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1 Introduction

In this report, we review our recent efforts in developing tools and techniques for contending with
the next generation of operational problems in power systems when plagued by risk, uncertainty,
nonlinearity, discreteness, and in some instances, the presence of equilibrium constraints.

The optimal power flow (OPF) problem is amongst the most fundamental decision-making problems
in power systems. There are many variations and generalizations of this problem including unit
commitment, reserve scheduling, economic dispatch, security-constrained, DC approximations, and
full AC power-flow formulations [1–5]. A key complication arising from the presence of uncertainty,
possibly arising from stochasticity in the availability and demand. One approach to address the
presence of uncertainty lies in developing robust optimization models [6–10] where uncertainty
sets are assumed and feasibility is ensured for every realization from such uncertainty sets. For
instance, a robust formulation for AC power flow problems was provided in [11]. Uncertainty in
power systems also can be dealt by adding chance constraints [5, 12] which are approximated by
finite sampling of uncertain parameters from an assumed statistical model. Simulation based studies
on real time dispatch are also been conducted. For instance, in [13], a simulation based framework
is used in a power system with renewable resources. Our interest lies in adaptive two-stage models
for such problems possibly complicated by the presence of risk measures. Such avenues have been
considered in [14] and revisited in [15], where computable closed-form expressions were derived.
In [16], a model for risk-limiting dispatch with generation limitation and network constraint was
provided with networked variants were examined in [17].

Overlaying of discreteness emerges through the need to commit generation capacity prior to the
clearing of the real-time market. The unit commitment problem considers the determination of
the optimal production schedule of power generating units, so that in a certain amount of time the
operational cost may be minimized while meeting demand requirements and physical constraints.
Basically, binary variables represent the status of unit. An overview of unit commitment problem
in literature was provided in [18]. In [19, 20], branch and bound schemes were used to solve the
unit commitment problem while the Lagrangian relaxation is also widely used in solving the unit
commitment problem [21–25].

We draw inspiration from the Grid Optimization (GO) Competition1 where comprehensive for-
mulations for two-stage optimal power flow problem have been provided in Challenges 1 and 2. The
framework truly represents the next generation of such problems, capturing an alternating current
formulation, incorporating security constraints, pre-contingency and post-contingency operational
constraints, preventive and corrective actions, contingency modeling of generators and transmis-
sion (line/transformer), amongst others. While there has been a significant amount of activity
in resolving this class of problems as part of the competition, our focus is to make inroads into
developing algorithmic tools supported by rigorous convergence theory for addressing subclasses of
such problems. To this end, we consider the following complexities that have received less attention
from the community.

We emphasize that the key distinctions in the developments in Gates 2 and 3 are that
Gate 3 tends to emphasize applications to power systems operation and large-scale
testing. We also introduce further enhancements and extensions in Gate 3 (such as
through the introduction of risk and the addition of structured nonconvexity in the
form of equilibrium constraints).

1https://gocompetition.energy.gov/challenges/challenge-1/formulation,
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Gate 2. (I) Uncertainty and nonlinearity. When contending with two-stage models for decision-
making in settings complicated by nonlinearity (under suitable convexity assumptions), cutting-
plane schemes appear to be the de-facto standard. Stochastic approximation schemes have to con-
tend with nonsmoothness in the recourse function, limiting the performance of the schemes in prac-
tical regimes. However, by combining Nesterov acceleration, smoothing, and variance-reduction,
we demonstrate that smoothed variance-reduced accelerated schemes display optimal rates and far
better performance. In Section 2, we present the smoothed accelerated variance-reduced schemes
and provide numerical evidence to support the theoretical claims.

Gate 3. (II)Risk-based extensions to economic dispatch. In Section 3, the schemes from (I) can
be extended to risk-afflicted regimes with a subtle modification to the nature of the subproblems.
The techniques in (I) are applied on an IEEE system as well as on ARPA-E systems.

Gate 2. (III) Uncertainty, nonlinearity, and discreteness. Significant inroads have been made
in developing cutting-plane schemes for mixed-integer generalizations of two-stage stochastic lin-
ear programming (with some generalizations). Our focus is on overlaying discreteness in both
stages when contending with problems of the form seen in (a). Notably, we consider the devel-
opment of stochastic branch-and-bound schemes where the continuous relaxations are two-stage
stochastic/risk-averse programs. This avenues allows for developing upper and lower bounds and
can accommodate the introduction of various types of cuts which improve performance. This frame-
work is developed in Section 4.

Gate 3. (IV) Complementarity constraints, uncertainty, and discreteness. Several aspects com-
plicate the resolution of the problems presented in the GO competition. One particular intricacy
that proves debilitating comes in the form of complementarity constraints as seen in
https://gocompetition.energy.gov/challenges/challenge-2/formulation. When overlaid
by discreteness, such problems can be viewed as mixed-integer stochastic mathematical programs
with complementarity constraints (mi-SMPCCs) have seen little or no research. In Section 5, we
propose a framework for computing efficient solutions for a relatively broad subclass of two-stage
stochastic MPCCs. This framework can then be combined with the branching framework presented
in (III) to resolve mixed-integer variants. Note that in this setting, we test our scheme on problems
with over 100,000 variables.

The remainder of this report is organized into five sections. Sections 2 – 5 correspond to (a) – (c) in
the discussion above while Sections 6– 7 discuss commercial development and concluding remarks.
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2 Variance-reduced accelerated schemes for 2-stage risk-averse op-
timization

We consider the following stochastic nonsmooth convex optimization problem2

min
x∈Rn

F (x), where F (x) , f(x) + g(x), (1)

f(x) , E[f̃(x, ξ(ω))], ξ : Ω → Ro, f̃ : Rn × Ro → R, g is a closed, convex, and proper determin-
istic function with an efficient proximal evaluation, (Ω,H,P) denotes the associated probability
space, and E[•] denotes the expectation with respect to the probability measure P. Throughout,
we refer to f̃(x, ξ(ω)) by f̃(x, ω), while F̃ (x, ω) , f̃(x, ω) + g(x). We consider settings where
f̃(·, ω) is nonsmooth strongly convex/convex in x for every ω, generalizing the focus beyond
the structured nonsmooth setting where the “stochastic part” is smooth. Specifically, structured
nonsmooth problems require minimizing f(x) + g(x) where f is smooth while g is nonsmooth with
an efficient prox evaluation (allows for capturing constrained problems over closed and convex sets).

Amongst the earliest avenues for resolving (1) is stochastic approximation [27, 28] and has proven
to be effective on a breadth of stochastic computational problems including convex optimization
problems. [29] developed an averaging scheme in convex differentiable settings, deriving the op-
timal convergence rate of O(1/

√
k) under classical assumptions, where k is the number of itera-

tions. Amongst the cleanest of early complexity requirements for the minimization of expectation-
valued µ-strongly convex and convex functions over a closed and convex set X were given as(

max
{
M2

µ2 , ‖x0 − x∗‖2
}

1
ε

)
(to ensure that E[‖xk−x∗‖2] ≤ ε) and O(MDX

ε2
) (to ensure that the ex-

pected optimality gap is less than ε), respectively where S(x, ω) denotes a measurable selection from
∂xf̃(x, ω), supx∈X E[‖S(x, ω)‖2] ≤M2 and DX , max

x∈X
‖x0−x‖. Of these, the former was presented

by [30] while the latter is the result of an optimal robust constant steplength SA scheme suggested
by [31]. When f is both L-smooth and µ-strongly convex, an improved complexity requirement

(from a constant factor standpoint) of O
(√

L‖x0−x∗‖2
ε + ν2

µε

)
was provided by [32]. This contrasts

sharply with the deterministic regime where O(log(1/ε)) and O(1/
√
ε) steps are required in smooth

strongly convex and smooth convex regimes to compute an ε-solution in terms of mean-squared
error and expected sub-optimality, respectively. In structured nonsmooth regimes, there has been
an effort to employ the stochastic generalization of an accelerated proximal gradient method to
minimize f + g when f is smooth. Reliant on a first-order oracle that produces a sampled gradi-
ent ∇xf̃(x, ω) and given an x1, our proposed variable sample-size accelerated proximal gradient
scheme (VS-APM) (also see [33] and [34]) is stated as follows where the true gradient is replaced
by a sample average (∇xf(xk) + w̄k,Nk) with batch size Nk.

yk+1 := Pγkg (xk − γk (∇xf(xk) + w̄k,Nk))

xk+1 := yk+1 + βk(yk+1 − yk),
(2)

where w̄k,Nk ,
∑Nk
j=1 (∇xf̃(xk,ωj,k)−∇xf(xk))

Nk
, Pηg(y) , arg minx{1

2‖x − y‖2 + 1
2ηg(x)}, γk, and βk

are suitably defined steplengths. Our approach produces linearly convergent iterates in strongly
convex regime and achieves iteration complexity of O(1/k2) in merely convex and smooth regimes,
matching the deterministic results seen in the work by [35] and [36]. The avenue represented

2This section has been adapted from [26].
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by (2) has two key distinctions: (i) Increasingly exact gradients through increasing batch-sizes Nk

of sampled gradients, allowing for progressive variance reduction; (ii) Larger (non-diminishing)
step-sizes in accordance with deterministic accelerated schemes. Collectively, (i) and (ii) allow for
recovering fast (i.e. deterministic) convergence rates (in an expected value sense) when Nk grows
sufficiently fast. Additionally, such schemes have a more muted reliance on the condition number
κ = L/µ (in µ-strongly convex and L-smooth regimes); specifically, in accelerated schemes, such
dependence reduces to

√
κ in comparison with κ in unaccelerated counterparts (cf. [37]).

2.1 Prior research.

(a) Stochastic gradient schemes. In nonsmooth convex stochastic optimization problems, [31] de-
rived an optimal rate of O(1/

√
k) via an optimal constant steplength (also see [38]) while in strongly

convex regimes, they derived a rate of O(1/k). Structured nonsmooth problems (or composite prob-
lems) as defined by (1)) have been examined extensively (cf. [39], [40]) and rates of O(L/k2 +1/

√
k)

and O(L/k + 1/
√
k) were developed by [41] via a mirror-descent framework for strongly convex

and convex problems with L-smooth objectives, respectively. In related work, [42] derive oracle
complexities with a deterministic oracle of fixed inexactness, which was extended to a stochastic
oracle by [43]. Randomized smoothing techniques have also been employed by [44] together with
recursive steplengths (see [45] for a review).

(b) Variance reduction. In strongly convex regimes (without acceleration), a linear rate of conver-
gence in expected error was first shown for variance-reduced gradient methods by [46] and revisited
by [34], while similar rates were provided for extragradient methods by [47]; the accelerated coun-
terpart (VS-APM) improves the dependence on κ, improving the bound to O(

√
L/µ log(1/ε)).

In smooth regimes, an accelerated scheme was first presented by [33] where every iteration re-
quires two prox evaluations, admitting the optimal iteration complexity and oracle complexity of
O(1/

√
ε) and O(1/ε2), respectively. [34] extended this scheme to allow for state-dependent noise.

An extragradient-based variable sample-size framework was suggested by [47] with a rate of O(1/k).
(c) Smoothing techniques for nonsmooth problems. For a subclass of deterministic nonsmooth prob-
lems, [48] proved that an ε-solution is computable in O(1/ε) gradient steps by applying an accel-
erated method to a smoothed problem (primal smoothing with fixed smoothing parameter). Sub-
sequently, [49] considered primal-dual smoothing in deterministic regimes (extended to composite
problems by [50]) with a diminishing smoothing parameter, leading to rates of O(1/k2) and O(1/k)
for strongly convex and convex deterministic problems, respectively (also see [51], [52]). Adaptive
smoothing, considered by [53], was shown to have an iteration complexity of O(1/ε) while [54]
showed that smoothing-based minimization of E[f̃(x, ω)] + E[g̃(x, ω)] leads to rates O(1/k) and
O(1/

√
k) when g̃(·, ω) is nonsmooth for a.e. ω while f̃(·, ω) is either strongly convex or merely

convex for a.e. ω (extended by [55])3.

2.2 Gaps and contributions.

Unfortunately when f̃(·, ω) is a nonsmooth strongly convex/convex function, stochastic subgradient
schemes, subsequently defined in (SSG), while a de-facto standard, generally display poor empirical
behavior, since they utilize diminishing steplengths and noisy gradients. We develop two distinct
avenues for combining smoothing with acceleration and variance-reduction in strongly convex and
convex regimes that ameliorate these concerns while achieving optimal rates.

3We would like to thank P. Dvurechensky for alerting us to [50] and [56].
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(I) (mVS-APM) for strongly convex nonsmooth f . In Section 2, our smoothing framework
is reliant on a variable sample-size accelerated proximal method (VS-APM) which can contend
with smooth f while displaying linear convergence and optimal oracle complexity. In two distinct
settings, we propose applying (VS-APM) (or an unaccelerated variant) on the Moreau envelope of
F , denoted by Fη(x), where Fη(x) is 1

η -smooth and retains the minimizers of F (x). (a) Compact

domains. Under the assumption that the domain of g is bounded and E[‖S(x, ω)‖2] ≤ M2 for
all x ∈ Rn where S(x, ω) is a measurable selection from ∂f̃(x, ω), i.e. S(x, ω) ∈ ∂f̃(x, ω), we show
that (mVS-APM) produces a linearly convergent sequence with an iteration complexity in inexact
gradient steps ∇xFη(xk) of O(log(1/ε)), where increasingly exact gradients ∇xFη(x) are obtained
by employing an (prox-SSG) scheme. In particular, our variance-reduced scheme endeavors to
get increasingly exact gradients by progressively reducing the bias in the gradients (since we utilize
an increasing number of SSG steps); such a benefit does not appear in a naive implementation
of SSG. Moreover, the overall complexity in subgradient evaluations (and consequently sample or
oracle complexity) is O(1/ε), matching the optimal complexity in subgradient steps achieved by
(SSG) schemes. (b) Unbounded domains. When domains are possibly unbounded, assuming
that E[‖S(x, ω)‖2] ≤ M̄2‖x‖2 + M2, where S(x, ω) ∈ ∂F (x, ω), the proposed (unaccelerated) vari-
able sample-size proximal method (mVS-PM) achieves an iteration complexity of O(log(1/ε)) (in
∇xFη) and overall complexity in subgradient steps of O(1/ε).

(II) (sVS-APM) for convex nonsmooth f . In this setting, in Section 3, we develop an
iterative smoothing-based extension of (VS-APM), denoted by (sVS-APM). By reducing the
smoothing and steplength parameters at a suitable rate, E[F (yK) − F (x∗)] ≤ O(1/K). Notably
(sVS-APM) produces asymptotically accurate solutions (unlike the scheme by [48] which produces
approximate solutions via a fixed smoothing parameter) and is characterized by the optimal oracle
complexity of O(1/ε2). We may specialize these results to obtain an optimal rate of O(1/k2)
when f is convex and smooth and displays an optimal sample complexity of O(1/ε2). When f is
deterministic but nonsmooth, (s-APM) matches the rate by [48] but produces asymptotically exact
solutions. Additionally, we prove that for suitable (but distinct) choices of steplength and smoothing
sequences, (sVS-APM) and (VS-APM) produce sequences that converge a.s. to a solution of
(1), a convergence statement that was unavailable thus far, matching deterministic results by [57]
and [58] which leverage Moreau smoothing; we provide a result for (α, β)-smoothable functions
(see [59]). Additionally, we prove a.s. convergence of iterates which does not follow immediately.
Notation: A vector x is assumed to be a column vector while ‖x‖ denotes the Euclidean vector
norm, i.e., ‖x‖ =

√
xTx. Pηg(x) denotes the prox with respect to g with prox parameter 1

2η at x.
We abbreviate “almost surely” as a.s. and E[z] denotes the expectation of a random variable z.
We let X∗ denote the set of optimal solutions of (1).

Table 1: Comparison of schemes in nonsmooth (NS) and strongly convex regimes in terms of convergence
rate and complexity of iterations, proximal evals., and oracle evaluations (κ = L/µ), where ρ ∈ (0, 1).

Smooth
Conv. Rate
Iter. comp.

Prox. eval.
Oracle comp.

Comments

VS-APM (2.1)
f is L-smooth

O(ρk)
O(
√
κ log(1/ε))

O(
√
κ log(1/ε))
O(κ/ε)

Optimal rate and complexity

Nonsmooth
Conv. Rate
Iter. comp.

Oracle comp. Comments

mVS-APM (2.3)
dom(g) is bounded;

E[‖R(x, ω)‖2] ≤ M2

∀R(x, ω) ∈ ∂f̃(x, ω)

O(ρk)
O(log(1/ε))

O(1/ε)
Minimize Moreau env. Fη(x) via (VS-APM)
Non-diminishing outer steps;
Approx. ∇xFη by (prox-SSG) with increasing exactness;

mVS-PM (2.4)

E[‖S(x, ω)‖2] ≤ M̄2‖x‖2 +M2

∀S(x, ω) ∈ ∂f̃(x, ω)

O(ρk)
O(log(1/ε))

O(1/ε)
Minimize Moreau env. Fη(x) via (VS-PM)
Non-dminishing outer steps;
Approx. ∇xFη(x) by (SSG) with increasing exactness;
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2.3 Nonsmooth strongly convex problems

In this section, we develop rate and complexity analysis for nonsmooth strongly convex optimiza-
tion problems via techniques that combine smoothing, acceleration, and variance reduction. In
Section 5.2, we review a linearly convergent variance-reduced accelerated proximal scheme (VS-
APM) for smooth stochastic convex optimization; this scheme will serve as our subproblem solver.
In Section 5.2.1, we present a Moreau-smoothed variant of (VS-APM), referred to as (mVS-
APM), which relies on minimizing the Moreau envelope Fη(x) of the strongly convex nonsmooth
function F (x) by (VS-APM). In Section 5.2.2, we then derive rate and complexity guarantees for
(mVS-APM) ∇xFη(x) is approximated with increasing accuracy by stochastic subgradient (SSG)
scheme. Finally, in Section 2.3.4, we derive analogous statements when applying an unaccelerated
variable sample-size proximal method (mVS-PM) under possibly non-compact domains and under
a (weaker) state-dependent bound on the subgradient.

2.3.1 Background on (VS-APM)

Consider (1) where f, g, and the initial point x1 satisfy the following assumption.

Assumption 1. (i) f is a µ-strongly convex function and g is a closed, convex, and proper deter-
ministic function. (ii) There exist C,D > 0 such that E[‖x1−x∗‖2] ≤ C and E[‖F (x1)−F (x∗)‖] ≤
D, where F (x) , f(x) + g(x) and x∗ solves (1).

In a subset of regimes, we impose an L-smoothness assumption on f .

Assumption 2. Consider f is continuously differentiable function with Lipschitz continuous gra-
dient with constant L i.e. ‖∇xf(x)−∇xf(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

We utilize a variable sample-size accelerated proximal scheme (VS-APM), as defined in Algo-
rithm 1, which can process such problems and differs from a standard accelerated proximal method
in that we employ an inexact gradient ∇xf(xk) + w̄k,Nk where the bound on the second moment of

w̄k,Nk , ∇xf(xk)−
∑Nk
k=0∇xf(xk,ωk)

Nk
is diminishing with k, a consequence of using variance reduction.

Algorithm 1 Variable sample-size accelerated proximal method (VS-APM)

(0) Given x1, y1 = x1, κ, and positive sequences {γk, Nk}; Set λ1 ∈ (1,
√
κ ]; k := 1 ;

(1) yk+1 := Pγkg (xk − γk (∇xf(xk) + w̄k,Nk)) ;

(2) λk+1 := 1
2

(
1− λ2

k
κ +

√(
1− λ2

k
κ

)2
+ 4λ2

k

)
;

(3) xk+1 := yk+1 +

(
(λk−1)(1− 1

4κ
λk+1)

(1− 1
4κ)λk+1

)
(yk+1 − yk) ;

(4) If k > K, then stop; else k := k + 1; return to (1).

We outline the assumptions on the first and second moments of w̄k.

Assumption 3. (i) (Conditional boundedness of second moments) There exists ν > 0 such

that E[‖w̄k‖2 | Hk] ≤ ν2

Nk
holds a.s. for all k and Hk , σ{x0, x1, . . . , xk−1}. (ii) (Conditional

unbiasedness of first moments) E[wk | Hk] = 0 holds a.s., where wk , ∇xf(xk)−∇xf̃(xk, ωk).

(VS-APM) can be shown to achieve linear convergence akin to that by [37] by combining inexact
gradients where the inexactness is driven to zero by increasing the sample-size in estimating the
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gradients. This avenue also allows for achieving the optimal oracle complexity to obtain an ε-
solution. These differences lead to a slightly modified set of update rules in contrast with that
developed by [37] and requires that γk = 1/2L rather than 1/L. This scheme serves as a subproblem
solver in subsequent sections and we now state a lemma and the associated complexity statement of
(VS-APM). The proof is similar to that by [37] and is in the Appendix. Importantly, this scheme
allows for a possibly biased estimate of the gradient.

Lemma 1. Suppose Assumptions 1, 2 and 3(i) hold. Consider the iterates generated by (VS-
APM), where γk = 1

2L for all k ≥ 0, κ = L
µ , and ᾱ = 1

2
√
κ

Then the following holds for all

K.

E[F (yK)− F ∗] ≤
(
D + µ

2C
2
)

(1− ᾱ)K−1 +
K−1∑
i=0

(1−ᾱ)i
(

2
L

+ 1
µ

)
ν2

Nk−i
+
K−2∑
i=0

(1−ᾱ)i+1
(

2
L

+ 1
µ

)
ν2

Nk−i−1
. (3)

The following theorem characterizes the iteration and oracle complexity of (VS-APM).

Theorem 2 (Rate and oracle complexity of (VS-APM) under biased oracles). Suppose
Assumptions 1, 2, and 3(i) hold. Consider the iterates generated by (VS-APM), where γk , 1

2L ,

Nk , bρ−kc, θ ,
(

1− 1
2
√
κ

)
, ρ ,

(
1− 1

2a
√
κ

)
for all k ≥ 0 and a > 2.

(i) For all K, we have that E[F (yK)− F ∗] ≤ C̃ρK−1 where C̃ ,
(
D + µ

2C
2
)

+ 4ν2

µ + 2ν2√κ
µ . (4)

In addition,(VS-APM) needs O(
√
κ log(1

ε )) steps to obtain an ε-solution, i.e. E[F (yK+1)−F ∗] ≤ ε.
(ii) To compute an ε-solution,

∑K
k=1Nk ≤

((
D + µC2

2

)
+ 4ν2

µ + 2ν2√κ
µ

)
O
(√

κ
ε

)
.

We know of no other result for variance-reduced accelerated proximal schemes in strongly convex (or
even convex) smooth regimes that allows for biased oracles. For instance, [60] impose unbiasedness
in strongly convex regimes. Next, we show that by adding the unbiasedness requirement, i.e.
E[wk | Hk] = 0 a.s. for all k, improves the constants in these bounds.

Corollary 3 (Rate and oracle complexity of (VS-APM) under unbiased oracles). Suppose
Assumptions 1, 2, and 3(i,ii) hold. Consider the iterates generated by (VS-APM), where γk ,

1
2L ,

Nk , bρ−kc, θ ,
(

1− 1
2
√
κ

)
, ρ ,

(
1− 1

2a
√
κ

)
for all k ≥ 0 and a > 2.

(i) For all K, we have that E[F (yK)− F ∗] ≤ C̃ρK−1 where C̃ ,
(
D + µ

2C
2
)

+ 4ν2

µ . (5)

In addition, (VS-APM) needs O(
√
κ log(1/ε)) steps to obtain an ε-solution.

(ii) To compute an ε-solution,
∑K

k=1Nk ≤
((
D + µC2

2

)
+ 4ν2

µ

)
O
(√

κ
ε

)
.

The application of (VS-APM) is afflicted by the need for the L-smoothness of f as well as the
availability of L, the Lipschitz constant. Naturally, in many settings, the problem may not be
smooth and even if L-smoothness holds, an estimate of L may be unavailable. Consequently to
broaden the reach of the scheme, an approach that obviates the need for L or the imposition
of the smoothness assumption is necessitated. This prompts the subsequent smoothed scheme
(mVS-APM), which can always be implemented if µ, strong convexity modulus, is known. Later,
in Section 2.4, we introduce iteratively smoothed VS-APM (sVS-APM) method which does not
require the knowledge of Lipschitz constant L and the strong convexity modulus µ.

10



2.3.2 A Moreau-smoothed inexact accelerated framework (mVS-APM)

When f̃(·, ω) is a nonsmooth strongly convex function for almost every ω, then the standard ap-
proach lies in utilizing stochastic subgradient schemes (SSG) where convergence relies on choosing
square-summable but non-summable steplength sequences. The choice of the parameters in such
sequences can have debilitating impact on performance in some settings (cf. [30]). Specifically, while
choosing γk as 1

µk minimizes the mean-squared error but over-estimating µ can have catastophic im-
pact as seen in [30, Sec 5.9, Ex. 5.36]. More generally, such choices are often characterized by poor
asymptotic behavior, a consequence that arises in part from the diminishing nature of steplength
sequences and the noisy subgradients. We consider a distinct avenue reliant on minimizing the
Moreau envelope of a closed, convex, and proper function F (cf. [61]), denoted by Fη(x) and defined
next.

Fη(x) , min
u

{
F (u) +

1

2η
‖u− x‖2

}
. (6)

Notably, this smoothing retains the minimizer of F (x) when F is strongly convex.

Lemma 4. [62, Lemma 2.19] Consider a convex, closed, and proper function F and its Moreau
envelope Fη(x). Then the following hold: (i) x∗ is a minimizer of F over Rn if and only if x∗ is a
minimizer of Fη(x); (ii) F is µ-strongly convex on Rn if and only if Fη is µ̄-strongly convex on Rn
where µ̄ , µ

ηµ+1 .

Consequently, we minimize the µ̄-strongly convex and 1
η -smooth function Fη(x), which is not neces-

sarily an easy task since computing∇xFη(x) necessitates solving nonsmooth stochastic optimization
problems. We adopt an inexact accelerated proximal scheme for minimizing Fη(x). But in contrast
with (SSG) schemes applied to minimizing F (x), we control the smoothness of the outer problem
by choosing η and utilize (i) larger non-diminishing steplengths, (ii) acceleration, and (iii)
increasingly exact gradients, all of which are distinct from (SSG), as shown next.

