿𝐼

System of ordinary differential equations (ODEs):
[Note: at times we drop the state dependence on time, for simplified notation]

Susceptible-Exposed-Infected(Asymptomatic)
-Infected(Symptomatic)-Recovered

𝑁 = 𝑆 + 𝐸 + 𝐴 + 𝐼 + 𝑅
Model 𝑅" = ? ?

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$



Model 𝑅): An intuition based assessment18

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

- the force of infection function can help guide us in understanding 
the model 𝑅"

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$

Practical Assessment:
- When 𝑅" > 1, we expect the disease to persist 

and spread throughout the population
- When 𝑅" < 1, we expect the disease to die out



Model 𝑅): An intuition based assessment19

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

- the force of infection function can help guide us in understanding 
the model 𝑅"

Recall when 𝜆 𝑡 ≔ 𝛽 ( %
)(%)

, the SEIR model 𝑅" = 𝛽 *
+

Qualitatively, this implies:
𝑅" = “𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒” ×(“𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑”)

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$

Practical Assessment:
- When 𝑅" > 1, we expect the disease to persist 

and spread throughout the population
- When 𝑅" < 1, we expect the disease to die out



Model 𝑅): An intuition based assessment20

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

- the force of infection function can help guide us in understanding 
the model 𝑅"

Recall when 𝜆 𝑡 ≔ 𝛽 ( %
)(%)

, the SEIR model 𝑅" = 𝛽 *
+

Qualitatively, this implies:
𝑅" = “𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒” ×(“𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑”)

BUT… our new force of infection function also has:
• 𝑐: average number of daily contacts
• 𝐴(𝑡): Asymptomatic-Infectious population

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$

Practical Assessment:
- When 𝑅" > 1, we expect the disease to persist 

and spread throughout the population
- When 𝑅" < 1, we expect the disease to die out



Model 𝑅): An intuition based assessment21

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

Qualitatively, this implies:

𝑅" = “𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒” × “𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠”
×(“𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑”)

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$



Model 𝑅): An intuition based assessment22

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

Qualitatively, this implies:

𝑅" = “𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒” × “𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠”
×(“𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑”)

So what is the “average infectious period”?

We need to first understand 
• Residence Time and 
• Population Flow Fractions.

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$



Model 𝑅): An intuition based assessment23

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

Qualitatively, this implies:

𝑅" = “𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒” × “𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠”
×(“𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑”)

Residence Time and Population Flow Fraction through “Exposure”

• Residence time in “Exposure”: *
,!"',!#

• Fraction “Symptomatic Population” : 

𝑓( =
𝜉-(

𝜉-( + 𝜉-#

• Fraction “Asymptomatic Population” : 

1 − 𝑓( =
𝜉-#

𝜉-( + 𝜉-#

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$



Model 𝑅): An intuition based assessment24

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

Qualitatively, this implies:

𝑅" = “𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒” × “𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠”
×(“𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑”)

𝑓(: Fraction of the population that become “Symptomatic” 

• Residence time “Symptomatic”: *
.'+"$

1 − 𝑓( : Fraction of the population that become “Asymptomatic” 

• Residence time “Asymptomatic”: *
+#$

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$



Model 𝑅): An intuition based assessment25

Force of Infection Function: 𝜆 𝑡 ≔ 𝛽𝑐 #(%)'((%)
)(%)

Qualitatively, this implies:

𝑅" = “𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒” × “𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠”
×(“𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑”)

𝑓(: Fraction of the population that become “Symptomatic” 

• Residence time “Symptomatic”: *
.'+"$

1 − 𝑓( : Fraction of the population that become “Asymptomatic” 

• Residence time “Asymptomatic”: *
+#$

THEN…

𝑅" = 𝛽𝑐 𝑓(
1

𝛿 + 𝛾(/
+ 1 − 𝑓(

1
𝛾#/

−𝛽𝑐
𝐴 + 𝐼
𝑁

𝜁

𝜉!"

