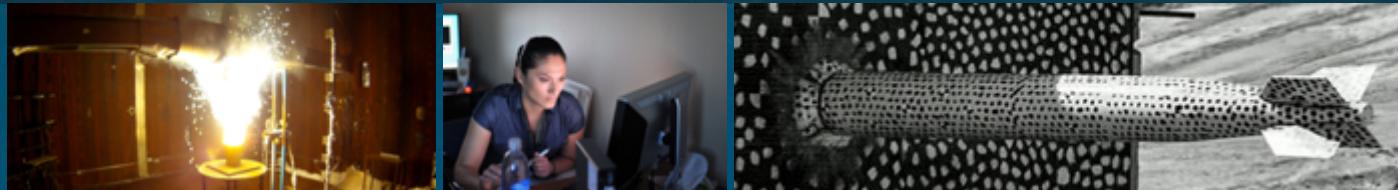


Mathematical Modeling and Analysis for Emerging Infectious Diseases



PRESENTED BY

Erin C.S. Acuesta

Presented to: UNM Health and Environmental Communication

April 8th, 2021

Material is derived from collaborations with

SNL: Walt Beyeler, Haedi Deangelis, Pat Finley, Kate Klise, Monear Makvandi, Teresa Portone, Jaideep Ray, Cosmin Safta, and many others. **MIT:** Raj Dandekar, Chris Rackauckas

Introduction to Epidemiology

Epi Modeling Paradigms

Compartmental Model System Analysis

Modeling Mitigation Strategies

The study of the **distribution and determinants of health-related states or events** in *specified populations*, and the application of this study to the control of health problems [Last, 2001]

For more details, please reference the CDC's *Introduction to Epidemiology*:
https://www.cdc.gov/csels/dsepd/ss1978/Lesson1/Section1.html#_ref1

Pathology of the Virus:

Viruses are named based on their genetic structure to facilitate the development of diagnostic tests, vaccines and medicines.

Epidemiology of the Disease:

Diseases are named to enable discussion on disease prevent, spread, transmissibility, severity and treatment.

Virus	Disease
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)	CoronaVirus Disease, 2019 (COVID-19)

Doubling Time, T_d

The expected amount of time for the number of cumulative infections to double.

Basic Reproduction Number, R_0

The expected number of infections from one infected individual introduced into a population of 100% susceptible individuals.

Replacement Number, $R(t)$

After the early stages of an epidemic has passed, the number of secondary infections is expected to go down as the number of susceptible individuals goes down.

Herd Immunity, Ψ

Implies the susceptible population is small enough, either through vaccination or immunity due to infection and recovery, that the effective secondary infection rate is less than 1.

Non-Pharmaceutical Interventions

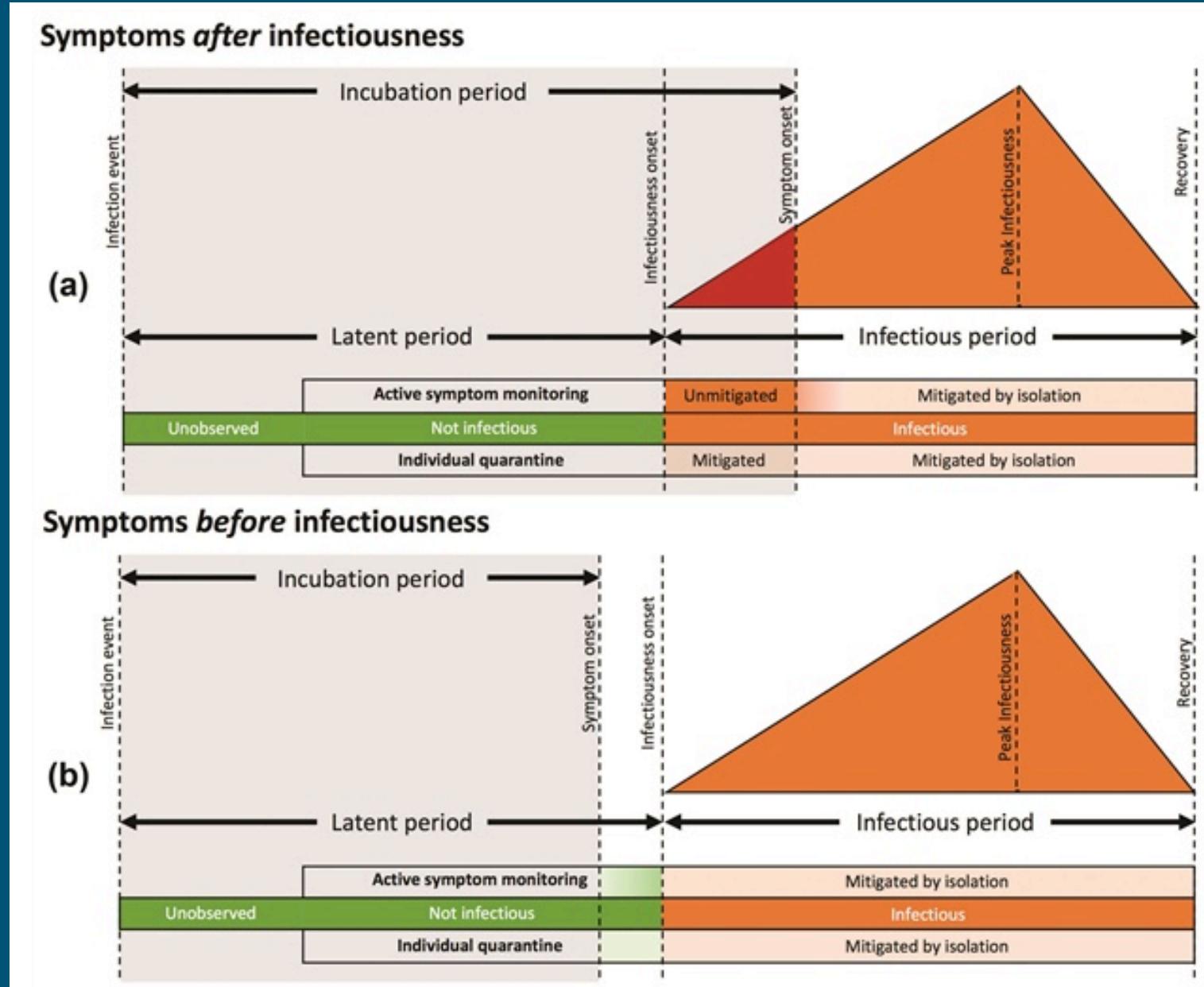
Social distancing, business & school closures, face masks, isolation, and quarantine.

Pharmaceutical Interventions

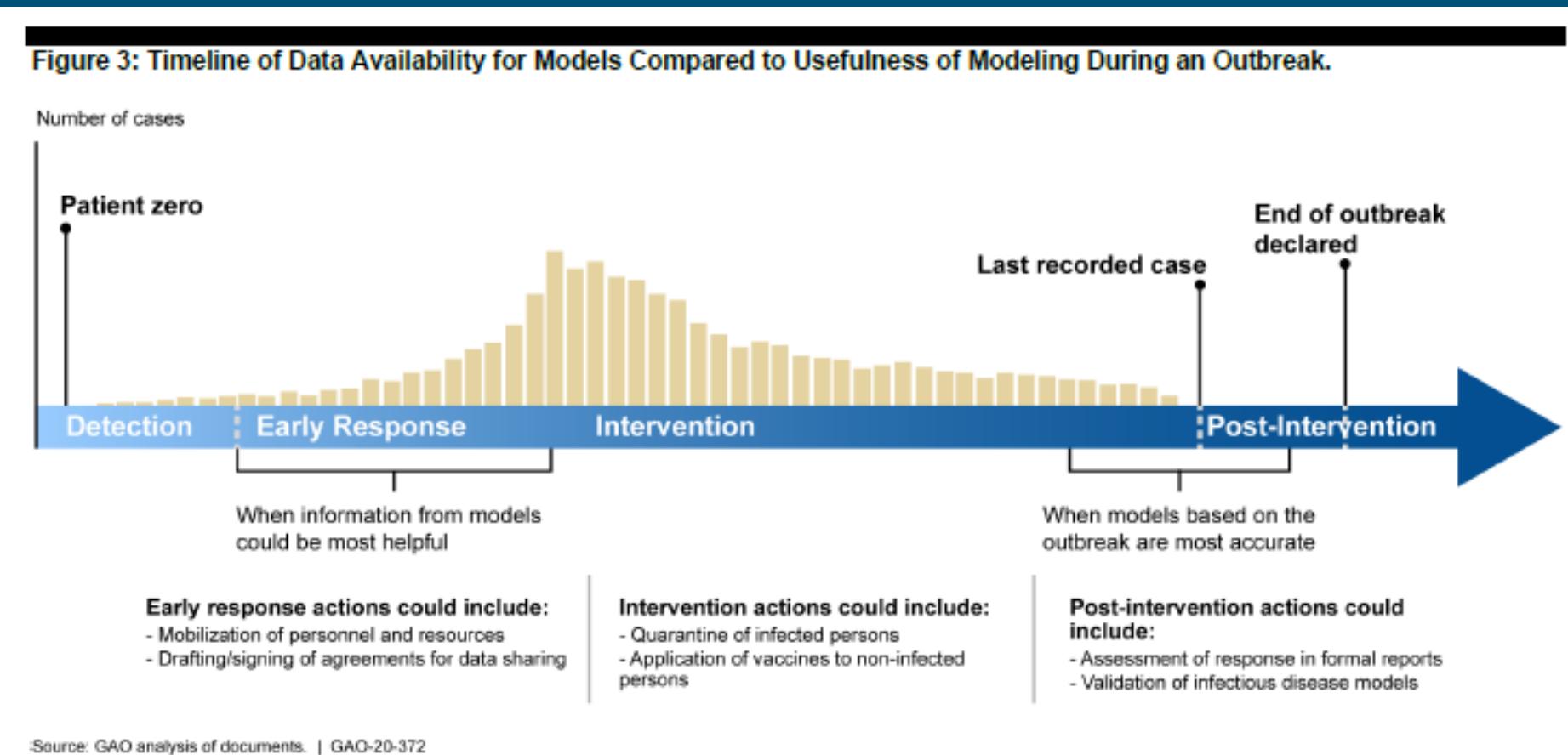
Vaccinations for the susceptible populations and/or therapeutics for the infected population.

Infection to Infectious Timeline

[Childs, 2020]