γk→0, uk is noisy subgradient.︷ ︸︸ ︷[
xk+1 := xk − γkuk
uk ∈ ∂F̃ (xk, ωk).

(SSG)

] Non-diminishing γk + increasingly exact gradients + Acceleration︷ ︸︸ ︷[
yk+1 := xk − γk(∇xFη(xk) + w̄k,Nk),

xk+1 := yk+1 + βk(yk+1 − yk).
(mVS-APM)

]
Importantly, ∇xFη(xk)+w̄k,Nk represents an approximation of the gradient of the Moreau envelope.
The true gradient of the Moreau envelope Fη(x) is defined as ∇xFη(x) = 1

η (x− proxηF (x)), where

proxηF (x) , arg min
u

{
F (u) +

1

2η
‖x− u‖2

}
. (7)

But proxηF (x) cannot be computed in finite time since F is a nonsmooth expectation-valued convex
function. Instead, via stochastic approximation, we compute an approximate solution of proxηF (x),

denoted by p̂roxηF (x), implying the inexact gradient of Fη(x) is given by 1
η (x − p̂roxηF (x)). In

Algorithm 1, the inexact gradient ∇xFη(xk) + w̄k,Nk is defined as

∇xFη(xk) + w̄k,Nk = 1
η (xk − proxηF (xk)) +

,w̄k,Nk︷ ︸︸ ︷
1
η (proxηF (xk)− p̂roxηF (xk)) . (8)

We now proceed to develop (mVS-APM) for compact domains in Section 5.2.2 and then weaken
compactness requirements in Section 2.3.4 for an unaccelerated variant.
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2.3.3 Linear convergence of (mVS-APM): compact domains

When F (x) = E[f̃(x, ω)] + g(x), proxηF (x), defined as (7), is generally unavailable in closed-form
and requires solving a strongly convex nonsmooth stochastic optimization problem exactly. Instead,
one may solve (6) inexactly using (prox-SSG), a slightly extended variant of (SSG) scheme [30].
In particular, we propose (mVS-APM) with the following update rules for k ≥ 1,

yk+1 := xk −
γk
η

(xk − p̂roxηF (xk)), (9a)

xk+1 := yk+1 + βk(yk+1 − yk), (9b)

where p̂roxηF (xk) is obtained by taking finite number of steps of (prox-SSG) with single sampling
having the following update rule for j = 0, . . . , Nk − 1,

zk,j+1 := Pη/j,g(zk,j − η
j uj), uj ∈ ∂f̃(zk,j , ωj). (prox-SSG)

Next, we state our assumptions and present the main result of this section. The constant in the
rate and complexity bounds is dependent on κ̃; unlike, the condition number κ in smooth regimes,
κ̃ is user-specified and can be relatively small. For instance, κ̃ = 2 when η = 1/µ. We employ a
measurable selection from ∂f̃(x, ω) as a stochastic subgradient in (SSG) and impose the following
assumption.

Assumption 4. For any x ∈ Rn, consider a measurable selection R(x, ω) ∈ ∂f̃(x, ω). (Unbiased-
ness). We have that E[R(x, ω)] = R(x) ∈ ∂f(x). (Subgradient boundedness). There exists M > 0
such that for any x, E[‖R(x, ω)‖2] ≤ M2. (Compact domain). The function g has a compact
domain, i.e., there exists ∆ > 0 such that ‖x‖ ≤ ∆ for any x ∈ dom(g).

Theorem 5 (Rate and oracle complexity of (mVS-APM)). Suppose Assumptions 1 and
4 hold. Consider the iterates generated by (VS-APM) applied on Fη(x) defined as (6) where

θ ,
(

1− 1
2
√
κ̃

)
, ρ ,

(
1− 1

2a
√
κ̃

)
, κ̃ = µη+1

µη , a > 2, and γk = η/2, Nk = bρ−kc for all k ≥ 0. Then

the following hold for Q , max
{
η2M2, 4∆2

}
.

(i) (Rate). For all K ≥ 1, we have that

E[‖yK − x∗‖2] ≤ ĈρK−1 where Ĉ , 2Dηκ̃+ C2 + 8κ̃5/2Qa. (10)

(ii) (Outer iteration complexity). The iteration complexity of (mVS-APM) in gradient steps
(of ∇xfη(xk)) to obtain an ε-solution is O(

√
κ̃ log(Ĉ/ε)).

(iii) (Oracle complexity). To compute yK+1 such that E[‖yK −x∗‖2] ≤ ε, the complexity of SSG

steps is bounded as follows:
∑K

k=1Nk ≤ 2a2
√
κ̃Ĉ

(a−1)ε = O(1/ε).

Proof. Proof. (i) Recall that Fη is µ
µη+1 -strongly convex with 1

η -Lipschitz continuous gradients.
At iteration k of Algorithm 1, (prox-SSG) with single sampling can be used to inexactly solve

min
u

{
E[f̃(u, ω)] + g(u) + 1

2η‖u− xk‖
2
}

. In particular, let {zk,j}Nkj=1 be the sequence generated by

(prox-SSG) starting from zk,0 = xk and let z∗k denote the unique optimal solution of the sub-
problem. Therefore, at step (1) of Algorithm 1, w̄k,Nk = 1

η (z∗k − zk,Nk) and by the convergence

rate of (prox-SSG) [30], E[‖w̄k,Nk‖2] ≤ Q̄k
η2Nk

, where Q̄k , max
{
η2M2, ‖zk,0 − z∗k‖2

}
≤ Q, since

‖zk,0−z∗k‖2 ≤ 4∆2. The results in Lemma 1 hold when F (x) is replaced by Fη(x), by letting L = 1
η ,

replacing µ by µ
µη+1 , ν2 by Q

η2 , and setting ᾱ = 1/(2
√
κ̃), where κ̃ = µη+1

ηµ :

E[Fη(yK)− F ∗η ] ≤
(
D + µ

2(µη+1)C
2
)(

1− ᾱ
)K−1

+

K−1∑
i=0

(1−ᾱ)i
(

2η+
1
µ

)
Q

η2NK−i
+

K−2∑
i=0

(1−ᾱ)i+1
(

2η+
1
µ

)
Q

η2NK−i−1
.

(11)
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From Lemma 4, x∗ is minimizer of function F if and only if x∗ is a minimizer of function Fη. Since
Fη is µ

µη+1 -strongly convex, µ
2(µη+1)‖yK − x

∗‖2 ≤ Fη(yK)−Fη(x∗), implying (11) can be written as

µE[‖yK−x∗‖2]
2(µη+1) ≤

(
D + µ

2(µη+1)C
2
)

(1− ᾱ)K−1 +
K−1∑
i=0

(1−ᾱ)i
(

2η+
1
µ

)
Q

η2NK−i
+
K−2∑
i=0

(1−ᾱ)i+1
(

2η+
1
µ

)
Q

η2NK−i−1
. (12)

From (11), by definition of θ and recalling the increasing nature of {Nk}, we may claim the following:

µE[‖yK−x∗‖2]
2(µη+1) ≤ (D + µ

2(µη+1)C
2)θK−1 +

K−1∑
j=0

θj
(

2η+
1
µ

)
Q

η2NK−j−1
+
K−1∑
j=0

θj+1

(
2η+

1
µ

)
Q

η2NK−j−1

= (D + µ
2(µη+1)C

2)θK−1 +
K−1∑
j=0

θj(1+θ)
(

2η+
1
µ

)
Q

η2NK−j−1

(1+θ)≤2

≤ (D + µ
2(µη+1)C

2)θK−1 +

K−1∑
j=0

2θj
(

2η+
1
µ

)
Q

η2NK−j−1
. (13)

If NK−j−1 = bρ−(K−j−1)c, by using Lemma ??, we have the following:

K−1∑
i=0

2θj(2η+1/µ)Q

η2bρ−(K−j−1)c ≤
K−1∑
i=0

θj
(

2η+
1
µ

)
Q

η2ρ−(K−j−1) ≤
(

2η+
1
µ

)
QρK−1

η2

K−1∑
i=0

(
θ
ρ

)i
≤

(
(2η+

1
µ )Qρ

η2(ρ−θ)

)
ρK−1. (14)

By substituting (14) in (13) and using ρ
ρ−θ =

1− 1
2a
√
κ̃

1
2
√
κ̃
− 1

2a
√
κ̃

= (2a
√
κ̃−1)

a−1 ≤ 2a
√
κ̃, (13) becomes

E[‖yK − x∗‖2] ≤ 2(µη+1)
µ

(
D + µ

2(µη+1)C
2
)
θK−1 +

(
2(µη+1)

µ

)
2
η2

(
2η + 1

µ

)
Qa
√
κ̃ρK−1

≤
((

D 2(ηµ+1)
µ

)
+ C2 +

(
8
(

1+ηµ
ηµ

)2
Qa

)√
κ̃

)
ρK−1

= ĈρK−1, where Ĉ , 2Dηκ̃+ C2 + 8κ̃5/2Qa. (15)

(ii) We may derive the number of gradient steps K (of ∇xfµ) to obtain an ε-solution:

1
ρ = 1

(1− 1
2a
√
κ̃

)
= 2a

√
κ̃

(2a
√
κ̃−1)

=⇒ log(Ĉ)−log(ε)
log(1/ρ) ≤ log(Ĉ)−log(ε)

(1−ρ) = (2a
√
κ̃) log(Ĉ/ε) ≤ K.

(iii) To compute a vector yK satisfying E[‖yK − x∗‖2] ≤ ε, we have ĈρK ≤ ε implying that
K = dlog(1/ρ)(Ĉ/ε)e ≤ 1 + log(1/ρ)(Ĉ/ε). To obtain the oracle complexity, we require

∑K
k=1Nk

gradients. If Nk = bρ−kc ≤ ρ−k, we obtain the following since (1− ρ) = (1/(2a
√
κ̃)).

K∑
k=1

ρ−k ≤
(

1
ρ

)2+K(
1
ρ−1

) ≤
(

1
ρ

)3+log1/ρ(Ĉ/ε)(
1
ρ−1

) ≤ Ĉ
ρ2(1−ρ)ε

= 2a
√
κ̃Ĉ

ρ2ε
. (16)

Note that ρ = 1− 1
2a
√
κ̃

, implying that

ρ2 = 1− 2/(2a
√
κ̃) + 1/(4a2κ̃) = 4a2κ̃−4a

√
κ̃+1

4a2κ̃
≥ 4a2κ̃−4aκ̃

4a2κ̃
= (a2−a)

a2

=⇒
√
κ̃
ρ2 ≤ a2

√
κ̃

(a2−a)
= a

a−1

√
κ̃ =⇒ by (16),

log(1/ρ)(Ĉ/ε)+1∑
k=1

ρ−k ≤ 2a2
√
κ̃Ĉ

(a−1)ε .

13



0 50 100 150 200 250 300 350 400 450 500 550
0

0.5

1

1.5

2

2.5

3

3.5

4

C
(

)

10
9

=0.001

=0.002

=0.003

=0.004

=0.005

x*(0.001)

x*(0.002)

x*(0.003)

x*(0.004)

x*(0.005)

Figure 1: Schematic of Ĉ(η) when D = 10,M = 10, C = 100, a = 2.1,∆ = 1 for µ ∈ {0.001, · · · , 0.005}

Remark 1. In Theorem 5, choosing η = 1/µ leads to E[‖yK−x∗‖2] ≤
(

4D
µ + C2 + 12

√
2aQ

)
ρK−1,

and an oracle complexity of O
(

max{M2/µ2,‖x̃1−x̃∗‖2}
ε

)
, matching the result by [30].

Minimizing the convergence bound in (15) in η is possible via a less obvious coercivity and strict
convexity claim for the nonsmooth function Ĉ(η) (See Appendix for proof).

Lemma 6. Consider Ĉ(η) defined as Ĉ(η) , 2Dηκ̃(η)+C2+8κ̃(η)5/2Q(η)a, where Q , max{η2M2, 4∆2}.
Then the following hold.
(i) Ĉ(η) is a coercive function on {η | η ≥ 0}.
(ii) Ĉ(η) is a strictly convex function on {η | η ≥ 0}.
(iii) The minimizer of Ĉ(η) on {η | η ≥ 0} is unique.

Remark 2. Lemma 6 allows for claiming that Ĉ(η) has a unique minimizer η∗; in fact, such
a minimizer can be computed by a standard semismooth Newton method [63]. Fig. 1 provides a
schematic of Ĉ(η) for different values of µ while η∗ is computed by semismooth Newton method.
We note that when µ is larger, η∗(µ) tends to be smaller. In such cases, obtaining an optimal η∗ is
particularly useful. However, when µ � 1, we observe that η∗(µ) � 1; consequently, this leads to
rescaling of the step γk to γk

η , resulting in poorer behavior. Therefore, if µ � 1, we employ η = 1
and this has far better empirical behavior as seen in the numerics.

2.3.4 Linear convergence of (mVS-PM): non-compact domains

In this subsection, we derive rate and complexity guarantees when (VS-PM), an unaccelerated
variant of (VS-APM), is applied on a Moreau-smoothed problem under possibly non-compact
domains and under a (weaker) state-dependent bound on the subgradient (Assumption 5). When
the subgradient of g is characterized by a state-dependent bound, the bound on the cumulative
error in the accelerated method builds up due to a recursive relation. Hence, in this section, we
consider a more general case, i.e. subgradient of g has a state-dependent bound and by employing
an unaccelerated method, we derive a similar oracle complexity as in section 5.2.2. To obtain rate
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results, we apply (VS-PM) with the following update rule:

xk+1 := xk − γ(∇xFη(xk) + w̄k,Nk), (VS-PM)

where ∇xFη(xk) + w̄k,Nk can be obtained by solving min
u∈Rn

[
E[F̃ (u, ω)] + 1

2η‖u− xk‖
2
]

inexactly

taking Nk (stochastic) subgradient steps. Consider the sequence of iterates {xk} generated by
applying an inexact gradient scheme on the following strongly convex smooth optimization problem.

min
x∈Rn

Fη(x), where Fη(x) , min
u∈Rn

[
E[f̃(u, ω)] + g(u) + 1

2η‖x− u‖
2
]
.

In effect, given an x0 ∈ Rn, the inexact gradient scheme generates a sequence {xk} such that

xk+1 := xk − γ (∇xFη(xk) + w̄k) . (IG)

Given an xk, we denote the update with the exact gradient by x̄k+1, which is defined as follows.

x̄k+1 := xk − γ∇xFη(xk).

Recall that ∇xFη(xk) is defined as ∇xFη(xk) = 1
η (xk − z∗k) where z∗k is the unique minimizer of the

following problem, i.e.

z∗k , arg min
u∈Rn

[
E[F (u, ω)] + 1

2η‖xk − u‖
2
]
. (17)

In other words, z∗k is defined as

z∗k , proxηF (xk) while x∗ = proxηF (x∗).

Since proxηF (xk) is unavailable in closed form, we may compute increasingly exact analogs; given

zk,0 = xk, we construct the sequence {zk,j}Nkj=1 based on (SSG).

zk,j+1 = zk,j − σjG(zk,j , ωk,j), j ≥ 0, where G(zk,j , ωk,j) ∈ ∂F (zk,j , ωk,j) + 1
η (zk,j − xk). (SSG)

Consequently, at major iteration k, the inexact gradient of Fη(x) is given by 1
η (xk−zk,Nk) implying

that w̄k is defined as 1
η (z∗k − zk,Nk). Consequently, we have that

xk+1 = xk − γ( 1
η (xk − zk,Nk)) = (1− γ

η )xk + γ
η zk,Nk .

We proceed to derive a bound on the conditional second moment ofG(zk,j , ωk,j)= S(zk,j , ωk,j) + 1
η (zk,j − xk)

where S(zk,j , ωk,j) ∈ ∂F (zk,j , ωk,j), M
2
1 , 2M̄2 + 4

η2 , M2
2 , 4

η2 , and M2
3 , 2M2. This requires defin-

ing the history upto iteration j at outer iteration k by Fk,j as follows.

F0 = {x0},F0,j = F0 ∪ {S(z0,0, ω0,0), · · · , S(z0,j−1, ωk,j−1)} , j = 1, · · · , N0 (18)

Fk = Fk−1,Nk−1
∪{xk},Fk,j = Fk ∪ {S(zk,0, ωk,0), · · · , S(zk,j−1, ωk,j−1)} , j = 1, · · · , Nk, k ≥ 1.

(19)

We now outline an assumption on the bound on the stochastic subgradient that scales with the
size of x allowing for non-compact domains.
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Assumption 5. Let {xk} be a sequence generated by (VS-PM) where ∇xFη(xk) + w̄k,Nk is com-
puted by taking Nk steps of (SSG) leading to a set of iterates {zk,1, · · · , zk,Nk}. Let Fk,j defined
as (19) for k ≥ 1 and j = 1, · · · , Nk. For any zk,j, let S(zk,j , ωk,j) denote a measurable selection
S(zk,j , ωk,j) ∈ ∂F̃ (zk,j , ωk,j). Then the following hold.
(a) (Unbiasedness). We have that E[S(zk,j , ωk,j) | Fk,j ] = S(zk,j) ∈ ∂F (zk,j) almost surely.
(b) (Subgradient boundedness). There exists M, M̄ > 0 such that for any x, E[‖S(zk,j , ωk,j)‖2 |
Fk,j ] ≤ M̄2‖zk,j‖2 +M2 almost surely.

Consequently, we have that

‖G(zk,j , ωk,j)‖2 ≤ 2‖S(zk,j , ωk,j)‖2 + 2
η2 ‖zk,j − xk‖2 ≤ 2‖S(zk,j , ωk,j)‖2 + 4

η2 ‖zk,j‖2 + 4
η2 ‖xk‖2

=⇒ E[‖G(zk,j , ωk,j)‖2 | Fk,j ]
Assump. 5
≤ (2M̄2 + 4

η2 )‖zk,j‖2 + 2M2 + 4
η2 ‖xk‖2

=: M2
1 ‖zk,j‖2 +M2

2 ‖xk‖2 +M2
3 . (20)

Based on Assumption 5 and inspired by a proof technique from [64] amongst others, we derive a
rate statement for (SSG) (See Appendix for proof).

Proposition 1. Consider (17) where F (·, ω) is a µ-strongly convex function and S(z, ω) ∈ ∂F (z, ω)
for any z. Suppose Assumption 5 holds and â2 , 4+4M2

1 +2M2
2 and b̂2 , (4M2

1 +2M2
2 )[‖x∗‖2]+

M2
3 . Given xk, consider a sequence generated by (SSG) where µ̃ = µ+ 1

η , J̄ , d2M2
1

µ̃2 − 1e, and

σj ,

min
{

1
(j+1) log(j+1) ,

µ̃
M2

1

}
, j < J̄

1
(j+1) log(j+1) . j ≥ J̄

Then the following holds for j ≥ J̄ .

E[‖zk,j − z∗k‖2 | Fk] ≤
â2‖xk−x∗‖2+b̂2

j . (21)

We now show the convergence of (mVS-PM) when ∇xFη(x) is approximated via (SSG) (See
Appendix for proof).

Theorem 7 ((mVS-PM) under state-dependent bound on subgradients). Suppose As-
sumptions 1 and 5 hold. Consider the iterates generated by (VS-PM) applied on Fη(x), where

κ̃ , 1 + 1
ηµ , γ = η, and Nk , bN0ρ

−kc for all k ≥ 0, N0 > max{ 2â2

(1−q/2) , J̄}, q , 1 − 1
κ̃ ,

p0 , q
2 + 2â2

N0
, and J̄ , d2M2

1
µ̄2 − 1e. Then the following hold.

(i) (Rate). For all k ≥ 1, we have that the following holds.

E[‖xk − x∗‖2] ≤ Cp̂k where C ,
(
E[‖x0 − x∗‖2] + b̂D̂

N0

)
,


ρ 6= p0, p̂ = max{ρ, p0}, D̂ , 1

1−min{ρ,p0}
max{ρ,p0}

ρ = p0. p̂ ∈ (p0, 1), D̂ > 1
ln(p0/p̂)e

(ii) (Iteration complexity). The iteration complexity of (mVS-PM) in gradient steps (of
∇xFη(xk)) to obtain an ε-solution is O(κ̃ log(C/ε)).
(iii) (Oracle complexity in (SSG) steps). To compute xK such that E[‖xK − x∗‖2] ≤ ε, the

complexity in subgradient steps is bounded as
∑K

k=1Nk ≤ O
(
κ̃
(C
ε

)log1/p̂(1/ρ)
)

for p̂ ∈ [p0, 1), ρ ≤ p0

and
∑K

k=1Nk ≤ O
(
κ̃
(C
ε

))
for ρ > p0.

Remark 3. We observe that when ρ > p0, we achieve the optimal oracle complexity in subgradient
steps akin to the statement in the regime of bounded subgradients. Notably, κ̃ can be controlled
since η is any nonnegative scalar. For instance, if η = 1

µ , κ̃ = 2.
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2.4 Iteratively Smoothed VS-APM for Nonsmooth Convex Problems

Thus far, we have considered settings where f is a strongly convex function. However, there are
many instances when the function f is neither smooth nor strongly convex. In such settings, if
the function f is subdifferentiable, then subgradient methods provide an avenue for resolving such
problems in stochastic regimes but display a significantly poorer rate of convergence. [48] showed
that for a subclass of problems, an accelerated gradient scheme may be applied to a suitably
smoothed problem where the smoothing leads to a differentiable problem with Lipschitz continuous
gradients (with known Lipschitz constants). If the smoothing parameter is chosen suitably, the
convergence rate to an approximate solution can be improved to O(1/k) from O(1/

√
k). However,

since the smoothing parameter is maintained as fixed, Nesterov’s approach can provide approximate
solutions at best but not asymptotically exact solutions. Subsequently, [49] considered a primal-
dual smoothing technique where the smoothing parameter is reduced at every step while extensions
and generalizations have been considered more recently by [50] and [56]. In this section, we develop
an iteratively smoothed variable sample-size accelerated proximal gradient scheme that can contend
with expectation-valued objectives and is asymptotically convergent. This can be viewed as a
variant of the primal smoothing scheme introduced by [48] where the smoothing parameter is
reduced after every step; this scheme is shown to admit a rate of O(1/k), matching the finding by
[48]; however, our scheme is blessed with asymptotic guarantees rather than providing approximate
solutions. In Section 2.4.1, we derive rate and complexity statements in Section 2.4.2 for the
iteratively smoothed VS-APM (or sVS-APM), recovering the optimal rate of O(1/k2) with the
optimal oracle complexity of O(1/ε2) under smoothness. Finally, in Section 2.4.3, under suitable
choices of smoothing sequences, (sVS-APM) produces sequences that converge a.s. to an optimal
solution.

2.4.1 Smoothing techniques

In this section, we consider minimizing F (x) , E[F (x, ω)], where f̃(x, ω) = f̃(x, ω) + g(x) such
that f and g are convex and may be nonsmooth while g has an efficient prox evaluation (or
“proximable”) but f is not proximable. Note that this setting is more general than structured
nonsmooth problems, where the function f is considered to be convex and smooth. In contrast to
the previous section, we assume that ∇xf̃ηk(xk, ωk) is generated from the stochastic oracle, where
ηk is a smoothing parameter at iteration k such that its sequence is diminishing. [65] define an
(α, β)-smoothable function as follows.

Definition 1 ((α, β)-smoothable [59]). A convex function h : Rn → R is referred to as (α, β)-
smoothable if there exists a convex differentiable function hη : Rn → R that satisfies the following:
(i) hη(x) ≤ h(x) ≤ hη(x) + ηβ for all x; and (ii) hη(x) is α/η smooth.

There are a host of smoothing functions based on the nature of h. For instance, when h(x) =
‖x‖2, then hη(x) =

√
‖x‖22 + η2 − η, implying that h is (1, 1)-smoothable function. If h(x) =

max(x1, x2, . . . , xn), then h is (1, log(n))-smoothable and hη(x) = η log(
∑n

i=1 e
xi/η) − η log(n).

(see [65] for more examples). Recall that when h is a proper, closed, and convex function, the

Moreau envelope is defined as hη(x) , minu

{
h(u) + 1

2η‖u− x‖
2
}
. In fact, h is (1, B2)-smoothable

when hη is given by the Moreau envelope (see [65]) and B denotes a uniform bound on ‖s‖ in x
where s ∈ ∂h(x). There are a range of other smoothing techniques including Nesterov smooth-
ing (see [48]) and inf-conv smoothing (see [59]); our approach is agnostic to the choice of smoothing.
In particular, if f̃(·, ω) is a proper, closed, and convex function in x for every ω, then f̃(·, ω) is
(1, B2)-smoothable for every ω where f̃η(·, ω) is a suitable smoothing. In fact, if f̃(·, ω) satisfies the
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following smoothability assumption, then smoothability of f follows, as shown by Lemma 8. It is
worth emphasizing that the smoothing of f , denoted by fη is defined as

fη(x) , E[f̃η(x, ω)], (22)

where f̃η(·, ω) is a smoothing of f̃(·, ω).

Assumption 6. Consider f̃(·, ω) is an (α(ω), β(ω))-smoothable function for every ω ∈ Ω where
E[α(ω)] ≤ α̃ and E[β(ω)] ≤ β̃. For any ω ∈ Ω, there exists a convex differentiable function f̃η(·, ω)
with uniform parameter η > 0 such that

f̃η(x, ω) ≤ f̃(x, ω) ≤ f̃η(x, ω) + ηβ(ω), for all x

and ‖∇xf̃η(x, ω)−∇xf̃η(y, ω)‖ ≤ α(ω)
η ‖x− y‖, for all x, y.

Based on the following Lemma, we observe that f is (α̃, β̃)-smoothable if f̃(·, ω) satisfies suitable
smoothability requirements for almost every ω ∈ Ω.

Lemma 8. Suppose f̃(·, ω) satisfies Assumption 6 for every ω ∈ Ω. Then there exist α̃, β̃ > 0 such
that f is (α̃, β̃)-smoothable where f(x) , E[f̃(x, ω)].

We proceed to develop a smoothed variant of (VS-APM), referred to as (sVS-APM), in which
∇xf̃ηk(xk, ωk) is generated from the stochastic oracle and ηk is driven to zero at a sufficient rate
(See Algorithm 2).