𝛾"# 𝛾$#𝛿

𝜉!$



Compartmental Model: As a Tree with Residence Time26

𝑓0

(1 − 𝑓0) 𝑓/

(1 − 𝑓0) (1 − 𝑓/)

𝑓/

(1 − 𝑓/)

𝑓#

1 − 𝑓#

𝜆 𝑡 ≔ 𝛽𝑐
𝜂#𝐴 𝑡 + 𝐼 𝑡 + 𝜂0𝐻(𝑡)

𝑁(𝑡)

𝑅) = 𝛽𝑐 𝑓V𝜂V𝑇V + 1 − 𝑓V (1 − 𝑓W) 𝜂V𝑇V + 𝑇X + 1 − 𝑓V 𝑓W(𝜂V𝑇V + 𝑇X + 𝜂W𝑇W)

Where 𝑇⋆ represents the residence time for each respective state.



Compartmental Model: As a Tree with Residence Time27

𝑓0

(1 − 𝑓0) 𝑓/

(1 − 𝑓0) (1 − 𝑓/)

𝑓/

(1 − 𝑓/)

𝑓#

1 − 𝑓#

𝜆 𝑡 ≔ 𝛽𝑐
𝜂#𝐴 𝑡 + 𝐼 𝑡 + 𝜂0𝐻(𝑡)

𝑁(𝑡)

𝑅) = 𝛽𝑐 𝑓V𝜂V𝑇V + 1 − 𝑓V (1 − 𝑓W) 𝜂V𝑇V + 𝑇X + 1 − 𝑓V 𝑓W(𝜂V𝑇V + 𝑇X + 𝜂W𝑇W)

Where 𝑇⋆ represents the residence time for each respective state.



Compartmental Model: As a Tree with Residence Time28

𝑓0

(1 − 𝑓0) 𝑓/

(1 − 𝑓0) (1 − 𝑓/)

𝑓/

(1 − 𝑓/)

𝑓#

1 − 𝑓#

𝜆 𝑡 ≔ 𝛽𝑐
𝜂#𝐴 𝑡 + 𝐼 𝑡 + 𝜂0𝐻(𝑡)

𝑁(𝑡)

𝑅) = 𝛽𝑐 𝑓V𝜂V𝑇V + 1 − 𝑓V (1 − 𝑓W) 𝜂V𝑇V + 𝑇X + 1 − 𝑓V 𝑓W(𝜂V𝑇V + 𝑇X + 𝜂W𝑇W)

Where 𝑇⋆ represents the residence time for each respective state.



Compartmental Model: As a Tree with Residence Time29

𝑓0

(1 − 𝑓0) 𝑓/

(1 − 𝑓0) (1 − 𝑓/)

𝑓/

(1 − 𝑓/)

𝑓#

1 − 𝑓#

𝜆 𝑡 ≔ 𝛽𝑐
𝜂#𝐴 𝑡 + 𝐼 𝑡 + 𝜂0𝐻(𝑡)

𝑁(𝑡)

𝑅) = 𝛽𝑐 𝑓V𝜂V𝑇V + 1 − 𝑓V (1 − 𝑓W) 𝜂V𝑇V + 𝑇X + 1 − 𝑓V 𝑓W(𝜂V𝑇V + 𝑇X + 𝜂W𝑇W)

Where 𝑇⋆ represents the residence time for each respective state.



Compartmental Model: As a Tree with Residence Time30

𝑓0

(1 − 𝑓0) 𝑓/

(1 − 𝑓0) (1 − 𝑓/)

𝑓/

(1 − 𝑓/)

𝑓#

1 − 𝑓#

𝜆 𝑡 ≔ 𝛽𝑐
𝜂#𝐴 𝑡 + 𝐼 𝑡 + 𝜂0𝐻(𝑡)

𝑁(𝑡)

𝑅) = 𝛽𝑐 𝑓V𝜂V𝑇V + 1 − 𝑓V (1 − 𝑓W) 𝜂V𝑇V + 𝑇X + 1 − 𝑓V 𝑓W(𝜂V𝑇V + 𝑇X + 𝜂W𝑇W)

Where 𝑇⋆ represents the residence time for each respective state.