Timeline of Data Availability and Model Usefulness



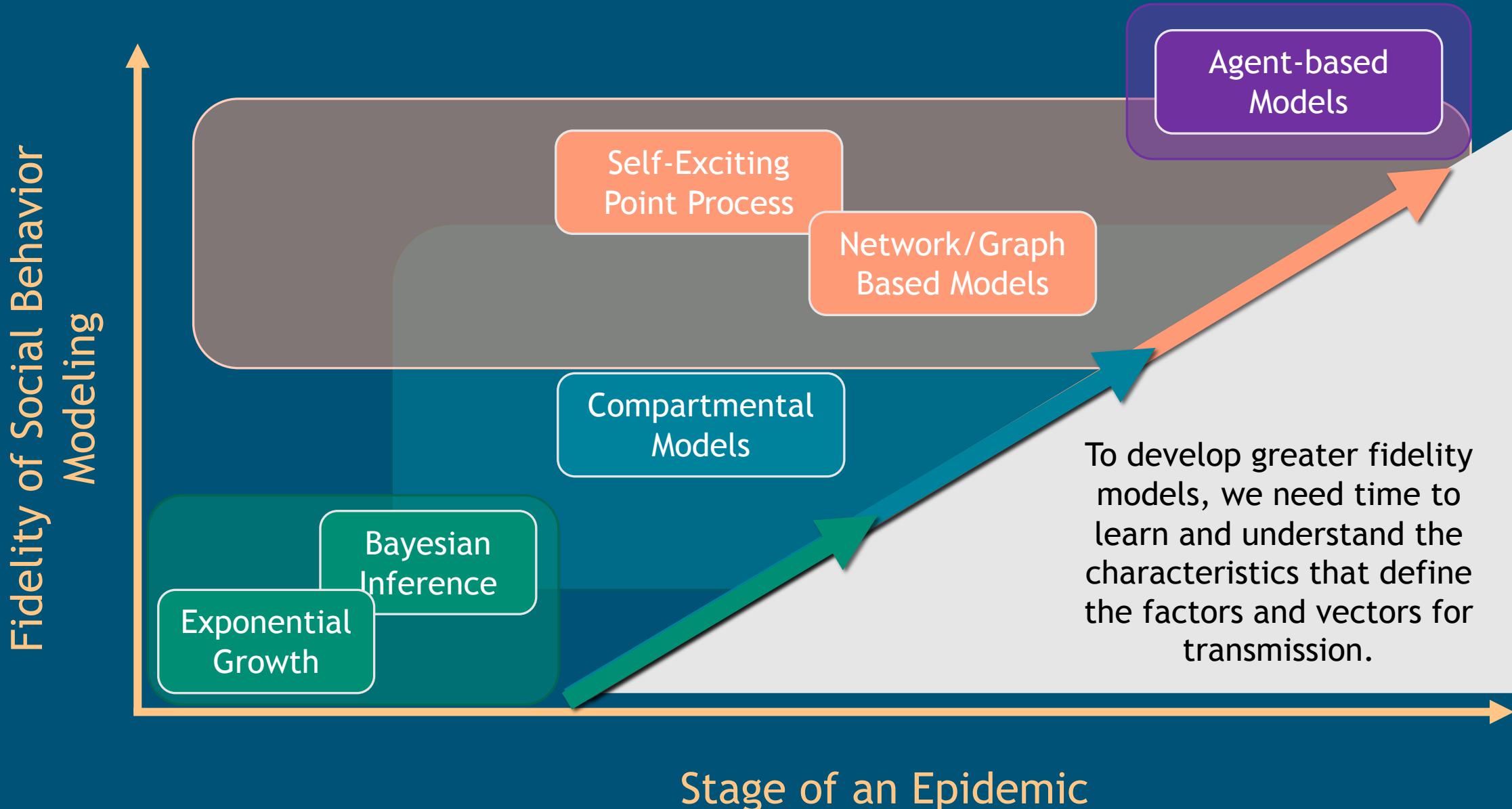
Introduction to Epidemiology

Epi Modeling Paradigms

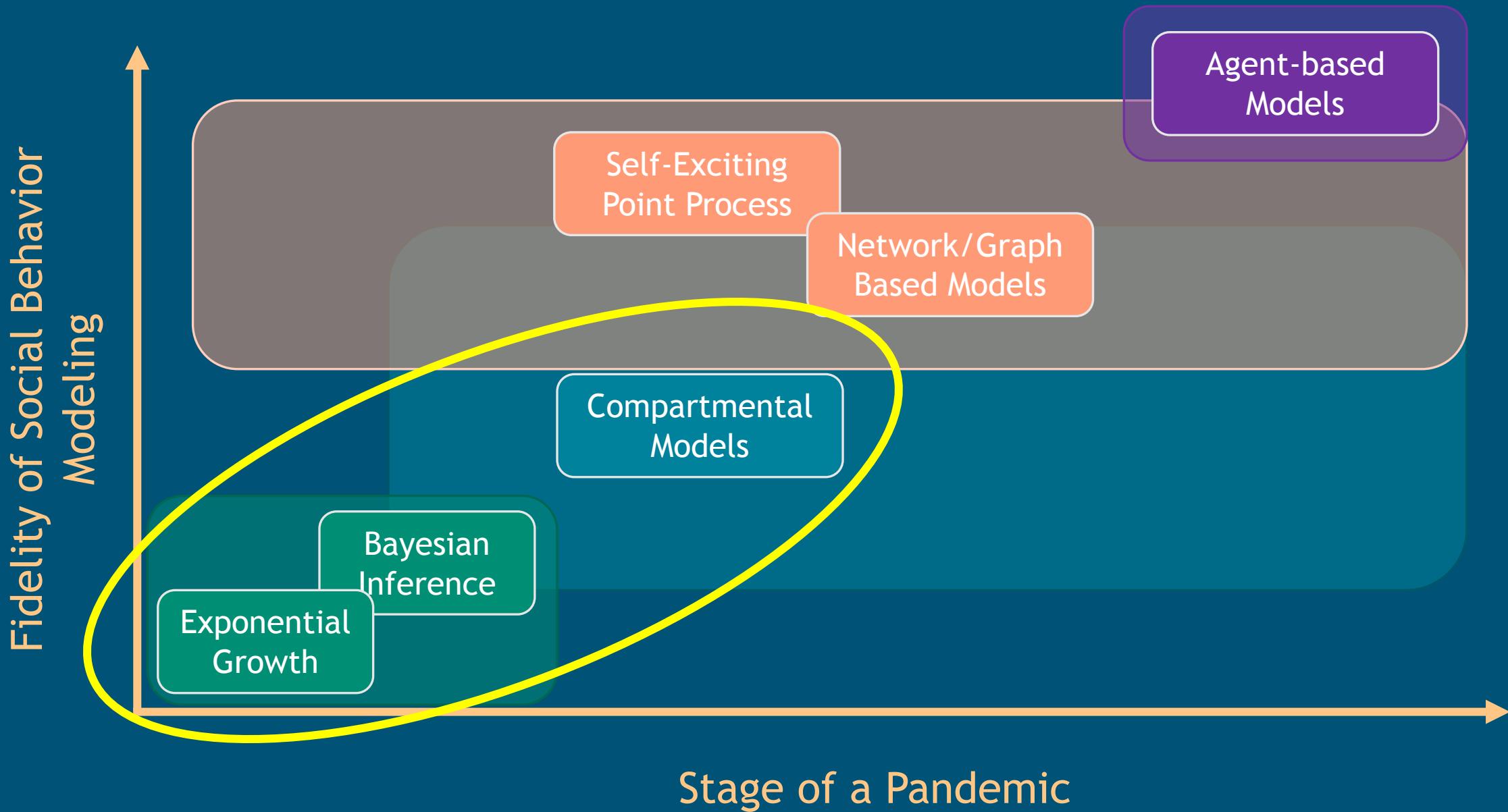
Compartmental Model System Analysis

Modeling Mitigation Strategies

Epidemiology Modeling Paradigms



Epidemiology Modeling Paradigms



Exponential Growth

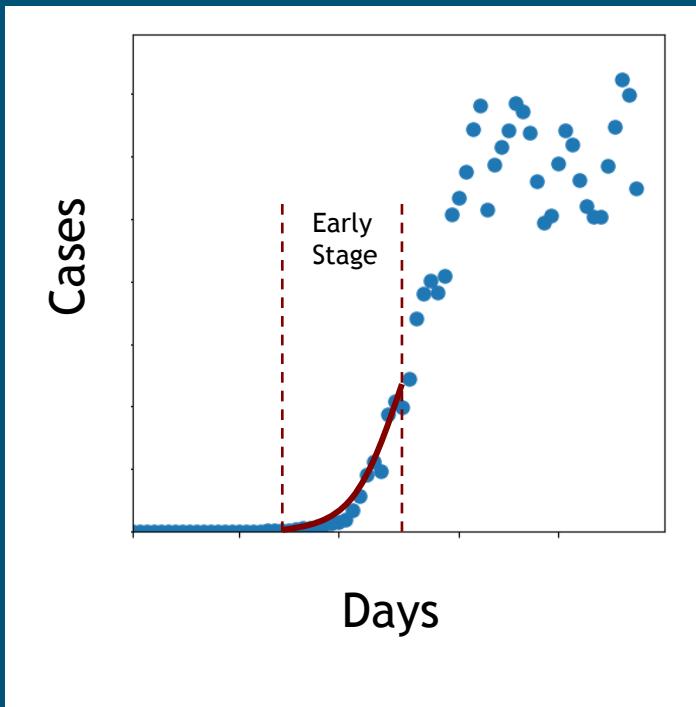
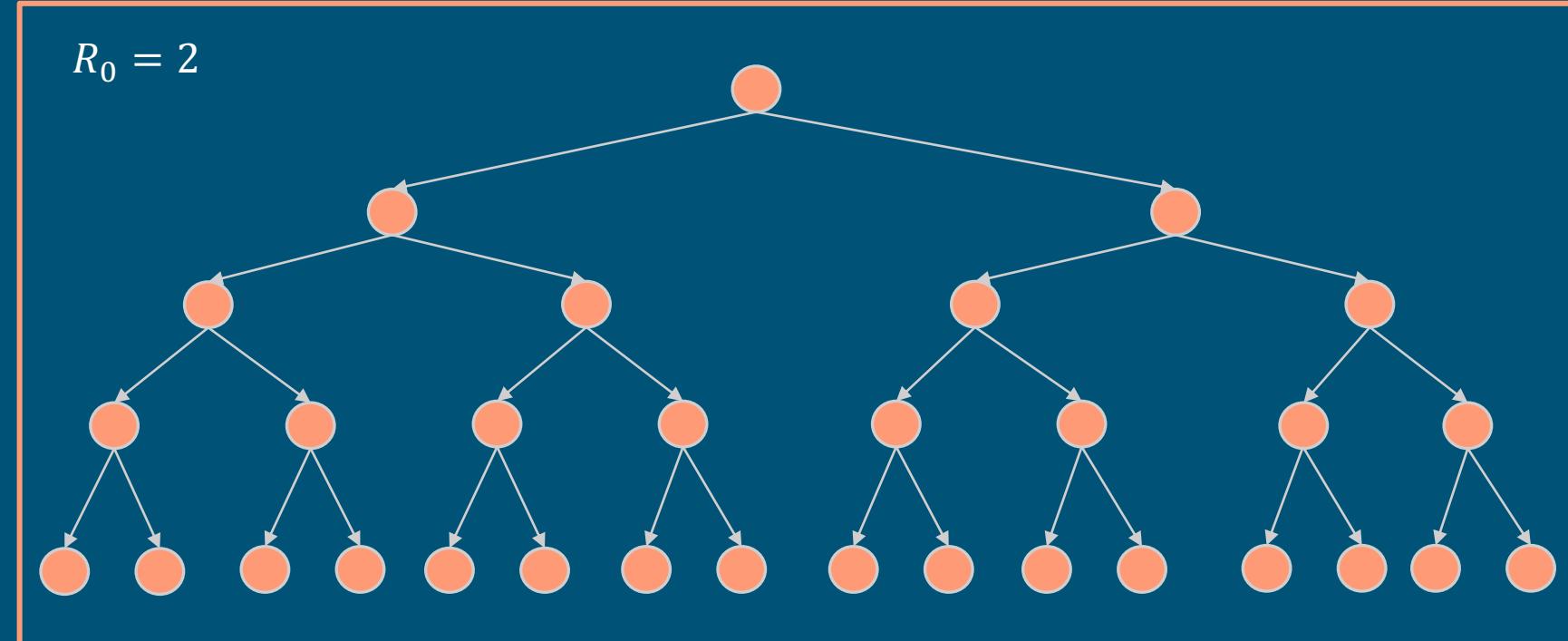
As an early stage model, these models are typically used to derive the secondary infection rate, R_0 , for an emerging epidemic.

T_d (Doubling Time) is observable from the case counts

$$R_0 = \ln(2) / T_d$$

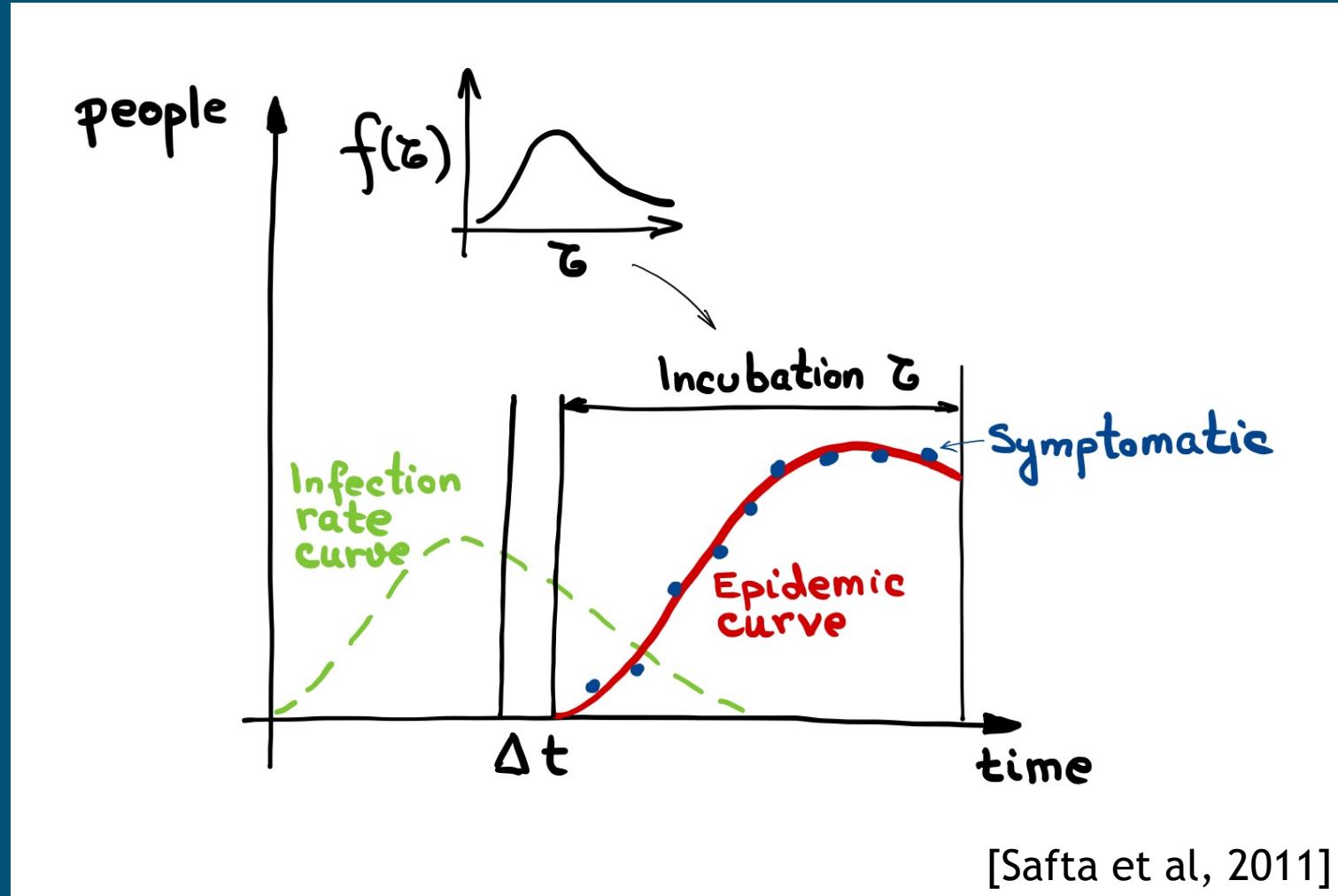
$$I(t) = I_0 e^{R_0 t}$$

[Bertozzi, 2020]



Bayesian Inference

From observable reported new cases, Bayesian models infer the infection rate curve (i.e. variable replacement number R) then push forward a predictive epidemic curve.



- Infection Rate curve modeled as a Gamma distribution with unknown shape (k) and scale (θ) parameters

$$\text{InfR}(t - t_0) \sim \Gamma(k, 1/\theta)$$

- The incubation rate is modeled using a log-normal distribution with parameters based on published results [Lauer, 2020]

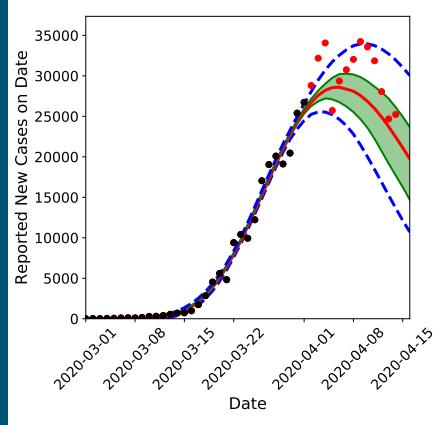
$$\text{IncR} \sim \text{Lognormal}(\mu(\xi_1), \sigma(\xi_2)^2)$$

Bayesian Inference

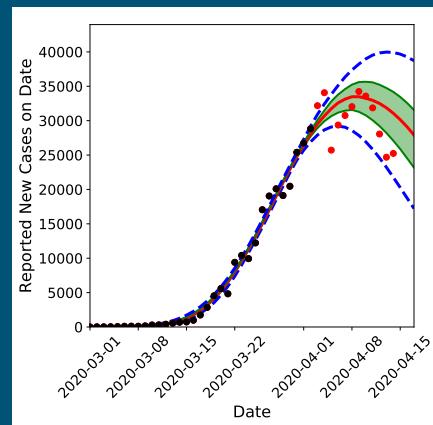
We can now learn the bend in the curve, when we start to move away from exponential growth.

Example: COVID-19 Reported Cases in U.S. from April 1st - April 14th 2020

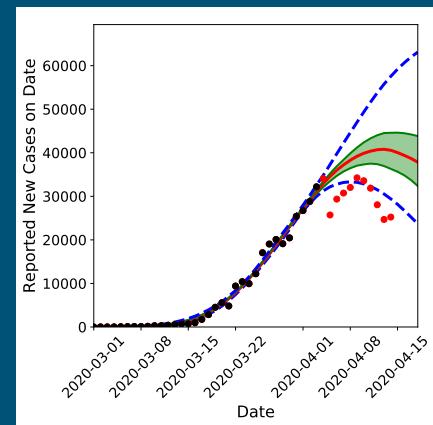
April 1



April 2



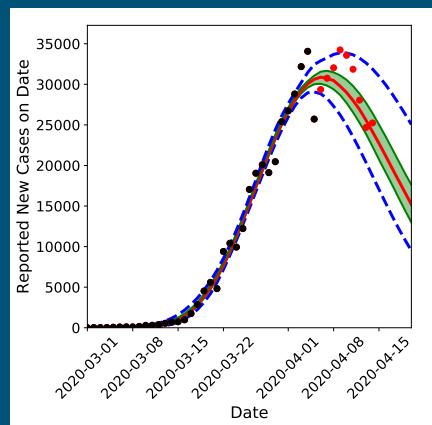
April 3



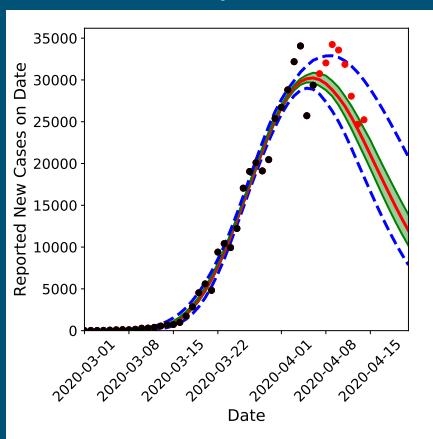
April 4



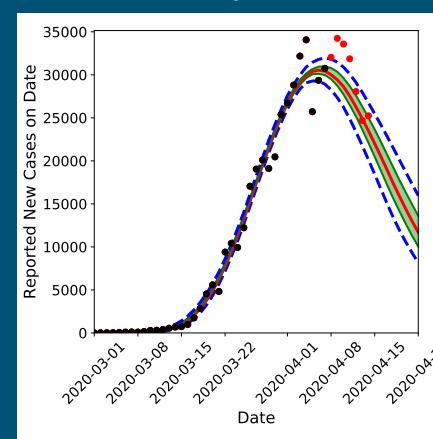
April 5



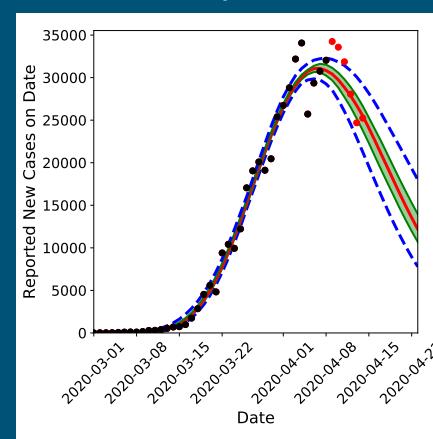
April 6



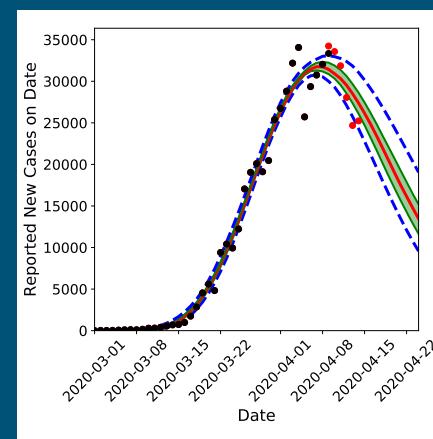
April 7



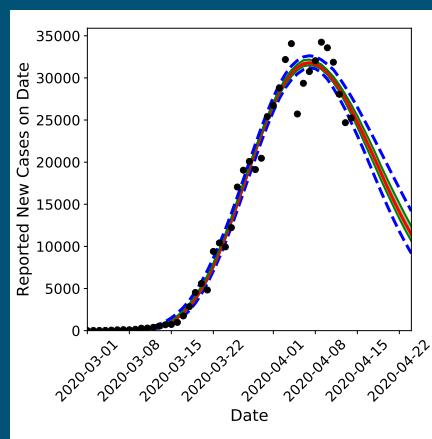
April 8



April 9



April 14



- Black symbols show data used for model inference and to generate forecasts
- Red symbols display data observed after the forecast was produced

Outline

Introduction to Epidemiology

Epi Modeling Paradigms

Compartmental Model System Analysis

Modeling Mitigation Strategies

Compartmental Model: Classic SEIR

[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered

System of ordinary differential equations (ODEs):

$$\dot{S}(t) = -\beta \frac{I(t)}{N(t)} S(t)$$

$$\dot{E}(t) = \beta \frac{I(t)}{N(t)} S(t) - \xi E(t)$$

Type equation here.

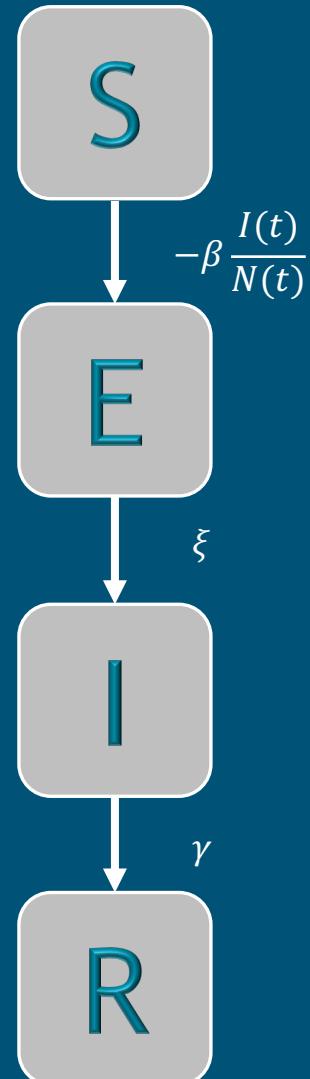
$$\dot{I}(t) = \xi E(t) - \gamma I(t)$$

$$\dot{R}(t) = \gamma I(t)$$

Force of Infection Function: $\lambda(t) := \beta \frac{I(t)}{N(t)}$

Average Incubation Period: $\frac{1}{\xi}$

Average Infectious Period: $\frac{1}{\gamma}$



$$N(t) = S(t) + E(t) + I(t) + R(t)$$

Compartmental Model: Classic SEIR

[Hethcote, 2000]

Susceptible-Exposed-Infected-Recovered

System of ordinary differential equations (ODEs):

$$\dot{S}(t) = -\beta \frac{I(t)}{N(t)} S(t)$$

$$\dot{E}(t) = \beta \frac{I(t)}{N(t)} S(t) - \xi E(t)$$

Type equation here.

$$\dot{I}(t) = \xi E(t) - \gamma I(t)$$

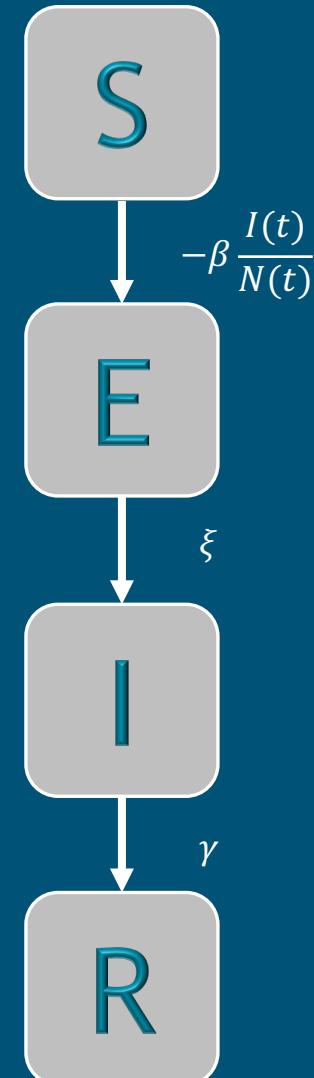
$$\dot{R}(t) = \gamma I(t)$$

Force of Infection Function: $\lambda(t) := \beta \frac{I(t)}{N(t)}$

Average Incubation Period: $\frac{1}{\xi}$

Average Infectious Period: $\frac{1}{\gamma}$

Model $R_0 = \beta \frac{1}{\gamma}$



$$N(t) = S(t) + E(t) + I(t) + R(t)$$

Compartmental Model: a little more detailed

[Hethcote, 2000]

Susceptible-Exposed-Infected(Asymptomatic)-Infected(Symptomatic)-Recovered

System of ordinary differential equations (ODEs):