Algorithm 2 Iteratively smoothed VS-APM (sVS-APM)

(0) Given budget M , x1 ∈ X, y1 = x1 and positive sequences {γk, Nk}; Set λ0 = 0, λ1 = 1; k := 1.
(1) yk+1 = Pγk,g (xk − γk(∇xfηk(xk) + w̄k,Nk));

(2) λk+1 =
1+
√

1+4λ2
k

2 ;

(3) xk+1 = yk+1 + (λk−1)
λk+1

(yk+1 − yk);
(4) If

∑k
j=1Nj > M , then stop; else k := k + 1; return to (1).

2.4.2 Rate and Complexity analysis

In this subsection, we develop rate and oracle complexity statements for Algorithm 2 when f is
(1, B2) smoothable and then specialize these results to both the deterministic nonsmooth and the
stochastic smooth regimes. We begin with a modified assumption.

Assumption 7. (i) The function g is lower semicontinuous and convex with effective domain de-
noted by dom(g); (ii) f is proper, closed, convex, and (1, B2)-smoothable on an open set containing
dom(g); (iii) There exists C > 0 such that E[‖x1 − x∗‖] ≤ C for all x∗ ∈ X∗.

Note that Assumption 6 represents a set of sufficiency conditions for f to be smoothable; here, we
directly assume that f is smoothable to ease the exposition.

Lemma 9. Suppose Assumption 7 holds. Consider the iterates generated by (sVS-APM) on
F (x). Suppose Assumption 3 holds for fηk(x). If {γk} is a decreasing sequence and γk ≤ ηk/2,
then the following holds for all K ≥ 2:

E[Fηk(yK)− Fηk(x∗)] ≤ 2

γK−1(K − 1)2

K−1∑
k=1

γ2
kk

2 ν
2

Nk
+

2C2

γK−1(K − 1)2
.
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Proof. Proof. By the update rule in Algorithm 2, we have

yk+1 = argmin
x

g(x) +
1

2γk
‖x− xk‖2 + (∇xfηk(xk) + w̄k)

T x. (23)

From the optimality condition for (23), 0 ∈ ∂g(yk+1)+ 1
γk

(yk+1−xk)+∇xfηk(x)+w̄k. By convexity

of g(x), we have that g(x) ≥ g(yk)+sT (x−yk+1) for all s ∈ ∂g(yk). Hence, we obtain the following.

g(x) + (∇xfηk(xk) + w̄k)
Tx ≥ g(yk+1) + (∇xfηk(xk) + w̄k)

T yk+1 −
1

γk
(x− yk+1)T (yk+1 − xk).

We may then obtain that

g(x) + (∇xfηk(xk) + w̄k)
T x+

1

2γk
‖x− xk‖2

≥ g(yk+1) + (∇xfηk(xk) + w̄k)
T yk+1 +

1

2γk
‖xk − yk+1‖2 +

1

2γk
‖x− yk+1‖2. (24)

By invoking the convexity of fηk and by using the Lipschitz continuity of ∇xfηk , we obtain

fηk(x) ≥ fηk(xk) +∇xfηk(xk)
T (x− xk)

≥ fηk(yk+1) +∇xfηk(xk)
T (x− yk+1)− 1

2ηk
‖xk − yk+1‖2

= fηk(yk+1) + (∇xfηk(xk) + w̄k)
T (x− yk+1)− 1

2ηk
‖xk − yk+1‖2 − w̄Tk (x− yk+1), (25)

where the last equality follows from adding and subtracting w̄k. By adding (24) and (25), we obtain

Fηk(yk+1)− Fηk(x) ≤ 1

2γk
‖x− xk‖2 −

1

2γk
‖x− yk+1‖2 +

1

2

(
1

ηk
− 1

γk

)
‖xk − yk+1‖2 − w̄Tk (yk+1 − x)

=

(
1

2ηk
− 1

γk

)
‖xk − yk+1‖2 +

1

γk
(xk − yk+1)T (xk − x)− w̄Tk (yk+1 − x), (26)

where the last inequality follows by choosing Q = I, v1 = xk, v2 = x, and v3 = yk. By setting
x = yk in (26), we have

Fηk(yk+1)− Fηk(yk) ≤
( 1

2ηk
− 1

γk

)
‖xk − yk+1‖2 +

1

γk
(xk − yk+1)T (xk − yk)

− w̄Tk,Nk(yk+1 − yk). (27)

Similarly, by letting x = x∗, we can obtain

Fηk(yk+1)− Fηk(x∗) ≤
( 1

2ηk
− 1

γk

)
‖xk − yk+1‖2 +

1

γk
(xk − yk+1)T (xk − x∗)

− w̄Tk,Nk(yk+1 − x∗). (28)

We may then claim that

1

γk
(yk+1 − xk)T (yk − xk) =

1

2γk

(
‖yk − xk‖2 + ‖yk+1 − xk‖2 − ‖yk+1 − yk‖2

)
.

Consequently, (27) can further bounded as follows:

Fηk(yk+1)− Fηk(yk) ≤
( 1

2ηk
− 1

γk

)
‖xk − yk+1‖2 +

1

γk
(xk − yk+1)T (xk − yk)− w̄Tk,Nk(yk+1 − yk)
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=
( 1

2ηk
− 1

γk

)
‖xk − yk+1‖2 +

1

2γk

(
‖xk − yk‖2 + ‖yk+1 − xk‖2 − ‖yk+1 − yk‖2

)
− w̄Tk,Nk(yk+1 − yk)

=
( 1

2ηk
− 1

2γk

)
‖xk − yk+1‖2 +

1

2γk

(
‖xk − yk‖2 − ‖yk+1 − yk‖2

)
− w̄Tk,Nk(yk+1 − yk). (29)

Similarly, we have that

Fηk(yk+1)− Fηk(x∗) ≤
( 1

2ηk
− 1

2γk

)
‖xk − yk+1‖2 +

1

2γk

(
‖xk − x∗‖2 − ‖yk+1 − x∗‖2

)
− w̄Tk,Nk(yk+1 − x∗). (30)

By multiplying (29) by (λk − 1) and adding to (30), where δk , Fηk(yk)− Fηk(x∗), we have

λkδk+1 − (λk − 1)δk ≤
( 1

2ηk
− 1

2γk

)
λk‖yk+1 − xk‖2 (31)

+
1

2γk
(λk − 1)

(
‖xk − yk‖2 − ‖yk+1 − yk‖2

)
+

1

2γk

(
‖xk − x∗‖2 − ‖yk+1 − x∗‖2

)
(32)

+ w̄Tk,Nk ((λk − 1)yk + x∗ − λkyk+1) . (33)

Again by using Lemma ??, we may express the terms in (32) as follows:

1

2γk
(λk − 1)

(
‖xk − yk‖2 − ‖yk+1 − yk‖2

)
+

1

2γk

(
‖xk − x∗‖2 − ‖yk+1 − x∗‖2

)
=

1

2γk

(
λk‖xk − yk‖2 − λk‖yk+1 − yk‖2 − ‖xk − yk‖2 + ‖yk+1 − yk‖2 + ‖xk − x∗‖2 − ‖yk+1 − x∗‖2

)
=

1

2γk

(
−λk‖yk+1 − xk‖2 + 2λk(yk+1 − xk)T (yk − xk) + ‖yk+1 − xk‖2 − 2(yk+1 − xk)T (yk − xk)

−‖yk+1 − xk‖2 + 2(yk+1 − xk)T (x∗ − xk)
)

=
1

2γk

(
−λk‖yk+1 − xk‖2 + 2(yk+1 − xk)T ((λk − 1)yk − λkxk + x∗)

)
.

In addition,

w̄Tk,Nk ((λk − 1)yk + x∗ − λkyk+1) = w̄Tk,Nk ((λk − 1)yk + x∗ − λkxk) + w̄Tk,Nk (λkxk − λkyk+1) .

From the update rule, λ2
k−1 = λk(λk− 1) = λ2

k−λk. Now by multiplying (31) by λk, we obtain the
following, where uk = (λk − 1)yk − λkxk + x∗:

λ2
kδk+1 − λ2

k−1δk ≤ λ2
k

(
1

2ηk
− 1

2γk

)
‖yk+1 − xk‖2 (34)

+
1

2γk

(
−‖λkyk+1 − λkxk‖2 + 2(λkyk+1 − λkxk)T ((λk − 1)yk + x∗ − λkxk)

)
− λ2

kw̄
T
k,Nk

(xk − yk+1)− λkwTk uk = λ2
k

(
1

2ηk
− 1

2γk

)
‖yk+1 − xk‖2 − λ2

kw̄
T
k,Nk

(xk − yk+1)

+
1

2γk

(
‖λkxk − (λk − 1)yk − x∗‖2 − ‖λkyk+1 − (λk − 1)yk − x∗‖2

)
− λkwTk uk

≤
λ2
k

2
γk
− 2

ηk

‖w̄k,Nk‖
2 +

1

2γk

(
‖uk‖2 − ‖uk+1‖2

)
− λkwTk uk,
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where in the last inequality we used the update rule of algorithm, xk+1 = yk+1 + λk−1
λk+1

(yk+1 − yk),
to obtain the following:

uk+1 = (λk+1 − 1)yk+1 − λk+1xk+1+x∗ = (λk − 1)yk − λkyk+1+x∗.

By multiplying both sides by γk and assuming γk ≤ γk−1, we obtain

γkλ
2
kδk+1 − γk−1λ

2
k−1δk ≤

γkλ
2
k

2
γk
− 2

ηk

‖w̄k,Nk‖
2 +

1

2

(
‖uk‖2 − ‖uk+1‖2

)
− γkλkwTk uk. (35)

By assuming γk ≤ ηk
2 , we obtain 1

γk
− 1

ηk
≥ 1

2γk
, implying that

γkλ
2
kδk+1 − γk−1λ

2
k−1δk ≤ γ2

kλ
2
k‖w̄k,Nk‖

2 +
1

2

(
‖uk‖2 − ‖uk+1‖2

)
− γkλkwTk uk. (36)

Summing (36) from k = 1 to K − 1, we have the following:

γK−1λ
2
K−1δK ≤

K−1∑
k=1

γ2
kλ

2
k‖w̄k,Nk‖

2 +
1

2
‖u1‖2 −

K−1∑
k=1

γkλkw
T
k uk

=⇒ δK ≤
1

γK−1λ2
K−1

K−1∑
k=1

γ2
kλ

2
k‖w̄k,Nk‖

2 +
1

2γK−1λ2
K−1

‖u1‖2 −
1

γK−1λ2
K−1

K−1∑
k=1

γkλkw
T
k uk.

Taking expectations, we note that the last term on the right is zero (under a zero bias assumption),
leading to the following:

E[δK ] ≤ 1

γK−1λ2
K−1

K−1∑
k=1

γ2
kλ

2
k

ν2

Nk
+

1

2γK−1λ2
K−1

E[‖u1‖2‖] ≤
2

γK−1(K − 1)2

K−1∑
k=1

γ2
kk

2 ν
2

Nk

+
2C2

γK−1(K − 1)2
,

where in the last inequality we used the fact that ‖y−x∗‖ ≤ C for all y ∈ dom(g) and k
2 ≤ λk ≤ k

which may be shown inductively.

We are now ready to prove our main rate result and oracle complexity bound for (sVS-APM).

Theorem 10 (Rate Statement and Oracle Complexity Bound for (sVS-APM)). Sup-
pose Assumption 7 holds. Consider the iterates generated by (sVS-APM) on F (x). Suppose
Assumption 3 holds for fηk . Suppose {λk} is specified in (sVS-APM), ηk = 1/k, γk = 1/2k, and
Nk = bkac.
(i) The following holds for any K ≥ 1:

E[F (yK+1)− F (x∗)] ≤


(

2ν2a
a−1 +4C2+B2

)
K , a = 1 + δ, δ ∈ [δL, δU ]

2ν2(1+log(K))+4C2+B2

K , a = 1

(ii) Let ε ≤ C̃/2 and K is such that E[F (yK+1)− F (x∗)] ≤ ε. Then the following holds.

K∑
k=1

Nk ≤

{
O
(

1
ε2+δL

)
, a = 1 + δ, δ ∈ [δL, δU ]

O
(

1
ε2

log2(1/ε)
)
. a = 1
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Proof. Proof. (i) If Nk = bkac ≥ 1
2k

a and γk = 1/(2k) is utilized in Lemma 9, we obtain the
following

E[δK+1] ≤ 2ν2

K

K∑
k=1

1

ka
+

4C2

K
. (37)

(a) a = 1 + δ where δ ∈ [δL, δU ]. Consequently, we may derive the next bound.

K∑
k=1

k−a = 1 +

K∑
k=2

k−a ≤ 1 +

∫ K

1
k−adk = 1 +

1−K1−a

a− 1
≤ 1 + δU

δL
.

By invoking (1, B2)-smoothability of f and ηK = 1/K, we have that FηK (yK+1) ≤ F (yK+1) and
−FηK (x∗) ≤ −F (x∗) + ηB2. Hence, the required bound follows from (37)

E[F (yK+1)− F (x∗)] ≤ 2ν2a

(a− 1)K
+

4C2 +B2

K
≤ C̄

K
, where C̄ ,

2ν2a

(a− 1)
+ 4C2 +B2.

(b) a = 1. Recall that the convergence rate is given by the following:

E[F (yK+1)− F (x∗)] ≤
2ν2(a−K1−a)

(a−1) + 4C2 +B2

K
.

Taking limits, we obtain that

lim
a→1

a−K1−a

a− 1
= lim

a→1

1 +K1−a log(K)

1
= 1 + log(K).

Therefore, we have that

E[F (yK+1)− F (x∗)] ≤ 2ν2 log(K) + 4C2 +B2

K
,
a+ b log(K)

K
.

(ii) Consider yK+1 satisfying E[F (yK+1)−F (x∗)] ≤ ε. We again consider two cases. (a) a = 1 + δ

where δ ∈ [δL, δU ]. Since we have C̄
K ≤ ε which implies that K = dC̄/εe. To obtain the optimal

oracle complexity we require
∑K

k=1Nk gradients. Hence, the following holds for sufficiently small ε
such that 2 ≤ C̄/ε:

K∑
k=1

Nk ≤
K∑
k=1

ka =

1+C̄/ε∑
k=1

ka ≤
∫ 2+C̄/ε

0
kada =

(2 + C̄/ε)1+a

1 + a
≤
(
C̄

ε

)1+a

≤ O
(

1

ε1+a

)
≤ O

(
1

ε2+δL

)
.

(b) a = 1. To compute K such that a+b log(K)
K ≤ ε is not immediately obvious but may be obtained

via the Lambert function4 [67]. For purposes of simplicity, suppose a = 0 and b = 1. Then we have
the following.

log(K)
K ≤ ε⇔ − log(K)

K ≥ −ε

⇔W−1

(
− log(K)

K

)
≤W−1(−ε), since W−1(·) is decreasing.

4The Lambert function W (x) is the inverse function of yey = x and is denoted by y = W (x). This function has
two real branches: an upper branch W0(x) for x ∈ [− 1

e
,+∞] and a lower branch W−1(x) for x ∈ [− 1

e
, 0] [66].
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But W−1(− log(x)
x ) = − log(x) for x > e. Consequently, we have that

− log(K) ≤W−1(−ε)⇔ K ≥ e−W−1(−ε).

By definition of the Lambert function, we have that eW (x) = x
W (x) , implying that

K ≥ e−W−1(−ε) = W−1(−ε)
ε ≥ O

(
log(ε)
−ε

)
= O

(
1
ε log(1/ε)

)
.

where the first inequality follows from (3) in [67]. Hence, the oracle complexity for a = 1 will be

O
(

log2(1/ε)
ε2

)
, which is near optimal (where optimal is O(1/ε2)).

We now consider two cases of Theorem 10 for which similar rate statements are available.
Case 1. Structured stochastic nonsmooth optimization with f smooth. Now consider
problem (1), where f(x) is a smooth function. Recall that we considered such a problem in Sec-
tion 2.3 for strongly convex f and in this case, we consider the merely convex case. When f is
deterministic, accelerated gradient methods first proposed by [36] and their proximal generaliza-
tions suggested by [35] were characterized by the optimal rate of convergence of O(1/k2). When
f is expectation-valued, [33] presented the first known accelerated scheme for stochastic convex
optimization where the optimal rate of 1/k2 was shown for the expected sub-optimality error. This
rate required choosing the simulation length K and choosing Nk = bk2Kc which led to the optimal
oracle complexity of O(1/ε2). However, this method is somewhat different from (VS-APM). In
particular, every step requires two prox evaluations (rather than one for VS-APM).5 [34] de-
veloped an accelerated proximal scheme for convex problems with a similar algorithm but allow
for state dependent noise. The weakening of the noise requirement still allows for deriving the
optimal rate of O(1/k2) but necessitates choosing Nk = bk3(ln k)c. As a consequence, the oracle
complexity is slightly poorer than the optimal level and is given by O

(
ε−2 ln2(ε−0.5)

)
. We note

that (VS-APM) displays the optimal oracle complexity O(ε−2) by choosing Nk = bk2Kc while
by choosing Nk = bkac for a = 3 + δ, then the oracle complexity can be made arbitrarily close
to optimal and is given by O(ε−2−δ/2). However, (VS-APM) imposes a stronger assumption on
noise, as formalized next.

Corollary 11. (Rate and oracle complexity bounds with smooth f for (VS-APM))
Suppose Assumptions 2, 3, and 7 hold. Suppose γk = γ ≤ 1/2L for all k.

(i) Let Nk = bkac where a = 3 + δ and Ĉ , 2ν2γ(a−2)
a−3 + 4C2

γ . Then the following holds.

E[F (yK+1 − F (x∗))] ≤ Ĉ

K2
for all K and

K(ε)∑
k=1

Nk ≤ O
(

1

ε2+δ/2

)
,

where E[F (yK(ε)+1)− F (x∗)] ≤ ε.
(ii) Given a K > 0, let Nk = bk2Kc where a > 3 and C̃ , 2ν2γ + 4C2

γ . Then the following holds.

E[F (yK+1 − F (x∗))] ≤ C̃

K2
and

K∑
k=1

Nk ≤ O
(

1

ε2

)
, where E[F (yK+1)− F (x∗)] ≤ ε.

5While pursuing submission of the present work, we were informed of related work by [34] through a private
communication.
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Proof. Proof. (i) Similar to the proof of Lemma 9, by defining δk = F (yk)− F (x∗) we can prove:

E[F (yK+1)− F (x∗)] ≤ 2ν2γ

K2

K∑
k=1

k2

ka
+

4C2

γK2
.

Let Nk = bkac ≥ 1
2k

a and γk = γ. Then we have that the following holds where Ĉ , 2ν2γ(a−2)
a−3 + 4C2

γ .

E[F (yK+1)− F (x∗)] ≤ 2ν2γ

K2

K∑
k=1

k2

ka
+

4C2

γK2
≤ 2ν2γ(a− 2)

(a− 3)K2
+

4C2

γK2
=

Ĉ

K2
, (38)

where the first inequality follows from bounding the summation as follows:

K∑
k=1

k2−a = 1 +

K∑
k=2

k2−a ≤ 1 +

∫ K

1
x2−adx =

1

a− 3
− K3−a

a− 3
+ 1 ≤ 1

a− 3
+ 1 =

a− 2

a− 3
.

Suppose yK+1 satisfies E[F (yK+1) − F (x∗)] ≤ ε, implying that Ĉ
K2 ≤ ε or K = dĈ1/2 / ε1/2e. If

ε ≤ Ĉ/2, then the oracle complexity can be bounded as follows:

K∑
k=1

Nk ≤
K∑
k=1

ka =

1+
√
Ĉ/ε∑

k=1

ka ≤
∫ 2+
√
Ĉ/ε

0
kada =

(2 +

√
Ĉ/ε)1+a

1 + a
≤

(√
Ĉ

2
√
ε

)1+a

= O
(

1

ε2+δ/2

)
.

(ii) Let Nk = bk2Kc ≥ 1
2k

2K. Then similar to part (i), we may bound the expected sub-optimality

as follows where C̃ , 2ν2γ + 4C2

γ .

E[F (yK+1)− F (x∗)] ≤ 2ν2γ

K2

K∑
k=1

k2

k2K
+

4C2

γK2
=

2ν2γ

K2
+

4C2

γK2
≤ C̃

K2
.

Since K = dC̃1/2/ε1/2e, the oracle complexity may be bounded as follows:

K∑
k=1

Nk ≤
K∑
k=1

k2K =
1

6
K2(K + 1)(2K + 1) =

1

6
K2(2K2 + 3K + 1) ≤ K4 ≤ O

(
1

ε2

)
.

Case 2: Deterministic nonsmooth convex optimization. When the function f in (1) is
deterministic but possibly nonsmooth, [48] showed that by applying an accelerated scheme to
a suitably smoothed problem (with a fixed smoothing parameter) leads to a convergence rate
of O(1/K). In contrast with Theorem 10, utilizing a fixed smoothing parameter leads to an
approximate solution at best and such a scheme is not characterized by asymptotic convergence
guarantees. In addition, we observe that the rate statement for (i-VS-APM) is global (valid for
all k) while constant smoothing holds for the prescribed K. We observe that the rate statements
by using an appropriately chosen smoothing and steplength parameter matches that by using a
selecting a suitable smoothing and steplength sequence.

Corollary 12. (Iterative vs constant smoothing for deterministic nonsmooth convex
optimization) Consider (1) and assume f(x) is a deterministic function. Suppose Assumption 7

holds. (i) Iterative smoothing: Suppose γk = 1/2k and ηk = 1/k. Then, F (yk+1)−F (x∗) ≤ 4C2+B2

k ,
for all k > 0. (ii) Fixed smoothing: For a given K > 0, suppose ηk = 1/K and γk = 1/2K. Then,

F (yK+1)− F (x∗) ≤ 4C2+B2

K .
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Remark 4. By recalling that fη(x) , E[f̃η(x, ω)], by using Theorem 7.47 in [30] (interchangeability
of the derivative and the expectation), and noting that f̃η(·, ω) is differentiable in x for every ω,
we have ∇fη(x) = ∇E[f̃η(x, ω)] = E[∇f̃η(x, ω)] =⇒ E[∇fη(x) − ∇f̃η(x, ω)] = 0. Therefore, such
a gradient estimator is unbiased and our assumption holds. We now derive bounds on the second
moments for some common smoothings in Table 2.

f̃(x, ω) f̃η(x, ω) ∇f̃η(x, ω) E[‖∇xf̃η(x, ω)−∇xfη(x)‖2]

f̃1(x, ω) = λ(ω)‖x‖1
∑n
i=1 hη(xi, ω), where [∇xihη(xi, ω)]ni=1, where

hη(xi, ω) =

 λ2(ω)
x2i
2η
, λ(ω)|xi| < η

λ(ω)|xi| − η/2, o.w.

 ∇xihη(xi, ω) =

{
λ2(ω)

xi
η
, λ(ω)|xi| < η

λ(ω)xi/|xi|, o.w.

}
4nE[λ2(ω)]

f̃2(x, ω) = λ(ω)‖x‖2
√
λ2(ω)‖x‖2 + η2 − η λ2(ω)x√

λ2(ω)‖x‖2+η2
4E[λ2(ω)]

f̃3(x, ω) = max
1≤i≤n

{hi(x, ω)}

where hi(x, ω) = vi + sic(ω)T x
η log

(∑n
i=1 exp(hi(x, ω)/η)

) ∑n
i=1∇xhi(x,ω) exp(hi(x,ω)/η)∑n

i=1
exp(hi(x,ω)/η)

4E
[(

max
1≤i≤n

‖sic(ω)‖
)2]

,

Table 2: Bounding the second moments for certain smoothings

2.4.3 Almost sure convergence

While the previous subsection focused on providing rate statements for expected sub-optimality,
we now consider the open question of whether the sequence of iterates produced by (sVS-APM)
converge a.s. to a solution. Schemes employing a constant smoothing parameter preclude such
guarantees. Proving a.s. convergence requires using the following lemma.

Lemma 13 (Supermartingale convergence lemma ( [68])). Let {vk} be a sequence of nonnegative
random variables, where E[v0] < ∞ and let {αk} and {ηk} be deterministic scalar sequences such
that 0 ≤ αk ≤ 1 and ηk ≥ 0 for all k ≥ 0,

∑∞
k=0 αk =∞,

∑∞
k=0 ηk <∞, and limk→∞

ηk
αk

= 0, and
E[vk+1 | Hk] ≤ (1− αk)vk + ηk a.s. for all k ≥ 0. Then, vk → 0 a.s. as k →∞.

Proposition 2. (a.s. convergence of (sVS-APM)) Suppose Assumptions 3 and 7 hold and
{yk} is a sequence generated by (sVS-APM). Suppose γk = k−b < ηk, where b ∈ (0, 1/2], {ηk} is
a decreasing sequence, and Nk = bkac such that (a + b) > 1. Then {yk} converges to a solution
of (1) a.s. .

Proof. Proof. From inequality (34), we have that the following holds.

γkδk+1 ≤
λ2
k−1

λ2
k

γkδk +
1

2λ2
k

(
‖uk‖2 − ‖uk+1‖2

)
+

(
γk

2
γk
− 2

ηk

)
‖w̄k,Nk‖

2 − 1

λk
w̄Tk,Nkuk

≤
λ2
k−1

λ2
k

γk−1δk +
1

2λ2
k

(
‖uk‖2 − ‖uk+1‖2

)
+

(
γk

2
γk
− 2

ηk

)
‖w̄k,Nk‖

2 − 1

λk
w̄Tk,Nkuk.

Dividing both sides of the previous inequality by γk, we obtain the following relationship.

δk+1 +
1

2γkλ
2
k

‖uk+1‖2 ≤
λ2
k−1

λ2
kγk

γk−1δk +
1

2γkλ
2
k

‖uk‖2 +

(
1

2
γk
− 2

ηk

)
‖w̄k,Nk‖

2 − 1

γkλk
w̄Tk,Nkuk

=
λ2
k−1γk−1

λ2
kγk

(
δk +

‖uk‖2

2γk−1λ
2
k−1

)
+

(
1

2
γk
− 2

ηk

)
‖w̄k,Nk‖

2 − 1

γkλk
w̄Tk,Nkuk.
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By defining vk+1 , δk+1 + 1
2γkδ

2
k
‖uk+1‖2 and αk , 1− λ2

k−1γk−1

λ2
kγk

, we have the following recursion.

vk+1 ≤ (1− αk)vk +

(
1

2
γk
− 2

ηk

)
‖w̄k,Nk‖

2 − 1

γkλk
w̄Tk,Nkuk ⇐⇒

vk+1 + ηkB
2 ≤ (1− αk)(vk + ηk−1B

2) + ηkB
2 − (1− αk)ηk−1B

2 +

(
1

2
γk
− 2
ηk

)
‖w̄k,Nk‖

2 − 1

γkλk
w̄Tk,Nkuk.

