This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2021-4026C

ILASS-Americas 31st Annual Conference on Liquid Atomization and Spray Systems, May 2021
Similarity In Non-Evaporating, Mixing-Limited Sprays

David P. Schmidt*! and Marco Arienti?

'Department of Mechanical and Industrial Engineering, University of Massachusetts,
Ambherst, MA 01003 USA
2Thermal /Fluid Sciences and Engineering, Sandia National Laboratories, Livermore, CA
94550 USA

Abstract

Starting with a well-tested, one-dimensional model of non-evaporating, mixing-limited sprays, the governing
equations for liquid mass and two-phase momentum can be manipulated to reveal the formal similarity
between momentum and liquid volume fraction. These quantities are integrated over a cross-section of the
spray, including the presence of a radial profile. The consequence of this mathematical observation is that
momentum, when properly non-dimensionalized, is equal to the liquid volume fraction at any time and at
any axial location within a non-evaporating, mixing-limited spray with a constant rate of injection. We
compare the predictions of this mathematical analysis to high-fidelity, first-principles simulation results of a
non-evaporating spray to assess the validity of the assumed similarity. The mathematical derivation shows
that momentum and liquid volume fraction are essentially the same quantity in non-evaporating, mixing-
limited sprays. The analysis of the simulation confirms this result, but also points to the difference between
the radial profile of velocity and the radial profile of LVF (or density). This discrepancy indicates the need
to re-examine the simplification that Musculus and Kattke made in modeling the momentum flux in view of
the high density ratio that typically exist between liquid and gas.
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Introduction

The statistician George Box coined the phrase
that ” All models are wrong, but some are useful.”
One of the more useful models of transient, non-
evaporating sprays was developed by Musculus and
Kattke [1] based on the principle of mixing-limited
spray evolution [2]. This model includes the abil-
ity to capture transient effects and radial profiles in
liquid volume fraction (LVF) and velocity. The va-
lidity of the model was checked against experimen-
tal data by subsequent publications such as Muscu-
lus [3], Pickett et al. [4], Kook and Pickett [5], and
Bardi et al. [6]. Often, the model is employed by fit-
ting spray angle or coefficient of area of the nozzle,
but the wide applicability and excellent agreement
is still noteworthy.

This paper mathematically manipulates the
governing equations of this model and reveals that
the liquid volume fraction and spray momentum are
formally similar. This means that the two quan-
tities are equal. The present analysis builds upon
the proposal by Musculus [3] that "the jet fluid is
transported equally with velocity, so that the local
mixture fraction can be represented by the local ax-
ial velocity relative to the original nozzle exit veloc-
ity.” The present analysis reaches a slightly different
conclusion, where the local mixture fraction instead
depends on the ratio of momentum, rather than ve-
locity.

Analogously, the present analysis independently
addresses the assertion of Kastengren et al. [7] who
proposed that the liquid mass, integrated in a slice
transverse to the source of injection, should be pro-
portional to mass-averaged velocity of the liquid.
Like Musculus [3], the end result of Kastengren’s
analysis is a proportionality between velocity and
liquid mass. In contrast, the present work will de-
rive a relationship where the ambient gas density
is a factor in the proportionality. Also, the analy-
sis of Kastengren et al. applies only to portions of
the spray that have achieved steady-state while the
present work will derive a result that applies to the
entire spray.

The equivalence of liquid volume fraction and
momentum offers an opportunity for extracting ad-
ditional information from experimental studies. The
consequence of this discovery is that an experiment
need only experimentally measure one of the two
quantities in order to reveal the other. The result
also offers some basic insights into spray physics in
a succinct mathematical form.

Review of the Musculus-Kattke model

Our analysis begins with the governing equa-
tions used by Musculus and Kattke. The complete
description is given in their paper [1] but a sum-
mary will be given here. The model employs a one-
dimensional finite volume approach with a radial
profile of velocity and mixture fraction, as illustrated
in Fig. 1.
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Figure 1. The Eulerian control volumes used in
the Musculus-Kattke model. Taken from Musculus-
Kattke(2009)

The authors then make a series of assumptions,
summarized in the following list.

