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Key questions for this study

¡ Can we learn how vertical fluxes vary with 
distance from the ice boundary?

¡ To what extent does the standard ice-shelf melt parameterization characterize heat transfer at the meter-scale?

¡ Does the thermal exchange coefficient Γ vary as a function of thermal driving or slope? 

Gwyther et al. (2020)

Melt rates are sensitive to vertical resolution and other discretization choices

𝐹! = Γ 𝑢∗ Θ − Θ#$%%&%
vertical heat flux at ice-ocean interface thermal driving at the boundary

thermal exchange coefficient friction velocity (𝑐'
⁄) *𝑢)



Large-eddy simulation set-up

¡ Stability-dependent flux parameterizations at ice 
boundary

¡ Base case: 0.15°C thermal driving, 1.0° slope

¡ 3 additional thermal driving simulations at 1.0° slope
0.15°C - 0.60°C

¡ 3 additional sloped simulations at 0.15°C thermal driving
0.01° - 1.0°

¡ Run for 4 inertial periods, averaged over last inertial 
period

¡ Resolution: ∆𝑥, 𝑦 = 0.5𝑚, ∆𝑧 = 0.25m

¡ Strong shear: 20 cm/s far-field current

¡ shear production of TKE >> buoyancy production of TKE



Simulations evolve toward boundary depths of ~20m
with melt rates of ~1m/yr

+34.9

Boundary layer depth



As thermal driving increases…

a b c

d e f

¡ Melt rate increases ¡ Stratification increases

¡ Boundary layer depth decreases
¡ Boundary layer buoyancy and velocity 

increases

Solid = up-slope
Dashed = across-slope



As slope increases…

¡ Melt rate increases

a b c

d e f

¡ Stratification decreases

¡ Boundary layer depth increases
¡ Boundary layer buoyancy and velocity 

increases

Solid = up-slope
Dashed = across-slope



Melt rates increase roughly linearly with thermal driving

¡ Recent LES support linear scaling 
(Vreugdenhil and Taylor, 2019)

I

𝐹! = Γ 𝑢∗(Θ − Θ#$%%&%)
¡ Compatible with current parameterizations

This study



Evaluating the thermal exchange coefficient Γ

Given 𝐹! = Γ 𝑢∗ Θ − Θ#$%%&% , simulated melt rates, and temperature and velocity 2m from the boundary, 
derive the thermal exchange coefficient Γ+,'%$

Inputs:



Evaluating the thermal exchange coefficient Γ

Jenkins et al. (2010) value
Heat transport near the
ice boundary becomes 
slightly less efficient 
at higher thermal driving

Given 𝐹! = Γ 𝑢∗ Θ − Θ#$%%&% , simulated melt rates, and temperature and velocity 2m from the boundary, 
derive the thermal exchange coefficient Γ+,'%$

Points increase in size with 
each inertial cycle

Anomalous value: 
intermittent turbulence



Melt rate increases linearly with sin(slope)

¡ Some disagreement in the literature about the 
exponent 𝑛, 𝑚 ∝ sin𝛼 -

¡ 𝑛 = 3/2 scaling analysis 
(Magorrian and Wells 2016)

¡ 𝑛 = 0 no sensitivity at low slope 
(Vreugdenhil and Taylor 2019)

¡ 𝒏 = 𝟏 this study

¡ At low slope, melt rate is constant



Heat transport near ice boundary becomes more efficient
at higher slopes

¡ The linear increase in melt rate with sin(slope) arises from acceleration of the BL
and an increase in mixing efficiency, Γ

At low slope, velocity 2m from the 
boundary is constant



TKE increases as a function of slope
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Turbulence intermittency for highly stratified simulations

The most stratified case is that with the highest thermal driving:
0.6°C, 1.0° slope

Dashed line = depth of the mixing layer
Solid line     = depth of the mixed layer



Parameterizing vertical fluxes as a function of distance from ice boundary

¡ Curves don’t collapse neatly but linear scaling of vertical fluxes with thermal 
driving works fairly well throughout the BL



Parameterizing vertical fluxes as a function of distance from ice boundary

¡ Curves do collapse neatly with weak dependence on sin(slope) 
and threshold behavior at low slopes



Parameterizing vertical fluxes as a function of distance from ice boundary

¡ High momentum gradients near the boundary

¡ Depending on the degree to which the BL is resolved, momentum fluxes can 
be positive or negative



Overview

¡ We conducted large-eddy simulations to test a higher shear regime than previously explored

¡ Linear relationship between thermal driving and temperature continues across low and high shear regimes

¡ Even low ice shelf slopes do impact the melt rate and change the thermal exchange coefficient

¡ Gradients in velocity and scalars are high near the boundary

¡ Poses a challenge for coarse-resolution ocean models and eddy-diffusivity schemes

¡ We make some progress toward a depth-dependent shape function for vertical fluxes 

¡ But we need simulations that span a wider regime space and a prognostic for boundary layer depth

¡ Caveat: These simulations don’t have tides and could have less TKE than real ice shelf settings

Begeman, C. B., Asay-Davis, X., & Van Roekel, L. (2022). Ice-shelf ocean boundary layer dynamics from large-eddy 
simulations. The Cryosphere, 16(1), 277–295. https://doi.org/10.5194/tc-16-277-2022

https://doi.org/10.5194/tc-16-277-2022


Considerations for ocean modeling of the ice-shelf ocean boundary layer

Some strategies for capturing boundary layer structure:

¡ Reducing spurious mixing

¡ We implemented vertical Lagrangian-remapping (Griffies et al. 2020)

¡ Optimizing grid

¡ Vertical Lagrangian-remapping allows us to increase vertical resolution 
near the ice base

¡ We added hybrid grid capabilities so we can follow the terrain of the ice 
shelf base and have terminating layers at the ice front

¡ Learning how to account for resolution effects in turbulence closure



Q&A

Thanks for your attention!



SUPPLEMENTAL SLIDES

¡ Shear production of TKE dominates in all simulations 
(dT)

¡ Shear production of TKE dominates in all simulations 
(slope)

¡ TKE hovmoller plots

¡ Melt, Gamma 

¡ Timeseries for all simulations

¡ Snapshots within inertial cycle

¡ Vertical temperature flux profiles through the 
simulation

¡ Vertical flux profiles

¡ TKE budget, slope cases

¡ TKE budgets, thermal driving cases

¡ Resolution test

¡ Salt flux profiles

¡ Effective diffusivity (for computation of Ekman depth)

¡ Ratio of horizontal to vertical velocity variance

¡ Subgrid diffusivities

¡ Melt rate dependence over course of simulation



Shear production of TKE dominates in all simulations (dT)



Shear production of TKE dominates in all simulations (slope)



TKE hovmoller plots

a b
0.15°C, 0.01° slope 0.6°C, 1.0° slope

Dashed line = depth of the mixing layer
Solid line = depth of the surface layer



MELT, GAMMA 
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Timeseries for all simulations
a b c

d e f



Snapshots within inertial cycle



Vertical temperature flux profiles through the simulation

a b

c d

First inertial period

Fourth inertial period

Dotted=subgrid
Dashed=resolved



Vertical flux profiles
(a) (b) (c)

(d) (e) (f)



TKE budget, slope cases
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TKE budgets, thermal driving cases
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Dashed = vertical
Dotted = horizontal



Resolution test
a b

c d



Salt flux profiles
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Effective diffusivity (for computation of Ekman depth)

a b



Ratio of horizontal to vertical velocity variance
a b



Subgrid diffusivities (solid=viscosity, dashed=scalar diffusivity)
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Melt rate dependence over course of simulation