(39)

Let v̄k+1 , vk+1 + ηkB
2. From (1, B2) smoothability and the decreasing nature of {ηk},

0 ≤ F (yk+1)− F (x∗) ≤ Fηk+1
(yk+1)− Fηk+1

(x∗) + ηk+1B
2 ≤ Fηk+1

(yk+1)− Fηk+1
(x∗) + ηkB

2.

Then (39) can be rewritten as follows:

v̄k+1 ≤ (1− αk)v̄k + ηkB
2 − (1− αk)ηk−1B

2 +

(
1

2
γk
− 2

ηk

)
‖w̄k,Nk‖

2 − 1

γkλk
w̄Tk,Nkuk

Recall by the definition of λk, we have λ2
k−1 = (2λk−1)2−1

4 and k
2 ≤ λk ≤ k, if γk = k−b, b ∈ (0, 1/2],

we obtain the following relationship.

αk = 1−
λ2
k−1γk−1

λ2
kγk

= 1−
γk−1(4λ2

k − 4λk)

4λ2
kγk

=
λ2
kγk − γk−1λ

2
k + γk−1λk

λ2
kγk

=
γk − γk−1

γk
+
γk−1

λkγk

≥ k−b − (k − 1)−b

k−b
+

(k − 1)−b

k1−b =
k1−b − (k − 1)1−b

k1−b ≥ (1− b)
k

, b ∈ (0, 1/2], (40)

where in the last inequality we use b ∈ (0, 1/2]:

k

(
k1−b − (k − 1)1−b

k1−b

)
= k − k

(
k − 1

k

)1−b
= k − kb(k − 1)1−b = k − (k − 1)

(
k

k − 1

)b
= k − (k − 1)

(
1 +

1

k − 1

)b
= k − (k − 1)− b− b(b− 1)

2!(k − 1)2
− b(b− 1)(b− 2)

3!(k − 1)3
− . . .

= (1− b) +
b(1− b)

2!(k − 1)2

(
1− (2− b)

3(k − 1)

)
+ +

b(1− b)(2− b)(3− b)
4!(k − 1)4

(
1− (4− b)

5(k − 1)

)
+ . . .

≥ (1− b), since k ≥ 2 ≥ 1 + max

{
2

3
,
4

5
,
6

7
, . . .

}
.

By taking conditional expectations and recalling that ηk = cγk where c > 1, we obtain the
following.

E[v̄k+1 | Hk] ≤ (1− αk)v̄k+ηkB2 − (1− αk)ηk−1B
2 +

(
1

2
γk
− 2

ηk

)
ν2

Nk

≤ (1− αk)vk+ηkB2 − (1− αk)ηk−1B
2 +

(
c

2(c− 1)

)
γkν

2

Nk
.

If γk = k−b where b ∈ (0, 1/2] and Nk = bkac where a+ b > 1, we have that
∑∞

k=1
γkν

2

Nk
<∞ and

the following holds for ηk = ck−b, c > 1 and b ∈ (0, 1/2]:

ηk − (1− αk)ηk−1 = ηk −
λ2
k−1γk−1

λ2
kγk

ηk−1 = ck−b −
(

1− 1

λk

)
c(k − 1)−2b

k−b
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≤ ck−b −
(

1− 1

λk

)
ck−b ≤ 2c

k1+b
=⇒

∞∑
k=1

(ηkB
2 − (1− αk)ηk−1B

2) <∞.

Furthermore, from (40), it follows that
∑∞

k=1 αk =∞ and

lim
k→∞

(
1

αk

)(
c

2(c− 1)

)(
ν2

ka+b

)
≤ lim
k→∞

(
c

2(c− 1)

)(
ν2

(1− b)ka+b−1

)
= 0

for b ∈ (0, 1/2] and a+ b > 1. Additionally, we have the following:

lim
k→∞

ηkB
2 − (1− αk)ηk−1B

2

αk
= lim

k→∞

ck−bB2 − c(1− αk)(k − 1)−bB2

αk

≤ lim
k→∞

ck−bB2 − c(1− αk)k−bB2

αk
= lim

k→∞

cB2

kb
= 0,

where ηkB
2 − (1− αk)ηk−1B

2 ≥ 0 can be concluded as follows. For any b ∈ (0, 1/2], we have:

λ2
k−1

λ2
k

=

(
1− 1

λk

)
≤ k − 1

k
≤ (k − 1)2b

k2b
=⇒

λ2
k−1

λ2
k

kb

(k − 1)b
≤ (k − 1)b

kb
=⇒

λ2
k−1γk−1

λ2
kγk

≤ ηk
ηk−1

=⇒ (1− αk) ≤
ηk
ηk−1

=⇒ ηk − (1− αk)ηk−1 ≥ 0.

Therefore, Lemma 5 can be applied and v̄k = Fηk(xk) − Fηk(x∗) + ηkB
2 → 0 a.s.. By (1, B2)

smoothness of f , 0 ≤ F (xk)− F (x∗) ≤ Fηk(xk)− Fηk(x∗) + ηkB
2, implying that F (xk)→ F (x∗)

a.s.

The next proposition provides a similar a.s. convergence for (VS-APM) that can accommodate
structured nonsmooth optimization where f(x) is a smooth merely convex function. The proof of
this result is similar to Proposition 2, but δk in this case is defined as δk = F (yk)− F (x∗).

Proposition 3. (Almost sure convergence theory for (VS-APM)) Suppose Assumptions 2, 3,
and 7 hold. Suppose {yk} defines a sequence generated by (VS-APM). Suppose γk = γ ≤ 1/(2L)
and Nk = bkac for a > 1. Then {yk} converges to a solution of (1) a.s. .

2.5 Numerical results

We now compare the performance of (mVS-APM) and (sVS-APM) with existing solvers on
Matlab running on a 64-bit macOS 10.13.3 with Intel i7-7Y75 @1.4GHz with 16GB RAM.
1. mVS-APM: Strongly convex and nonsmooth f .
Example 1. Consider the following constrained problem.

min
x∈[−1,1]

f(x),wheref(x) , E
[

1

2
xTA(ω)x+ β(ω)Tx+ λ(ω)‖x‖1

]
, (41)

A(ω) = Ā+W ∈ Rn×n and the elements of W have an i.i.d. normal distribution with mean zero and
standard deviation (std) 0.1. Similarly, β(ω) = β̄ + w ∈ Rn, where w is a random vector. Since,
tractable prox. evals are not available for (41), we compute approximate gradients ∇xfη using

(SSG). We set Nk = bρ−kc, where ρ ,
(

1− 1
2a
√
κ̃

)
and a = 2.01. Using a budget of 1e5 and 10

replications, we provide results in Table 3 (L) while Figure 2 shows the behavior of (mVS-APM)
with different smoothing parameters η versus (SSG). When the strong convexity modulus µ is
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small, mVS-APM performs significantly better than (SSG) and is far more stable. For instance,
when η = 1, (mVS-APM) terminates with an empirical error of approximately 4.8e-3 and 5.5e-3
for µ = 1 and µ = 1e-4 while corresponding errors for (SSG) are 7.8e-3 to 6.3. As one can see,
η = 1 for (mVS-APM) seems to be a reasonable practical choice for different problem settings.
Note that in this table, η∗ is chosen according to Lemma 6 where we note that as µ � 1, the
benefit of utilizing η∗ is muted. Next, we consider the unconstrained variant (41), where x ∈ Rn.
Since the subgradient is unbounded, we use unaccelerated method (mVS-PM). In Table 3 (R),
the behavior of (mVS-PM) is compared with (SSG) for different choices of µ. As suggested after
Theorem 7, we set η = 1

µ + 1e-3 > 1
µ .

Figure 2: Example 1: (mVS-APM) vs SSG for µ = 0.1

Table 3: Example 1: mVS-APMvs SSG (L), mVS-PM vs SSG (R)
SSG ‖yk − x∗‖ for mVS-APM

µ ‖yk − x∗‖ η = η∗ η = 0.1 η = 1 η = 10
1 7.8609e-4 2.8078e-1 2.2150e-2 4.7893e-3 1.9443e-2

1e-1 9.9114e-1 3.3207e-3 3.7247e-2 5.8973e-3 1.8865e-2
1e-2 3.0611 3.7218e-2 8.3083e-2 7.3432e-3 3.6886e-2
1e-3 4.0682 1.3893 1.7692e-1 4.7901e-3 5.2147e-2
1e-4 6.3783 2.7269 4.7065e-1 5.5248e-3 6.3872e-2

SSG mVS-PM

µ ‖yk − x∗‖ ‖yk − x∗‖
1 2.0847e-1 3.0971e-2

1e-1 2.4283 9.5149e-2
1e-2 4.2409 1.5115e-1
1e-3 4.4784 1.8033e-1
1e-4 4.5028 1.7261e-1

In Table 4, we compare (mVS-APM) with (SSG) for different choices of standard deviation of
noise and dimension (n). In Table 4 (L), we set µ = 0.1 and n = 20 while in Table 4 (R), we set
µ = 0.1 and std. dev. is 0.1. We run both schemes with total budget in subgradient evaluations of
1e5 and 10 replications and observe that (mVS-APM) outperforms (SSG) .

Table 4: Example 1: Comparing mVS-APM vs SSG: different std (L), different n (R)
SSG mVS-APM

std. ‖yk − x∗‖ time η ‖yk − x∗‖ time
1e+1 1.6691 5.8269 1 5.6007e-1 2.9858

1 9.4759e-1 5.9375 1 5.1574e-2 2.9925
1e-1 9.1148e-1 5.9096 1 5.8973e-3 3.8961
1e-2 9.1285e-1 5.9444 1 5.7294e-4 3.0362

SSG mVS-APM

n ‖yk − x∗‖ time η ‖yk − x∗‖ time
20 9.1148e-1 5.9096 1 5.8973e-3 3.8961
30 1.5326 6.117 1 5.9034e-3 3.2213
40 8.5934e-1 6.2494 1 6.0096e-3 3.6658
50 3.6236 6.4209 1 6.3496e-3 3.3903

Example 2. We revisit this comparison using a stochastic utility problem.

min
‖x‖≤1

E

[
φ

(
n∑
i=1

(
i

n
+ ωi

)
xi

)]
+
µ

2
‖x‖2,

where φ(t) , max1≤j≤m(vi + sit), ωi are iid normal random variables with mean zero and variance
one and vi, si ∈ (0, 1). Table 5 shows similar behavior as in Example 1. In Table 6, we compare
(mVS-APM) with (SSG) for different choices of std. dev. and dimension (n). In Table 6 (L),
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we set µ = 0.1 while n = 20 and in Table 6 (R), we set µ = 0.1 and std. dev. is 1. Similar to
Example 1, (mVS-APM) outperforms (SSG) in all cases.

Table 5: Example 2: Comparing (mVS-APM) vs (SSG)
SSG mVS-APM

µ ‖yk − x∗‖ time η ‖yk − x∗‖ time
1 4.4908e-3 4.3883 1/µ = 1 5.8314e-3 1.5191

1e-1 2.7134e-1 3.8794 1 1.0102e-2 1.1964
1e-2 8.7266e-1 3.9742 1 1.8236e-2 1.2065
1e-3 9.8723e-1 4.0129 1 3.8619e-2 1.1510
1e-4 9.9872-1 4.0684 1 7.1652-2 1.1490

Table 6: Example 2: Comparing mVS-APM vs SSG: different std (L), different n (R)
SSG mVS-APM

std. ‖yk − x∗‖ time η ‖yk − x∗‖ time
1e+1 9.8253e-1 3.8733 1 9.6709e-1 1.1661

1 2.7134e-1 3.8794 1 1.0102e-2 1.1964
1e-1 2.1394e-1 3.9304 1 8.6589e-3 1.1083
1e-2 2.1813e-1 3.9134 1 1.1027-1 1.1270

SSG mVS-APM

n ‖yk − x∗‖ time η ‖yk − x∗‖ time
20 2.7134e-1 3.8794 1 1.0102e-2 1.1964
30 3.5948e-1 4.0277 1 1.2010e-2 1.2594
40 5.3537e-1 4.0418 1 7.4431e-3 1.3467
50 2.6880e-1 4.1198 1 8.2670e-3 1.3452

2. (sVS-APM). Convex and smoothable f .
Example 4. In this setting, we compare the performance of (sVS-APM) for merely convex
problems on Example 2 with µ = 0. The δ-smoothed approximation of φ(t) provided by [65] is
given by φδ(t) = δ log

(∑m
i=1 e

(vi+sit)/δ
)
. In Table 7, we generate 20 replications for (sVS-APM)

with fixed and diminishing smoothing sequences with ηk = δk/2, Nk = bk3.001c, and sampling
budget is 1e6. In Figure 3, we compare trajectories for (sVS-APM) with those for constant
smoothing for n = 200.

Table 7: Example 4: Comparing (sVS-APM) with fixed smoothing
sVS-APM Fixed smooth.

n m δk E[f(yk)− f∗] δ E[f(yk)− f∗]
20 10 1/k 1.832e-4 1/K 3.455e-3

1/(2k) 3.014e-3 1/(2K) 2.157e-2
1/(3k) 1.269e-2 1/(3K) 6.079e-2

100 25 1/k 1.944e-3 1/K 3.126e-2
1/2k 1.181e-2 1/2K 5.130e-2
1/3k 2.411e-2 1/3K 5.817e-2

200 10 1/k 1.067e-4 1/K 4.695e-3
1/2k 5.173e-3 1/2K 3.957e-2
1/3k 1.594e-2 1/3K 6.929e-2

Figure 3: Example 4: (sVS-APM)
vs fixed smoothing; n = 200

Figure 4: a.s. convergence for
(sVS-APM), Nk = bk3.001c, ν2 =
5.

Figure 5: a.s. convergence for
(sVS-APM), Nk = bk3.001c, ν2 =
2.

Key observations. The empirical behavior of (sVS-APM) appears to be better on this test
problem. One rationale for this may be drawn from noting that (sVS-APM) allows for larger
steplengths early (since ηk ≤ δk) on while in fixed smoothing technique, ηk ≤ δk (where δk may be
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quite small). This can be seen in the trajectories where early progress by the iterative smoothing
scheme can be observed. A larger δk allows for larger steplengths but leads to a coarser approxi-
mation of the original problem while smaller δk leads to poorer progress but better approximations
(See Table 7 and Figure 3).
4. a.s. convergence. Next, we implemented sVS-APM on the stochastic utility problem with
n = 20 and m = 10 for different choices of the smoothing sequences. Specifically, we allow δk to
be δk ∈ {1/k, 1/

√
k, 1/k0.25} (where δk = 1/k is required for convergence in mean and δk = 1/kb

with b ∈ (0, 1/2] for a.s. convergence). We employ Nk = bk3.001c. For each experiment, the mean
of 20 replications and their 95% confidence intervals are plotted in Figure 4 and 5. It can be seen
that when δk → 0 at a slower rate as mandated by the requirement of the a.s. convergence result,
the confidence bands are tighter, becoming more apparent in Figure 4 where the variance is 5.
Furthermore, our numerical studies have revealed that even for less aggressive choices of Nk such
as when Nk = ka and a > 1, the trajectories show the desired behavior in accordance with Prop. 2.
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3 Risk-based economic dispatch

The optimal power flow (OPF) problem is one of the most fundamental decision-making problems6

in power systems operations. There are a host of variants of such problems that include the modeling
of reserves [3], allow for modeling security constraints [69], utilizing either DC approximations [70]
or full AC formulations [71] of the power flow equations, amongst others [5]. In this chapter, we
focus on the economic dispatch (ED) problem with a DC approximation of the power flow equations.
With operating reserves and other regulation capacities determined in the day-ahead market [3,4],
economic dispatch decision are usually specified in a short amount of time at real time, with reserves
and other regulation capacities are established. The economic dispatch of conventional generation is
completed 20 minutes before the hour of delivery [2]. In power system operations, uncertainty plays
a key role. Diverse formulations of stochastic optimal power flow along with different uncertainties
in power system have been discussed in [1].

Paper Problem Model Algorithm
[72] DC-OPF Stochastic cplex

[73] UC Robust cplex

[74] ED Robust cplex

[75] ED Robust Alternative Direction
[76] UC Robust cplex

[77] UC Robust Cutting plane
[78] UC Stochastic Review
[79] UC Stochastic Benders Decomposition / Lagrangian Relaxation
[80] UC Stochastic Lagrangian relaxation
[81] UC Stochastic Benders Decomposition
[82] UC Stochastic Dynamic Programming
[83] UC Stochastic cplex

[84] UC Stochastic cplex

[85] UC Stochastic Importance Sampling
[86] DC-OPF Stochastic Stochastic Decomposition
[71] AC-OPF Stochastic Scenario reduction by clustering
[87] DC-OPF Stochastic Benders Decomposition
[88] ED Deterministic Gurobi
[89] ED Deterministic cplex

[90] ED Deterministic FESTIV

Table 8: Stochastic OPF models

Most prior OPF formulations have only dealt with uncertainty in a rather rudimentary manner
by choosing fixed reserve margins without using other known or estimated probabilistic informa-
tion about forecast errors. Recently, one major approach to deal with such uncertainty has been
through robust optimization techniques [6–10] where the uncertain parameters are assumed lie
in a suitable uncertainty set and network constraints are enforced for every possible realization of
uncertainty. In fact such avenues have been adopted for modeling AC power flow problems (cf. [11]).

Uncertainty in power systems also can be dealt with by adding chance constraints. In general,
such avenues lead to possibly nonconvex problems [91] and more recently integer programming
approaches have proven useful when contending with a sampled approximation [5, 12]. Here, the
authors consider power flow problems subject to chance constraints assuming that the uncertainties
are Gaussian. The chance constraint can be expressed as a second-order cone constraint, which
turn out to be a convex approximation. Simulation based studies on real time dispatch are also
been conducted recently. In [13], a simulation based framework is used in a power system with
renewable resources, with system iterates in multiple timescales.

6This section has been adapted from the Ph.D. Dissertation by Wendian Wan (advised by PI), titled “Algorithms
for Operation of Power Systems: Risk, Uncertainty, Discreteness, and Nonconvexity.”
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A variety of references consider two-stage model in economic dispatch problem, with different
sources of uncertainty. Single contingencies is taken into consideration and objective also includes
cost from not meeting demand in [72], where in second stage a contingency parameter is added
to transmission capacity in power flow constraint. In [92], model can be extended to muti-stage
with unit commitment. A general stochastic dispatch model considering real time regulation in the
presence of uncertainties in the offers was proposed in [93]. Constrain on second stage generation
was in a form of a random convex set with several different forms, depending on the kind of offer
involved. A two-stage economic dispatch model with stochastic producers was proposed in [94],
where stochastic producer capacity constraints gets its realization in second stage. In [17], the
network risk limiting dispatch problem (N-RLD) was introduced under ε = 0, which is a two stage
optimization problem under stochastic demand. On second stage, we observe the realization of
random demand and balance system based on real demand. In [2], a two-stage model is built
for sub-hourly dispatch decisions making. Ramping limits depending on time was also considered
in [2]. In general, a two-stage stochastic model can represent the different types of uncertainty with
realizations of uncertain factors reveal in second stage.

3.1 Overview of economic dispatch problems

The basic economic dispatch problem requires satisfying load at minimal cost [95], as formulated
next.

min
∑
i∈I

cgi gi

subject to
∑
i∈I

gi = d

gmin
i ≤ gi ≤ gmax

i , ∀i ∈ I

(EDisp)

where gi, g
min
i , gmaxi denote the generation level and the minimum, and maximum capacity level

associated with generator i housed at bus i, cgi represents the unit cost of generation at bus i, d is
the total demand, and I denotes the set of all buses in network. Notice that the economic dispatch
problem requires specifying the minimal generation decisions while meeting demand and capacity
bounds. In [95], power flow constraints are also taken into consideration together with dispatch
decisions. When these power flow constraints are modeled via DC load flow approximations, the
resulting bus-specific phase angles need to be considered together with transmission constraints.
The resulting model is specified as follows. actual power production and transmission.

min
∑
i∈I

cgi gi

subject to gi − di −
∑
j∈I

Bi,j(θi − θj) = 0, ∀i ∈ I

Bi,j(θi − θj) ≤ fmaxi,j , ∀i, j ∈ I
gmini ≤ gi ≤ gmaxi , ∀i ∈ I
θmini ≤ θi ≤ θmaxi , ∀i ∈ I

(42)

Where θi denotes the phase angle at bus i, fmax
i,j represents the transmission line capacity constraint

of transmission line between bus i, j, Bi,j is the susceptance of transmission line between bus i, j,
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and di is the demand at bus i. Single contingencies may be taken into consideration the cost of
unserved demand may also be modeled [72], leading to the following model.

min E

[∑
i∈I

(
cgi g

ω
i + cri r

ω
i − cdi qωi

)]
subject to gωi − qωi −

∑
Bi,j(θ

ω
i − θωj ) = 0, ∀i ∈ I, ∀ω ∈ Ω

Bi,j(θ
ω
i − θωj ) ≤ fmax

i,j , ∀i ∈ I, ∀ω ∈ Ω

gωi + rωi − χωi gmax
i = 0, ∀i ∈ I, ∀ω ∈ Ω

λidi ≤ qωi ≤ di, ∀i ∈ I, ∀ω ∈ Ω

(43)

where rωi and cr denote reserve levels and the cost of reserves at bus i, qωi and cdi represents unserved
demand and the cost of unserved demand at bus i, Ω represents the scenario space, χωi denotes
the proportion that generator i under outage would reduce in capacity by (i.e. the capacity of
outage generator would be χωi g

max
i where χωi ∈ [0, 1]), di represents the forecast demand, and λidi

denotes a critical level of demand that needs to be satisfied. In [92], this model is further extended
to a multi-stage problems with unit commitment. A more general stochastic dispatch model was
proposed in [93]

min
∑
i∈I

(cigi + E[c+
i (gωi − gi)+ − c−i (gωi − gi)−])

subject to gi −
∑
j∈I

fi,j − di = 0, ∀i ∈ I

gωi −
∑
j∈I

fωi,j − di = 0, ∀i ∈ I, ∀ω ∈ Ω

(gi, g
ω
i ) ∈ Cωi , ∀ω ∈ Ω,∀i ∈ I

fi,j ≤ fmax
i,j , ∀i ∈ I,

fωi,j ≤ fmax
i,j , ∀i ∈ I,∀ω ∈ Ω.

In this model, gωi denotes the second-stage (“real time”) decision fi,j and fωi,j represents the first
and scenario-specific second-stage power flow on the transmission line, and Cωi represents a random
convex set that may take several different forms, depending on the kind of offer involved.

• Completely inflexible generation: First-stage dispatched quantity, denoted by gi cannot be
varied in the second stage.

gωi = gi ∈ [0, gmax
i ], ∀ω ∈ Ω,∀i ∈ I.

• Completely flexible generation: First-stage dispatched quantity, denoted by gi, may be varied
in the second stage.

gi ∈ [0, gmax
i ], gωi ∈ [0, gmaxi ], ∀ω ∈ Ω,∀i ∈ I.

• Unpredictable or intermittent generation: A generator with maximum capacity gmax
i offers a

random quantity Si.

gi ∈ [0, gmax
i ], gωi ∈ [0, Sωi ], ∀ω ∈ Ω,∀i ∈ I
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• Demand-side bid: A quantity −qi ≥ 0 is bid for in the first stage while in the second-stage,
this can be modified.

gi ∈ [qi, 0], gωi ∈ [qi, 0], ∀ω ∈ Ω,∀i ∈ I

• Unpredictable load: The second-stage demand-side bid gωi has to be feasible with regard to a
random load of size dωi ≥ 0.

gi ≤ 0, gωi ∈ [−dωi , 0], ∀ω ∈ Ω, ∀i ∈ I.

In [14], a risk-limiting dispatch framework is introduced and this was subsequently extended in [15],
where a computable closed-form formulas was derived. In [16], a related model for risk-limiting
dispatch with generation limitation and network constraint was represented. In [17], a two-stage
network risk limiting dispatch problem (N-RLD) was introduced under ε = 0, where the first-stage
represents the day-ahead scheduling while the second-stage captures real-time decisions. The overall
problem requires minimizes expected cost of operation as captured by the following problem.

3.2 Two-stage stochastic economic dispatch

In the two-stage model for stochastic economic dispatch, first-stage decisions are given by slow-
response generation decisions while second-stage decisions adapt to the realization of uncertainty
and are tied to first-stage decisions. The nature of the uncertainty in the second-stage pertains to the
randomness in real-time cost, randomness in real-time demand, line contingencies, and uncertainty
in the availability of renewable The goal of two-stage model is to have determine a set of first
decisions that minimize the sum of two costs: (i) the first-stage cost; and (ii) the risk-adjusted
second-stage expected cost of contending with uncertainty.
We consider the stochastic economic dispatch problem faced over T hours while sub-hourly decisions
associated with fast-response generators are made between hours (i.e. in a sub-hourly sense) to
contend with uncertainty. We view the first-stage decisions as the hourly decisions from t = 1, . . . , T
while the sub-hourly decisions are viewed as the recourse second-stage decisions Let gt denote the
first stage decisions at period t with a convex differentiable generation cost denoted by f0(gt) while
the cost of recourse decisions under realization ω in the sub-hourly period after t is denoted by
h(gωt , ω).

3.3 Risk-neutral stochastic economic dispatch

In a power system network, there are several types of constraints that need consideration.

Flow balance equations

In both stages, flow balance needs to be maintained at each bus for every period. In the first stage,
flow balance would be based on forecasted demand as follows:

gt −B1θt − d̂t = 0, t = 1, . . . , T, (44)

where θt denotes the phase angle of each bus at period t, B = (bi,j)n×n represents the susceptance
matrix,

B1 , B − diag

∑
j

bi,j

 ,
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and d̂t denotes a forecast demand in period t in first stage. During the sub-hourly dispatch after
period t, the recourse decisions have to satisfy the following requirement.

gt + grt,ω −B1θt,ω − dt,ω − dut,ω − dwt,ω ≥ 0, (45)

where grt,ω denotes the recourse generation adjustment in period t, θt,ω represents the second-stage
phase angle for period t, and dt,ω denotes the observed demand in period t under realization
ω. Suppose dut,ω represents undispatchable generation while dwt,ω denotes unavailable wind power
generation for period t.