1. Non-evaporating spray
2. Constant densities of both liquid and gas phases

. Turbulent stresses are neglected

= W

. Axial mixing is neglected
5. Axial pressure gradients are neglected
6. Spray angle is constant

7. The normalized radial profile of velocity re-
mains constant after the end of injection

These assumptions then give rise to the basic
conservation of mass and momentum equations for
each control volume. The conservation of liquid fuel
mass, my is given in Eqn. 1 and the equation for
linear momentum flux, M, is given in Eqn. 2. Note
that the momentum flux is for both phases, although
the mass conservation equation is only for the liquid
phase.
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The liquid mass flux is defined using an integral
across the cross-section of the jet. Note that both
phases are assumed to move at the same velocity, u,
and the velocity is Reynolds-averaged. Here, py is
the liquid density and dA is the differential cross-
sectional area of the jet. The quantity X ¢ is the
liquid volume fraction. The overbar on X signifies
a cross-sectionally averaged quantity.

g = py / XjudA (3)

Similarly, the momentum flux is also defined us-
ing an integral. However, since the momentum is
for both phases, a mixture density is required that
represents a weighted average of the two phase den-
sities. In contrast, the overbar on u signifies a cross-
sectionally averaged quantity, like X -

M = / puldA (4)

Because the mixture density varies with loca-
tion, it must remain within the integral of Eqn. 4.
The mixture density is a simple function of the liquid
volume fraction X .

p=psXs+pa(l—Xy) (5)

The evaluation of the integrals in Eqns. 3 and 4
is explained in detail by Musculus and Kattke. For
the present work, it is sufficient to know that the
integral results in the appearance of a parameter, 3,
that describes the shape of the jet profile. The
parameter is a measure of correlation between the
Xy and u profiles, as shown in Eqn. 6.

1

For a uniform radial profile, 8 is unity. For a fully
developed profile, 8 is approximately 2. Though g
represents a correlation between the two variables,
Xy and u, the momentum flux depends on the square
of velocity, requiring an assessment of X, and u?.
However, Musculus and Kattke, for reasons of math-
ematical convenience, chose to use 8 in both calcu-
lation of mass and momentum flux. Thus, Eqns. 3
and 4 become:

gy = BpyXud (7)
M = BpiaA (8)

These expressions are then applied by Musculus
and Kattke to derive finite volume expressions for
Eqgns. 1 and 2. Each control volume has an axial
extent Az and a transverse area A. The liquid mass

and total momentum for a control volume are then
as follows.

myp = XprADz (9)

M = puAAz (10)

Finally, the partial differential equations Eqns.
1 and 2 are discretized to give expressions to up-
date liquid mass and both phases’ momentum in
each control volume. The results are given in Eqns.
11 and 12.

mih = mh o+ pp [(8Xsud);_, — (BXjuA);| At
(11)

M = M [(0a), - (Bara)!] At (12)

Analysis

The preceding section reviewed the equations
of Musculus and Kattke. In this section, trans-
port equations for liquid volume fraction and non-
dimensional momentum are derived. The analysis
will show that the transport equations for these two
equations are identical and that the boundary con-
ditions are identical. Because the solution for liquid
volume fraction must be unique, the end result is
that dimensionless momentum equals liquid volume
fraction at any time and axial location in the spray.

The analysis begins with Equns. 11 and 12, but
could just as well start with the continuous equations
1 and 2. The first step is to recast the transport of
liquid mass into liquid mass fraction. This process
begins by dividing the equation by py AAzAL.

o o,
mp —my, _ [(BXfUA)z‘—1 - (ﬁXfUA)J (13)
,OfAAZAt AAZ

Note that ps is a constant and AAz represents
the finite volume. We use the definition of liquid
volume fraction to replace m; with Xy.

— - mf
F= prAAz

(14)

Inserting this expression in Eqn. 13 and taking
the limits as both Az and At approach zero gives
us a partial differential equation for the transport of
X;.

% (BXfuA) (15)



The result in Eqn. 15 is sufficient for the present
purposes, but for clarity of interpretation, the equa-
tion can be rearranged in a Lagrangian form. First,
apply the product rule to the expression on the right.
0% 5?0 A2 (gany g
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Then, define a Lagrangian total derivative op-
erator where the advection speed is defined as Su.
This advection speed shows that one consequence of
the radial profile is to increase the advection speed.

DO _ 00 , 590
Dt o s (17)
This operator can then be used to put Eqn. 16

into a Lagrangian form.

DX; X; 0
Dt A 0z
An examination of this equation shows that it is
linear. Thus, for a given f(z), @(z), and A(z) there
exists only one solution for X ¢. Also, the boundary
conditions are unity at the injector orifice and zero
in the limit of infinite z.
The next step is to perform an analogous ma-
nipulation of the momentum equation. This process

begins by dividing the momentum equation, Eqn.
12 by AAzAL.