Notional Results: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷31

Nominal Parameter Values:

State Trajectories:

E(t)
A(t)
I(t)
R(t)
H(t)
D(t)

𝑐



Notional Results: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷32

Nominal Parameter Values:

State Trajectories:

E(t)
A(t)
I(t)
R(t)
H(t)
D(t)

𝑐



Notional Results: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷33

Nominal Parameter Values:

State Trajectories:

E(t)
A(t)
I(t)
R(t)
H(t)
D(t)

𝑐



Notional Results: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷34

Nominal Parameter Values:

State Trajectories:

E(t)
A(t)
I(t)
R(t)
H(t)
D(t)

𝑐



Notional Results: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷35

Nominal Parameter Values:

State Trajectories:

E(t)
A(t)
I(t)
R(t)
H(t)
D(t)

How Do We Know We Have Derived 
the Correct Model 𝑅"??



Model 𝑅) Verification: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷36

When 𝑅" < 1, we expect the disease to die outWhen 𝑅" > 1, we expect the disease to persist

E(t)
A(t)
I(t)

E(t)
A(t)
I(t)

Parameter Changes:

𝛽 0.07

𝜅 3

𝑅/ 1.05983

Parameter Changes:

𝛽 0.065

𝜅 3

𝑅/ 0.984128

𝑐 𝑐



Model 𝑅) Verification: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷37

When 𝑅" < 1, we expect the disease to die outWhen 𝑅" > 1, we expect the disease to persist

E(t)
A(t)
I(t)

E(t)
A(t)
I(t)

Parameter Changes:

𝛽 0.07

𝜅 3

𝑅/ 1.05983

Parameter Changes:

𝛽 0.065

𝜅 3

𝑅/ 0.984128

A subtle change in 𝛽 alone can make all the difference in whether or not we simulate a 
persistent disease or a controlled disease

𝑐 𝑐



Uncertainty Quantification (UQ) and Global Sensitivity Analysis (GSA)38

Quantity of Interest (QoI): 
Our analysis needs to target a particular output of our model (e.g. 𝑅", max(𝐻(𝑡)))

Forward Uncertainty Quantification:
With a measured uncertainty coming from the nominal values in our parameterizations, we want to 
measure the uncertainty of our QoI. 

Uncertainty in our context is measured by the variance in our model inputs (parameters) and 
outputs (QoIs)

Global Sensitivity Analysis: 
When the uncertainty of our QoI is high, it is often the case that we want to determine what 
sources of uncertainty are the most influential. 

What is the sensitivity of our QoI with respect to the parameter uncertainties. 



UQ/GSA for 𝑅)39

Parameter Uniform Uncertainties:

𝑅" Uncertainty:

Parameter Influence* on 𝑅" Uncertainty:

Sobol’ indices were derived using Julia implementation of numerical methods 
for variance based decomposition 

Quasi-Monte Carlo Simulations were run to measure forward UQ

𝑐



UQ/GSA for max(𝐻(𝑡))40

Parameter Uniform Uncertainties:

max(𝐻(𝑡)) Uncertainty:

Parameter Influence on max(𝐻(𝑡)) Uncertainty:

Sobol’ indices were derived using Julia implementation of numerical methods 
for variance based decomposition 

Quasi-Monte Carlo Simulations were run to measure forward UQ

𝑐



Notional Results: 𝑆 − 𝐸 − 𝐴 − 𝐼 − 𝑅 − 𝐻 − 𝐷41

Nominal Parameter Values:

State Trajectories:

E(t)
A(t)
I(t)
R(t)
H(t)
D(t)

What is the difference between 𝑅"
and replacement number 𝑅(𝑡)??

𝑐



𝑅) Versus 𝑅 𝑡42

Infected State Trajectories:

𝑅 𝑡 < 1𝑅 𝑡 > 1

𝑅" ≈ 2

What to Know:

𝑅 𝑡 ≈ 𝑅" at time 𝑡 = 0
• 𝑡 = 0 is when the first 

infected is introduced 
to a fully susceptible 
population.