Line flow constraints

In both stages, transmission capacity constraints need to be satisfied while line contingencies are
considered in the second stage. The first stage line constraints can be expressed as follows:

−fmax ≤ B2θt ≤ fmax, t = 1, . . . , T (46)

where fmax denotes flow bounds while B2 is defined as follows.

B2 =


(
b1,• 0 · · · 0

)
− diag(b1,•)(

0 b2,• · · · 0
)
− diag(b2,•)

...(
0 0 · · · bn,•

)
− diag(bn,•)

 .

In the second stage, line contingencies are addressed as follows:

−χt,ωfmax ≤ B2θt,ω ≤ χt,ωfmax, ∀t, (47)

where χt,ω is a vector represents the realization of stochastic line contingency of all transmission
lines for period t with all of its elements value in [0, 1].

Generation capacity constraints

Both conventional and renewable generators we have to abide by capacity constraints.

gmin ≤ gt ≤ gmax∀t (48)

gmin
t,ω ≤ gt + grt,ω ≤ gmax

t,ω , (49)

where gmin
t,ω and gmax

t,ω denote second-stage capacity bounds at period t based on renewable avail-
ability.

Ramping constraints

Both conventional and renewable generators need to satisfy ramping requirements, as specified
next.

rmin
t ≤ gt − gt−1 ≤ rmax

t , ∀t (50)

rmin
t,ω ≤ gt + grt,ω − gt−1 − grt−1,ω ≤ rmax

t,ω , (51)

where rmin and rmax denote the minimum and maximum ramp limit, g0 = 0, and rmin
t,ω and rmax

t,ω

denote second-stage down and up ramping limits for period t and gr0,ω = 0.
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Phase angle bounds

In both stages, phase angles bound are imposed in the following fashion.

θmin ≤ θt ≤ θmax, ∀t (52)

θmin ≤ θt,ω ≤ θmax. (53)

To summarize, the two-stage stochastic economic dispatch model is defined as follow:

min
x

T∑
t=1

[f0(xt) + E[Q(xt, ω)]]

subject to (44), (46), . . . , (52).

(s-ED)

where x , (g, θ), Q(xt, ω) is defined as follows.

Q(xt, ω) = min
grt,ω ,θt,ω

f(grt,ω, ω)

subject to (45), (47), . . . , (53),
(s-EDω

2 )

f(gωt , ω) denotes the random second-stage generation cost and grt,ω denotes second stage decision
variable at period t under random variable realization ω.

Deterministic equivalent

Suppose the ω takes on a finite number of realizations given by ω1, . . . , ωK with probabilities
p1, . . . , pK . The resulting deterministic equivalent optimization problem is given by the following.

min
xt,yt,ω

T∑
t=1

f0(xt) +
K∑
j=1

pωj [f(yt,ω, ωj)]


subject to (44), (46), . . . , (52)

(45), (47), . . . , (53), ∀t, ω ∈ Ω.

(DE-ED)

where yω , (grω, θω). Generally, (DE-ED) is not solved directly since Ω can have a large cardinality,
necessitating the development of decomposition and sampling schemes.

3.4 Risk-averse economic Dispatch

While the prior model employs a risk-neutral framework, this can be generalized to allow for risk
preferences; a commonly employed approach utilizes the conditional value-at-risk (CVaR). Recall
for a fixed level τ , the conditional value-at-risk of a random loss function Z(ω) is defined as [96]:

CVaRτ (Z(ω)) , min
m

{
m+

1

1− τ
E [Z(ω)−m]+

}
. (54)

In this setting, we choose Z(ω) , Q(xt, ω). It may be recalled that the minimization of a CVaR-
based objective can be recast as follows:

min
x
{f0(x) + CVaRτ (Q(x, ω))}
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= min
x

{
f0(x) + min

m

{
m +

1

1− τ
E [Q(x, ω)−m]+

}}

= min
x,m

f0(x) + m︸ ︷︷ ︸
,c(z)

+
1

1− τ
E [Q(x, ω)−m]+


= min

z
{c(z) + E [r(z, ω)]} , where r(z, ω) ,

1

1− τ
[Q(x, ω)−m]+ . (55)

In the next section, we discuss a smoothed accelerated gradient scheme for the two-stage stochastic
convex problem:

min
z∈Z

[c(z) + E [r(z, ω)]] , (r-ED)

where z , (x,m), c(z) is a convex differentiable function, r(z, ω) is a convex and nonsmooth
function defined as (55), and Z is a polyhedral set defined by the constraints (44), (46), . . ., (52).

3.5 Smoothing

Consider the function r(z, ω), defined in (55). This function has two sources of nonsmoothness: (i)
The function Q(•, ω) is a convex nonsmooth function of (•); and (ii) The function [u]+ = max{u, 0}
is a nonsmooth function of u. We intend to develop algorithms in which the gradient of a smoothed
counterpart of r(z, ω), denoted by rµ(z, ω), is employed. Before proceeding, we recap the definition
of smoothability of a convex function.

Definition 2 (Smoothable function [97]). A convex function d : Rn → R is called (α, β)-smoothable
if for any µ > 0 there exists a convex differentiable function dµ : Rn → R such that the following
holds for some α, β > 0:

(i) dµ(x) ≤ d(x) ≤ dµ(x) + βµ for all x ∈ Rn.

(ii) dµ is α
µ -smooth.

Then the function dµ is called a 1
µ -smooth approximation of h with parameters (α, β).

3.5.1 Smoothing the recourse function Q(g, ω).

Consider the recourse functionQ(x, ω) whose evaluation requires solving the following parametrized
convex problem.

min
y∈Y ω

d(y, ω)

subject to Wωy ≤ qω − Tωx, (π)
(P-Q(x, ω))

We make the following assumptions on (P-Q(x, ω)).

Assumption 8. Consider the recourse problem (P-Q(x, ω)).
(i) For every ω ∈ Ω, the function d : Rm × Rd → R is convex and Y ω is a closed, convex, and
bounded polyhedron with a nonempty interior.
(ii) For every ω ∈ Ω and every x ∈ X0, there exists a ȳ(ω) such that Wωyω = qω − Tωx and
ȳω ∈ int(Y ω).
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The dual of (P-Q(x, ω)) is given by the following.

max
π≥0

(qω − Tωx)Tπ − d̄∗(W T
ω π;ω)︸ ︷︷ ︸

,ε(π;x,ω)

,
(D-Q(x, ω))

where d̄∗(y;ω) is the convex conjugate of d̄(y;ω), defined as follows.

d̄(y;ω) ,

{
d(y;ω), y ∈ Y ω

+∞, otherwise.
(56)

By convex duality, the optimal values of (P-Q(x, ω)) and (D-Q(x, ω)) are equal for a given x.

Lemma 14. Suppose d(y, ω) is a convex function in y for every ω ∈ Ω. If for some x, (P-Q(x, ω))
has an optimal solution. Then the dual problem (D-Q(x, ω)) has an optimal solution and the optimal
values of both problems are equal.

From the theory of stochastic programming, it is known that the recourse function Q(x, ω) is a
convex function in x for every ω [98, Prop. 2.21]. Consider a modified function Qµ(x, ω), defined
as the optimal value of this µ-regularized dual problem (D-Qµ(x, ω)).

max
π≥0

(ε(π; x, ω)− µ‖π‖2), (D-Qµ(x, ω))

Lemma 15. Suppose vω and vµ,ω denote the optimal values of (D-Q(x;ω)) and (D-Qµ(x;ω)),
respectively. In addition, suppose πω denotes an optimal solution of (D-Q(x;ω)). Then vµ,ω ≥
vω − µ‖πω‖2.

Proof. The result can be concluded as follows.

vµ,ω , max
π≥0
{(ε(π; x, ω)− µ‖π‖2)}

≥
{

(ε(π∗ω; x, ω)− µ‖π∗ω‖2)
}

(where π∗ω ∈ arg maxπ≥0{ε(π; x, ω)})

=

{
max
π≥0

ε(π; x, ω)

}
− µ‖π∗ω‖2

= vω − µ‖π∗ω‖2.

Before proceeding, we show that the solution of (D-Qµ(x, ω)) is bounded under the Slater regularity
condition. This requires defining the Lagrangian function L(y, π, ω) and the dual function D(π, ω)
associated with the primal problem, which we proceed to do next.

L(y, π, ω) ,
(
d(y, ω) + (Wωy − qω + Tωx)Tπ

)
(57)

D(π, ω) , min
y
L(y, π, ω). (58)

Lemma 16. Consider the problem (P-Q(x, ω)) and suppose it has optimal value vω. Then the
following hold.
(i) Suppose for given x and ω ∈ Ω, there exists a ȳ ∈ Y ω such that c(ȳ,x) < 0 where c(ȳ,x) ,
Wωȳ − qω + Tωx. Then the solution set of (D-Q(x, ω)) lies in a compact set.
(ii) In addition, if ȳ ∈ ∩ω∈ΩY

ω, −c(ȳ, ω) ≥ −c̄ and d(ȳ, ω) − vω ≤ d̄ for every ω ∈ Ω, then the

solution set of (D-Q(x, ω)) is uniformly bounded in ω, i.e. ‖πω‖ ≤ d̄
c̄ for any ω ∈ Ω and for any

πω ∈ SOL(D-Q(x, ω)).
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(iii) If πµ,ω denotes the optimal dual solution to (D-Qµ(x, ω)), then we have that

‖πµ,ω‖ ≤
d(ȳ, ω)− vω

−max1≤j≤m cj(ȳ;ω)
+ µ

(
d(ȳ, ω)− vω

−max1≤j≤m cj(ȳ;ω)

)2

.

(iv) In addition, if ȳ ∈ ∩ω∈ΩY
ω, −cj(ȳ, ω) ≥ −c̄ for j = 1, . . . ,m and d(ȳ, ω) − vω ≤ d̄ for every

ω ∈ Ω, then the solution set of (D-Qµ(x, ω) is uniformly bounded in ω and µ when µ ≤ µ̄, i.e.

‖πµ,ω‖ ≤ d̄
c̄ + µ̄

(
d̄
c̄

)2
for any ω ∈ Ω, where πµ,ω = argmaxπ≥0(D-Qµ(x, ω)).

Proof. (i) For any optimal dual solution π∗ω, we have from strong duality,

vω = D(π∗ω, ω) = inf
y∈Y ω

{d(y, ω) + (π∗ω)T cω(y; x)}

≤ d(ȳ, ω) + (π∗ω)T cω(ȳ; x)

≤ d(ȳ, ω) + max
1≤j≤m

cω,j(ȳ; x)

m∑
j=1

π∗ω,i.

Consequently, we have the following relationship.

−( max
1≤j≤m

cω,j(ȳ; x))

m∑
j=1

π∗ω,i ≤ d(ȳ, ω)− vω (59)

=⇒ ‖π∗ω‖ ≤
m∑
j=1

π∗ω,i ≤
d(ȳ, ω)− vω

−max1≤j≤m(cω,j(ȳ; x))
. (60)

(ii) By hypothesis, we have that −max1≤j≤m(cω,j(ȳ; x)) > c̄ and d(ȳ, ω)− vω ≤ d̄ for every ω ∈ Ω.

Consequently, ‖π∗ω‖ ≤ d̄
c̄ for all ω ∈ Ω.

(iii) Consider the regularized dual function Dµ(π) and suppose its optimal value is vµ,ω. Then the
following sequence of inequalities hold.

vµ,ω = Dµ(π∗ω,µ)

= inf
y∈Y ω

{d(y, ω) + (π∗µ,ω)T cω(y; x)− µ‖π∗µ,ω‖2}

≤ {d(y, ω) + (π∗µ,ω)T cω(y; x)− µ‖π∗µ,ω‖2}
≤ d(y, ω) + (π∗µ,ω)T cω(ȳ; x)

≤ d(y, ω) + max
1≤j≤m

cω,j(ȳ; x)
m∑
j=1

π∗µ,ω,i.

It follows that

‖π∗µ,ω‖ ≤
d(ȳ, ω)− vµ,ω

−max1≤j≤m cj(ȳ;ω)

Lemma 14

≤ d(ȳ, ω)− vω + µ‖π∗ω‖2

−max1≤j≤m cj(ȳ;ω)

(60)

≤ d(ȳ, ω)− vω
−max1≤j≤m cj(ȳ;ω)

+ µ

(
d(ȳ, ω)− vω

−max1≤j≤m cj(ȳ;ω)

)2

.

(iv) By hypothesis, we have that min1≤j≤m(−cω,j(ȳ; x)) > c̄ and d(ȳ, ω)− vω ≤ d̄ for every ω ∈ Ω.

Consequently, ‖π∗µ,ω‖ ≤ d̄
c̄ + µ̄

(
d̄
c̄

)2
for all ω ∈ Ω and for every µ ≤ µ̄.
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We proceed to show that Qµ(x, ω) is an (α, β)-smoothing of Q(x, ω), where Qµ(x, ω) which is
defined as the optimal value of (D-Qµ(x, ω)).

Lemma 17. Suppose Q(x, ω) is defined by the optimal value of (P-Q(x, ω)). Then the following
hold:
(i) The function Q(x, ω) is a convex function in x for every ω ∈ Ω.
(ii) The function Qµ(x, ω) is a differentiable in x at every ω and ∇xQµ(x, ω) = −T Tω π∗(x, ω),
where π∗(x, ω) denotes the optimal solution of (D-Qµ(x, ω)).

Proof. [98, Prop. 2.22].

Proposition 4 (Qµ(x, ω) satisfies (α(ω), β(ω))-smoothability of Q(x, ω)). Consider the function
Qµ(x, ω) defined by (D-Qµ(x, ω)). Then this function satisfies the following:

(i) The function Qµ(x, ω) is ‖Tω‖
2

µ -smooth, i.e.

‖∇xQµ(x1, ω)−∇xQµ(x2, ω)‖ ≤ ‖Tω‖
2

µ
‖x1 − x2‖, ∀x1,x2.

(ii) There exists a β(ω) such that for all x, we have that for all x,

Qµ(x, ω) ≤ Q(x, ω) ≤ Qµ + µβ(ω).

Proof. (i) Consider an x1,x2 ∈ X and let π(x1) and π(x2) denote the maximizers of (D-Qµ(x1, ω))
and (D-Qµ(x2, ω)), respectively. By the strong concavity of the objective, we have that

((−qω + Tωx1 + a(π(x1), ω))− (−qω + Tωx2 + a(π(x2), ω)))T (π(x1)− π(x2))

+ µ(π(x1)− π(x2)))T (π(x1)− π(x2))

≥ µ‖π(x1)− π(x2)‖2, (61)

where a(π(x), ω) ∈ ∂π(d̄∗ω(W T
ω π;ω)). In addition, by definition, we have that

(Tωx1 − qω + a(π(x1), ω) + µπ(x1))T (π(x2)− π(x1)) ≥ 0. (62)

Adding (61) and (62), we obtain that

(Tωx2 − qω + a(π(x2), ω) + µπ(x2))T (π(x1)− π(x2))

≥ µ‖π(x1)− π(x2)‖2. (63)

Consequently, by adding and subtracting (Tωx1 − qω + a(π(x1, ω) + µπ(x1))T

(π(x1)− π(x2)),

(Tωx1 + a(π(x1, ω) + µπ(x1))T (π(x1)− π(x2))︸ ︷︷ ︸
≤0

+ (Tωx2 − Tωx1)T (π(x1)− π(x2)) + (a(π(x2), ω)− a(π(x1), ω))T (π(x1)− π(x2))︸ ︷︷ ︸
≤ 0

+ µ (π(x2)− µπ(x1))T (π(x1)− π(x2))︸ ︷︷ ︸
≤ 0
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≥ µ‖π(x1)− π(x2)‖2.

This implies that

µ‖π(x1)− π(x2)‖2 ≤ (Tωx1 − Tωx2)T (π(x1)− π(x2))

≤ ‖Tω‖‖x1 − x2‖‖π(x1)− π(x2)‖

=⇒ ‖π(x1)− π(x2)‖ ≤ ‖Tω‖
µ
‖x1 − x2‖.

Finally, we note that ∇xQµ(x, ω) = −T Tω πω, where πω is a maximizer of (D-Q(x, ω)), implying
that

‖∇xQµ(x1, ω)−∇xQµ(x2, ω)‖ ≤ ‖Tω‖‖π(x1)− π(x2)‖

≤ ‖Tω‖
2

µ
‖x1 − x2‖.

(ii) We begin by noting that Q(x, ω) = (qω − Tωx)Tπ − d̄∗(W Tπ, ω) where π is a maximizer of
(D-Q(x, ω)) while Qµ(x, ω) = (qω − Tωx)Tπµ − d̄∗(W Tπµ, ω)− 1

2‖πµ‖
2 where πµ is a maximizer of

(D-Qµ(x, ω)). Consequently, we have that

Q(x, ω) = (qω − Tωx)Tπ − d̄∗(W Tπ, ω)

≥ (qω − Tωx)Tπµ − d̄∗(W Tπµ, ω)

≥ (qω − Tωx)Tπµ − d̄∗(W Tπµ, ω)− 1
2µ‖πµ‖

2

= Qµ(x, ω).

In addition, it is easily seen that

Qµ(x, ω) = (qω − Tωx)Tπµ − d̄∗(W Tπµ, ω)− 1
2µ‖πµ‖

2

≥ (qω − Tωx)Tπ − d̄∗(W Tπ, ω)− 1
2µ‖π‖

2 = Q(x, ω)− 1
2µ‖π‖

2.

As a result, we have that

Q(x, ω) ≤ Qµ(x, ω) + 1
2µ‖π‖

2 ≤ Qµ(x, ω) + µβ(ω),

where ‖π‖2 ≤ β(ω) for all π, where the boundedness of π follows from the Slater regularity condition
on (P-Q(x, ω)).

3.5.2 Smoothing the max. function

From [97], recall that the smoothing of the max. function, defined as t(u) , [u]+, is given by

tµ(x) , µ(log(e
u
µ + 1) − log(2)) and tµ is (1, log(2))-smoothable. We prove the relatively simple

result that t′µ(u) ≤ t̄ for all u and for any µ > 0.

Lemma 18. Consider the function tµ(x) , µ(log(e
u
µ + 1)− log(2)). Then for any u ∈ R and any

µ > 0, we have that t′µ(u) ≤ 1.

Proof. It can be seen for that any u and any µ > 0,

t′µ(x) =
exp

(
u
µ

)
exp

(
u
µ

)
+ 1
≤ 1.
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3.5.3 Smoothing a composition of two smoothable functions

We note that [Q(x, ω)−m]+ denotes a composition of a nonsmooth function h(w) where h(w) =
max{w, 0} with another nonsmooth function t(z) where t(z) = z1− z2 and z = (z1, z2). Our intent
lies in showing that under if h is (α1, β1) smoothable and t is (α2, β2) smoothable, then p = h(t) is
(α3, β3) smoothable, where the smoothability of this composite function is defined as follows.

Definition 3. Given two convex functions h : Rm → R and g : Rn → Rm. Then the function
p(z) = h(t(z)) is said to be (α, β) smoothable if the following two conditions hold and pµ(z) ,
hµ(gµ(z)).
(i) There exists a constant α such that for any µ > 0,

‖∇zpµ(z1)−∇zpµ(z2)‖ ≤ α
µ‖z1 − z2‖, ∀z1, z2.

(ii) There exists a constant β such that for any µ > 0,

pµ(z) ≤ p(z) ≤ pµ(z) + βµ.

Under suitable conditions, we now prove that p = h(t) is a smoothable function when h and t are
smoothable.

Lemma 19. Suppose h : R → R is a non-decreasing nonnegative convex function and is (α1, β1)-
smoothable. In addition, if hµ denotes an (α1, β1) smoothing of h, then hµ is assumed to be a
non-increasing and nonnegative function. Suppose t : Rn → Rm is (α2, β2)-smoothable convex
function. In addition, suppose ‖∇wh(w)‖ ≤ C1 for all w and ‖∇xt(x)‖ ≤ C2 for all x. Then
p(z) = h(t(z)) is (α, β)-smoothable.

Proof. Since ∇z(hµ(gµ(z)) = h′µ(tµ(z))∇ztµ(z), we have the following by adding and subtracting
terms and invoking the triangle inequality.

‖∇hµ(tµ(z1))−∇hµ(tµ(z2)‖ = ‖h′µ(tµ(x1))∇ztµ(z1)− h′µ(tµ(z2))∇ztµ(z2)‖
≤ ‖h′µ(tµ(z1))∇ztµ(z1)− h′µ(tµ(z1))∇ztµ(z2)‖
+ ‖h′µ(tµ(z1))∇ztµ(z2)− h′µ(tµ(z2))∇ztµ(z2)‖
≤ ‖h′µ(tµ(x1))‖‖∇ztµ(z1)−∇ztµ(z2)‖
+ ‖∇ztµ(x2)‖ ‖h′µ(tµ(z1))− h′µ(tµ(z2))‖︸ ︷︷ ︸

Term b

. (64)

Since h : R → R is (α1, β1)-smoothable and t : Rn → R is (α2, β2)-smoothable, it follows that for
all z1, z2,

‖h′µ(tµ(z1))− h′µ(tµ(z2))‖ ≤ α1

µ
‖tµ(z1)− tµ(z2)‖

‖∇tµ(z1)−∇tµ(z2)‖ ≤ α2

µ
‖z1 − z2‖.

Recall that by the differentiability of tµ(z) and the mean-value theorem, for some γ ∈ [0, 1],

tµ(z2) = tµ(z1) +∇ztµ(z1 + γ(z2 − z1))T (z2 − z1)

⇒ ‖tµ(z2)− gµ(z1)‖ ≤ ‖∇ztµ(z1 + γ(z2 − z1))‖‖z1 − z2‖
≤ C2‖z1 − z2‖. (by assumption). (65)
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By (α1, β1)-smoothability of h and (65), Term b can be bounded as follows.

Term b ≤ α2
µ ‖tµ(z1)− tµ(z2)‖ ≤ α2C2

µ
‖z1 − z2‖. (66)

From (64), we have that for any z1, z2,

‖∇hµtµ(z1)−∇hµ(tµ(z2)‖ ≤ C1α2

µ
‖z1 − z2‖+

C2α1

µ
‖z1 − z2‖

≤ α
µ‖z1 − z2‖, where α , (C1α2 + C2α1). (67)

Since h : R → R is (α1, β1)-smoothable and t : Rn → R is (α2, β2)-smoothable, we have for any
z, µ > 0,

hµ(t(z)) ≤ h(t(z)) ≤ hµ(t(z)) + β1µ (68)

tµ(z) ≤ t(z) ≤ tµ(z) + β2µ. (69)

Since h(•) is a nondecreasing function,

hµ(tµ(z)) ≤ hµ(t(z)) ≤ hµ(tµ(z) + β2µ) (hµ non-dec., (69))

h(t(z)) ≤ h(tµ(z) + β2µ) ((69), h nondec.)

hµ(tµ(z)) ≤ hµ(t(z))

≤ h(t(z)) (From (68))

≤ hµ(t(z)) + β1µ (From (68))

≤ hµ(tµ(z) + β2µ) + β1µ. (From (69))

Since hµ is a convex and positive function, for κ ∈ [0, 1], we have the following by the mean-value
theorem.

hµ(tµ(z) + β2µ) = hµ(tµ(z)) + h′µ(tµ(z) + κβ2µ)β2µ.

Since h′µ(tµ(z) + κβµ) ≤ C1, it follows that

hµ(tµ(z) + β2µ) ≤ hµ(tµ(z)) + C1βµ,

implying that

hµ(tµ(z)) ≤ h(t(z)) ≤ hµ(tµ(x)) + (β1 + C1β2)︸ ︷︷ ︸
,β

µ. (70)

From (67) and (70), h(t(z)) is (α, β)-smoothable.

3.5.4 Smoothing r(z, ω)

Since r(z, ω) is a consequence of a composition of a nonsmooth function (specifically the max
function) on an affine translation of another nonsmooth function (specifically the recourse function
Q(•, ω)), we may utilize the results from the prior subsection. Specifically, let t(z, ω) , Q(x, ω)−m,
where z = (g, θ,m). Furthermore, suppose h(u) = [u]+.
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Lemma 20. Consider the functions t(z, ω) = Q(x, ω) and h(u) = [u]+. Then the following hold.

(i) The function hµ(u) = µ log(e
u
µ + 1) represents a (1, log(2)) smoothing of h and 0 ≤ h′(u) ≤ 1

for all u.
(ii) The function t(z, ω) = Q(x, ω)−m is a convex (α2, β2)-smoothable function and ‖∇zt(z, ω)‖ ≤
C2 for all ω.

Proof. (i) Follows immediately from [97] and Lemma 18.

(ii) Since Qµ(x, ω) is (α2(ω), β2(ω))-smoothable, we have that Qµ(x, ω)−m satisfies the following
for any x.

Qµ(x, ω)−m ≤ Q(x, ω)−m ≤ Qµ(x, ω)−m+ β2(ω)µ. (71)

In addition, we have that

‖∇zr(z1, ω)−∇zr(z2, ω)‖ =

∥∥∥∥∥∥
 ∇g(Qµ(x1, ω)−m)−∇g(Qµ(x2, ω)−m)
∇θ(Qµ(x1, ω)−m)−∇θ(Qµ(x2, ω)−m)
∇m(Qµ(x1, ω)−m)−∇m(Qµ(x2, ω)−m)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∇gQµ(x1, ω)−∇gQµ(x2, ω)

0
0

∥∥∥∥∥∥
≤ α2(ω)

µ
‖g1 − g2‖ ≤

α2(ω)

µ
‖z1 − z2‖.

Finally, it is relatively easy to see that

‖∇zt(z, ω)‖ =

∥∥∥∥(∇xQµ(x, ω)
−1

)∥∥∥∥ ≤ ‖∇xQµ(x, ω)‖+ 1 ≤ C(ω) + 1,

for all x where the last inequality follows from observing that

‖∇xQµ(x, ω)‖ = ‖ − T Tω πω‖ ≤ ‖Tω‖

(
d̄

c̄
+ µ̄

(
d̄

c̄

)2
)
.

We may now claim the smoothability of r(z, ω).