(BuA) (18)
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Noting that A and Az are not functions of time,
the left side can be transformed into an expression
for the time rate of change of pu. Using Eqn. 10
and taking the limits as At and Az go to zero gives
a partial differential equation for the transport of

pu.

pu  —1

86% = 7% (Bpu*A) (20)

At this point, it is convenient to define a dimen-

sionless linear momentum, L*. The liquid density

and injection velocity are used as reference scales.

For steady injection conditions, the denominator is

a constant and may be pulled into the temporal

derivative. Whereas the density in the numerator

is an average of the two phases, as defined by Eqn.

5, the density in the denominator represents only the
liquid density.

L* = pu
Plling

(21)

Inserting this expression into equation 20 gives
a result that is analogous to the transport of mass,
Eqgn. 15.

oL* —-10
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Applying the product rule and employing the

same definition of Lagrangian derivative given in

Eqgn. 17, produces an expression for the evolution
of momentum in the Lagrangian reference frame.

(BL*1A) (22)

D2 = B0 (sua) (23)
z

Comparing Eqn. 23 and 18 reveals the formal
similarity. Except for the symbol X ¢ or L*, these
equations are identical. As for Xy, the boundary
condition for L* is unity at the injector and zero in
the far field. Hence, these are the same equations
and the same boundary conditions. We then apply
the idea of mathematical similarity: if these are the
same equations and boundary conditions, then they
have the same solution. The only remaining question
is, are the solutions unique?

For non-linear partial differential equations, one
must consider the possibility of multiple solutions.
However, it will be assumed here that the solution
for momentum transport is, like LVF, unique. Thus,
the ultimate result of this derivation, Eqn. 24.

o

The consequences of this result are that the
liquid volume fraction and momentum ratio are
the same at all times and axial locations in non-
evaporating, mixing-limited sprays. Measuring one
of these quantities provides knowledge of the other.

For example, if liquid volume fraction or velocity
were available at a variety of transverse locations,
one could use the fundamental definition of a cross-
sectional average to calculate Xy or 4.

- 1
X = Z/deA (25)

i = % / udA (26)

Though the value of w is strictly an average of
the two phase velocities, the mixing-limited hypoth-
esis assumes that the two phases are moving at the
same velocity. Hence, if only liquid velocity data are
available, these may be sufficient. The value of p,
required in the definition of L*, can be calculated
from Xf using Eqn. 5.

At a glance, the result of this paper may appear
to be equivalent to that of Kastengren et al. [7] or



Musculus [3]. The difference is that the definition of
momentum in the present work uses a density that
is a weighted average of the gas and liquid density.
Another subtle point of the present analysis is that
if momentum and liquid volume fractions have the
same transverse profile, then this result means at
every location, LVF and momentum ratio are equal,
without any transverse integration. The present re-
sult applies to any part of the spray.

However, one implication is contradictory to the
initial assumptions: how can the momentum profile
be similar to the LVF profile if LVF was assumed to
have the same radial profile as velocity? This appar-
ent mathematical contradiction is perhaps a conse-
quence of the use of § in Eqn. 8, following Musculus
and Kattke. Based on math and without regard for
the resulting equation complexity, the momentum
flux should include a parameter that represents a
triple correlation.

Verification and Validation

The first step in showing the validity of this
analysis is to test the predictions against the pre-
dictions of the Musculus-Kattke model from which
the present results are derived. This test serves as a
check of the mathematical analysis.

The prediction of Eqn. 24 is assessed in Fig. 2
for a high ambient pressure condition at an arbitrary
time using a uniform rate of injection. The condi-
tions are listed in Table 1. This figure shows both
L* and X plotted versus distance from the orifice
using a line and symbols, respectively. No discrep-
ancy between the two quantities is evident which
indicates that indeed, dimensionless momentum is
equal to LVF in the Musculus-Kattke model. The
next step is to determine if this model corresponds
to realistic sprays.

Parameter Value

Gas density 33 [kg/m3]
Fuel density 744 [kg/m?]
Nozzle diameter | 0.1 [mm)
Ca 1.0 [-]
Spray angle 21 [degrees]
Az 0.05 [mm)
Inj. velocity 348 [m/s]

Table 1. Parameters used in the verification with
the Musculus-Kattke model.