[Note: at times we drop the state dependence on time, for simplified notation]

$$\dot{S} = -\beta c \frac{A + I}{N} S + \zeta R$$

$$\dot{E} = \beta c \frac{A + I}{N} S - (\xi_{EA} + \xi_{EI})E$$

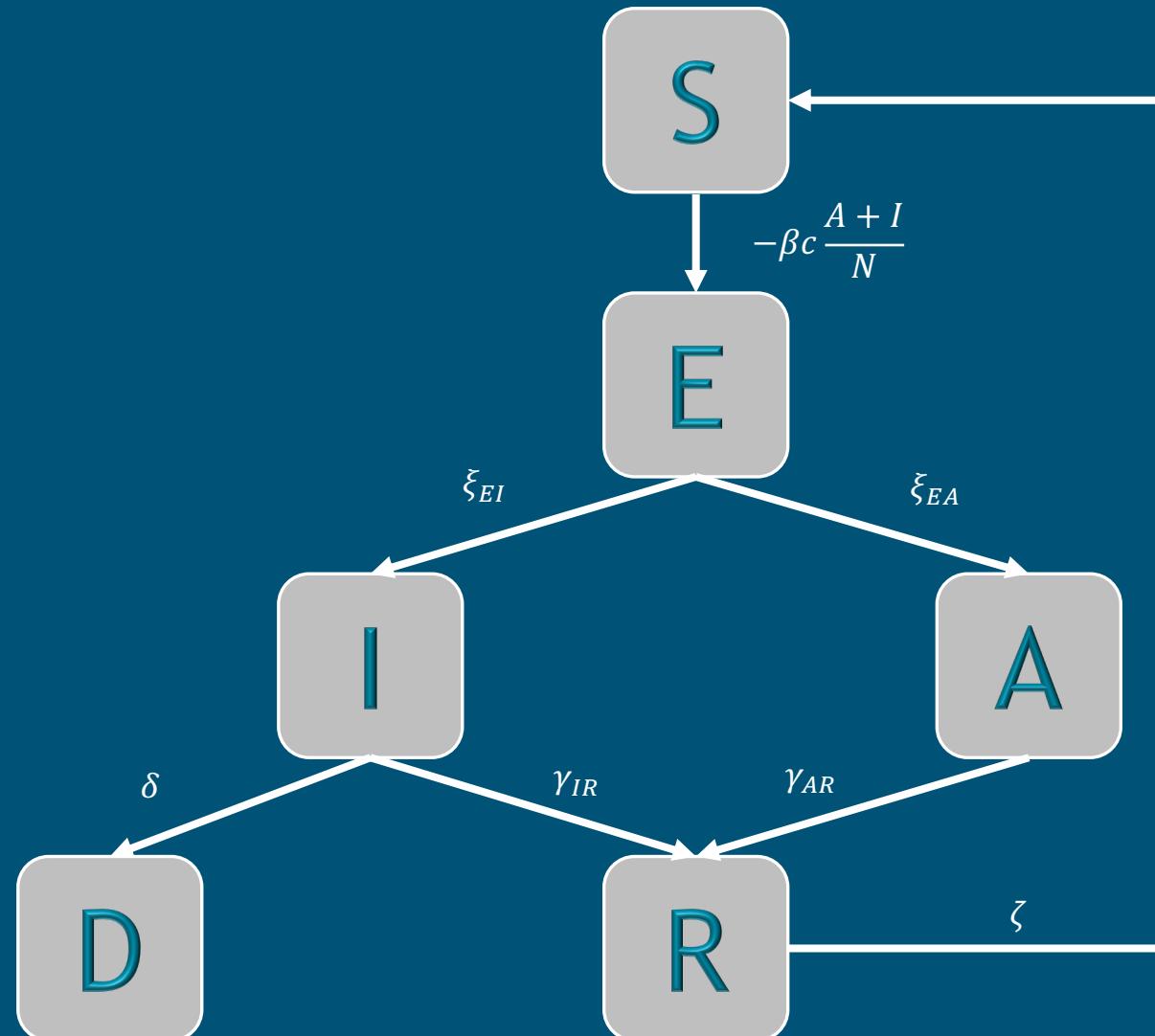
$$\dot{A} = \xi_{EA}E - \gamma_{AR}A$$

$$\dot{I} = \xi_{EI}E - \gamma_{IR}I - \delta I$$

$$\dot{R} = \gamma_{AR}A + \gamma_{RI}I - \zeta R$$

$$\dot{D} = \delta I$$

Model $R_0 = ??$



$$N = S + E + A + I + R$$

Model R_0 : An intuition based assessment

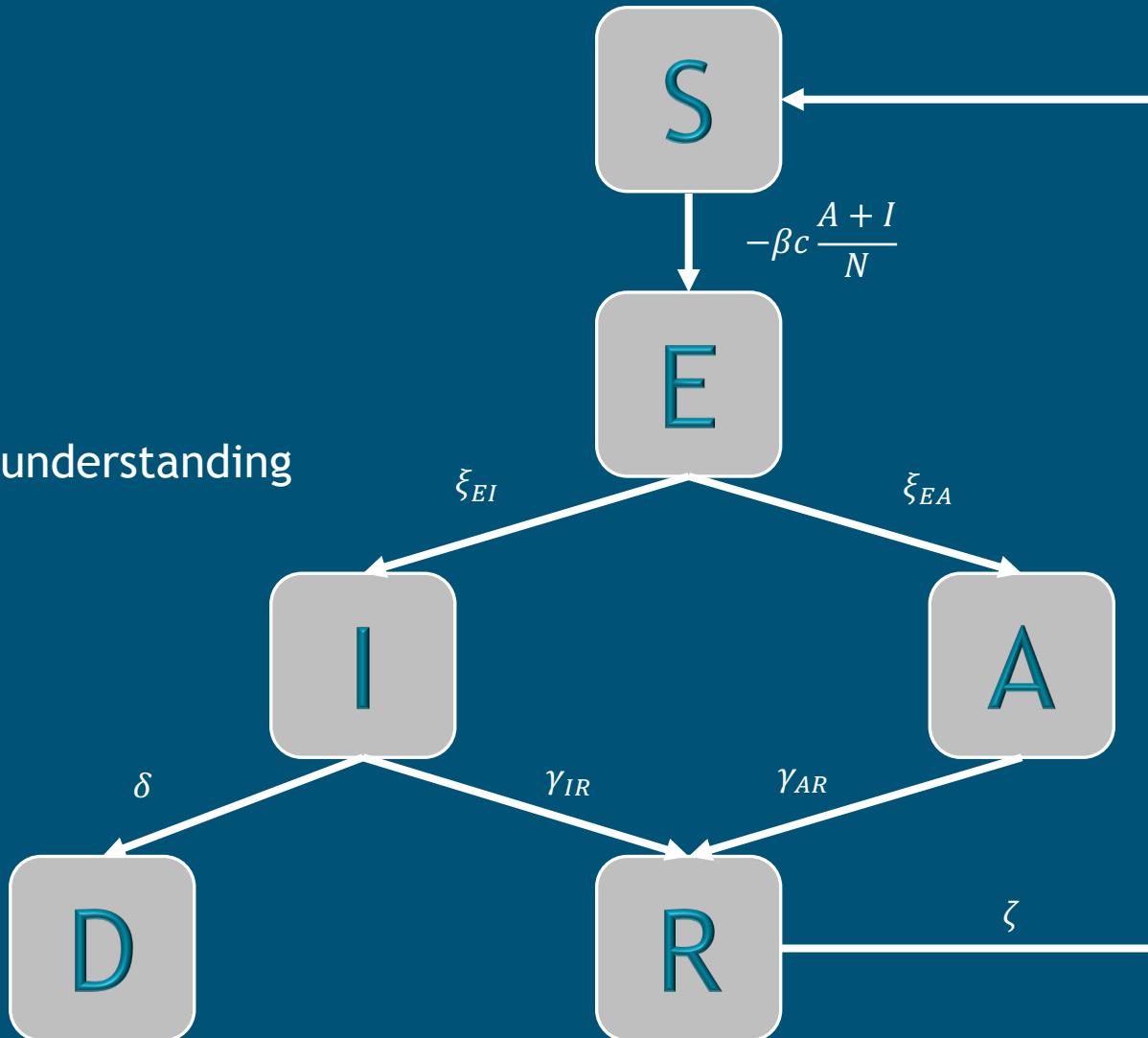
Practical Assessment:

- When $R_0 > 1$, we expect the disease to persist and spread throughout the population
- When $R_0 < 1$, we expect the disease to die out

Force of Infection Function:

$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

- the force of infection function can help guide us in understanding the model R_0



Model R_0 : An intuition based assessment

Practical Assessment:

- When $R_0 > 1$, we expect the disease to persist and spread throughout the population
- When $R_0 < 1$, we expect the disease to die out

Force of Infection Function:

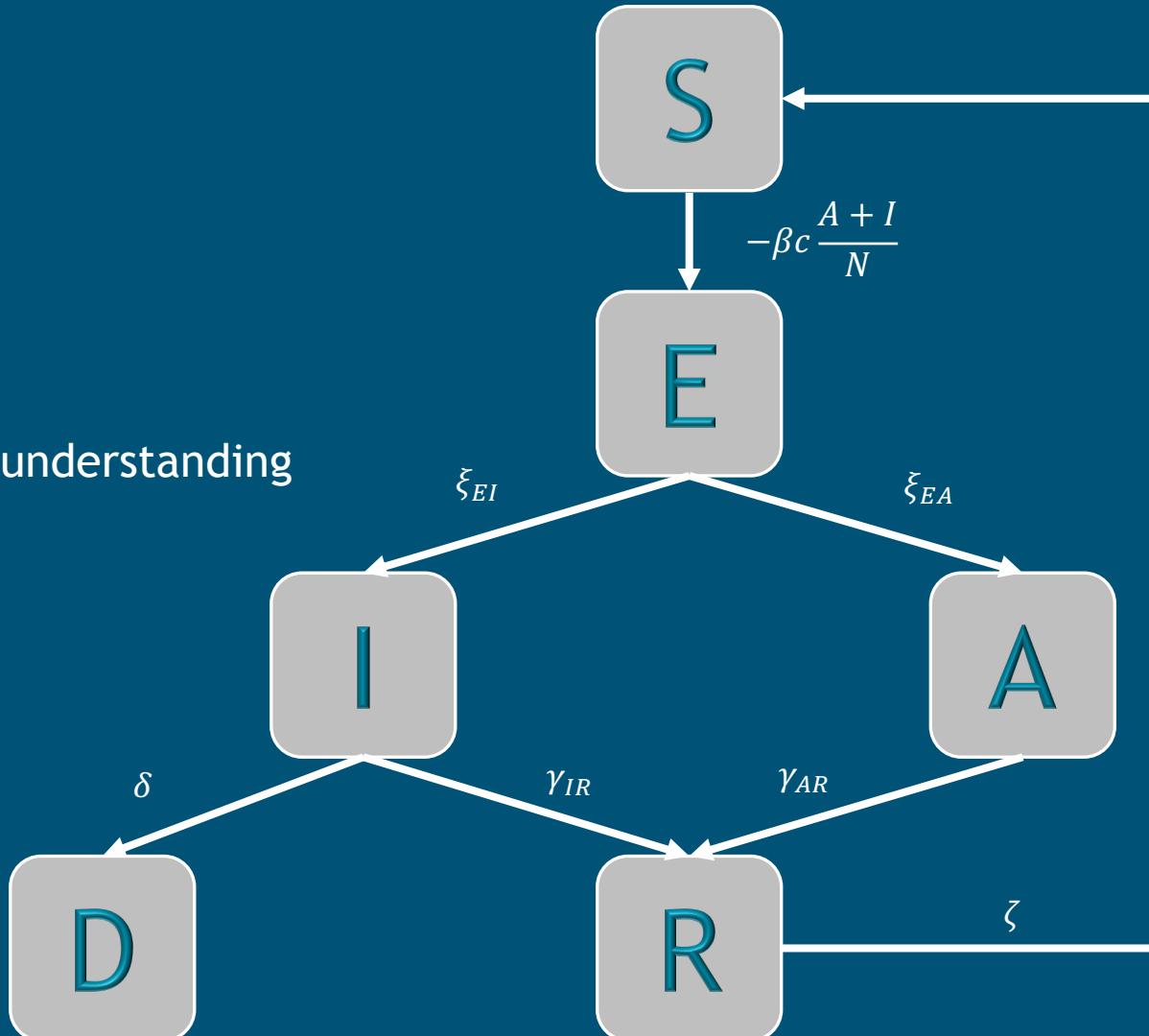
$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

- the force of infection function can help guide us in understanding the model R_0

Recall when $\lambda(t) := \beta \frac{I(t)}{N(t)}$, the SEIR model $R_0 = \beta \left(\frac{1}{\gamma} \right)$

Qualitatively, this implies:

$$R_0 = (\text{"infection rate"}) \times (\text{"average infectious period"})$$



Model R_0 : An intuition based assessment

Practical Assessment:

- When $R_0 > 1$, we expect the disease to persist and spread throughout the population
- When $R_0 < 1$, we expect the disease to die out

Force of Infection Function:

$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

- the force of infection function can help guide us in understanding the model R_0

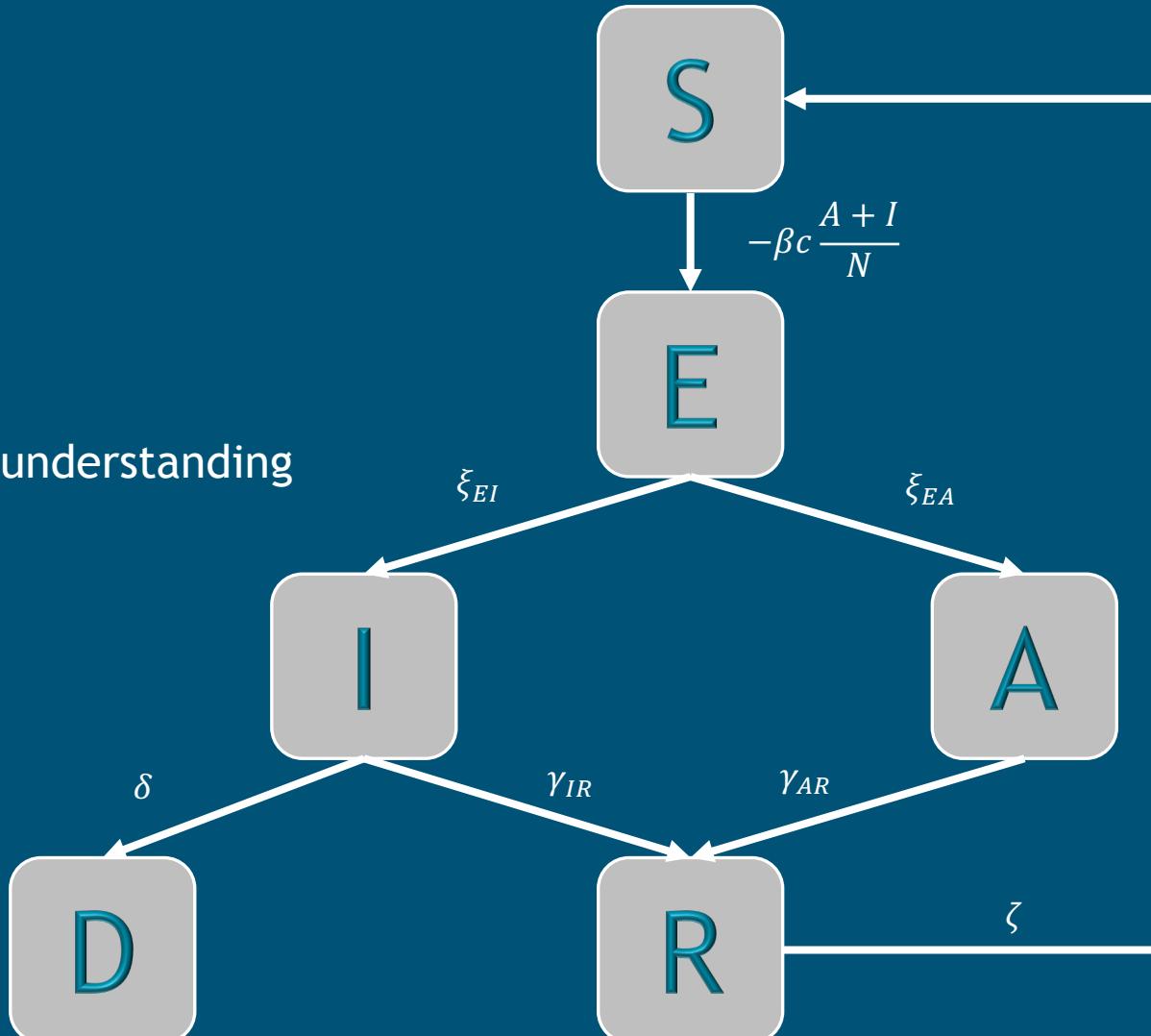
Recall when $\lambda(t) := \beta \frac{I(t)}{N(t)}$, the SEIR model $R_0 = \beta \left(\frac{1}{\gamma} \right)$

Qualitatively, this implies:

$$R_0 = (\text{"infection rate"}) \times (\text{"average infectious period"})$$

BUT... our new force of infection function also has:

- c : average number of daily contacts
- $A(t)$: Asymptomatic-Infectious population



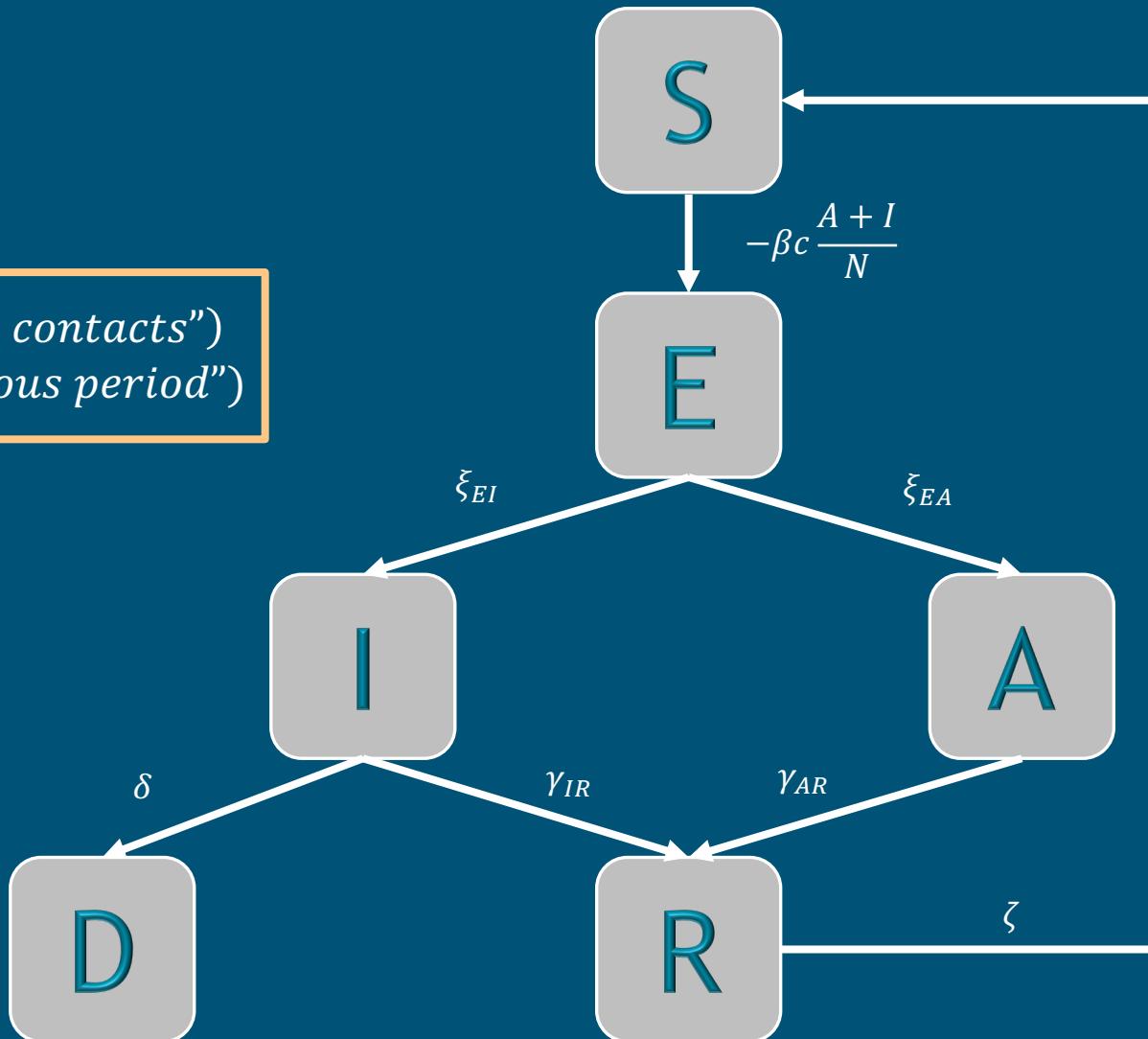
Model R_0 : An intuition based assessment