Proposition 5. Suppose Assumption 8 holds. Consider function r(z, ω) defined in (55). Then
r(z, ω) is a convex and (α, β)-smoothable function.

Proof. From Lemma 20, we have that h(u),t(z, ω) satisfy the requirement of Lemma 19. Following
Lemma 19 we have that r(z, ω) = h(t(z, ω)) is (α, β)-smoothable.

We may then define the smoothed approximation of r(z, ω) as follows.

rµ(z, ω) , m+
µ log

(
exp

(
Qµ(x,ω)−m

µ

)
+1
)
−µ log(2)

1−τ . (72)
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As a consequence, we have that

∇zrµ(z, ω) =


1

1−τ

(
e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ +1

)
∇Qµ(x, ω)

0

1− 1
1−τ

(
e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ +1

)
 . (73)

We know Qµ(x, ω) is (α, β)-smooth approximation of Q(x, ω). Thus, rµ(z,m) is a smooth approx-
imation of r(z,m) with its gradients Lipschitz constant µ.

3.6 A variance-reduced smoothed accelerated scheme for two-stage risk-averse
problems

While the prior section has analyzed the smoothing of the risk-adjusted recourse function, in this
section, we utilize a variance-reduced smoothed accelerated scheme for such a class of problems.
In Section 3.6.1, we provide a brief review of decomposition and Monte-Carlo sampling techniques
for resolving two-stage stochastic convex problems, possibly complicated by risk-aversion. In Sec-
tion 3.6.5, we introduce a recently developed variance-reduced smoothed accelerated scheme and
show how it may be extended to contend with risk-averse regimes. Finally, in Section 3.6.6, we
review the convergence statements inherited from this scheme.

3.6.1 A review of Monte-Carlo sampling schemes for 2-stage programs

Traditionally, schemes for resolving two-stage stochastic programs have differed based on whether
the sample-space of the second-stage problem is finite or infinite. In the case of the former, decom-
position techniques have proven useful in developing techniques that scale with the cardinality of
Ω. Amongst the earliest of these was the L-shaped method [99] while augmented Lagrangian [100]
and splitting methods [101] have also been utilized. A more comprehensive review of decomposition
schemes can be found in [102]. When the sample-space is infinite, these avenues cannot be adopted
and one has to resort to Monte-Carlo sampling schemes. We review three avenues for resolving
such problems.

3.6.2 Stochastic cutting plane methods

Stochastic decomposition (SD) techniques decompose the stochastic elements of a problem from
deterministic data, combining successive approximation methods from mathematical programming
with sampling approaches. Unlike other sampling methods, SD leverages the special structure of
linear programming problems. When the second-stage problems are linear, this implies that the
second-stage recourse function is a piece-wise linear function. Cutting-plane techniques originate
from the work by Kelley [103] in which the following algorithm was proposed to solve the following
convex problem.

min
x∈X

cTx+Q(x), (74)

where Q(·) is a convex function and X is a compact, convex, and nonempty set. The basic idea of
cutting plane algorithm is as below: Such avenues have been extended to accommodate two-stage
stochastic linear programs by Van Slyke and Wets [99] but only allow for finite sample-spaces . To
accommodate general sample-spaces, the stochastic decomposition (SD) scheme was proposed by
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Algorithm 3 Cutting-plane scheme

1: initialization: x1, k = 0, `0(x) = −∞, u0 = cTx1 + f(x1) and l0 = −∞;
2: while uk − lk > 0 do
3: k = k + 1. Find (αk, βk) such that

Q(xk) = αk + βkx
k

Q(x) ≥ αk + βkx ∀x ∈ X

4: Update uk = min{uk−1, c
Txk +Q(xk)}, `k(x) = max{`k−1(x), αk + βkx}.

5: Update lk = minx∈X{cTx+ `k(x)} where xk+1 is a solution to (74).
6: end while
7: x∗ = xk+1

8: return x∗

Higle and Sen [104] in 1991. Consider the problem (74) where Q(x) , E[Q(x, ω)], where Q(x, ω) is
an optimal value of

max
π

{
(hω − Tωx)Tπ |W Tπ ≤ qω

}
. (LP-S2D)

This scheme approximates the recourse function E [Q(x, ω)] through a sequence of piecewise linear
approximations. Within any given major iteration, each piece of the piecewise linear approximation
is derived from a conditionally independent set of observations. As part of the scheme [104], a set
Vk is constructed by solving one subproblem per iteration and dual vector obtained is added to this
set. Formally, the update of Vk is defined as follows.

Vk := Vk−1 ∪ πkωk ,

where πk
ωk

is a solution to the following problem:

max [hωk − Tωkxk]Tπ
subject to W Tπ ≤ qωk .

Akin to the cutting plane scheme, we may obtain the piecewise linear outer-approximation ηk(x)
for the recourse function with the following form:

ηk(x) := max{αkt + βkt x | t = 1, . . ., k}.

The stochastic decomposition (SD) algorithm is formally defined in Algorithm 5 and further details
can be found from [104].

3.6.3 Sample-average approximation

In sample-average approximation theory (also referred to as exterior sampling), samples are gener-
ated outside of an optimization procedure. Consequently, the resulting sample average approxima-
tion (SAA) problems are solved by deterministic optimization algorithms. One of the advantages
of SAA is that this method separates sampling procedures and optimization techniques. Consider
the following stochastic programming problem:

min
x∈X

f(x), where f(x) , E [F (x, ξ(ω))] , (75)
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Algorithm 4 Stochastic Decomposition Algorithm

1: initialization: k = 0, V0 = ∅, η0(x) = −∞, x1 ∈ X L is given;
2: while iteration k < Kmax do
3: k = k + 1. Randomly generate an observation of ω, ωk, independent of any

previously generated observations;
4: Solve subproblem to get solution πk

ωk

max [hωk − Tωkxk]Tπ
subject to W Tπ ≤ qωk .

5: Update Vk = Vk−1 ∪ πkωk
6: Determine the coefficients of the kth piecewise linear approximation of recourse

function (αk, βk) such that

αkk + βkkx =
1

k

k∑
t=1

πkt (hωt − Tωtx)

where πkt ∈ arg max{πT (hωt − Tωtxk)|π ∈ Vk}
7: Update the coefficients of all previously generated cuts.

αkt =
k − 1

k
αk−1
t +

1

k
L , βkt =

k − 1

k
βk−1
t .

8: Update ηk(x) = max{αkt + βkt x | t = 1, . . ., k}.
9: Solve minx∈X{cTx+ ηk(x)} where xk+1 is the solution to this problem.

10: end while
11: x∗ = xk+1

12: return x∗
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X ⊆ Rn is a closed and convex set, ξ : Ω→ Rd is a random vector, and the associated probability
space is denoted by (Ω,F ,P). Unless stated otherwise, the expectation is assumed to be well-defined
and finite valued for all x ∈ X, which implies for every x ∈ X the value of F (x, ω) for every ω ∈ Ω
is finite. Suppose we have a sample ω1, . . . , ωN of N realizations of the random vector ω. This
sample is generated by Monte Carlo sampling and for any x ∈ X, we estimate the expected value
f(x) by the sample-average fN (x) , 1

N

∑N
j=1 F (x, ωj) by averaging values F (x, ωj), j = 1, . . . , N .

The resulting sample average approximation (SAA) of the true problem is defined as follows.

min
x∈X

f̂N (x), where f̂N (x) ,
1

N

N∑
j=1

F (x, ωj).

Note that f̂N (x) can be viewed as the expectation taken with respect to the empirical measure
associated with a probability mass function { 1

N , . . . ,
1
N }. By the law of large numbers (LLN), under

suitable regularity conditions f̂N (x) converges to f(x) pointwise with probability one as N → ∞.
Moreover, by the classical LLN, this convergence holds if the sample is independent and identically
distributed. Much of the research on SAA theory focuses on proving that the estimator for the
optimal value converges to the true value as N →∞ with probability one. Related statements can
be developed for the solution set. In addition, rates of convergence can also be derived for such
schemes.
Consistency of SAA estimators was investigated by tools of epi-convergence analysis by King and
Wets [105] and Robinson [106] while asymptotic of SAA estimators of optimal solutions of stochastic
programs were discussed by King and Rockefeller [107] and Shapiro [108]. A detailed exposition of
recent theoretical findings can be found in [98]. It is worth emphasizing that this avenue is not an
algorithm in the conventional sense but represents an avenue for approximation.

3.6.4 Stochastic approximation methods

Stochastic approximation schemes originate from the seminal paper by Robbins and Monro [109]
while asymptotics can be found in the research by Kushner and Clark [110] and Nevelson and
Hasminskii [111]. Longer step averaging schemes was developed in Polyak [112] and these ideas
were presented in a different form by Nemirovski and Yudin [113]. Stochastic quasi-gradient tech-
niques are closely related to stochastic approximation and early work focused on the solution of
two-stage stochastic linear programs [114]. This avenue saw significant subsequent study by Gaiv-
oronski [115], Wets [116], amongst others. For a given stochastic convex optimization (75) where f
is a differentiable function, given an x0 ∈ X, a standard SA scheme would be based on the following
update rule:

xk+1 := ΠX (xk − ηk(∇xf(xk) + wk)) , k ≥ 0

where wk := ∇xf(xk;ωk)−∇xf(xk) and∇xf(x, ξω) is referred to as∇xf(x, ω). An variable sample-
size stochastic approximation scheme (VSSA) was proposed in [117, 118] in which the sequence
{xk+1} would have the following update rule:

xk+1 := ΠX

(
xk − ηk

∑Nk
j=1∇xf(xk, ξj,k)

Nk

)
, k ≥ 0.

In such a scheme, an increasingly unbiased estimate of the gradient is employed, leading to improved
iteration complexity of the scheme. Following the idea in [117–119], we introduce a variant of this
scheme for solving two-stage stochastic programs in the next section.
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Specifically, in this chapter, we revisit stochastic quasigradient methods which has traditionally
been plagued by the same challenges as stochastic approximation. In particular, the convergence
rate was O( 1√

k
) and the empirical behavior varies significantly with the choice of step length

sequence. In [120], we introduce three key modifications to the standard stochastic approximation
framework by (i) utilizing a two-step accelerated scheme, (ii) incorporating a smoothing of the
recourse function by regularizing the second-stage dual; (iii) and leveraging variance reduction. We
develop a foundation to allow for applying this framework to risk-averse two-stage problems which
allows for recovering the optimal rate of O(1/k). Next, we describe this scheme.

3.6.5 Variance-reduced smoothed accelerated scheme

We now introduce the variable sample-size accelerated proximal method (VS-APM) first presented
in [120] and apply it to (r-ED).

min
z∈Z

E[h(z, ω)], where h(z, ω) , (c(z) + r(z, ω)). (r-ED)

This framework incorporates three aspects in extending standard stochastic approximation schemes.

(i) Smoothing. The first change from standard stochastic approximation schemes lies in utilizing
the gradient of a smoothed objective, where the smoothing parameter sequence is driven to
zero. The resulting scheme can be formalized as follows, given a z0 ∈ Z.

zk+1 := ΠZ [zk − γk(∇zhµk(zk) + wk)] , k ≥ 0. (76)

In contrast with standard stochastic approximation, we employ the sampled gradient∇zhµk(zk)+
wk where ∇zhµk(zk) + wk = ∇zc(zk) +∇zrµk(zk, ωk).

(ii) Variance-reduction. In traditional stochastic approximation schemes, a single sample∇zrµk(zk, ωk)
or a fixed batch-size of samples is utilized. However, such avenues lead to biased gradients
(where the conditional bias does not diminish to zero). Instead, we propose a variance-reduced
scheme given by the following.

zk+1 := ΠZ [zk − γk(∇zhµk(zk) + w̄k)] , k ≥ 0 (77)

where ∇zhµk(zk) + w̄k =
∑Nk
j=1∇zc(zk)+∇zrµk (zk,ωj,k):

Nk
. In fact, the conditional bias of the gra-

dients diminishes to zero and this scheme starts mimicking an inexact gradient scheme.

(iii) Acceleration. Finally, we introduce an accelerated scheme by utilizing the following two-step
rule.

ζk+1 := ΠZ [zk − γk(∇zhµk(zk) + w̄k)] , k ≥ 0 (78)

zk+1 := (1 + αk)ζk+1 − αkζk, k ≥ 0. (79)

Note that αk are prescribed sequences and this avenue was first suggested for solving convex
programs with differentiable objectives by Nesterov [?]. The resulting accelerated scheme
improved the convergence rate from O(1/k) to O(1/k2). Similar benefits are expected to
accrue here when step length sequences, smoothing sequences, and sample-size sequences
are chosen appropriately. Collectively, this scheme is referred to as a variable sample-size
accelerated proximal scheme (VSAPM) [120].

49



Algorithm 5 VS-APM for two-stage risk-based ED

1: initialization: λ1 = 1, γ0,y0 = z1,M0 = 0, Nk = 1, k = 1;
2: while k < K do
3: Generate Nk samples and compute ∇µkh(zk, ω1,k), . . . ,∇µkh(zk, ωNk,k).
4: Update

yk+1 := ΠZ

[
xk − ηk

∑Nk
j=1∇µkh(zk, ωj,k)

Nk

]
. (80)

5: λk+1 :=
1+
√

1+4λ2
k

2 ; γk := λk−1
λk+1

,

6: Update

zk+1 := (1 + γk)yk+1 − γkyk). (81)

7: Update k := k + 1, Nk and µk.
8: end while
9: return zK .

The scheme is formally stated in Algorithm 5. It may be recalled that

rµ(z, ω) = m+
1

1− τ
µ

[
log

(
e
Qµ(x,ω)−m

µ + 1

)]
, (82)

where z = (z,m). Furthermore, the gradient ∇zrµ(z, ω) is defined as follows.

∇xrµ(z, ω) =

(
1

1− τ

) e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ + 1

∇Qµ(x, ω),

∇mrµ(z, ω) = 1−
(

1

1− τ

) e
Qµ(x,ω)−m

µ

e
Qµ(x,ω)−m

µ + 1

 , (83)

where∇xQµk(xk, ωk) = −T (ωk)
Tπ(xk, ωk) and π(xk, ωk) is a solution of the smoothed second-stage

dual problem (D-Qµ(x, ωj,k)).

3.6.6 Convergence theory

We now recall the two main assumptions for claiming convergence from (VS-APM) from [120]. Of
these, the first requires that the objective of the original problem is indeed smoothable and the
distance of the initial iterate to an optimal solution can be bounded.

Assumption 9. (i) The function E[r(z, ω)] is (α, β) smoothable; (ii) There exists a C such that
‖z1 − z∗‖2 where z∗ is a solution to the original problem.

Next, we require that the noise sequence w̄k, defined as follows.

w̄k , ∇zr̂µk(zk)−∇zr̄µk(zk), where ∇zr̂µk(zk) ,

∑Nk
j=1∇zrµk(zk, ωj,k)

Nk
. (84)
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Assumption 10. Consider the sequence {w̄k} where w̄k is defined as (84). Then there exists a

scalar ν > 0, such that E[‖w̄k‖2 | Fk] ≤ ν2

Nk
and E[w̄k | Fk] = 0 holds almost surely for all k, where

Fk , σ{z0, z1, ..., zk−1}.

We may now formally state the convergence statement from [120].

Proposition 6. Consider the sequence {zk} generated from (sVS-APM) where µk = 1/k, ηk =
1/2k, and Nk = bkac, where a > 1. Suppose Assumption 9 and 10 hold. Then the following hold.

(i) If C̄ , 2ν2a
a−1 + 4C2 +B2, then the following holds for K ≥ 1.

E[h(zk, ωk)]− E[h(z∗, ω)] ≤ C̄

K
. (85)

(ii) Let ε ≤ C̄/2 and K is such that E[h(zk, ωk)]− E[h(z∗, ω)] ≤ ε. Then
∑K

k=1Nk ≤ O( 1
ε1+a ).

We now provide some results that allows us to claim that such Prop. 6 can be invoked.

Lemma 21. Consider the noise sequence w̄k defined in (84). Then this sequence satisfies the

following: (i) E[w̄k | Fk] = 0 a.s. for every k ≥ 1; (ii) E[w̄k | Fk] ≤ ν2

Nk
a.s. for every k ≥ 1.

Proof. (i) Recall that rµ(z) = E[rµ(z, ω)]. Since rµ(z, ω) is a continuously differentiable convex
function in z for every ω, it follows that we may interchange derivatives and expectations in claiming
that ∇zrµ(z) = E[∇zrµ(z, ω)] (cf. [98, Theorem 7.44]). Consequently, if zk is adapted to Fk and
w̄k is defined as (84), it follows that E[w̄k | Fk] = 0 in an a.s. sense.
(ii) Next, we note that w̄k is a sample-average of a set of i.i.d random variables with mean zero.
Consequently, if E[‖wi‖2 | Fk] ≤ ν2 for i = 1, . . . , Nk in an a.s. fashion, it follows that E[‖w̄k‖2 |
Fk] ≤ ν2

Nk
in a.s. sense. It remains to show that E[‖wi‖2 | Fk] ≤ ν2 a.s. .

E
[
‖∇zrµk(zk, ωk)− E[∇zrµk(zk, ω)]‖2

]
≤ E

[
‖∇zrµk(zk, ωk)‖2

]
= E

[
‖∇xrµk(zk, ωk)‖2

]
+ E

[
‖∇mrµk(zk, ωk)‖2

]
= E


∥∥∥∥∥∥ 1

1− τ

eQµk (xk,ωj,k)−mk
µk ∇Qµk(xk, ωj,k)

e
Qµk (xk,ωj,k)−mk

µk + 1

∥∥∥∥∥∥
2


+ E


∥∥∥∥∥∥
1− 1

1− τ

 e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1

∥∥∥∥∥∥
2
 .

We observe that the first term can be bounded as follows.

E


∥∥∥∥∥∥ 1

1− τ

eQµk (xk,ωj,k)−mk
µk ∇Qµk(xk, ωj,k)

e
Qµk (xk,ωj,k)−mk

µk + 1

∥∥∥∥∥∥
2


= E

( 1
(1−τ)

)2

∥∥∥∥∥∥
eQµk (xk,ωj,k)−mk

µk ∇Qµk(xk, ωj,k)

e
Qµk (xk,ωj,k)−mk

µk + 1

∥∥∥∥∥∥
2

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≤ E

( 1
(1−τ)

)2

∥∥∥∥∥∥ e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1

∇Qµk(xk, ωj,k)

∥∥∥∥∥∥
2


≤ E
[(

1
(1−τ)

)2
‖∇Qµk(xk, ωj,k)‖2

]
= E

[(
1

(1−τ)

)2
‖ − T Tωj,kπωj,k‖

2

]
≤ E

[(
π̄

(1−τ)

)2
‖Tωj,k‖

2

]
≤ ν2

1 .

The second term can be similarly bounded.

E


∥∥∥∥∥∥
1− 1

1− τ

 e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1

∥∥∥∥∥∥
2


≤ E


∥∥∥∥∥∥
1− 1

1− τ

 e
Qµk (xk,ωj,k)−mk

µk

e
Qµk (xk,ωj,k)−mk

µk + 1

∥∥∥∥∥∥
2


≤ (2 +
2

(1− τ)2
) , ν2

2 .

It follows that E[‖wi‖2 | Fk] ≤ ν2 = ν2
1 + ν2

2 .

3.7 Numerical Studies

In this section, we apply our scheme to the resolution of two-stage stochastic economic dispatch
problems to two sets of problems. In Section 3.7.1, we review the model for generation of wind real-
izations and compare our scheme with the stochastic decomposition and stochastic quasi-gradient
counterparts in Section 3.7.2 based on an IEEE 118-bus system which contains 19 generators, 35
synchronous condensers, 177 lines, 9 transformers, and 91 loads. The impact of risk is examined
in Section 3.7.3. Finally, we conclude the section by examining the performance of this scheme on
test problems sourced from ARPA-E’s Grid Optimization competition.

3.7.1 Autoregressive Moving Average Model

In this subsection, we review the statistical model employed for developing wind forecasts and gen-
erating demand scenarios. A review of multi area wind speed and wind power scenario generation
methods has been provided in [121]. It is worth noting that ARMA techniques have been used in
developing stochastic optimization schemes for power system dispatch [122]. Our focus is on au-
toregressive moving average (ARMA) models and use data from ERCOT’s hourly wind generation
during 2009, 2010, and 2011 to test the resulting models. In an ARMA model [123], wind speed yt
in period t consists of the weighted sum of past observations and a weighted sum of independent
shocks defined as follows:

ARMA(p, q) : yt = µ0 +

p∑
j=1

φjyt−j +

q∑
k=1

θkεt−k + εt.
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Figure 6: ARMA: Test data v.s. prediction

where yt−1, . . . , yt−p represent past observations (AR) while εt−1, . . . , εt−q are past innovations
(MA). All of εts are identical and independent centered Gaussian variables (white noise processes).
By solving the Yule-Walker equations, the coefficients φjs and θks can be estimated. As wind speed
over large geographical area is generally believed to follow a Weibull distribution [124], there is a
need of a normalization transformation given by y = N−1 [F (w)] , where w denotes the time series
representing the wind generation data, F denotes the cumulative distribution function (CDF) of
the Weibull distribution associated with the stochastic process, and N denotes the standard normal
CDF. Our preliminary tests are captured in Figure 6 where six sets of predictions are provided with
95% confidence intervals.

3.7.2 Performance comparison for stochastic economic dispatch

We now compare the performance of the proposed VS-APM scheme with stochastic decomposition
and standard stochastic quasi-gradient on an IEEE 118-bus system with 19 generators, 35 syn-
chronous condensers, 177 lines, 9 transformers, and 91 loads. All experiments were implemented
in Matlab R2017a with cplex employed for solving LPs and QPs.
We begin by comparing VS-APM with stochastic decomposition in a setting where the simulation
budget is 1000. In Table 9, we compare the behavior of (VS-APM) with SD on 10 problem instances.
We observe that (VS-APM) takes less than 1% of the time taken by SD while producing similar
objective values. This difference is because (SD) is contending with increasingly larger first-stage
problems with (VS-APM) does not have this challenge. Note that the objective value is generated
by re-sampling with 20 scenarios. A comparison with standard stochastic gradient provided in
Table 10 reveals similar benefits in terms of computational time. In this instance, the key benefit lies
in taking far less first-stage projection steps, a consequence of utilizing variance reduced schemes.

3.7.3 Risk-based Economic Dispatch

We now consider the risk-based model in settings where the variance of demand is raised from 10
to 50 in steps of 10 while wind penetration is raised from 10% to 30%. We compare the risk-neutral
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|Ω| Iter SD SD mean Time SD Iter VSAPM VSAPM mean ObjDiff Time VSAPM TimeDiff
1000 1000 1.24E+04 4.14E+03 136 1.22E+04 -1.46% 3.06E+01 0.74%
1000 1000 3.49E+04 3.84E+03 136 3.55E+04 1.83% 2.75E+01 0.71%
1000 1000 7.12E+04 3.90E+03 136 7.16E+04 0.61% 2.89E+01 0.74%
1000 1000 1.11E+04 4.10E+03 136 1.10E+04 -0.50% 2.95E+01 0.72%
1000 1000 3.39E+04 4.35E+03 136 3.42E+04 0.88% 2.78E+01 0.64%
1000 1000 7.15E+04 4.25E+03 136 6.99E+04 -2.22% 2.79E+01 0.66%
1000 1000 1.05E+04 3.83E+03 136 1.02E+04 -1.94% 2.88E+01 0.75%
1000 1000 3.32E+04 3.82E+03 136 3.32E+04 0.07% 2.78E+01 0.73%
1000 1000 6.83E+04 3.82E+03 136 6.83E+04 -0.06% 2.86E+01 0.75%
1000 1000 1.04E+04 3.83E+03 136 1.02E+04 -2.38% 2.82E+01 0.74%

Table 9: VS-APM and SD

Iter SA mean Iter V mean Diff Iter V mean Diff
1000 1.24E+04 65 1.22E+04 -1.54% 136 1.22E+04 -1.58%
1000 3.51E+04 65 3.64E+04 3.67% 136 3.55E+04 1.19%
1000 7.16E+04 65 7.36E+04 2.77% 136 7.16E+04 -0.05%
1000 1.12E+04 65 1.10E+04 -1.73% 136 1.10E+04 -1.73%
1000 3.39E+04 65 3.50E+04 3.19% 136 3.42E+04 0.98%
1000 6.99E+04 65 7.16E+04 2.48% 136 6.99E+04 -0.03%
1000 1.04E+04 65 1.02E+04 -1.61% 136 1.02E+04 -1.56%
1000 3.31E+04 65 3.39E+04 2.40% 136 3.32E+04 0.44%
1000 6.83E+04 65 7.00E+04 2.48% 136 6.83E+04 -0.03%
1000 1.03E+04 65 1.02E+04 -1.52% 136 1.02E+04 -1.49%
1000 3.27E+04 65 3.33E+04 1.76% 136 3.28E+04 0.30%
1000 6.69E+04 65 6.86E+04 2.45% 136 6.70E+04 0.09%
1000 1.21E+04 65 1.21E+04 -0.09% 136 1.21E+04 -0.54%
1000 3.26E+04 65 3.33E+04 2.04% 136 3.28E+04 0.63%

Table 10: VS-APM and SA

solution with the risk-averse solution in Table 11 where τ = 0.2. It is observed that the conditional
value of risk increases as variance in demand grows. In addition, we note that the CVaR associated
with the risk-neutral solution (CVaR Mean) is significantly higher than that with the risk-averse
solution (CVAR rED). In effect, solving a risk-neutral model leads to higher risk exposure. We also
observe that the value of the stochastic solution (VSS CVaR) increases as σ and wind penetration
levels grow. We conduct further tests on IEEE test networks from MATPOWER and find that

omega av wind per sigma fv Mean fv sED VSS CVaR Mean CVaR rED VSS CVaR
1000 0.2 1 5.68E+04 3.51E+04 2.18E+04 8.09E+04 5.31E+04 2.78E+04
1000 0.3 1 1.03E+05 7.08E+04 3.19E+04 1.45E+05 1.06E+05 3.86E+04
1000 0.4 1 1.58E+05 1.09E+05 4.84E+04 2.17E+05 1.63E+05 5.41E+04
1000 0.2 10 5.70E+04 3.54E+04 2.16E+04 8.45E+04 5.74E+04 2.71E+04
1000 0.3 10 1.03E+05 7.08E+04 3.20E+04 1.49E+05 1.08E+05 4.10E+04
1000 0.4 10 1.58E+05 1.09E+05 4.83E+04 2.20E+05 1.65E+05 5.46E+04
1000 0.2 20 5.77E+04 3.63E+04 2.14E+04 9.62E+04 7.05E+04 2.58E+04
1000 0.3 20 1.03E+05 7.09E+04 3.25E+04 1.61E+05 1.20E+05 4.03E+04
1000 0.4 20 1.58E+05 1.09E+05 4.84E+04 2.35E+05 1.77E+05 5.81E+04
1000 0.2 30 5.90E+04 3.75E+04 2.15E+04 1.14E+05 8.54E+04 2.86E+04
1000 0.3 30 1.04E+05 7.12E+04 3.31E+04 1.79E+05 1.35E+05 4.36E+04
1000 0.4 30 1.58E+05 1.09E+05 4.86E+04 2.52E+05 1.92E+05 6.04E+04
1000 0.2 50 6.33E+04 4.08E+04 2.24E+04 1.51E+05 1.18E+05 3.26E+04
1000 0.3 50 1.07E+05 7.28E+04 3.45E+04 2.20E+05 1.73E+05 4.68E+04
1000 0.4 50 1.60E+05 1.10E+05 4.94E+04 2.94E+05 2.28E+05 6.63E+04

Table 11: Value of Stochastic Solution

risk-neutral solutions lead to higher risk exposure than risk-averse solutions (see Table 12).
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Mean Cost Two-stage Cost Risk Cost Mean worst 20% Two-stage worst 20% Risk worst 20%
IEEE118B 59533.26729 44793.66107 59530.76254 268179.7149 268179.1903 198998.0665
IEEE145 46916705.35 46851098.4 46853310.19 212284415.2 212077890.7 212070666.7

IEEE300A 47577079.24 39356294.75 39689745.57 64922699.66 56087603.98 55719991.89
IEEE300B 87018479.75 70139581.54 70877282.34 97323306.35 79622883.48 78862567.52
IEEE300C 86642730.74 69798253.99 70560254.99 89515610.86 73364330.13 72596519.46

Table 12: Comparison across different networks

We further examine the impact of variance for the IEEE 300 bus system where demand is assumed
to follow a non-normal (beta) distribution. We note that the risk exposure grows as the variance
increases and risk-averse models are able to better manage this exposure.