Validation of the analysis was conducted using
the CLSVOF method applied to Spray D, as de-
scribed in [8] and applied in [9]. While ideally, val-
idation would involve experimental results, we have
not been able to find such data in the open liter-
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Figure 2. Verification with Musculus-Kattke model
results. The dimensionless momentum and liquid
volume fraction are plotted versus distance from the
injector at a time of 0.01 ms after start of injection.
The leading edge of the spray is at 2.5 mm

ature. The experimental data would require both
liquid volume and velocimetry measurements from
the same regions of the spray without recourse to
assumptions such as Kastengren et al [7].

Spray D is a single axial hole injector which,
in this case, was discharged into high pressure, low
temperature nitrogen. The conditions are summa-
rized in Table. 2, and the CFD code is described in
a previous publication [10]. Figure 3 shows a snap-
shot of such simulation, including the resolved lig-
uid surface and the cross-sectional planes that will
be discussed in this Section. The simulation is de-
signed to resolve (via interface reconstruction) the
model-free dynamics of the liquid surface in a Di-
rect Numerical Simulation (DNS) sense. As such,
its analysis should be based on sample averaging of
multiple DNS instances at a given time. This very
expensive set of computations is avoided here by re-
placing sample averaging with time averaging, at the
price of restricting the scope of the validation to the
steady-state portion of the jet.

Parameter Value
Liquid n-Dodecane
Nozzle diameter 0.180 [mm)
Injection Pressure 150 [M Pal)
Fuel Temperature 298 [K]

Gas density 22.8 [kg/m?]
Ambient Temperature | 298 [K]

Table 2. Parameters used in the CLSVOF Spray D
simulation.
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Figure 3. Snapshot of CLSVOF spray D simulation
showing the resolved liquid surface and the cross-
sectional planes used for analysis, all colored by axial
velocity. The simulation includes the flow internal to
the injector, which is partially visible in the picture.

Because the analysis in the current paper relies
on a single, uniform nozzle velocity w;,;, we must
extract this value from the CFD results. Concep-
tually, our goal is to represent the full exit profile
with a reduced model as shown in Fig. 4. To do so,
we follow the analysis of Payri et al. [11]. In this
model, the value of u;y; is presumed to be equal to
an effective velocity u.g issuing over an areas A g
that is less than the nozzle exit area. The values of
U and A.g are calculated such that the effective
area and velocity transit the same mass flow rate
and momentum flux as the actual profile.

To calculate uog from the CFD results, we use
the following algorithm. The value of u.g is then
used in place of u,; in the above analysis.

1. Calculate the Bernoulli velocity, u¢,, from the
upstream and downstream pressures

2. Calculate the average velocity, 4 based on mass
flow rate from the nozzle

3. Calculate the coefficient of discharge from @
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Figure 4. A sketch of the exit velocity profile and
the modeling assumptions used in the current pa-
per. The three-dimensional exit profile (left) must
be represented as a uniform profile with equal mass
and momentum flux (right).

4. Calculate the value of the momentum coeffi-
cient Cps from the ratio of momentum flux and
2AAP

5 C,=0n/Cy
6. The value of ueg is Cyuy,

Next, the cross-sectionally averaged values of
Xy and u are calculated from Eqns. 25 and 26. The
application of the integral begs the question of the
extent of the cross-sectional area. The velocity pro-
files from the CFD are wider than the LVF profiles,
and so the results do show sensitivity to the spray
angle, assumed to be 5.2 degrees in the present work.
This discrepancy between the width of the LVF and
velocity profiles are explored in the next section.

The results of the comparison are shown in Fig-
ures 5 and 6. The former figure shows the results on
a linear scale as a function of distance downstream
of the orifice. The latter figure tests the assertion
that either momentum or velocity is equal to LVF.
In neither case do the computations results convinc-
ingly confirm or refute the similarity. However, both
views of the data show that momentum is more sim-
ilar to LVF than velocity for this assumed value of
spray angle.