Force of Infection Function:

$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

Qualitatively, this implies:

$$R_0 = (\text{"infection rate"}) \times (\text{"average number of daily contacts"}) \times (\text{"average infectious period"})$$



Model R_0 : An intuition based assessment

Force of Infection Function:

$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

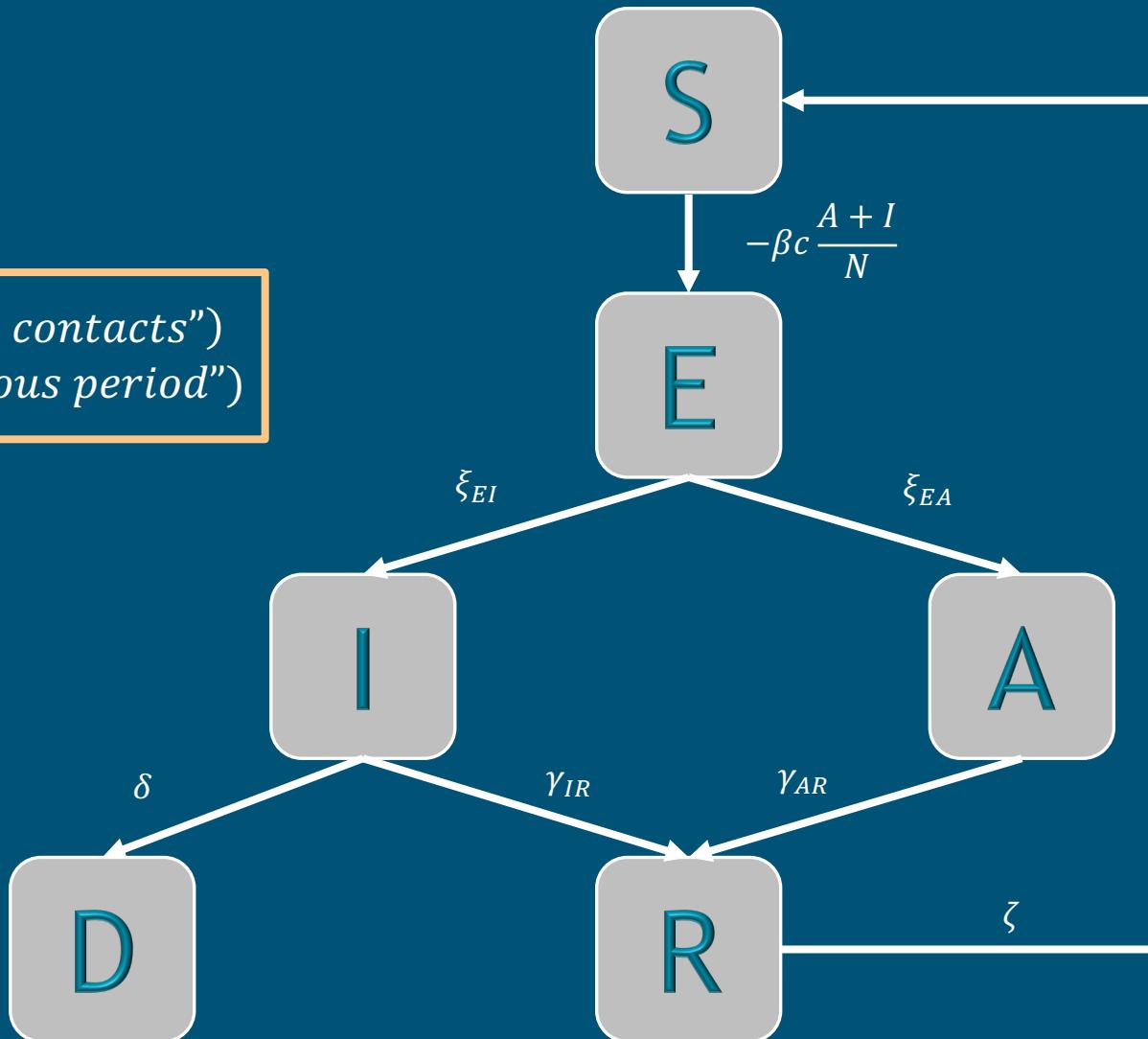
Qualitatively, this implies:

$$R_0 = (\text{"infection rate"}) \times (\text{"average number of daily contacts"}) \times (\text{"average infectious period"})$$

So what is the “average infectious period”?

We need to first understand

- Residence Time and
- Population Flow Fractions.



Model R_0 : An intuition based assessment

Force of Infection Function:

$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

Qualitatively, this implies:

$$R_0 = (\text{"infection rate"}) \times (\text{"average number of daily contacts"}) \times (\text{"average infectious period"})$$

Residence Time and Population Flow Fraction through “Exposure”

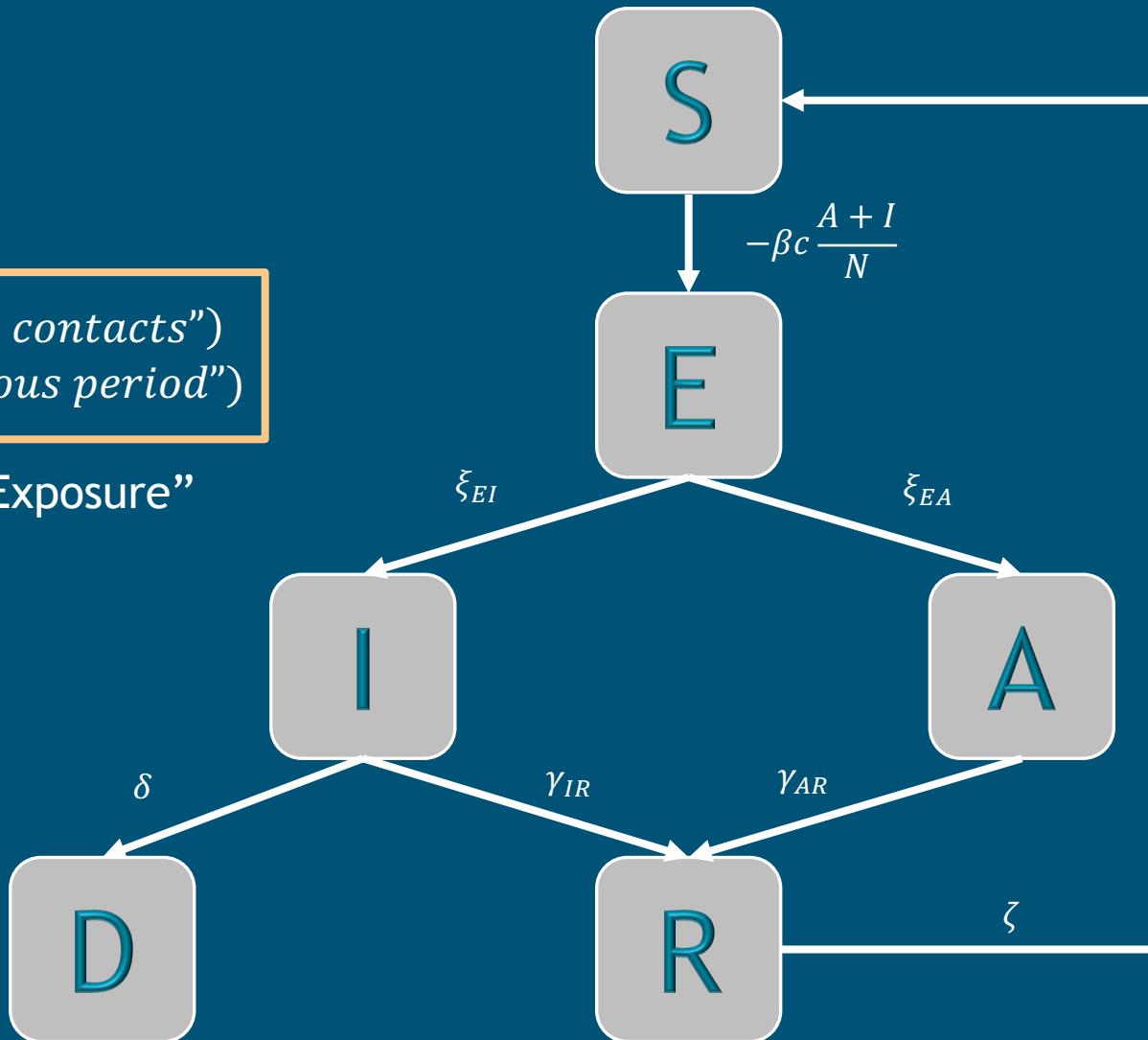
- Residence time in “Exposure”: $\frac{1}{\xi_{EI} + \xi_{EA}}$

- Fraction “Symptomatic Population” :

$$f_I = \frac{\xi_{EI}}{\xi_{EI} + \xi_{EA}}$$

- Fraction “Asymptomatic Population” :

$$(1 - f_I) = \frac{\xi_{EA}}{\xi_{EI} + \xi_{EA}}$$



Model R_0 : An intuition based assessment

Force of Infection Function:

$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

Qualitatively, this implies:

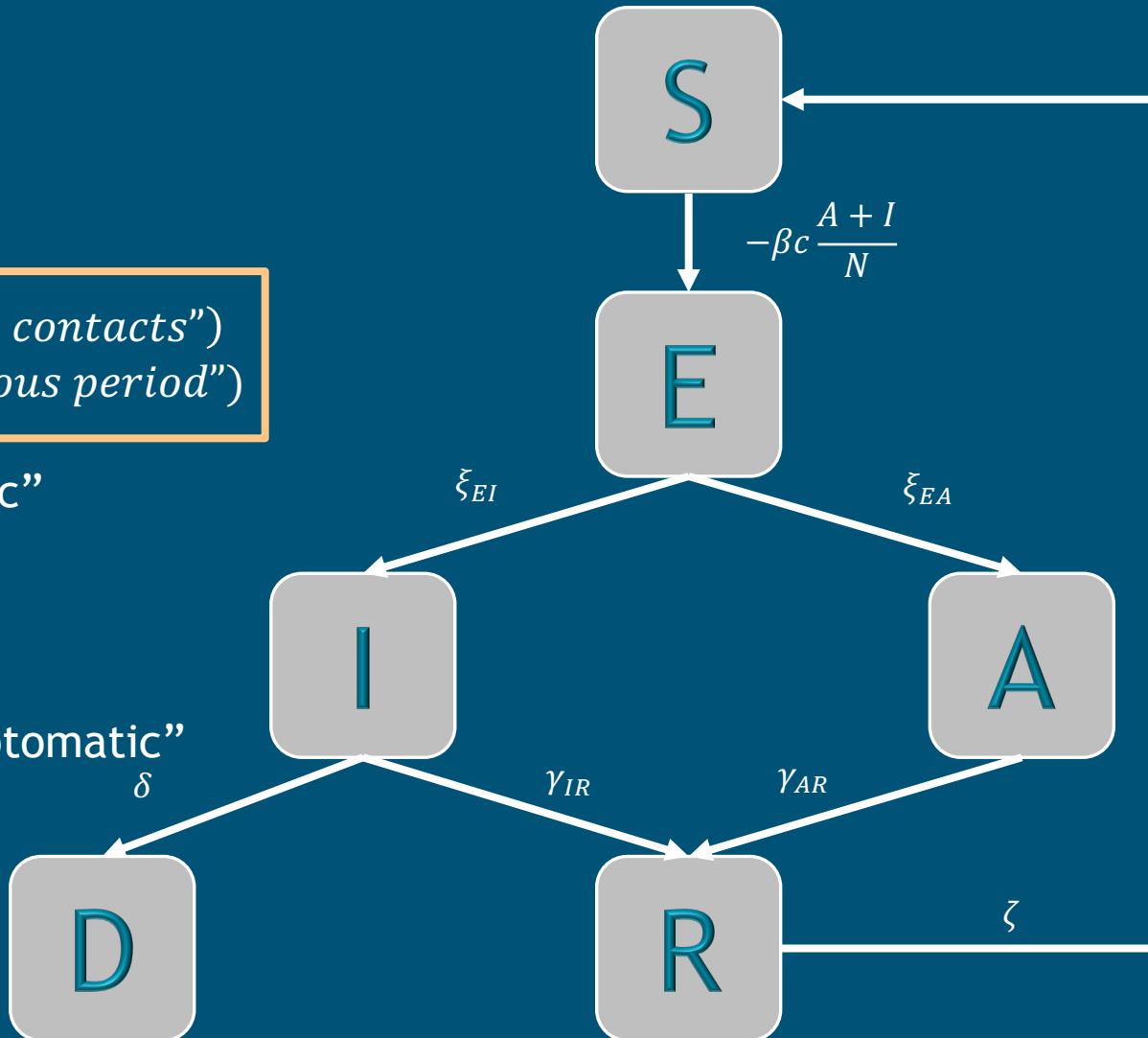
$$R_0 = (\text{"infection rate"}) \times (\text{"average number of daily contacts"}) \times (\text{"average infectious period"})$$

f_I : Fraction of the population that become “Symptomatic”

- Residence time “Symptomatic”: $\frac{1}{\delta + \gamma_{IR}}$

$(1 - f_I)$: Fraction of the population that become “Asymptomatic”

- Residence time “Asymptomatic”: $\frac{1}{\gamma_{AR}}$



Model R_0 : An intuition based assessment

Force of Infection Function:

$$\lambda(t) := \beta c \frac{A(t) + I(t)}{N(t)}$$

Qualitatively, this implies:

$$R_0 = (\text{"infection rate"}) \times (\text{"average number of daily contacts"}) \times (\text{"average infectious period"})$$

f_I : Fraction of the population that become “Symptomatic”

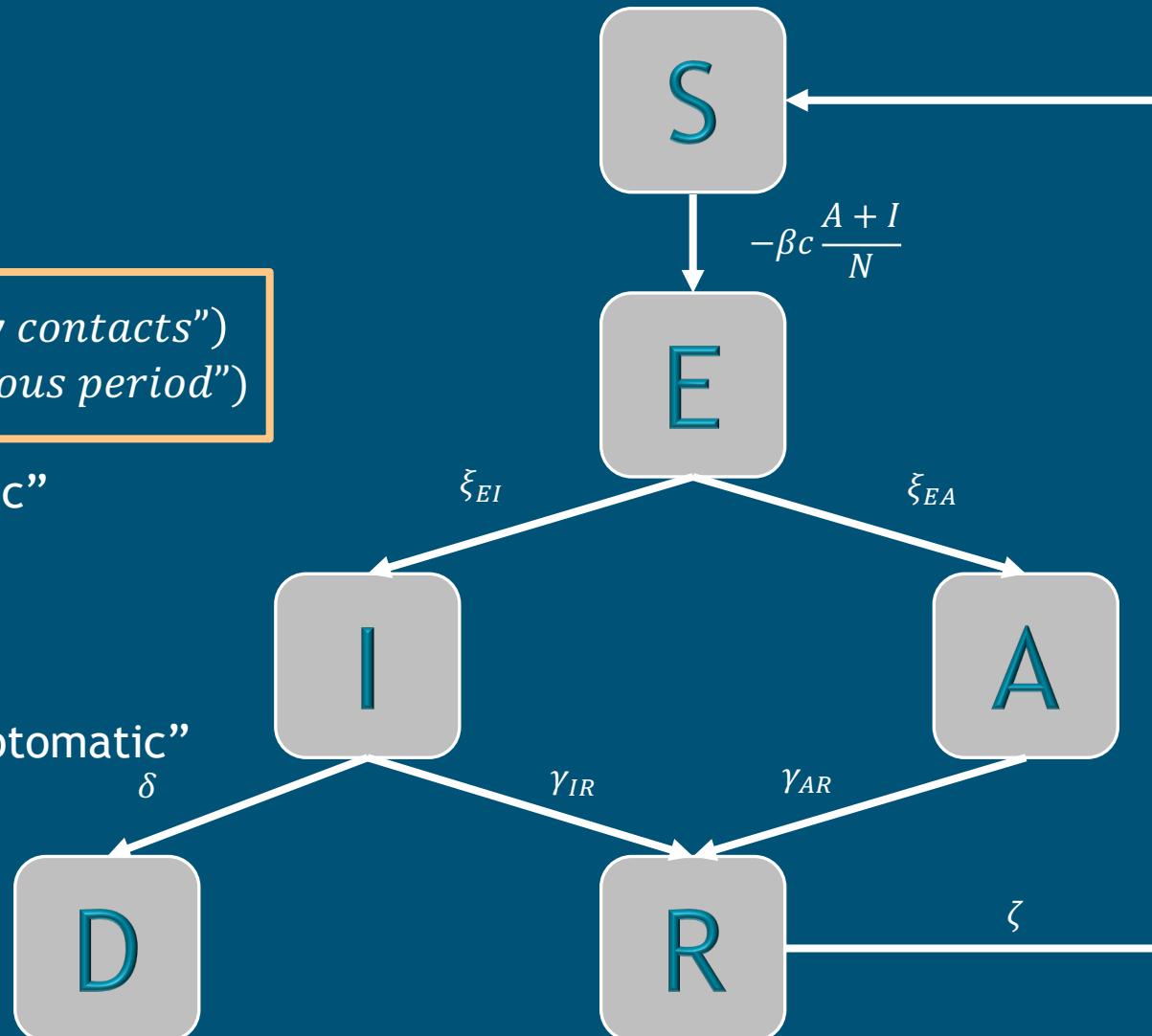
- Residence time “Symptomatic”: $\frac{1}{\delta + \gamma_{IR}}$

$(1 - f_I)$: Fraction of the population that become “Asymptomatic”