Mean Cost Two Stage Cost Risk Cost Mean worst 20% Two Stage worst 20% Risk worst 20% Variance
86644497.45 69773646.04 70537357.47 89044111.67 72892328.35 72123658.01 0.00507185
86886563.58 70095760.05 70834083.12 92983380.85 76200148.71 75475844.68 0.01984127
87601203.2 70675269.16 71397447.66 98226025.94 80316099.73 79545661.2 0.0375
90436594.28 73754429.32 74431960.72 111269137.4 93425043.78 92685828.32 0.06857143

Table 13: Changing variance on IEEE 300 system

3.7.4 Case study: ARPA-E Network

ARPA-E networks are networks that been put in use of Grid Optimization (GO) Competition.
The goal is have a real-time matching of instantaneous electricity generation and demand, which
requires utilities, grid operators, and other stakeholders to use a variety of sophisticated software
operating across a wide range of timescales.
One test network among those was chosen and modified to be tested on. The numeric test is
conducted on ARPA-E ”Original Dataset Real-Time Network 01-10R”. This network contains
500 buses, with 90 generators, 468 branches, 262 transformers and 371 contingencies with each
contingency represents one generator failure or an branch or transformer failure. The original
network is for ACOPF Some necessary modifications are made to conduct DCOPF experiment.
DCOPF is an relaxation to original thus in order to tighten constraints to introduce recourse to
second stage, loads are modified to double loads.

Mean Cost Risk Cost Two-stage Cost Mean Risk Risk Risk Two-stage Risk Samples
187878.701 187878.701 187878.701 245966.5256 245966.5256 245966.5256 0
187878.701 176647.6331 173831.485 245966.5256 200140.8446 205645.2917 7967
187878.701 176645.5224 173831.4252 245966.5256 200140.6522 205635.3819 7968
187878.701 176486.4437 173829.7477 245966.5256 200132.5389 205285.9083 15934
187878.701 176487.8997 173829.7249 245966.5256 200132.4342 205294.8453 15935
187878.701 176747.7048 173828.9865 245966.5256 200128.5912 207123.1018 23901
187878.701 176778.0333 173828.9672 245966.5256 200128.5051 207307.6371 23902
187878.701 176723.3841 173828.4069 245966.5256 200125.7028 206871.7545 31868
187878.701 176723.4163 173828.3928 245966.5256 200125.6382 206871.9366 31869
187878.701 176735.4956 173828.1031 245966.5256 200124.0864 206818.1594 39835
187878.701 176735.5698 173828.0869 245966.5256 200124.0095 206818.7758 39836

Table 14: ARPA-E network

Comparing against mean value solution, we can find stochastic solution provides better average
performance in terms of overall cost of both pre-contingency and post contingency. With mean value
solution gets final average cost of 187878.70, risk-based model get 176735.57 and standard two-stage
model gets 173828.09, it shows that both risk-based model and standard two-stage model can reduce
expected cost but in terms of average cost standard two-stage model perform best. However, when
considering worst 20% scenarios, with mean value solution gets final risk of 245966.53, risk-based
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model get 200124.01 and standard two-stage model gets 206818.78, it shows that both risk-based
model and standard two-stage model can reduce risk but risk-based model perform best.
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4 Mixed-integer nonlinear stochastic optimization

We consider the following two-stage stochastic program with integers in first and second stages7,
defined as follows.

min
x∈S

f(x) + E[Q(x, ω)]

subject to x ≤ x ≤ x̄
x ∈ Rn1−p1

+ × Zp1
+ ,

(SNIP)

where Q(x, ω) is the optimal value of the second-stage problem, defined as

min
y

q(y, ω)

subject to W (y, ω) + T (x, ω) �C 0

y ≤ y ≤ ȳ
y ∈ Rn2−p2

+ × Zp2
+ .

((Sub(x, ω)))

Above, n1, n2, p1, p2 are nonnegative integers with p1 ≤ n1 and p2 ≤ n2, x represents the first-
stage decisions and y represents the second-stage decisions, and ω represents the uncertain data
for the second-stage with known distribution. S ⊂ Rn1 is a convex set and f : Rn1 → R is a
convex function. q : Rn2 × Ω → R is a convex function, W = (w1, . . . , wl) : Rn2 × Ω → Rl,
T = (t1, . . . , tl) : Rn1 × Ω→ Rl and C ⊂ Rl is a closed convex cone. Furthermore, we assume that
both f is convex and q(•, ω) is convex for every ω ∈ Ω.

4.1 Literature review

A variety of applications in energy planning [125], manufacturing [126] logistics [127], etc. can be
formulated as two-stage stochastic integer programs. In general, stochastic integer programming
problems combine the difficulty of stochastic programming with integer programming. We first
briefly review some important progress in theory and algorithms for solving the two-stage SIP.
(a) Evaluating the expected second-stage cost for a fixed first-stage decision. If the distribution of

the uncertain parameters is continuous or the number of possible realizations is extremely large,
then it is generally impossible to evaluate E[Q(x, ω)] exactly. In this case, one possible solution to
resort to approximating the underlying probability distribution by a manageable distribution. If
the underlying distribution is continuous one may approximate it via discretization (see [128,129]).
Another way is using statistical estimates of the expected value function via Monte Carlo sampling
which has two kinds of methods. In interior sampling approaches, the estimation of E[Q(x, ω)] is
carried within the algorithm used to optimize this function [130]. In exterior sampling approaches,
the sampling and optimization are decoupled. A Monte Carlo sample of the uncertain parameters is
generated, and the expectation objective in the problem is replaced by a sample average [131,132].
An evaluation of the expected second-stage objective value requires solving many similar integer
programs. When the second-stage variables are pure integer, several proposals which leverage
Groebner basis and other test set based methods from computational algebra for exploiting IP
problem similarity have been considered in [133–135]. For the case of mixed-integer subproblems,
if a cutting plane method is used, then under some conditions it is possible to transform a cut (or a

7This section has been adapted from a working paper with Shisheng Cui and the PI as well as the Ph.D. Dissertation
by Wendian Wan (advised by PI), titled “Algorithms for Operation of Power Systems: Risk, Uncertainty, Discreteness,
and Nonconvexity.”
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valid inequality) derived for one of the second-stage subproblems into a cut for another subproblem
by exploiting similarity [136,137].

(b) Optimizing the expected second-stage cost. Much of the development in SIP has been towards

the difficulty of optimizing f(x) := cTx+ E[Q(x, ω)]. We consider the following classifications.

(i) Convex approximations of the value function. There are results for constructing convex ap-
proximations of general integer recourse functions (SIPs involving pure integer second-stage
variables) by perturbing the underlying distribution have been obtained [138]. These convex
approximating functions are amenable for optimization and can be used to provide strong
lower bounds within some of the algorithms for optimizing f(x).

(ii) Stage-wise decomposition algorithms. This class of algorithms adopt the natural viewpoint of
optimizing the objective function f(x) := cTx+ E[Q(x, ω)] over the set of feasible first-stage
decisions (say denoted by X). For SIPs with binary first-stage variables and mixed-integer
second-stage variables, the integer L-shaped method [139] is widely used. Using disjunctive
programming techniques, it is possible to derive cuts from the solutions [137, 140]. For SIPs
where the first-stage variables are not necessarily all binary, dual functions from the second-
stage integer program can, in principle, be used to construct cuts to build the approximation
[141]. If the second-stage variables are pure integer (and the first-stage variables are mixed-
integer), then it can be shown that E[Q(x, ω)] is piece-wise constant over subsets that form a
partitioning of the feasible region of x [134]. By exploiting certain monotonicity properties, the
subsets can be enumerated efficiently within a branch-and-bound strategy [142]. Additional
properties of the MIP value function Q(x, ω), such as sub-additivity, can be used to improve
the method [143].

(iii) Scenario-wise decomposition. Copies of the first-stage variable are introduced for each scenario
as the non-anticipativity constraint. Consider the Lagrangian dual problem obtained by
relaxing the non-anticipativity constraints through the introduction of Lagrange multipliers.
For a given set of multipliers, the problem is separable by scenarios, thus the dual function can
be evaluated in a decomposed manner. Optimization of the dual function can be performed
using standard non-smooth optimization techniques. However, owing to the non-convexities,
there exists a duality gap, and one needs to resort to a branch-and-bound strategy to prove
optimality [144].

(iv) Cuts for deterministic equivalent MIP. If the number of scenarios (assuming a finite distribu-
tion setting) is not astronomical then a possible approach is to directly solve the deterministic
equivalent MIP, using a solver such as CPLEX or EXPRESS. One of the most important fea-
tures of these solvers is the generation of cutting planes. In a stochastic integer program the
constraint system is repeated with small changes for each scenario. Thus it is possible to
effectively combine cuts from multiple rows corresponding to different scenarios [145]. Such
cuts have been shown to significantly improve performance over single row cuts. An open
issue is that such multi-row cuts links second stage variables across multiple scenarios, and
hence destroys decomposability.

Since a key factor for solving two-stage SIP is solving the integer programming problem, we briefly
review the two basic ideas.

(i) Cut based methods (branch-and-cut/benders). The basic idea is first solving a relaxation of
the problem where some constraints are ignored or replaced with less stringent constraints.
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This gives a lower bound on the true optimal value. If the relaxation solution is feasible,
it is optimal. Otherwise, divide the feasible region (branch) and repeat. The total running
time is related to two factors, time to process a node and number of nodes. Both can be
very important. For very large instances (as in stochastic programming), solving a single
relaxation can be too time-consuming. Number of nodes can grow exponentially in number
of decision variables if do not prune often enough. Thus, it needs solving relaxations fast
and obtaining strong relaxations so that can prune high in tree. We consider branch-and-cut
to reduce number of nodes to explore with improved relaxation bounds and add inequalities
required to define feasible region. This approach is the heart of all modern MIP solvers. Its
basic idea includes solving current LP relaxation, attempting to generate valid inequalities
that cut off the relaxed solution and if cuts found, adding to LP relaxation and repeat. There
are two general approaches for SMIP with continuous recourse: benders with MIP master
problem; branch-and-cut adding Benders cuts (and others) in tree. When we have mixed
binary variables in the second-stage only, we can refer to [146] (lift-and-project cuts), [147]
(reformulation linearization technique) and [148] (disjunctive cuts from branch-and-cut tree).

(ii) Lagrangian relaxation based methods (dual decomposition). The idea for these methods is cre-
ating copies of the first-stage decision variables for each scenario by adding nonanticipativity
constraints. Then we relax these constraints using Lagrangian relaxation with dual vectors
and each subproblem is a deterministic mixed-integer program. We could leverage subgradi-
ent algorithm to solve but it’s slow in practice and very sensitive to step-size choices. Cutting
plane algorithm with bundle-regularization techniques has good performance (see [149–153]).
The general idea is adding objective term or constraint to encourage/require RMP solutions
to not move “too far” in consecutive iterations. An elegant algorithm named progressive hedg-
ing [154] is used for solving primal and dual for convex stochastic programs, which is equivalent
to alternating direction method of multipliers. It can be applied to solving quadratic MIP
subproblems [155, 156]. If the primal subproblem solutions are not equal when we have (ap-
proximately) solved Lagrangian dual, we have two options: find a heuristic solution or use
dual decomposition [144, 157]. To reduce the number of nonanticiptivity constraints, a sce-
nario bundling approach was proposed [156, 158–160]. The ideas is partitioning the scenario
set and treat scenarios within each “bundle” as a single scenario when doing decomposition.

(iii) Stochastic mixed-integer programs with convex relaxations. For stochastic convex program
with mixed-integer variables, to the best of our knowledge, there are only two related work. In
[161], Li and Grossmann proposed an improved L-shaped method for two-stage convex mixed-
binary nonlinear stochastic programs. They included both Benders cuts and Lagrangean cuts
in the Benders master problem. Although advantages over commercial global solvers were
shown, the convergence guarantee was not presented due to the duality gap of the Lagrangean
cuts and the integrality gap of the strengthened Benders cuts. In their other paper [162], they
proved finite ε-convergence for the same problem by combining Benders decomposition with
branch and bound scheme by constructing the convex hull of the MINLP subproblem for each
scenario in closed-form.

4.2 Proposed scheme

Our scheme first develops a branching scheme applied to the master problem. Under the assump-
tion that this relaxation is convex, we can apply variance-reduced schemes to a regularized problem.
This leads to geometrically convergent sequences allowing us to resolve this subproblem efficiently.
However, this does not suffice since the tree grows in accordance with second-stage discreteness.
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Then we consider developing pruning rules that leverages problem structure across scenarios, thus
we intend to develop more efficient branching schemes. Collectively, this is expected to lead to
branching techniques that can contend with a high degree of nonlinearity. Extensions to this
scheme will allow for nonconvex relaxations.

Throughout, we assume Ω has finite cardinality and define X , Zp1+|Ω|p2
+ ∩ {(x1, y11, . . . , y|Ω|1) :

x1 ≤ x1 ≤ x̄1, yk1
≤ yk1 ≤ ȳk1, ∀k = 1, . . . , |Ω|}, R , R(n1−p1)+|Ω|(n2−p2)

+ ∩ {(x2, y12, . . . , y|Ω|2) :

x2 ≤ x2 ≤ x̄2, yk2
≤ yk2 ≤ ȳk2, ∀k = 1, . . . , |Ω|}, D , {(x, y1, . . . , y|Ω|) | x ∈ S, Wk(yk) + Tk(x) �C

0, ∀k = 1, . . . , |Ω|}. Let z , (x, y1, . . . , y|Ω|). The reason for distinguishing the sets X, R and D is
that we are going to treat X directly, as a simple set. It is noted that in our problem, X is a finite
set. Hence, in short, we consider the following convex program with integer variables:

min
z∈X×R∩D

f(x) +
∑
k

pkqk(yk) := F (z).

We present a computational framework for addressing such a problem by combining the variance-
reduced stochastic approximation (VRSA) with a branching scheme. Notably, this scheme is a
stochastic approximation scheme that combines smoothing, acceleration, and variance reduction.
Such a framework is fairly adaptable and can allow for a broad range of risk-based convex models.
The algorithm can be summarized as follows:

Algorithm 6 VRSA-BB

1: initialization: fu ←∞, fl ← −∞; X0 ← ∅, Y0k ← ∅, ∀k ∈ {1, · · · , |Ω|}; (x∗, y∗)← 0;
2: node list← ∅, candidate list← ∅;
3: Node 0 := (fu, fl, X0, Y0 := (Y0k)

|Ω|
k=1), add node 0 to node list; i← 1; Set number of iterations T ;

4: while node list is not empty do
5: Choose a node n with smallest fnl from node list; fs ←∞, id← 0;
6: Solve the subproblem by VRSA(Xn, Yn, T ), get (fm, (xm, ym)), Xm, Ym;
7: Remove node n from node list;
8: if n ∈ candidate list then
9: Remove node n from candidate list;

10: end if
11: if no available partitions then
12: Set fnl ← fm, fnu ← fm, Xn ← Xm, Yn ← Ym;
13: Add node n to node list;
14: Add node n to candidate list;
15: if fm < fu then
16: (x∗, y∗)← (xm, ym); fu ← fm;
17: end if
18: else
19: if integer constraints are all satisfied then
20: id← 1;
21: end if
22: Choose a variable vm ∈ (xm, ym) to branch; Let am be the value of vm.
23: if vm ∈ xm then
24: Add cut to Xm and generate Xm1 and Xm2, respectively;
25: for w ∈ {1, 2} do
26: Check Xmw feasibility;
27: if feasible then
28: if id = 1 and {xj = am} ⊂ Xmw then
29: Set i← i+ 1, fil ← fm, fiu ← fm, Xi ← Xmw, Yi ← Ym;
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30: Add node i to candidate list;
31: if fm < fu then
32: (x∗, y∗)← (xm, ym); fu ← fm;
33: end if
34: else
35: Set i← i+ 1, fil ← fm, fiu ← fs, Xi ← Xmw, Yi ← Ym;
36: end if
37: Add node i to node list;
38: end if
39: end for
40: else
41: vm ∈ ym, find the corresponding scenario k;
42: Add cut to Ymk and generate Ymk1 and Ymk2, respectively;
43: for w ∈ {1, 2} do
44: Check Ymkw feasibility
45: if feasible then
46: Determine the feasible set of x; Add cut to Xmw;
47: if id = 1 and {yj = am} ⊂ Ymkw then
48: Set i← i+ 1, fil ← fm, fiu ← fm, Xi ← Xmw, Yi ← Ymw;
49: Add node i to candidate list;
50: if fm < fu then
51: (x∗, y∗)← (xm, ym); fu ← fm;
52: end if
53: else
54: Set i← i+ 1, fil ← fm, fiu ← fs, Xi ← Xmw, Yi ← Ymw;
55: end if
56: Add node i to node list;
57: end if
58: end for
59: end if
60: end if
61: Ti ← Ti + 1;
62: end while

Algorithm 7 VRSA(X,Y, T )

1: initialization: γ > 0;
2: Read Xn, Yn, T from node n; Initialize x0;
3: for t ∈ {0, 1, . . . , T − 1} do
4: Nt ←

⌊
at+1

⌋
, a > 1; KNt ← Nt samples from Ω;

5: for k ∈ {1, 2, . . . ,KNt} do
6: Solve second stage problem on Ynk with xt; Return dual solution ztk;
7: end for
8: xt+1 ← ΠXn

(
xt − γ(∇f(xt) + 1

Nt

∑KNt

k=1 (∇Tk(xt−1)T ztk))
)

;

9: end for
10: for k ∈ {1, 2, . . . , |Ω|} do
11: Solve second stage problem on Ynk with xT ; Return primal solution yTk;
12: end for
13: return (f(xT , yT ), (xT , yT )), Xn, Yn;

The key difference between VRSA-BB and the classical branch and bound scheme is that VRSA-BB
employs a stochastic method to solve each continuous relaxation problem. The essential is that the
second stage problem can be divided into many small problems and they can be solved by VRSA
efficiently. To prove the almost sure convergence of VRSA-BB, we need the following preliminary
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knowledge on stochastic branch and bound schemes.
In the branch and bound method the original set X is sequentially subdivided into subsets Xp

generating a partition P of X (or of its part) such that
⋃
Xp∈P X

p = X. Consequently, the original
problem is subdivided into subproblems

min
z∈Xp×R∩D

F (z), Xp ∈ P.

Let F ∗(Xp) denote the optimal value of this subproblem. Clearly, we have the optimal value of the
original problem equals

F ∗(X) = min
Xp∈P

F ∗(Xp).

Before proceeding, we describe the concept of stochastic bounds. First, we need the following two
assumptions.

Assumption 11. There exist functions L : 2X × R → R ∪ {−∞} and U : 2X × R → R ∪ {+∞}
such that for each Xp ⊂ X (for brevity, we use L(Xp) and U(Xp) denote the function value,
respectively),

L(Xp) ≤F ∗(Xp) ≤ U(Xp),

U(Xp) = F (z′) for some z′ ∈ Xp ×R, if U(Xp) < +∞

and if Xp is degenerated into a singleton then

L(Xp) = F ∗(Xp) = U(Xp).

In general, in stochastic problems the bounds L(Xp) and U(Xp) can hardly be computed exactly.
Therefore we can only assume that some statistical estimates of L(Xp) and U(Xp) can be obtained.

Assumption 12. In some probability space (Ω,Σ,P), for each subset Xp ⊂ X, there exist se-
quences of random estimates ξl(Xp, ω), l = 1, 2, . . . , and ηm(Xp, ω), m = 1, 2, . . . , ω ∈ Ω, such
that

lim
l→∞

ξl(Xp, ω) = L(Xp) a.s.,

lim
m→∞

ηm(Xp, ω) = U(Xp) a.s..

Moreover, there exists zPm such that F (zPm) = ηm(Xp, ω) if ηm(Xp, ω) < +∞, for m = 1, 2, . . . ,
ω ∈ Ω.

From now on, for brevity, we skip the argument ω from the random indices l and m, random
partitions P and random sets. Next, we briefly introduce a general stochastic branch and bound
framework.

Algorithm 8 SBB

1: initialization: Initial partition P0 = P ′0 = X; ξ0 = ξl0(X); η0 = ηm0(X); k = 1;
2: partitioning: Select the record subset Y k ∈ argmin {ξk(Xp) : Xp ∈ Pk}; If minXp∈Pk ηk(Xp) < +∞,

select a set Xk ∈ argmin {ηk(Xp) : Xp ∈ Pk} and a solution zk ∈ {(x, r) : x ∈ Xk, F (x, r) = ηk(Xk)};
3: if Y k is a singleton then
4: Pk = Pk−1;
5: else
6: P ′′k (Y k) = {Y k

i , i = 1, 2, . . . }, such that Y k =
⋃

i Y
k
i and Y k

i ∩ Y k
j = ∅ for Y k

i , Y
k
j ∈ P ′′k , i 6= j;
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7: Pk = (P ′k \ Y k) ∪ P ′′k (Y k);
8: end if
9: bound estimation: For all subsets Xp ∈ Pk, select estimates ξk(Xp) = ξlk(Xp)(Xp) and ηk(Xp) =
ηmk(Xp)(Xp) for L(Xp) and U(Xp);

10: deletion: P ′k = Pk \ {Xp : Xp ∩D = ∅}; k:=k+1; Go to partitioning;

Now we are ready to state the following lemma which is important to prove a.s. convergence of our
scheme. We denote by Z∗ = X∗ ×R∗ the solution set.

Lemma 22. Suppose Assumptions 11 and 12 hold. Consider partitions following Algorithim 3. As-
sume that if a subset X ′ ⊂ Pk for infinitely many k, then a.s. limk→∞ lk(X

′) = limk→∞mk(X
′) =

∞ a.s.. Define recurrent record sets as those, which are record sets for infinitely many k. Then the
following holds

(i) Almost surely, there exits an iteration number k0 such that for all k ≥ k0, Yk are singletons
and recurrent, and Yk ⊂ X∗; All approximate sets Xk are recurrent;

(ii) zk converges to Z∗ a.s..

Proof. (i) Please refer to [163, Theorem 3.].
(ii) Consider an approximate set Xk, where k ≥ k0. By definition

ηmk(Xk)(Xk) ≤ ηmk(Y k)(Y k),

where Y k ⊂ X∗. Because for all k ≥ k0 all record sets are recurrent, then by assumption, mk(Y
k)→

∞, so ηmk(Y k)(Y k)→ U(Y k) = F ∗(Y k) = F ∗. Thus,

lim sup
k→∞

ηmk(Xk)(Xk) ≤ F ∗.

Due to finiteness of the partition and the finiteness of the sets, there are finite unique elements in
{Xk, k ≥ k0}. According to (i), for all k ≥ k0, Xk is recurrent, which means for each element X ′ ∈
{Xk, k ≥ k0}, we have X ′ = Xk for infinitely many k. We arbitrarily choose a X ′ ∈ {Xk, k ≥ k0}.
X ′ is recurrent, which means there is a subsequence K such that Xk = X ′, ∀k ∈ K. Then we have

F (z′) = U(X ′) = lim
k∈K,k→∞

ηmk(X′)(X ′) ≤ F ∗.

It’s clear to see that F (z′) = F ∗. In addition, we have F (zk) = ηmk(Xk)(Xk), then

lim
k∈K,k→∞

F (zk) = lim
k∈K,k→∞

ηmk(Xk)(Xk) = lim
k∈K,k→∞

ηmk(X′)(X ′) = F ∗.

It holds for all X ′ ∈ {Xk, k ≥ k0}, therefore the conclusion follows.

Clearly, in (VSRA-BB), at each node we solve a continuous relaxation problem for the lower bound,
i.e., for all Xp ⊂ X, we construct

L(Xp) := min
z∈Y p×R∩D

F (z)

U(Xp) :=

{
L(Xp) if Xp is a singleton

+∞ otherwise,

where Y p ∈ Rp1+p2
+ is the relaxation set associated with Xp. For a partition P, {Y p}p∈P is an

admissible disjunction with set X. Thus, we have L(Xp) ≤ F ∗(Xp) ≤ U(Xp) and L(Xp) =
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F ∗(Xp) = U(Xp) when Xp is a singleton. Hence, Assumption 11 is satisfied. For Assumption 12,
we first show the continuous relaxation problem is a monotone inclusion and (VRSA) can solve
this problem and generate a feasible sequence {zk} which converges to the optimal solution almost
surely. Here k denotes the number of iterations of the scheme. Then the estimates for L(·) and
U(·) are as follows

ξk(Xp) := F (zk : zk ∈ (Y p ×R ∩D)

ηk(Xp) :=

{
ξk(Xp) if Xp is a singleton

+∞ otherwise.