𝑅 𝑡 ≈ 1 at time 𝑡 = 95
(specific to this example) 

• Implying that we can 
reach herd immunity on 
day 95 (after the first 
infected is introduced)

𝑅 𝑡 = 𝑅"
𝑆 𝑡
𝑁(𝑡)



Herd Immunity in terms of 𝑅) and 𝑅 𝑡43

Infected State Trajectories:

𝑅 𝑡 < 1𝑅 𝑡 > 1

𝑅" ≈ 2

What to Know:

𝑅 𝑡 ≈ 𝑅" at time 𝑡 = 0

𝑅 𝑡 ≈ 1 at time 𝑡 = 95

Herd Immunity≔ Ψ = 1 − *
/3

• When 𝑅" = 2, then
Ψ = 0.5

• 𝑆 𝑡 < 0.5𝑁 𝑡 is 
needed to control the 
spread

𝑁 𝑡 = 10,000

At time 𝑡 = 95
• 𝑆 95 ≈ 4854
• R 95 ≈ 0.98 < 1

𝑅 𝑡 = 𝑅"
𝑆 𝑡
𝑁(𝑡)



Outline44

Introduction to Epidemiology

Epi Modeling Paradigms

Modeling Mitigation Strategies

Compartmental Model System Analysis



Non-Pharmaceutical Interventions (NPI)45

Personal Protective Equipment (PPE)
• Face masks

Isolation
• Identified infected individuals only. 
• Those who have a positive test result, indicating that they have been infected by the virus.  

Quarantine 
• Contacts of an infected individual in isolation.
• Identification and quarantine of presumptive positive cases is most critical to infectious 

diseases where infectious onset occurs before symptom onset. 



Compartmental Model: NPI Intervention (Face Masks)46

𝑓0

(1 − 𝑓0) 𝑓/

(1 − 𝑓0) (1 − 𝑓/)

𝑓/

(1 − 𝑓/)

𝑓#

1 − 𝑓#

𝜆 𝑡 ≔ 𝛽𝑐(1 − 𝜌-×𝜌2)
𝜂#𝐴 𝑡 + 𝐼 𝑡 + 𝜂0𝐻(𝑡)

𝑁(𝑡)

𝜌! ∶ Effectiveness of Face Masks
𝜌% ∶ Probability the interaction between 
two individuals is protected by Face Masks



Face Mask 𝑅)47

𝜆 𝑡 ≔ 𝛽𝑐(1 − 𝜌e×𝜌f)
𝜂V𝐴 𝑡 + 𝐼 𝑡 + 𝜂W𝐻(𝑡)

𝑁(𝑡)

𝑅) = 𝛽𝑐 1 − 𝜌e×𝜌f
× 𝑓V𝜂V𝑇V + 1 − 𝑓V (1 − 𝑓W) 𝜂V𝑇V + 𝑇X + 1 − 𝑓V 𝑓W(𝜂V𝑇V + 𝑇X + 𝜂W𝑇W)



Compartmental Model: NPI Intervention (Isolation & Quarantine)48

1 − 𝑞( 𝑡 𝑓0

1 − 𝑞( 𝑡 (1 − 𝑓0) 𝑓/

𝑓/

(1 − 𝑓/)

1 − 𝑞# 𝑡 𝑓#
𝜆 𝑡 ≔ 𝛽𝑐 1 − 𝜌-×𝜌2

×
𝜂#𝐴 𝑡 + 𝐼 𝑡 + 𝜂0𝐻 𝑡 + (1 − 𝜃3)(𝜂#𝐴3 𝑡 + 𝐼4(𝑡))

𝑁(𝑡)

1 − 𝑓#

𝑓#

(1 − 𝑓0)𝑓/

𝜃& ∶ Effectiveness of Quarantine & Isolation

𝑞#(𝑡)𝑞-(𝑡)𝑞5(𝑡) 𝑞((𝑡)

1 − 𝑞# 𝑡 1 − 𝑓#

1 − 𝑞( 𝑡 (1 − 𝑓0) (1 − 𝑓/)

𝑓0

1 − 𝑓0 (1 − 𝑓/)



Evolution of Compartmental Model Complexity49

To Develop a Credible Model: 
1. Start with the Fundamentals
2. Methodically add Complexity
3. Provide Interpretable Results
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