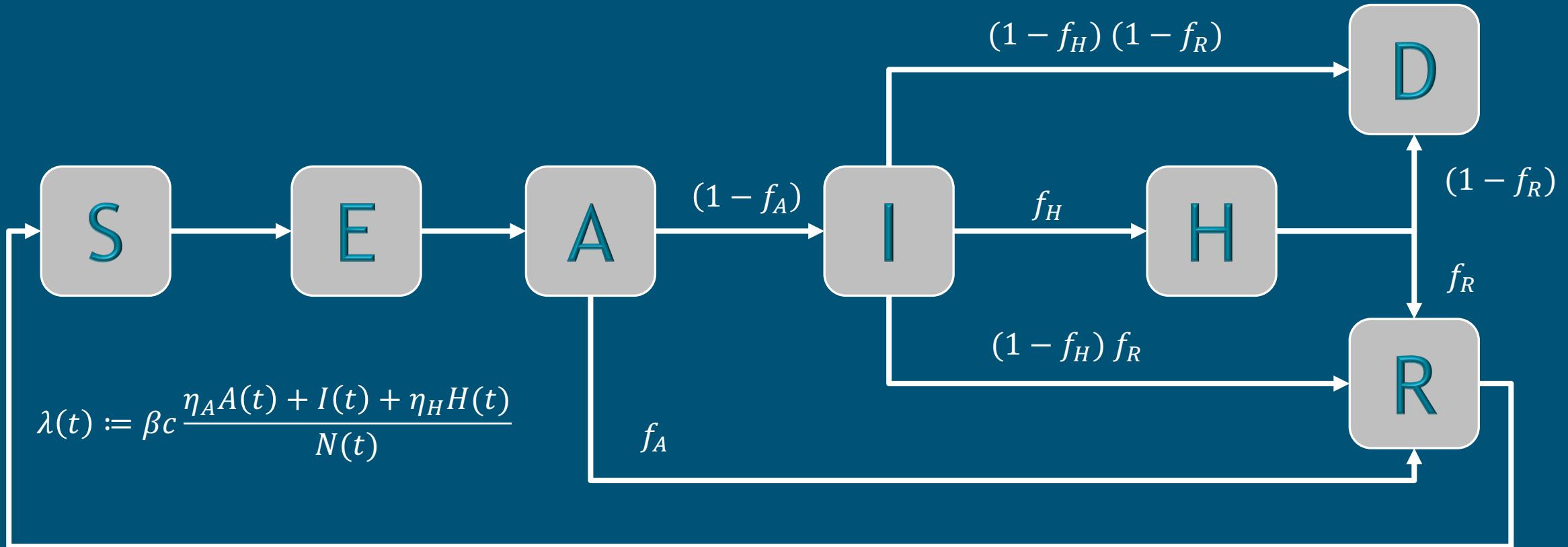
- Residence time “Asymptomatic”: $\frac{1}{\gamma_{AR}}$

THEN...

$$R_0 = \beta c \left(f_I \left(\frac{1}{\delta + \gamma_{IR}} \right) + (1 - f_I) \left(\frac{1}{\gamma_{AR}} \right) \right)$$



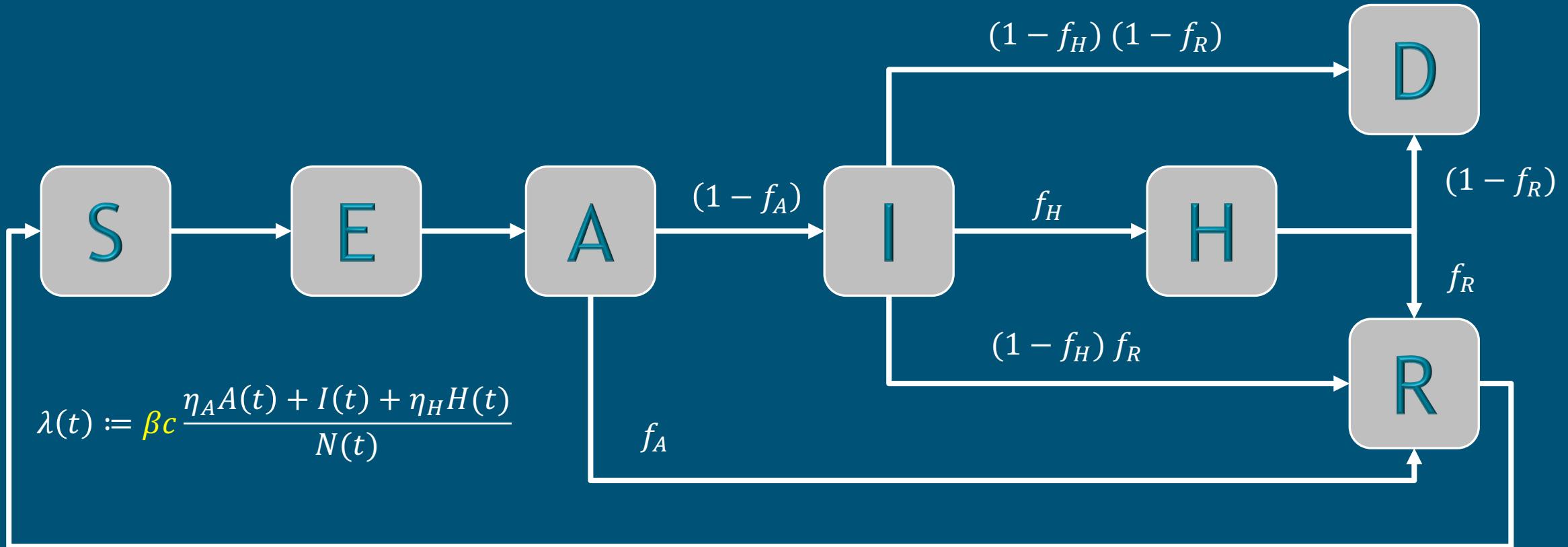
Compartmental Model: As a Tree with Residence Time



$$R_0 = \beta c (f_A \eta_A T_A + (1 - f_A)(1 - f_H)(\eta_A T_A + T_I) + (1 - f_A)f_H(\eta_A T_A + T_I + \eta_H T_H))$$

Where T_* represents the residence time for each respective state.

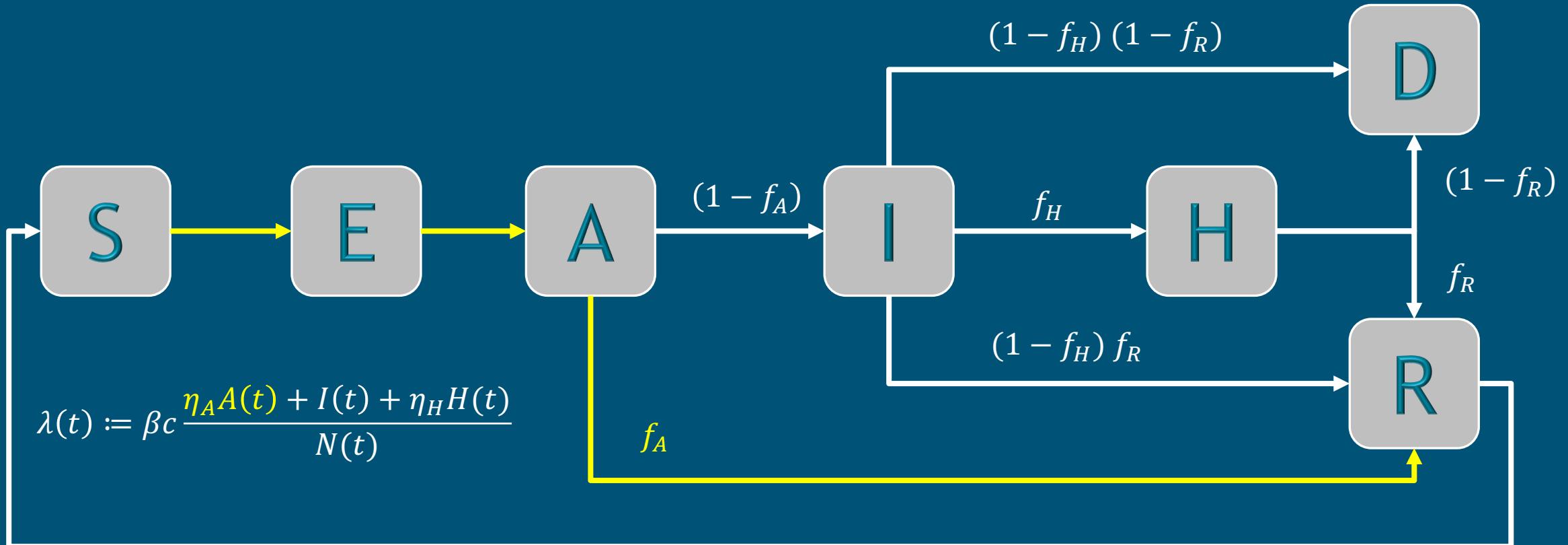
Compartmental Model: As a Tree with Residence Time



$$R_0 = \beta c (f_A \eta_A T_A + (1 - f_A)(1 - f_H)(\eta_A T_A + T_I) + (1 - f_A)f_H(\eta_A T_A + T_I + \eta_H T_H))$$

Where T_* represents the residence time for each respective state.

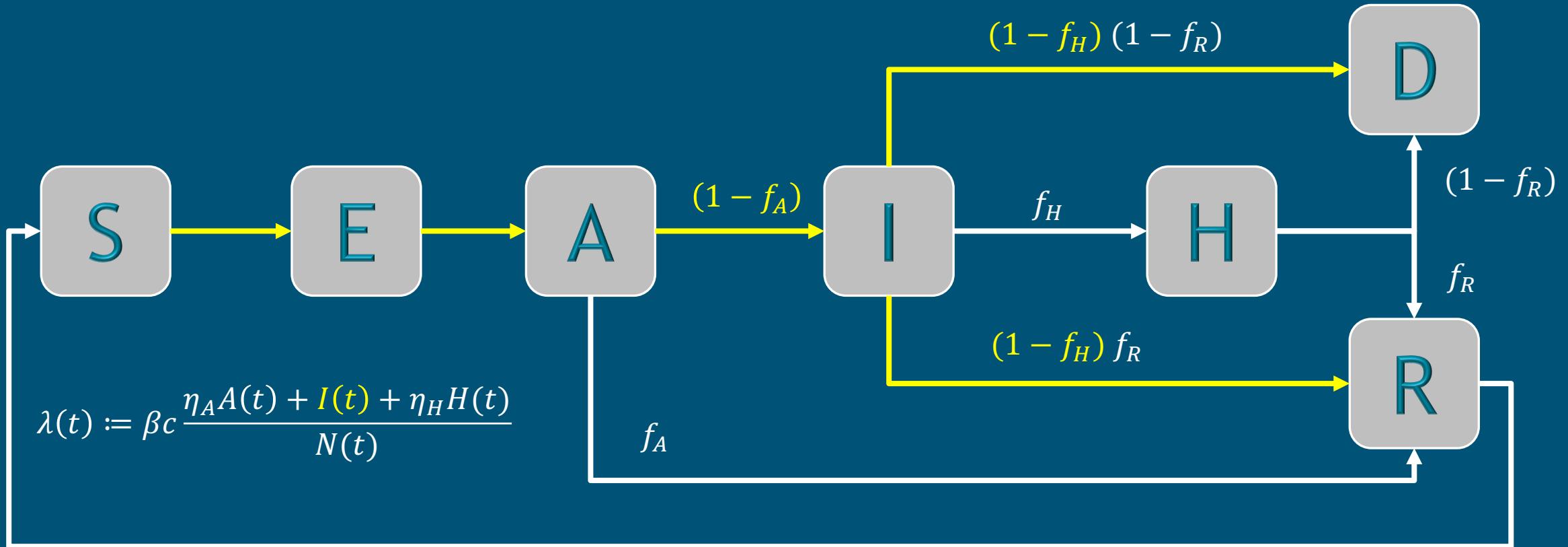
Compartmental Model: As a Tree with Residence Time



$$R_0 = \beta c (f_A \eta_A T_A + (1 - f_A)(1 - f_H)(\eta_A T_A + T_I) + (1 - f_A)f_H(\eta_A T_A + T_I + \eta_H T_H))$$

Where T_* represents the residence time for each respective state.

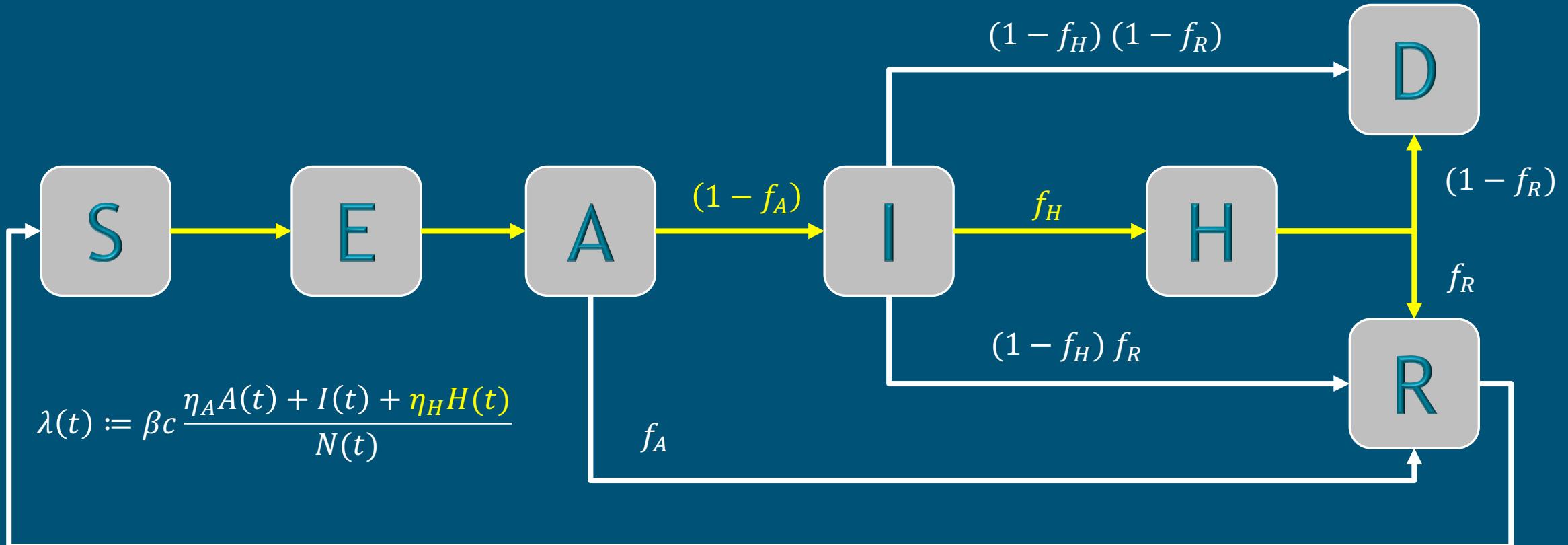
Compartmental Model: As a Tree with Residence Time



$$R_0 = \beta c (f_A \eta_A T_A + (1 - f_A)(1 - f_H)(\eta_A T_A + T_I) + (1 - f_A)f_H(\eta_A T_A + T_I + \eta_H T_H))$$

Where T_* represents the residence time for each respective state.

Compartmental Model: As a Tree with Residence Time



$$R_0 = \beta c (f_A \eta_A T_A + (1 - f_A)(1 - f_H)(\eta_A T_A + T_I) + (1 - f_A)f_H(\eta_A T_A + T_I + \eta_H T_H))$$

Where T_* represents the residence time for each respective state.

Notional Results: $S - E - A - I - R - H - D$

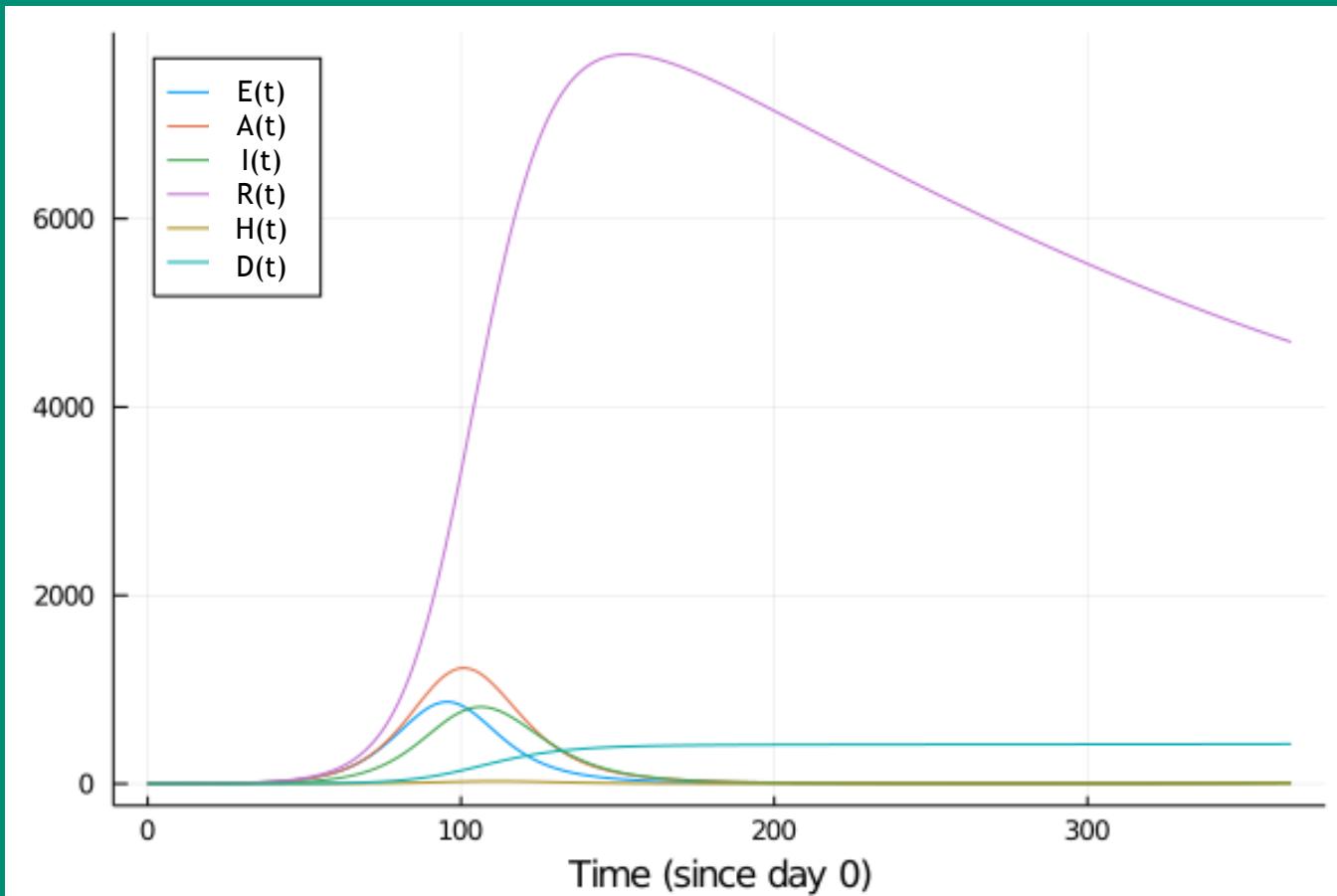
Nominal Parameter Values:

β	0.08	ρ_E	0.6	ρ_P	0.7
c	5	T_E	4		
η_A	0.75	T_A	6	f_A	0.3
		T_I	6		
η_H	0.01	T_H	5	f_H	0.04
		T_R	365	f_R	0.94

N_0	10,000
I_0	1
Time Horizon	[0, 365]

R_0 for this parameterization is 2.0187248

State Trajectories:



Notional Results: $S - E - A - I - R - H - D$

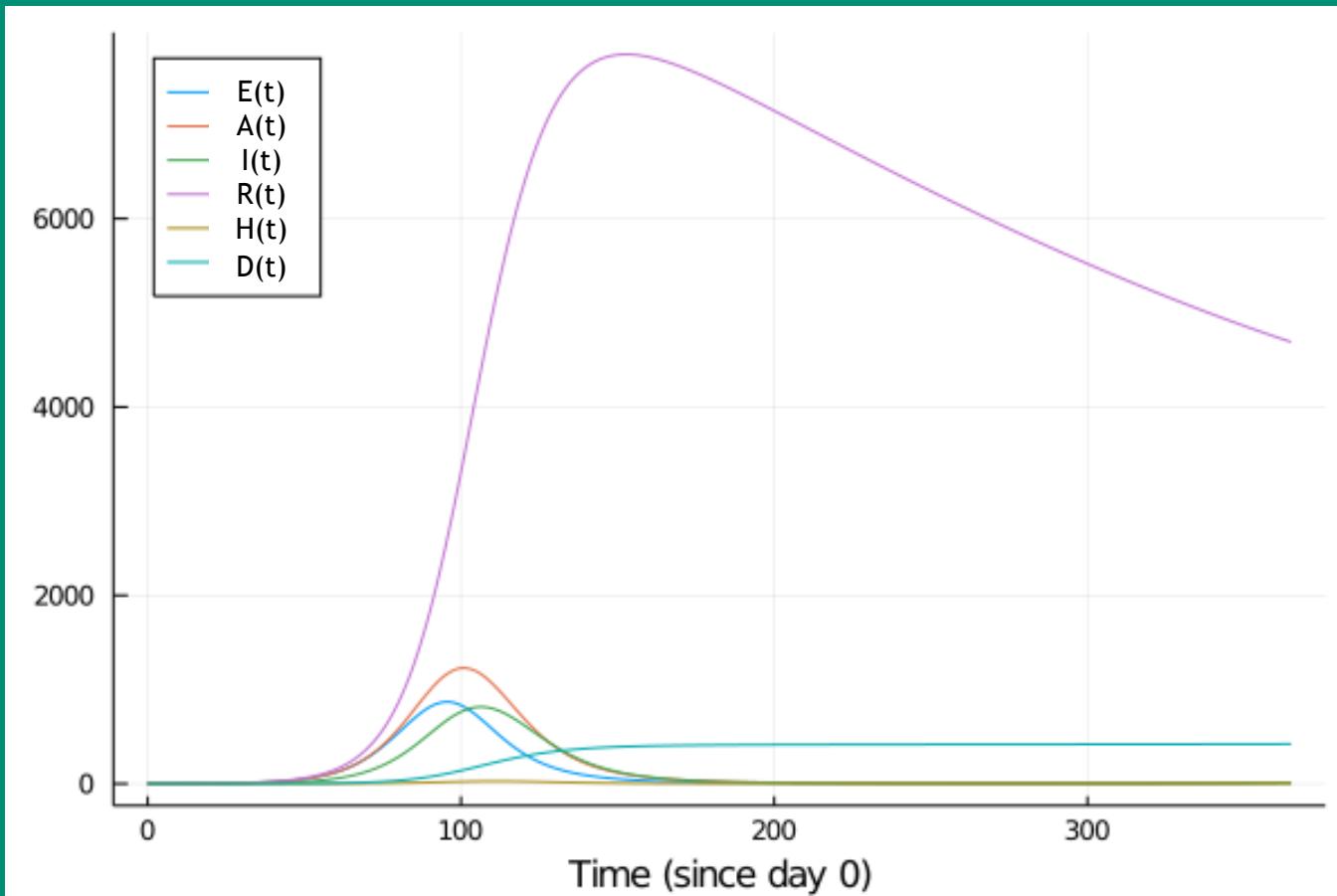
Nominal Parameter Values:

β	0.08	ρ_E	0.6	ρ_P	0.7
c	5	T_E	4		
η_A	0.75	T_A	6	f_A	0.3
		T_I	6		
η_H	0.01	T_H	5	f_H	0.04
		T_R	365	f_R	0.94

N_0	10,000	
I_0	1	
Time Horizon	[0, 365]	

R_0 for this parameterization is 2.0187248

State Trajectories:



Notional Results: $S - E - A - I - R - H - D$

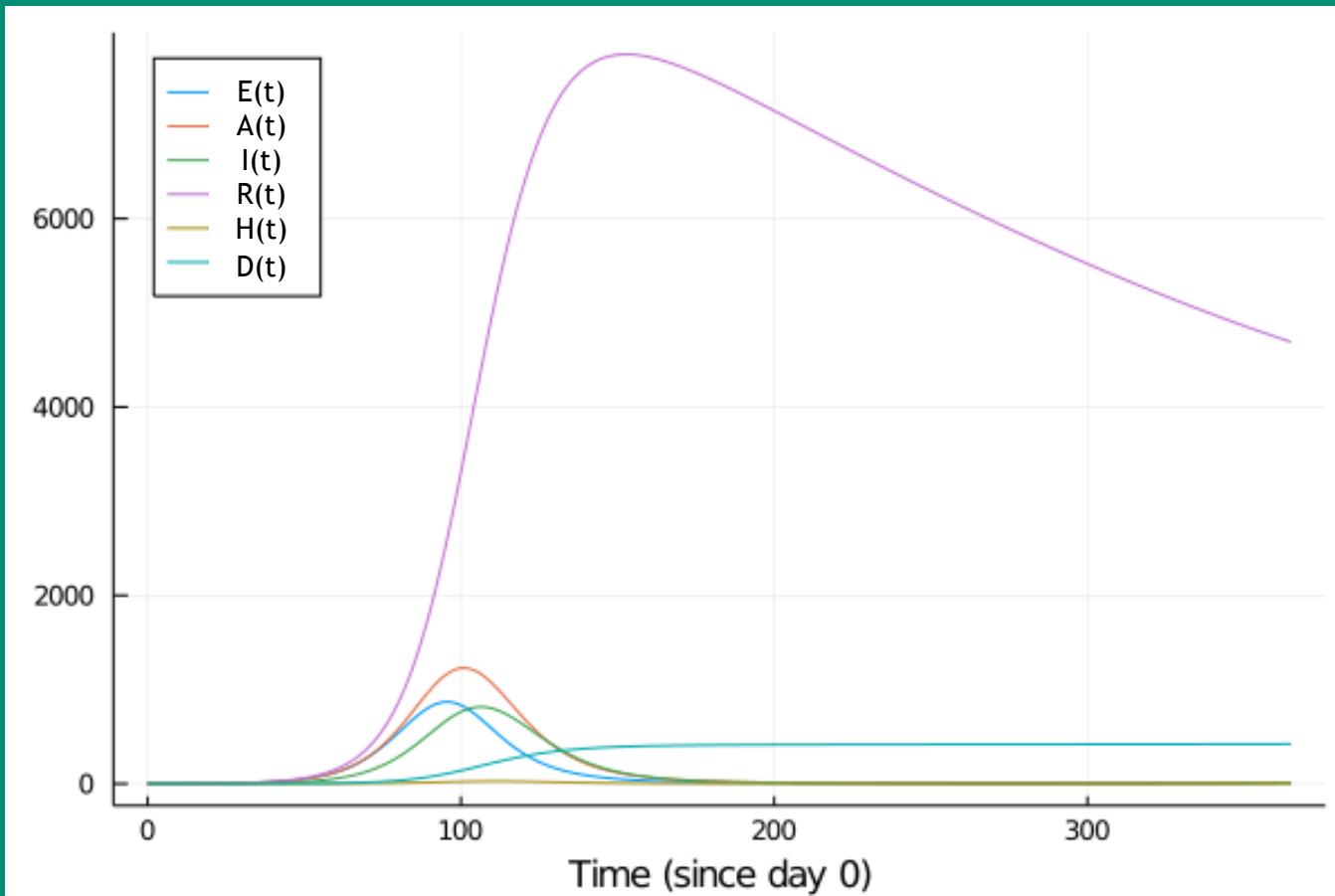
Nominal Parameter Values:

β	0.08	ρ_E	0.6	ρ_P	0.7
c	5	T_E	4		
η_A	0.75	T_A	6	f_A	0.3
		T_I	6		
η_H	0.01	T_H	5	f_H	0.04
		T_R	365	f_R	0.94

N_0	10,000
I_0	1
Time Horizon	[0, 365]

R_0 for this parameterization is 2.0187248

State Trajectories:



Notional Results: $S - E - A - I - R - H - D$

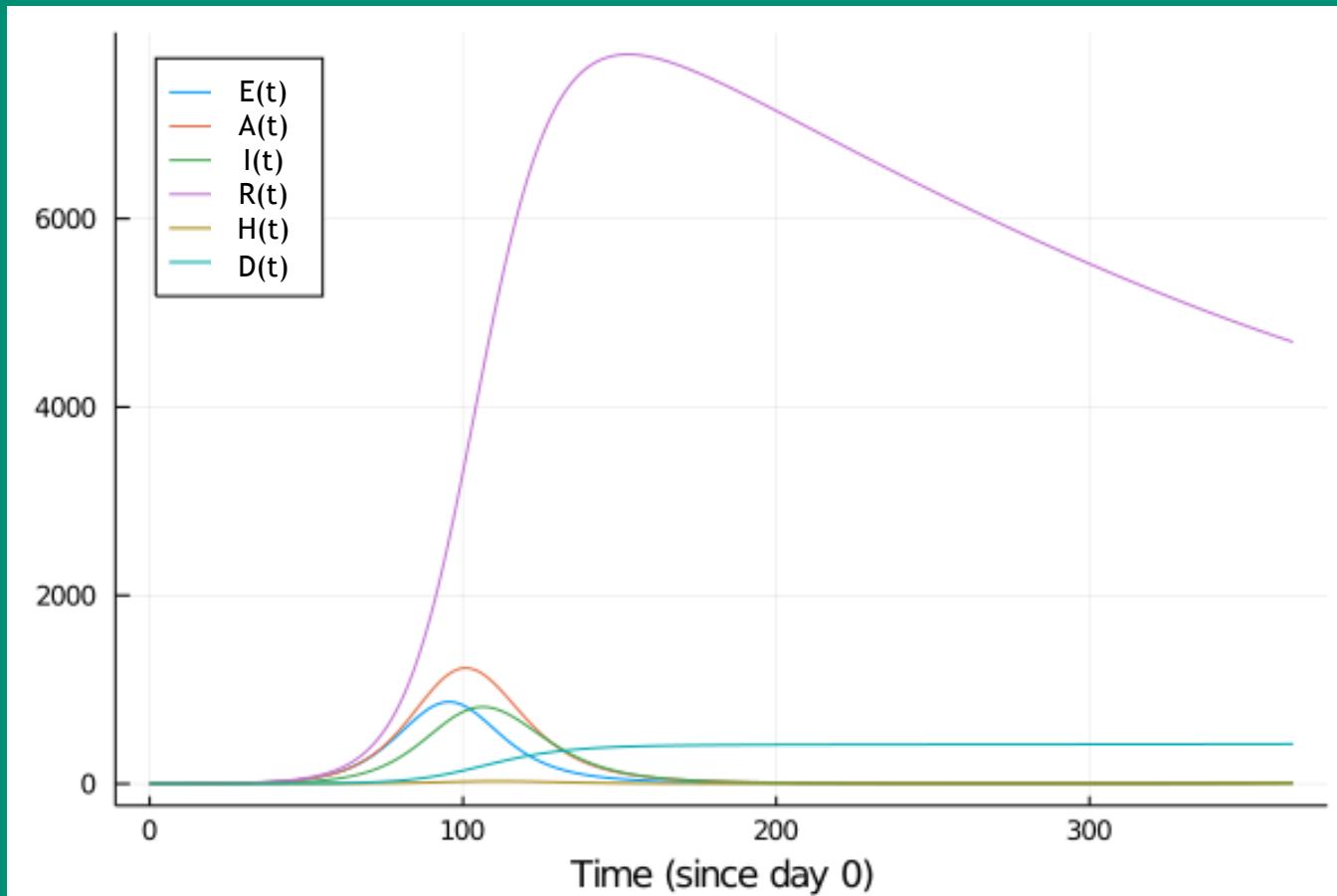
Nominal Parameter Values:

β	0.08	ρ_E	0.6	ρ_P	0.7
c	5	T_E	4		
η_A	0.75	T_A	6	f_A	0.3
		T_I	6		
η_H	0.01	T_H	5	f_H	0.04
		T_R	365	f_R	0.94

N_0	10,000
I_0	1
Time Horizon	[0, 365]

R_0 for this parameterization is 2.0187248

State Trajectories:



Notional Results: $S - E - A - I - R - H - D$

Nominal Parameter Values:

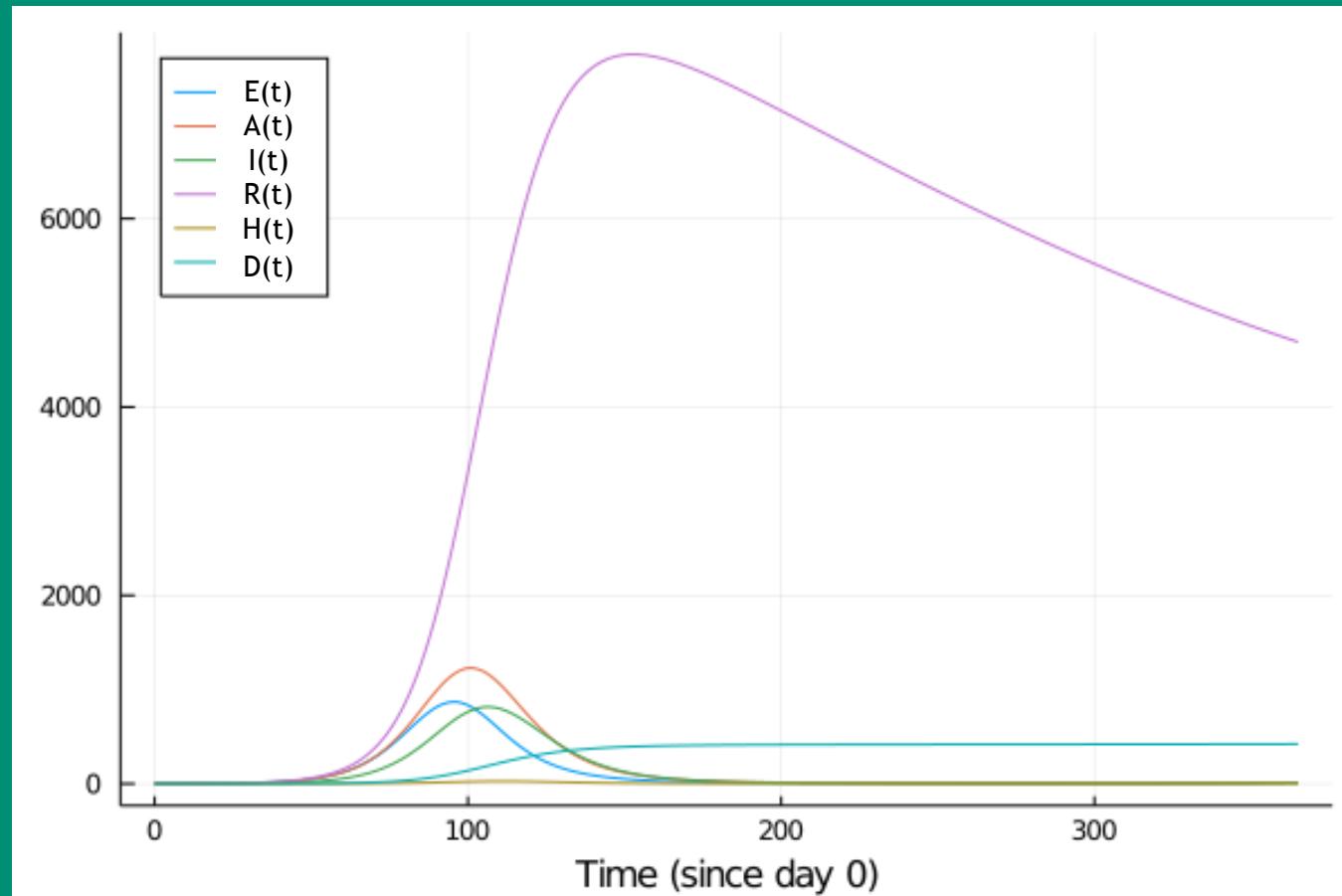
β	0.08	ρ_E	0.6	ρ_P	0.7
κ	5	T_E	4		
η_A	0.75	T_A	6	f_A	0.3
		T_I	6		
η_H	0.01	T_H	5	f_H	0.04
		T_R	365	f_R	0.94

N_0	10,000
I_0	1
Time Horizon	[0, 365]

R_0 for this parameterization is 2.0187248

How Do We Know We Have Derived the Correct Model R_0 ??

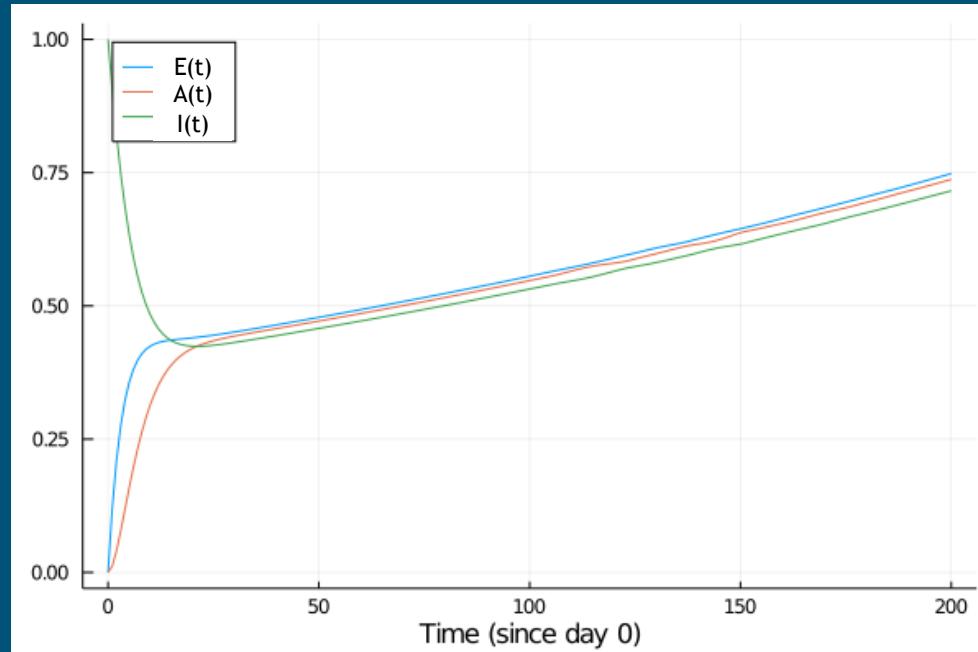
State Trajectories:



Model R_0 Verification: $S - E - A - I - R - H - D$

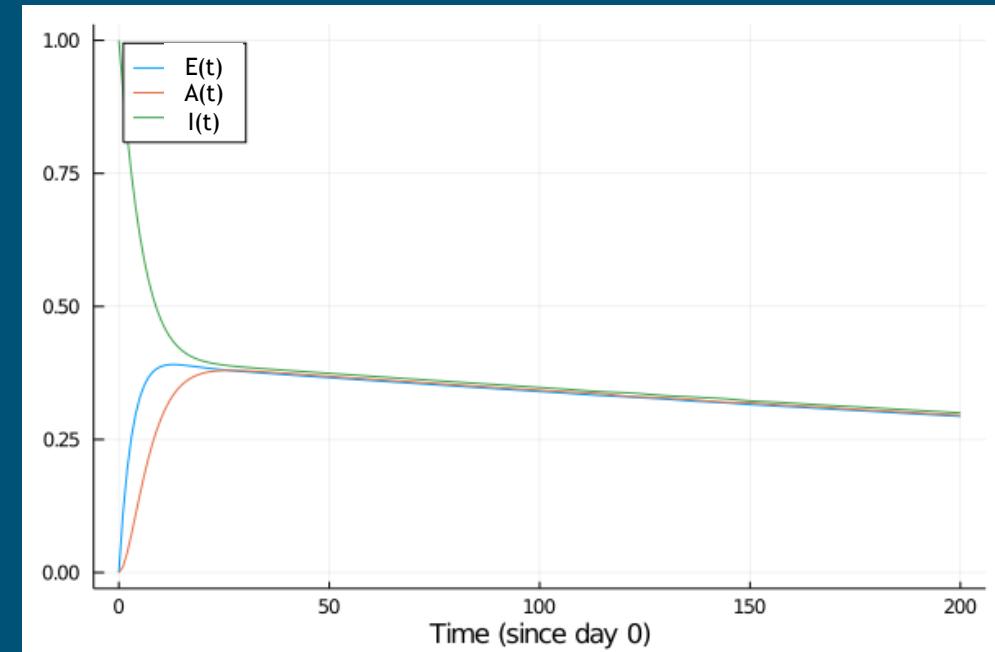
When $R_0 > 1$, we expect the disease to persist

Parameter Changes:	
β	0.07
C	3
R_0	1.05983



When $R_0 < 1$, we expect the disease to die out

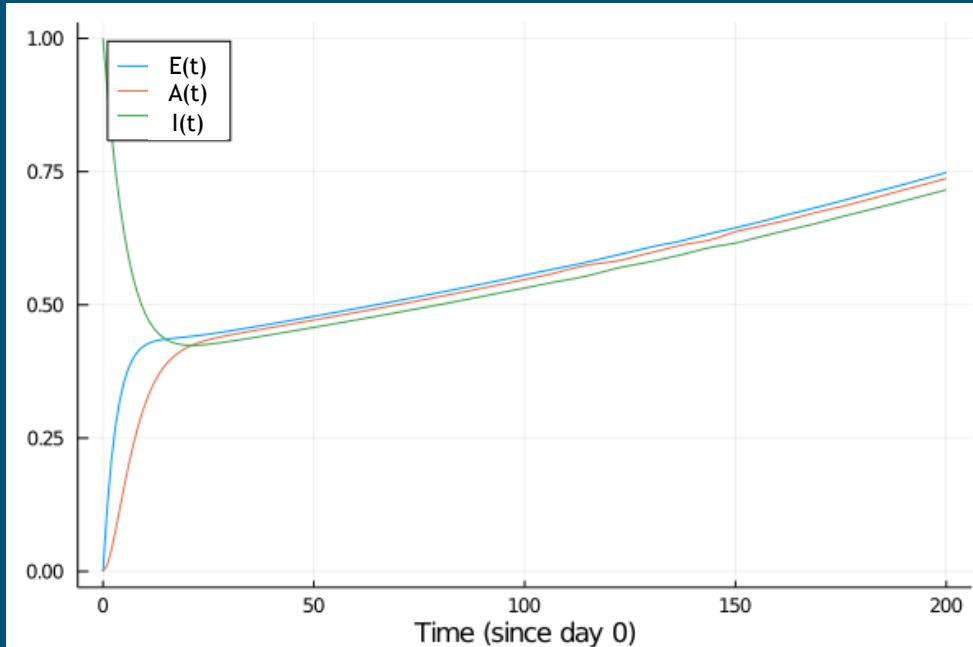
Parameter Changes:	
β	0.065
C	3
R_0	0.984128



Model R_0 Verification: $S - E - A - I - R - H - D$

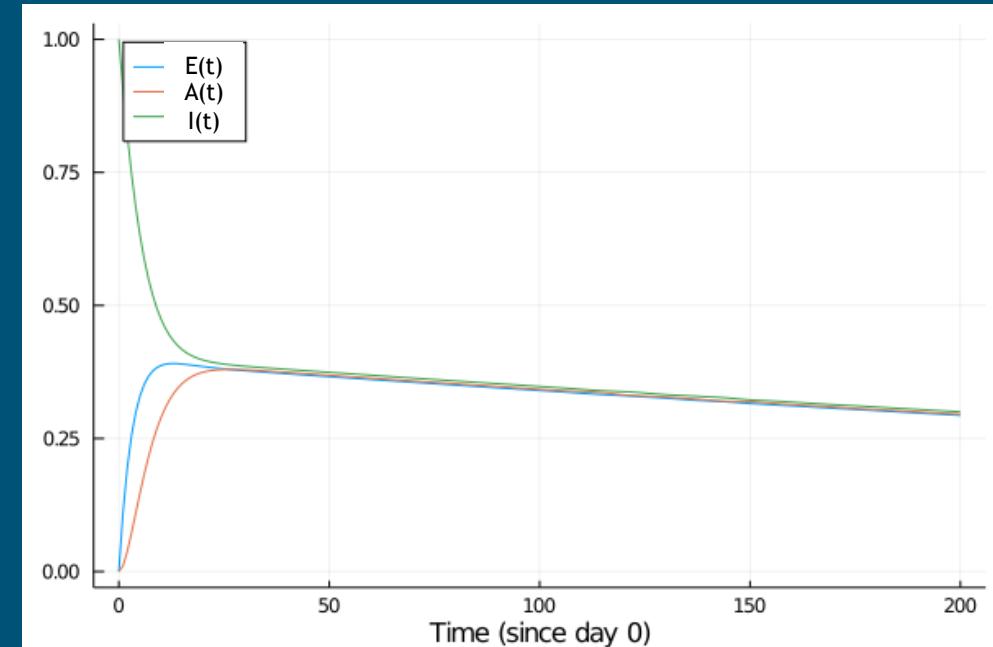
When $R_0 > 1$, we expect the disease to persist

Parameter Changes:	
β	0.07
C	3
R_0	1.05983



When $R_0 < 1$, we expect the disease to die out

Parameter Changes:	
β	0.065
C	3
R_0	0.984128



A subtle change in β alone can make all the difference in whether or not we simulate a persistent disease or a controlled disease

Quantity of Interest (QoI):

Our analysis needs to target a particular output of our model (e.g. R_0 , $\max(H(t))$)

Forward Uncertainty Quantification:

With a measured uncertainty coming from the nominal values in our parameterizations, we want to measure the uncertainty of our QoI.

Uncertainty in our context is measured by the variance in our model inputs (parameters) and outputs (QoIs)

Global Sensitivity Analysis:

When the uncertainty of our QoI is high, it is often the case that we want to determine what sources of uncertainty are the most influential.

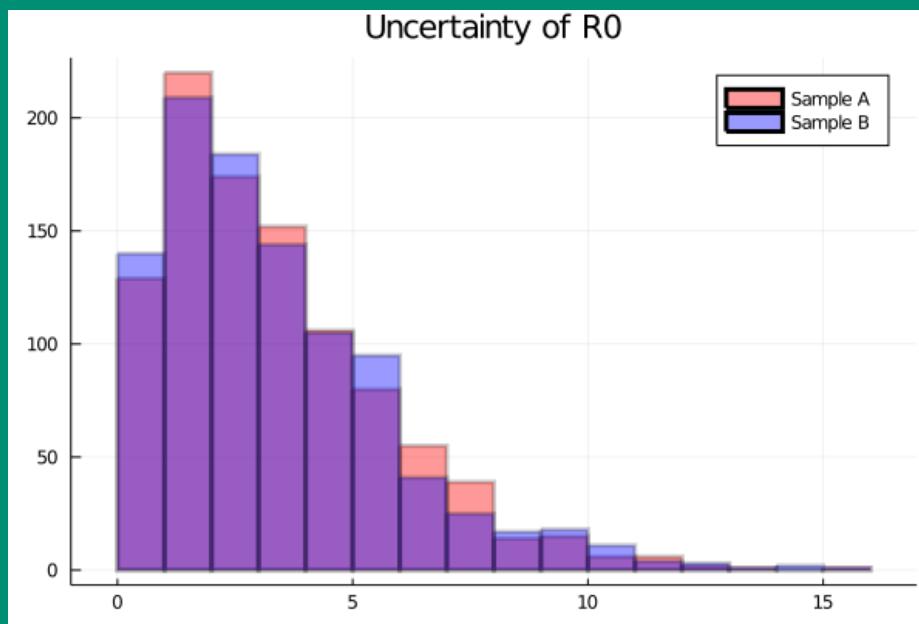
What is the sensitivity of our QoI with respect to the parameter uncertainties.

UQ/GSA for R_0

Parameter Uniform Uncertainties:

β	$[0.06, 0.12]$	T_E	$[3, 5]$		
η_A	$[0.25, 1.0]$	T_A	$[2, 14]$	f_A	$[0.15, 0.5]$
c	$[0.5, 7.5]$	T_I	$[5, 20]$		
η_H	$[0.005, 0.1]$	T_H	$[2, 25]$	f_H	$[0.01, 0.07]$
ρ_E	$[0.2, 0.8]$	ρ_P	$[0.4, 0.85]$		
		T_R	$[210, 600]$	f_R	$[0.9, 0.99]$

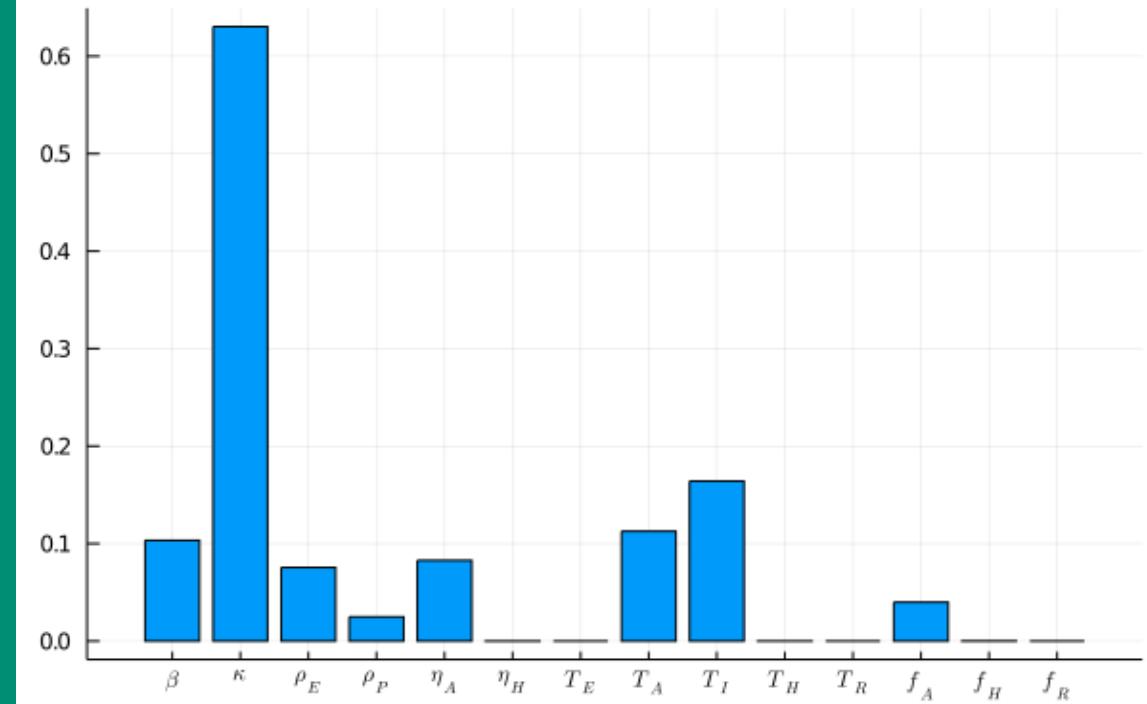
R_0 Uncertainty:



Quasi-Monte Carlo Simulations were run to measure forward UQ

Parameter Influence* on R_0 Uncertainty:

Total Order Indices R_0



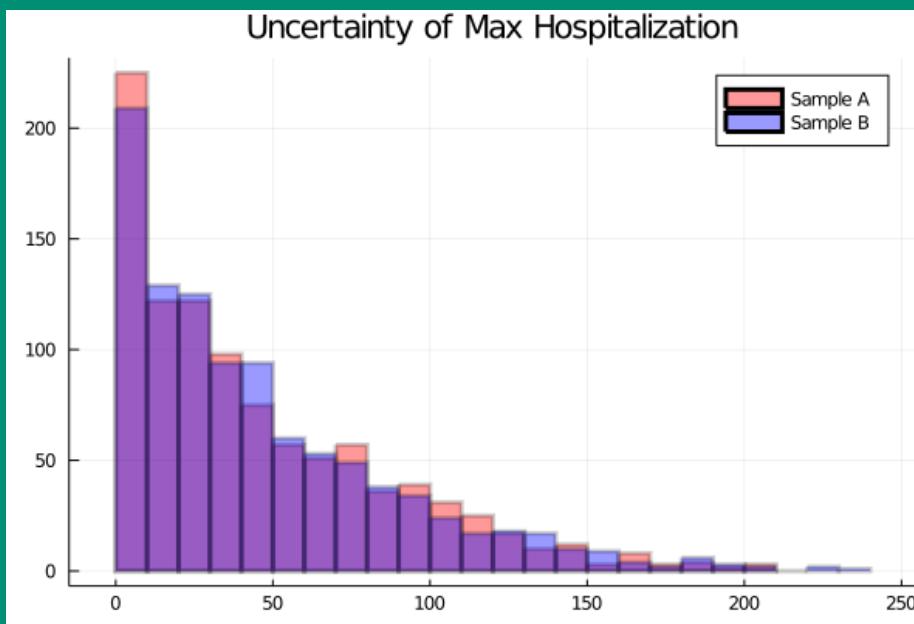
Sobol' indices were derived using Julia implementation of numerical methods for variance based decomposition

UQ/GSA for $\max(H(t))$

Parameter Uniform Uncertainties:

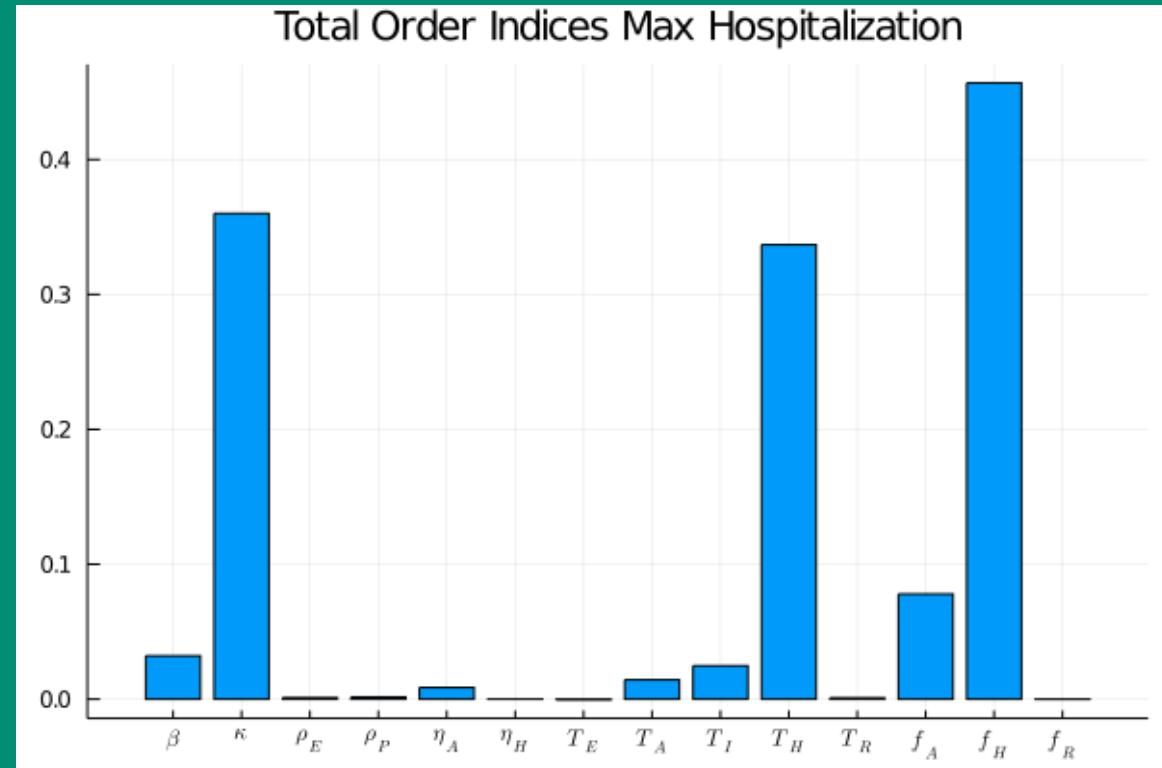
β	$[0.06, 0.12]$	T_E	$[3, 5]$		
η_A	$[0.25, 1.0]$	T_A	$[2, 14]$	f_A	$[0.15, 0.5]$
c	$[0.5, 7.5]$	T_I	$[5, 20]$		
η_H	$[0.005, 0.1]$	T_H	$[2, 25]$	f_H	$[0.01, 0.07]$
ρ_E	$[0.2, 0.8]$	ρ_P	$[0.4, 0.85]$		
		T_R	$[210, 600]$	f_R	$[0.9, 0.99]$

$\max(H(t))$ Uncertainty:



Quasi-Monte Carlo Simulations were run to measure forward UQ

Parameter Influence on $\max(H(t))$ Uncertainty:



Sobol' indices were derived using Julia implementation of numerical methods for variance based decomposition

Notional Results: $S - E - A - I - R - H - D$

Nominal Parameter Values:

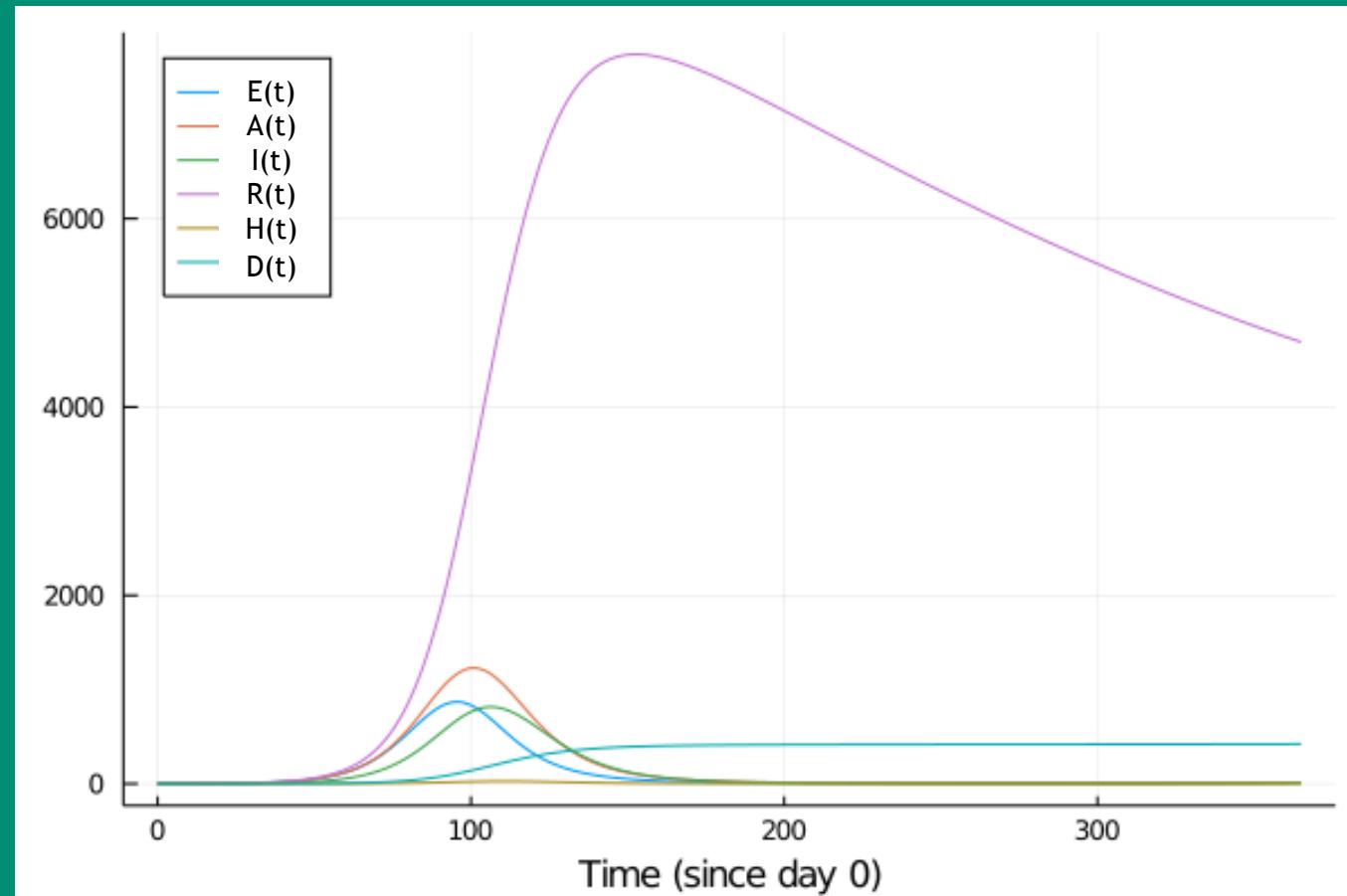
β	0.08	ρ_E	0.6	ρ_P	0.7
c	5	T_E	4		
η_A	0.75	T_A	6	f_A	0.3
		T_I	6		
η_H	0.01	T_H	5	f_H	0.04
		T_R	365	f_R	0.94

N_0	10,000
I_0	1
Time Horizon	[0, 365]

R_0 for this parameterization is 2.0187248

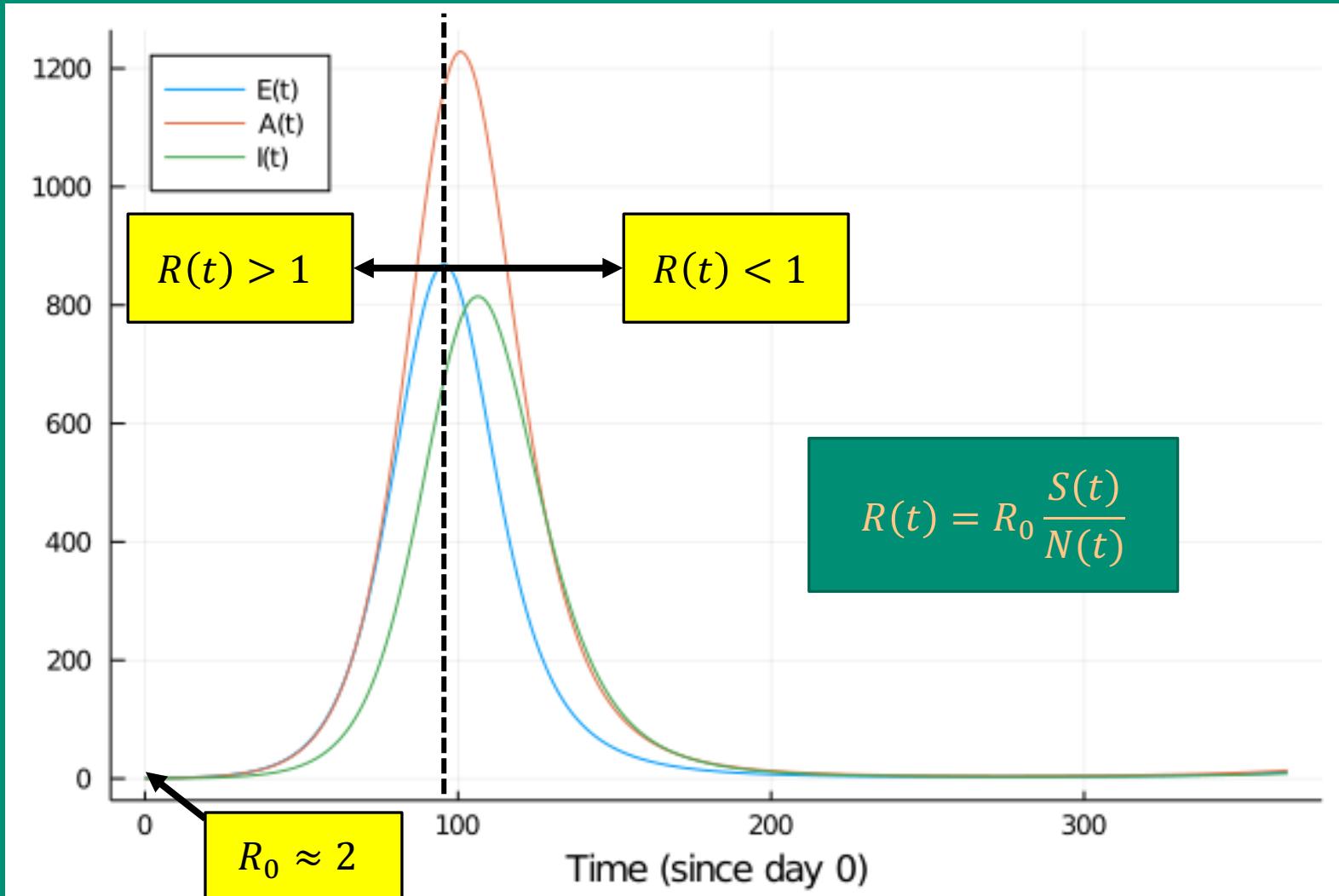
What is the difference between R_0 and replacement number $R(t)$??

State Trajectories:



R_0 Versus $R(t)$

Infected State Trajectories:



What to Know:

$R(t) \approx R_0$ at time $t = 0$

- $t = 0$ is when the first infected is introduced to a fully susceptible population.

$R(t) \approx 1$ at time $t = 95$

(specific to this example)

- Implying that we can reach herd immunity on day 95 (after the first infected is introduced)

Herd Immunity in terms of R_0 and $R(t)$

Infected State Trajectories:



What to Know:

$R(t) \approx R_0$ at time $t = 0$

$R(t) \approx 1$ at time $t = 95$

Herd Immunity $\coloneqq \Psi = 1 - \left(\frac{1}{R_0}\right)$

- When $R_0 = 2$, then $\Psi = 0.5$
- $S(t) < 0.5N(t)$ is needed to control the spread

$N(t) = 10,000$

At time $t = 95$

- $S(95) \approx 4854$
- $R(95) \approx 0.98 < 1$

Outline

Introduction to Epidemiology

Epi Modeling Paradigms

Compartmental Model System Analysis

Modeling Mitigation Strategies

Personal Protective Equipment (PPE)

- Face masks

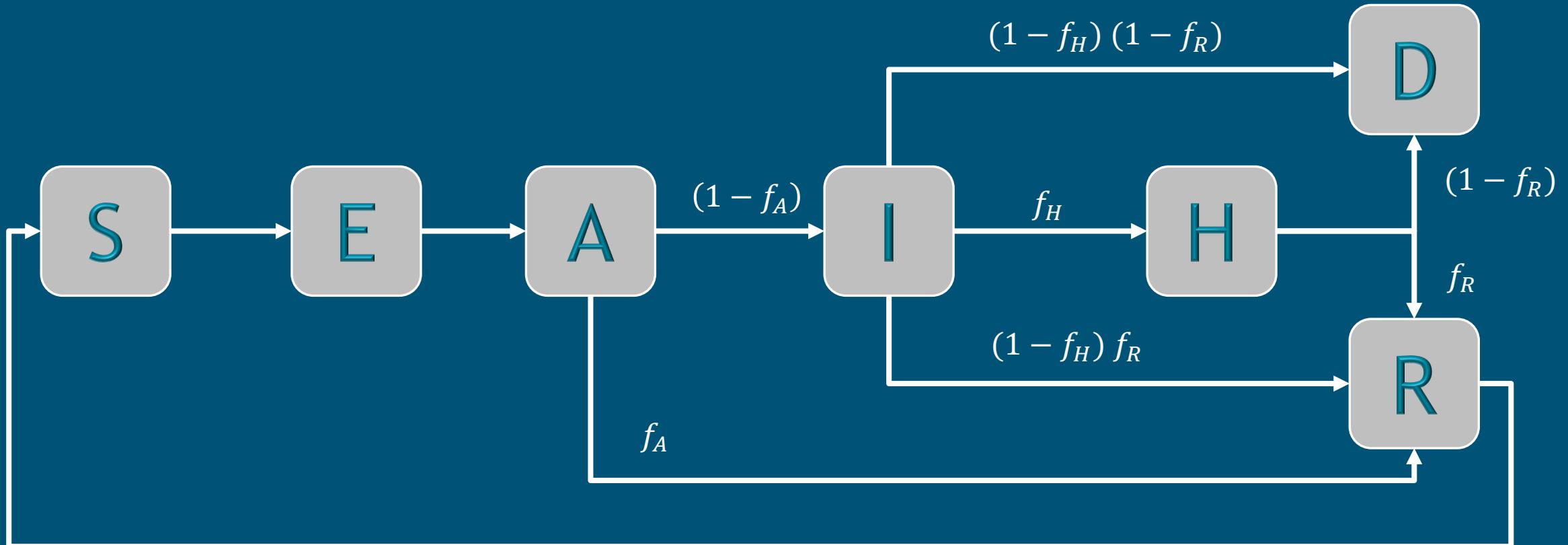
Isolation

- Identified infected individuals only.
- Those who have a positive test result, indicating that they have been infected by the virus.

Quarantine

- Contacts of an infected individual in isolation.
- Identification and quarantine of presumptive positive cases is most critical to infectious diseases where infectious onset occurs before symptom onset.

Compartmental Model: NPI Intervention (Face Masks)



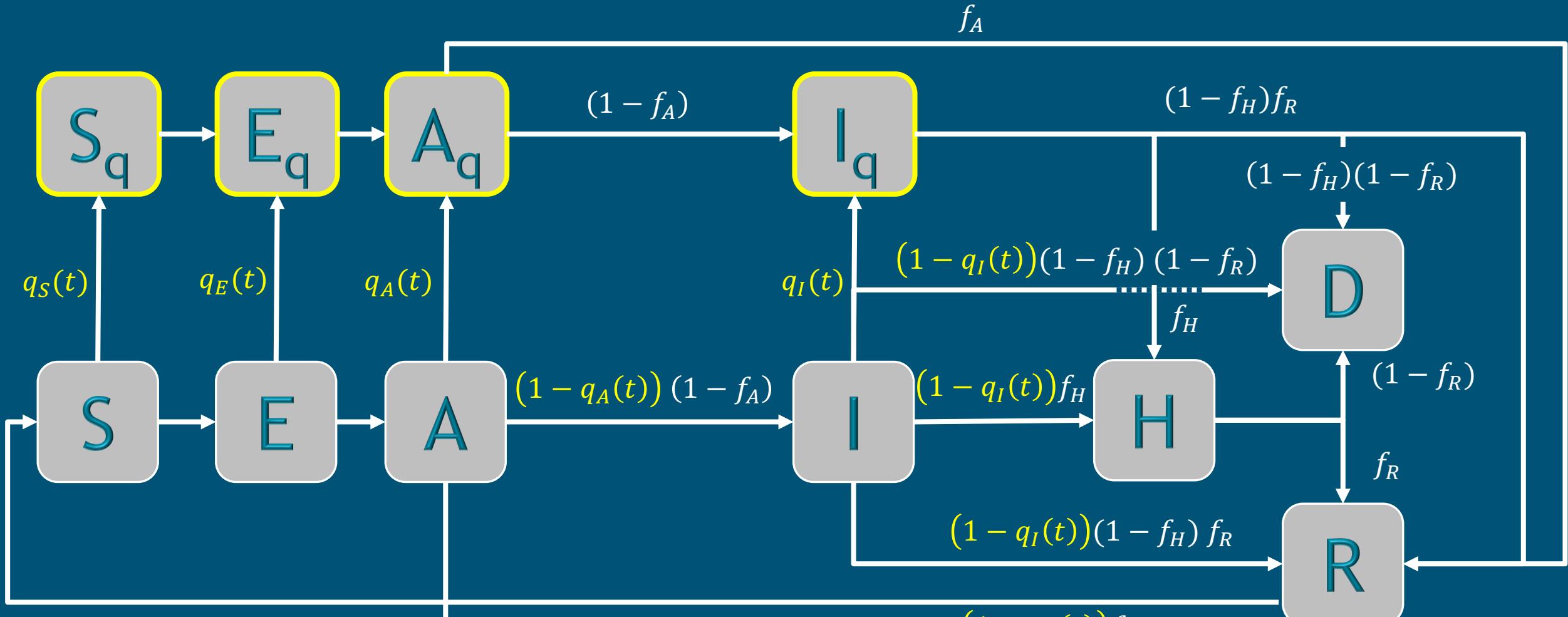
$$\lambda(t) := \beta c (1 - \rho_E \times \rho_P) \frac{\eta_A A(t) + I(t) + \eta_H H(t)}{N(t)}$$

ρ_E : Effectiveness of Face Masks
 ρ_P : Probability the interaction between
 two individuals is protected by Face Masks

$$\lambda(t) := \beta c(1 - \rho_E \times \rho_P) \frac{\eta_A A(t) + I(t) + \eta_H H(t)}{N(t)}$$

$$R_0 = \beta c(1 - \rho_E \times \rho_P) \times (f_A \eta_A T_A + (1 - f_A)(1 - f_H)(\eta_A T_A + T_I) + (1 - f_A)f_H(\eta_A T_A + T_I + \eta_H T_H))$$

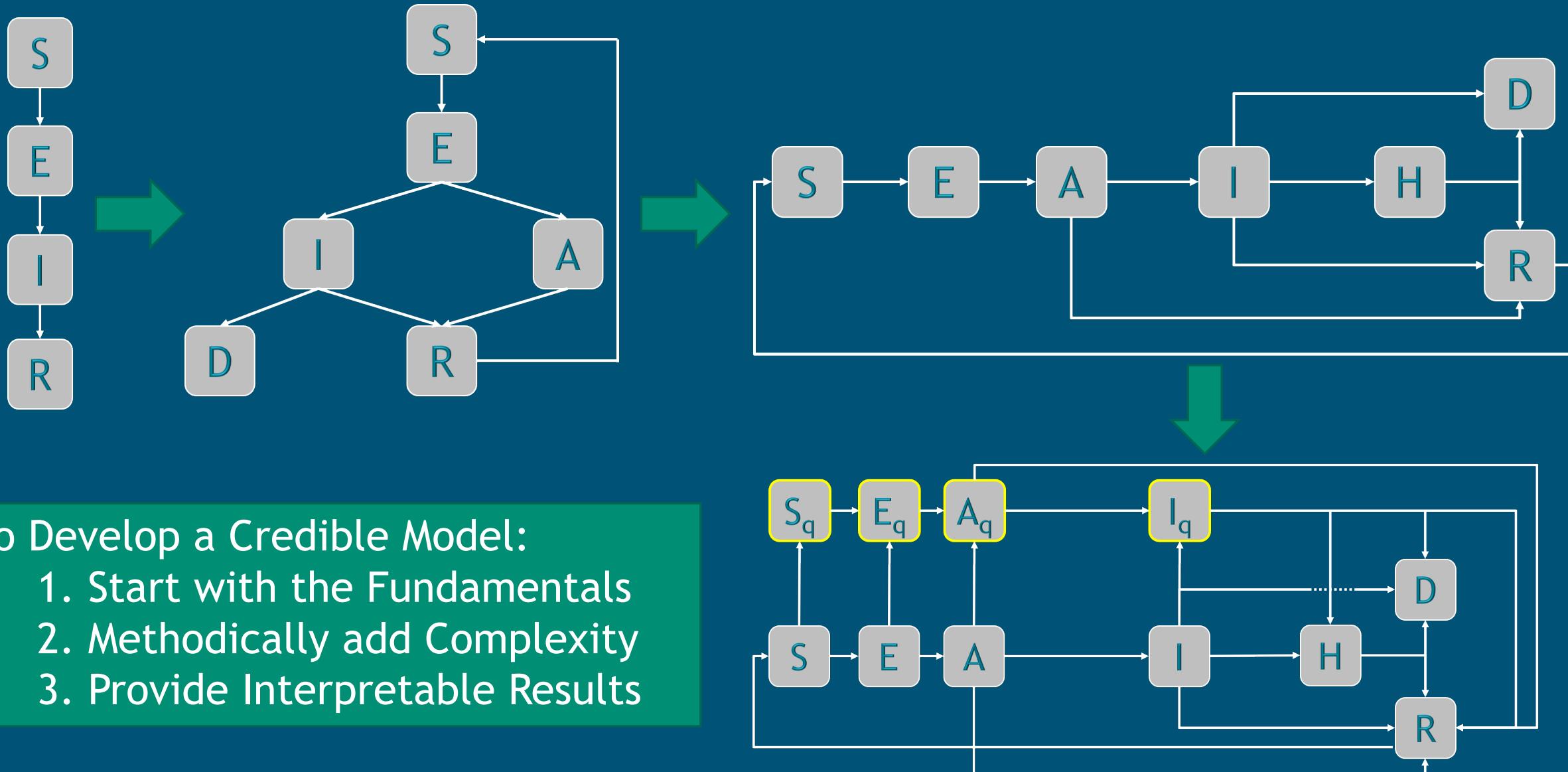
Compartmental Model: NPI Intervention (Isolation & Quarantine)



$$\lambda(t) := \beta c (1 - \rho_E \times \rho_P) \times \frac{\eta_A A(t) + I(t) + \eta_H H(t) + (1 - \theta_q)(\eta_A A_q(t) + I_q(t))}{N(t)}$$

θ_q : Effectiveness of Quarantine & Isolation

Evolution of Compartmental Model Complexity



References

Bertozzi, A.L., Franco, E., Mohler, G., Short, M.B. and Sledge, D., 2020. The challenges of modeling and forecasting the spread of COVID-19. *Proceedings of the National Academy of Sciences*, 117(29), pp.16732-16738.

Childs, Lauren M., 2020. Choosing Intervention Strategies During an Emerging Epidemic. *SIAM News*. Vol 53, number 4.

Hethcote, Herbert W. 2000. The mathematics of infectious diseases. *SIAM Review* 42.4 pp. 599-653.

Last JM, editor. 2001. Dictionary of epidemiology. 4th ed. New York: Oxford University Press; p. 61.

Safka, C., Ray, J., Sargsyan, K., Lefantzi, S., Cheng, K. and Crary, D., 2011. Real-time characterization of partially observed epidemics using surrogate models. *Mathematical Biosciences*. *Paper submitted September*.