An Examination of the Discrepancies

Axial velocity and LVF distribution are more
closely examined in Figs. 7 and 8 at three jet cross-
sections located at 7.8, 19, and 52 orifice diameters
dy from the nozzle exit. The first position is selected
to probe into the jet core region, which in the plots
corresponds to the constant unit value of normal-
ized axial velocity and LVF. Conversely, the 52 dy
cross-section is taken almost at the end of the com-
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Figure 5. LVF, momentum ratio, and velocity ratio
as a function of axial distance normalized by orifice
diameter.
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Figure 6. A comparison of the dependence of both
L* and normalized velocity u/u.g on LVF. The third
curve, Y = X represents the theoretical equality of
the two variables.

putational domain, where the liquid mass seems to
approach a uniform distribution. In that position,
the spray cone appears to be hollow, a feature that
can reasonably be attributed to oscillations of the
jet with respect to its geometrical axis on a longer
period than the averaging window used here.

From a comparison of the two figures, it is ap-
parent that each averaged LVF radial profile is sub-
stantially noisier than the corresponding axial veloc-
ity profile, a fact that can be explained in terms of
surface tension coefficient opposing diffusion. Most
of the features that are observed in the radial plots
can therefore be expected to smooth out if the time
average is extended for a sufficiently long period.
More importantly, while the radial profiles show the
same tendency to spread downstream of injection,
this occurs at a much greater rate for velocity than
for LVF because of the inertia of the liquid mass
compared to the gas mass. This feature is visible
in pictures of the spray simulations, such as the one
displayed in Figure 3, where the gas region entrained
by the jet is much broader than the spray cone at
every cross-sectional plane. It is noted that the most
downstream cross-section shows a relatively uniform
velocity profile, with 40% decrease compared to the
maximum value, in a region with radius of at least
2dg. Because of the large density ratio between lig-
uid and gas, we can deduce that the normalized mo-
mentum of the flow and the liquid volume fraction of
the jet eventually tend to follow a very similar radial
profile, as concluded by our mathematical deriva-
tion.

Conclusions

A mathematical derivation has shown that
momentum and liquid volume fraction are essen-
tially the same quantity in non-evaporating, mixing-
limited sprays, according to a one-dimensional
model. This result, similar to a unity Schmidt num-
ber ! assumption, indicates the analogous transport
of liquid mass and momentum. Aside from the ba-
sic physical insight that derives from this result, the
equality of momentum and mass transport allows
the extension of experimentally-measured quanti-
ties. For example, a measurement of liquid volume
fraction provides an estimate of the local velocity.

The derivation assumed that the injection ve-
locity was constant. This is a restrictive assump-
tion that could potentially be relaxed. Musculus [3]
applied the method of characteristics to the study
of transient jets. Perhaps application of a similar
method could allow this result to be generalized to
transient sprays.

INo relation to the first author
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Figure 7. Tangentially-averaged axial velocity pro-
files obtained by time averages of the CFD simula-
tion at three distinct locations, located at 7.8 (dash-
dot line), 19 (dashed line), and 52 (continuous line)
orifice diameters dy from the nozzle exit. The ra-
dial distance is normalized by dy and the velocity is
normalized by the maximum axial value ups4x -

In particular, the derivation of Eqn. 22 assumed
that the denominator of the definition of L* is con-
stant. However, one could potentially follow the
equation characteristics at a speed of St emanating
from the orifice in a transient injection and extend
this analysis to transient injections. If such a gener-
alization is possible, then this line of analysis could
lead to a new branch of spray modeling approaches.

The analysis and comparison with high-fidelity
results also raised some questions. How can the
apparent contradiction in the mathematics be re-
solved? The analysis assumes that the velocity pro-
file and LVF profile are similar, but the results show
a similarity instead between the momentum profile
and LVF profile. This discrepancy is likely due to
the simplification that Musculus and Kattke made
in their momentum flux.

The comparison to high fidelity spray simula-
tion results begin to address the question of what
similarities are found in actual sprays. Given the
high density ratio between phases, is it reasonable
to expect that the unity Schmidt number assump-
tion holds? Certainly, the transport of liquid mass
into a region consisting of primarily of gas represents
a shift of the center of mass that would not be ob-
served in a uniform density gas jet. This difference
between sprays and jets is significant because gas

o o o

~ o oo
—
]

Liquid volume fraction

o
o

T T T T

LN, N T
0 0.5 1 1.5 2
Normalized radial distance

Figure 8. Tangentially-averaged liquid volume frac-
tion profiles obtained by time averages of the CFD
simulation at three distinct locations, located at 7.8
(dash-dot line), 19 (dashed line), and 52 (continuous
line) orifice diameters dy from the nozzle exit. The
radial distance is normalized by dj.

jets often serve as an inspiration for mixing-limited
spray analyses.
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