The relaxation problem we consider is

min
x∈S∩Rn1

+

f(x) + E[Q(x, ω)]

where Q(x, ω) is the optimal value of the second-stage problem

min
y∈Rn2

+

q(y, ω)

subject to W (y, ω) + T (x, ω) �C 0.

The Lagrangian dual problem of the second stage can be written in the form

max
π�C0

πTT (x, ω) + inf
y∈Rn2

+

L(y, π, ω),

where L(y, π, ω) := q(y, ω)+πTW (y, ω). Let us denote by Λ(x, ω) the set of optimal solutions of the
dual problem. By leveraging the properties of the recourse function (cf. [164]), we recall Q(x, ω),
∂xE[Q(x, ω)] = E[∂xQ(x, ω)] where ∇T (x, ω)TΛ(x, ω) = ∂xQ(x, ω). Consequently, the optimality
conditions of the first stage problem is given by

0 ∈ ∇f(x) + E[∇T (x, ω)TΛ(x, ω)]︸ ︷︷ ︸
,G(x)

+NS∩Rn1
+

(x) := V (x).

We observe that∇f(·) is a monotone map while G(x) is the expectation of subdifferentials, implying
that G is also a monotone map. Furthermore, NX is a normal cone of a convex set, it is also a
monotone map.
Another important implementational and theoretical issue is the stopping criterion. Clearly, be-
cause of the stochastic nature of the bounds, a solution obtained after a finite number of observations
is, in general, an approximation. We have the following lemma regarding this.

Lemma 23. Assume that the algorithm stops at iteration s and that we can build for all Xs ∈ Ps
confidence intervals [ξ(Xs),+∞) for L(Xs) such that

P
{
∀Xs ⊂ Ps, ξ(Xs) ≤ L(Xs)

}
≥ 1− δ.

Then, with probability at least 1− δ,

F (zs)− F ∗ ≤ F (zs)− min
Xs∈Ps

ξ(Xs).

Proof. With probability not smaller than 1− δ, F ∗ ≥ minXs∈Ps L(Xs) ≥ minXs∈Ps ξ(X
s).
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Although the construction of the confidence interval may not be done in an explicit way, we can
choose ξ(·) as an estimator of ξ(·) and employ it in (VSRA-BB).

Algorithm 9 VRSA-BB with tolerance

1: initialization: fu ←∞, fl ← −∞; X0 ← ∅, Y0k ← ∅, ∀k ∈ {1, · · · , |Ω|}; (x∗, y∗)← 0; ε > 0;
2: node list← ∅, candidate list← ∅;
3: Node 0 := (fu, fl, X0, Y0 := (Y0k)

|Ω|
k=1), add node 0 to node list; i← 1; Set number of iterations T ;

4: while node list is not empty do
5: Choose a node n with smallest fnl from node list; fs ←∞, id← 0;
6: Solve the subproblem by VRSA(Xn, Yn, T ), get (fm, (xm, ym)), Xm, Ym;
7: Remove node n from node list;
8: if n ∈ candidate list then
9: Remove node n from candidate list;

10: end if
11: if no available partitions then
12: Set fnl ← fm, fnu ← fm, Xn ← Xm, Yn ← Ym;
13: Add node n to node list;
14: Add node n to candidate list;
15: if fm < fu then
16: (x∗, y∗)← (xm, ym); fu ← fm;
17: end if
18: else
19: if integer constraints are all satisfied then
20: id← 1;
21: end if
22: Choose a variable vm ∈ (xm, ym) to branch; Let am be the value of vm.
23: if vm ∈ xm then
24: Add cut to Xm and generate Xm1 and Xm2, respectively;
25: for w ∈ {1, 2} do
26: Check Xmw feasibility;
27: if feasible then
28: if id = 1 and {xj = am} ⊂ Xmw then
29: Set i← i+ 1, fil ← fm, fiu ← fm, Xi ← Xmw, Yi ← Ym;
30: Add node i to candidate list;
31: if fm < fu then
32: (x∗, y∗)← (xm, ym); fu ← fm;
33: end if
34: else
35: Set i← i+ 1, fil ← fm, fiu ← fs, Xi ← Xmw, Yi ← Ym;
36: end if
37: Add node i to node list;
38: end if
39: end for
40: else
41: vm ∈ ym, find the corresponding scenario k;
42: Add cut to Ymk and generate Ymk1 and Ymk2, respectively;
43: for w ∈ {1, 2} do
44: Check Ymkw feasibility
45: if feasible then
46: Determine the feasible set of x; Add cut to Xmw;
47: if id = 1 and {yj = am} ⊂ Ymkw then
48: Set i← i+ 1, fil ← fm, fiu ← fm, Xi ← Xmw, Yi ← Ymw;
49: Add node i to candidate list;
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50: if fm < fu then
51: (x∗, y∗)← (xm, ym); fu ← fm;
52: end if
53: else
54: Set i← i+ 1, fil ← fm, fiu ← fs, Xi ← Xmw, Yi ← Ymw;
55: end if
56: Add node i to node list;
57: end if
58: end for
59: end if
60: end if
61: Set fl ← min{fnl : n ∈ node list};
62: if fu − fl < ε then
63: Terminate;
64: end if
65: Ti ← Ti + 1;
66: end while

4.3 Numerical implemenation

In this section, we report our computational experience with the proposed algorithm on instances
of two-stage stochastic integer programs from the literature. The test problems involves pure-
integer first-stage variables and mixed-binary second-stage variables and is inspired from Ahmed,
Tawarmalani and Sahinidis [142]. The test problems are generated from the following basic model:

min 0.5x2
1 + 0.5x2

2 − 1.5x1 − 4x2 + E[Q(x1, x2, ω1, ω2)]

subject to x1, x2 ∈ [0, 5] ∩ Z+,

where

Q(x1, x2, ω1, ω2) := min 0.5y2
1 + 0.5y2

2 + 0.5y2
3 + 0.5y2

4 − 16y1 − 19y2 − 23y3 − 28y4

subject to 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − x1

6y1 + y2 + 3y3 + 2y4 ≤ ω2 − x2

y1, y2, y3, y4 ∈ {0, 1},

where (ω1, ω2) is uniformly distributed on Ω ⊆ [5, 15] × [5, 15]. Hence, both stages are quadratic
programs.
In the implementation, we use several acceleration approach.

(1) Mixed-integer rounding cuts. Suppose the constraints in the second-stage are linear with
mixed-integer variables with the formv ∈ R|C|+ , y ∈ Z|I|+ :

∑
j∈C

cjvj +
∑
j∈I

ajyj ≥ b

 ,

then the MIR cut is given as

∑
cj>0

cjvj +
∑
âj<b̂j

âjyj + b̂

∑
âj≥b̂j

yj +
∑
j∈I
bajcyj

 ≥ b̂dbe,
where a = â+ bac, b = b̂+ bbc. Before line 11 of VRSA, we could add MIR cuts to enforce
more variables of yns to be integer. It could significantly reduce the number of nodes.
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(2) Multiprocessing scheme with best-first strategy. We could construct a decent upper bound
after line 11 of VRSA by rounding the values of first-stage integer variables. Thus, the
best-first strategy could help improve the lower bound at each iteration. Furthermore, it can
be combined with the multiprocessing scheme which deals with multiple best possible values
simultaneously, and it reduces the running time notably.

(3) Automatic second-stage cuts. Consider the second-stage constraint

Wyω + Tx ≤ hω,

where

W =

[
2 3 4 5
6 1 3 2

]
T =

[
1 0
0 1

]
hω =

[
ω1

ω2

]
.

When a variable yωj is branched and a cut yωj ≤ c is added, it can be noticed that if the
second-stage problem is feasible after adding the cut, then the scenario ω′ with the same cut
is still feasible once hω′ ≥ hω. The reason is that all elements in W are positive. Similar
arguments can be made depending on the sign of coefficients associated with each second-stage
variable.

The proposed optimization routine was implemented in Python. In the (VRSA-BB) algorithm, we
employed the CVXOPT solver to solve the projection problem. The termination tolerance for the
scheme is set at 0.01. All computations are performed on a PC with 16GB RAM and 6-Core Intel
Core i7 processor. In Table 15, we compare the cpu seconds required by the VRSA-BB algorithm
against that required by the Gurobi 9.1 mixed-integer quadratic programming solver for solving
the two-stage problem for sample sizes N = 50 to 400.

Scenario# Integer# LB UB Time Gurobi Solution Gurobi Time
50 52 -51.84 -51.39 19.4 -51.53 0.7
100 102 -57.90 -57.36 51.3 -57.51 1.3
200 202 -61.29 -60.70 176.1 -60.96 15.6
300 302 -60.38 -59.80 418.4 -60.02 110.0
400 402 -59.71 -59.12 575.2 -59.31 2312.8

Table 15: QP with 2 integers in 1st-stage and 1 binary in each 2nd-stage
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5 Zeroth-order schemes for Stochastic MPECs

In this section, we consider the resolution of variants and stochastic generalizations of the mathe-
matical program with equilibrium constraints8 (MPEC), given by

min
x,y

f(x,y)

subject to y ∈ SOL(Y, F (x, •)),
x ∈ X ,

(MPEC)

where f : Rn × Rm → R is a real-valued function, F : X × Y → Rm, X ⊆ Rn and Y ⊆ Rm
denote closed and convex sets, and SOL(Y, F (x, •)) denotes the solution set of the parametrized
variational inequality problem VI(Y, F (x, •)), given an upper-level decision x. Recall that the
variational inequality problem VI(Y, F (x, •)) requires a vector y in the set Y such that

(ỹ − y)TF (x,y) ≥ 0, ∀ ỹ ∈ Y. (VI(Y, F (x, •)))

MPECs have a broad range of applications arising in hierarchical optimization, frictional contact
problems, power systems [166], traffic equilibrium problems [167], and Stackelberg equilibrium
problems [168]. A comprehensive survey of models, analysis, and algorithms can be found in [169]
while a subsequent monograph emphasized the implicit framework [170].

The MPEC is an ill-posed generalization of a nonconvex and nonlinear program, an observation
that follows from considering the setting where Y is a convex cone in Rm. In such an instance,
(MPEC) reduces to a mathematical program with complementarity constraints (MPCC) since y
solves VI(Y, F (x, •)) if and only if x solves CP(Y, F (x, •)), defined as the problem of finding a
vector y such that

Y 3 y ⊥ F (x,y) ∈ Y∗, (CP(Y, F (x, •)))

where Y∗ , {u | yTu ≥ 0, y ∈ Y}. When Y is the nonnegative orthant, then (MPEC) reduces to
the following MPCC.

min
x,y

f(x,y)

subject to 0 ≤ y ⊥ F (x,y) ≥ 0,

x ∈ X .

(MPCC)

Ill-posedness of (MPCC) arises from noting that standard constraint qualifications (such as the
Mangasarian-Fromovitz constraint qualification) fail to hold at any feasible point. This has led to
a concerted effort in developing weaker stationarity conditions for MPECs [171] as well as a host
of regularization [172–176] and penalization [177] schemes.

Yet an enduring gap persists in the development of algorithms for such problems. Despite a wealth
of developments in the field of zeroth and first-order algorithms for deterministic and stochastic
convex and nonconvex optimization, there are no available non-asymptotic rate guarantees for either
zeroth or first-order schemes for MPECs or their stochastic variants. In particular, our interest lies
in two distinct stochastic variants presented as follows.

8This section has been adapted from [165].
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5.1 Problems of interest

We focus on the problem (MPEC) where the lower-level map F (x, •) is strongly monotone over Y
uniformly in x. This ensures that the solution of VI(Y, F (x, •)) is a singleton for every x ∈ X . We
consider two generalizations of the lower-level problem.

(i) Mathematical programs with equilibrium constraints characterized by expectation-valued maps.
In many settings, the lower-level equilibrium constraint is cast as a stochastic variational inequal-
ity problem, i.e. a variational inequality problem with expectation-valued maps. Such problems
assume relevance in modeling a range of stochastic equilibrium problems; more specifically, such
problems represent the necessary and sufficient equilibrium conditions of smooth stochastic convex
optimization problems and smooth stochastic convex Nash equilibrium problems [178, 179]. More
formally, suppose the variational inequality problem VI(Y, F (x, •)) is characterized by a map F
whose components are expectation-valued, i.e.

F (x,y) ,

E[G1(x,y, ξ(ω))]
...

E[Gm(x,y, ξ(ω))]

 , (86)

where ξ : Ω → Rd and Gi : Rn × Rm × Rd → R. For the ease of presentation, throughout the
paper, we refer to the integrand Gi(x,y, ξ(ω)) by Gi(x,y, ω). In effect, the lower-level problem
is a stochastic variational inequality problem [178, 180]. In addition, the objective may also be
expectation-valued and the resulting problem is defined as follows.

min
x,y

E[f(x,y, ω)]

subject to y ∈ SOL(Y,E[G(x, •, ω)]),

x ∈ X .

(SMPECexp)

An instance of the above formulation for stochastic mathematical program with equilibrium con-
straints is the case where the lower-level equilibrium problem captures the equilibrium conditions
of a convex stochastic optimization problem given by

min
y∈Y

E[h(x,y, ω)], (87)

where F (x,y) , E[∇yh(x,y, ω)]. A more general instance is when a solution to the lower-level
equilibrium problem is a Nash equilibrium of a noncooperative game with expectation-valued ob-
jectives, as given by

min
yi∈Yi

E[hi(x, (yi; y−i), ω)], (88)

where i ∈ {1, . . . , N}, N denotes the number of players, yi ∈ Yi and hi(x, (•; y−i), ω) denote
the strategy set and the cost function of player i ∈ {1, . . . , N}, respectively, and y−i denotes the
strategies of the other players than player i. Under some mild conditions, it is known that the
equilibrium conditions of the aforementioned game can be characterized as VI(Y, F (x, •)) where
Y ,

∏N
i=1 Yi and F (x,y) ,

∏N
i=1 E[∇yihi(x, (yi; y−i), ω)] (cf. Chap. 1 in [63]).

An alternate approach for modeling uncertainty in MPECs is provided in the next model, where
the lower-level problem constraints are imposed in an almost sure (a.s.) sense [181].

(ii) MPECs with almost sure equilibrium constraints. Consider a leader-follower game where the
follower makes decision y contingent on the leader’s decision x and the realization of uncer-
tainty is denoted by ω. Consequently, the leader’s problem requires minimizing her expected cost
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E[f̃(x,y(x, ω), ω)] where y(x, ω) represents follower’s decision, given x and ω. Such a problem can
be compactly represented as (SMPECas), defined next.

min
x,y(ω)

E[f(x,y(ω), ω)]

subject to y(ω) ∈ SOL(Y(x, ω), G(x, •, ω)), for almost every ω ∈ Ω

x ∈ X .

(SMPECas)

In regimes where VI(Y(x, ω), G(x, •, ω)) has a unique solution for any x ∈ X and any ω ∈ Ω, we may
recast (SMPECas) as the following implicit stochastic optimization problem where y : X ×Ω→ Rm
denotes a single-valued solution map.

min
x

E[f(x,y(x, ω), ω)]

subject to x ∈ X .
(SMPECas)

5.2 Background

Throughout this paper, we assume that in the case of (MPEC) and (SMPECexp), the set Y is closed
and convex in Rm and the parametrized map F (x, •) is strongly monotone on Y uniformly in x. An
analogous assumption for (SMPECas) requires that G(x, •, ω) is strongly monotone on Y for every
ω ∈ Ω. Since lower-level problem is strongly monotone, the solution map of the lower-level problem
is single-valued. Consequently, we may recast (SMPECas) as the following implicit program in x.

min
x∈X

f(x) , E[f̃(x,y(x, ω), ω)], (MPECimp,as)

where f(•) is assumed to be Lipschitz continuous on a closed and convex set X . In the case of
(SMPECexp), the implicit problem reduces to

min
x∈X

f(x,y(x)), (MPECimp,exp)

where y(x) represents the solution to a variational inequality problem VI(Y, F (x, •)). Note that
this problem subsumes (SMPECexp) by suppressing the expectation in the upper-level. We now
formalize the assumptions on the problems of interest.

Assumption 13 (Properties of f, F,X ,Y). Consider the problem (MPECimp,as) or (MPECimp,exp).
(a.i) f(•,y(•)) is L0-Lipschitz continuous on X + η0B for some η0 > 0. f(x, •) is Lipschitz with
the parameter L̃0 > 0 for all x ∈ X + η0B for some η0 > 0.
(a.ii) X ⊆ Rn and Y ⊆ Rm are nonempty, closed, and convex sets.
(a.iii) F (x, •) is a µF -strongly monotone and LF -Lipschitz continuous map on Y uniformly in x ∈ X .

Consider the problem (MPECimp,as).
(b.i) f̃(•,y(•, ω), ω) is L0-Lipschitz continuous on X + η0B for every ω ∈ Ω and for some η0 > 0.
f(x, •) be Lipschitz with the parameter L̃0 > 0 for all x ∈ X + η0B for some η0 > 0.
(b.ii) X ⊆ Rn and Y ⊆ Rm are closed and convex sets.
(b.iii) G(x, •, ω) is a µF -strongly monotone and LF -Lipschitz continuous map on Y uniformly in
x ∈ X for every ω ∈ Ω.
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We observe that the requirement that f is Lipschitz continuous on X + η0B (rather than X ) is a
consequence of employing a smoothed approximation of f in our algorithm development. A natural
question is whether the Lipschitz continuity of the objective f over X in the implicit problem follows
under reasonable conditions. The next result addresses precisely such a concern.

Proposition 7. Consider the problem (SMPECas). Suppose Assumption 13 (a.ii, a.iii) hold.
Suppose f̃(•, •, ω) is continuously differentiable on C × Rm where C is an open set containing X ,
and X is bounded. Then the function f , defined as f(x) , E[f̃(x,y(x, ω), ω)], is Lipschitz and
directionally differentiable on X .

Proof. This result follows from invoking [182, Cor. 4.3] together with the compactness of X .

Naturally, when Ω reduces to a singleton, one may obtain a similar claim for (MPEC) and
(MPECimp,exp). In a subset of regimes, f(•,y(•)) is captured by the next assumption.

Assumption 14 (Convexity of f in implicit problem). Consider any of the implicit problems
(MPECimp,as) or (MPECimp,exp). Suppose f(•,y(•)) is convex on X in (MPECimp,exp) or f(•) is
convex on X in (MPECimp,as).

We note that there has been extensive study of conditions under which the implicit function
f(•,y(•)) is indeed convex (for example, see [181–183]).

5.2.1 Stationarity conditions

While f can be shown to be convex in some select settings, the function f is Lipschitz continuous
on X in more general settings. Consequently, the problem can be compactly stated as

min
x∈X

h(x) , f(x,y(x)). (89)

We observe that h is a nonsmooth and possibly nonconvex function on X . In the remainder of
this subsection, we recap some of the concepts of Clarke’s nonsmooth calculus that will facilitate
the development of stationarity conditions. We begin by defining the directional derivative, a key
object necessary in addressing nonsmooth and possibly nonconvex optimization problems.

Definition 4 (cf. [184]). The directional derivative of h at x in a direction v is defined as

h◦(x, v) , lim sup
y→x,t↓0

(
h(y + tv)− h(y)

t

)
. (90)

The Clarke generalized gradient at x can then be defined as

∂h(x) , {ξ ∈ Rn | h◦(x, v) ≥ 〈ξ, v〉, ∀v ∈ Rn} . (91)

In other words, h◦(x, v) = sup
g∈∂h(x)

〈g, v〉.

If h is continuously differentiable at x, we have that the Clarke generalized gradient reduces to
the standard gradient, i.e. ∂h(x) = ∇xh(x). If x is a minimal point of h, then we have that
0 ∈ ∂h(x). For purposes of completeness, we recap some properties of ∂h(x). Recall that if h is
locally Lipschitz on an open set C containing X , then h is differentiable almost everywhere on C
by Rademacher’s theorem [184]. Suppose Ch denotes the set of points where h is not differentiable.
We may then recall some properties of Clarke generalized gradients.
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Proposition 8 (Properties of Clarke generalized gradients [184]). Suppose h is Lipschitz continuous
on Rn. Then the following hold.

(i) ∂h(x) is a nonempty, convex, and compact set and ‖g‖ ≤ L for any g ∈ ∂h(x).

(ii) h is differentiable almost everywhere.

(iii) ∂h(x) is an upper semicontinuous map defined as

∂h(x) = conv

{
g | g = lim

k→∞
∇xh(xk), Ch 63 xk → x

}
.

We may also define the ε-generalized gradient [185] as

∂εh(x) , conv {ξ : ξ ∈ ∂h(y), ‖x− y‖ ≤ ε} . (92)

Under the assumption that h is globally bounded from below and Lipschitz continuous on X ,
our interest in the nonconvex regimes lies in developing techniques for computing an approximate
stationary point. For instance, when h is L-smooth, then computing an approximate stationary
point in unconstrained regimes such that ‖∇xh(x)‖ ≤ ε requires at most O(1/ε2) gradient steps.
Much of the prior work in the computation of stationary points of nonconvex and nonsmooth
functions is either asymptotic [186, 187] or relies on some structure [59] where the nonconvex part
is smooth while the convex part may be closed, convex, and proper. However, the question of
computing approximate stationary points for functions that are both nonconvex and nonsmooth
has been less studied.

5.2.2 Properties of spherical smoothing of f

We consider an iterative smoothing approach in this paper where a smoothed approximation of h is
minimized and the smoothing parameter is progressively reduced. This avenue has a long history,
beginning with the efforts by Steklov [188] leading to significant efforts in both convex [189–191]
and nonconvex [192] regimes. In this paper, we consider the following smoothing of h, given by hη
where

hη(x) , Eu∈B[h(x + ηu)], (93)

where u is a random vector in the unit ball B, defined as B , {u ∈ Rn | ‖u‖ ≤ 1}. Throughout,
we let S denote the surface of the ball B, i.e., S , {v ∈ Rn | ‖v‖ = 1}. We also let ηB and ηS
denote the ball with radius η and its surface, respectively. Recall that if h is locally Lipschitz over
a compact set X , it is globally Lipschitz on X . We may derive the following properties on hη.

Lemma 24 (Properties of spherical smoothing9). Suppose h : Rn → R is a continuous
function and η > 0 is a given scalar. Let hη be defined as (93). Then the following hold.
(i) The smoothed function hη is continuously differentiable over X . In particular, for any x ∈ X ,
we have that

∇xhη(x) =
(
n
η

)
Ev∈ηS

[
h(x + v) v

‖v‖

]
. (94)

Suppose h ∈ C0,0(Xη) with parameter L0. For any x,y ∈ X , we have that (ii) – (iv) hold.

9We note that while spherical smoothing have apparently been studied in [193], we did not have access to this
text. Part (i) of our Lemma is inspired by Flaxman et al. [194] while other parts either follow in a fashion similar to
Gaussian smoothing [192] or are directly proven.
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(ii) |hη(x)− hη(y)| ≤ L0‖x− y‖.

(iii) |hη(x)− h(x)| ≤ L0η.

(iv) ‖∇xhη(x)−∇xhη(y)‖ ≤ L0n
η ‖x− y‖.

(v) If h is convex and h ∈ C0,0(Xη) with parameter L0, then hη is convex and satisfies the
following for any x ∈ X .

h(x) ≤ hη(x) ≤ h(x) + ηL0. (95)

(vi) If h is convex and h ∈ C0,0(Xη) with parameter L0, then ∇xhη(x) ∈ ∂εh(x) where ε , ηL0.

(vii) If h ∈ C1,1(Xη) with constant L1, then ‖∇xhη(x)−∇xh(x)‖ ≤ ηL1n.

(viii) Suppose h ∈ C0,0(Xη) with parameter L0. Let us define for v ∈ ηS

gη(x, v) ,
(
n
η

)
(h(x+v)−h(x))v

‖v‖ .

Then, for any x ∈ X , we have that Ev∈ηS[‖gη(x, v)‖2] ≤ L2
0n

2.

Proof. (i) We elaborate on the proof sketch provided in [194]. By definition, we have that

hη(x) = Eu∈ηB[h(x + u)] =

∫
ηB
h(x + u)p(u)du.

Let p(u) denote the probability density function of u. Since u is uniformly distributed in the ball
ηB, we have that p(u) = 1

Vol(ηB)
for any u ∈ ηB. Consequently,

hη(x) =

∫
ηB
h(x + u)p(u)du =

∫
ηB h(x + u)du

Voln(ηB)
.

We may then compute the derivative ∇xhη(x) by leveraging Stoke’s theorem and by defining
p̃(v) = 1

Voln−1(ηS)
for all v.

∇xhη(x) = ∇x

[∫
ηB h(x + u)du

Voln(ηB)

]
Stoke’s theorem

=

[∫
ηS h(x + v) v

‖v‖dv

Voln(ηB)

]
=

[∫
ηS h(x + v) v

‖v‖dv

Voln(ηB)

]
Voln−1(ηS)

Voln−1(ηS)

=

[∫
ηS h(x + v) v

‖v‖dv

Voln−1(ηS)

]
Voln−1(ηS)

Voln(ηB)
=

[∫
ηS
h(x + v) v

‖v‖ p̃(v)dv

]
n

η
=
n

η
Ev∈ηS

[
h(x + v) v

‖v‖

]
.

(ii) We have

|hη(x)− hη(y)| = |Eu∈B[h(x + ηu)]− Eu∈B[h(y + ηu)]|
Jensen’s ineq.

≤ Eu∈B[|h(x + ηu)− h(y + ηu)|]
h∈C0,0(Xη)

≤ Eu∈B[L0‖x− y‖] = L0‖x− y‖.

(iii) Next, we show that |hη(x)− h(x)| can be bounded in terms of η and L0.

|hη(x)− h(x)| =
∣∣∣∣∫
ηB

(h(x + u)− h(x))p(u)du

∣∣∣∣
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≤
∫
ηB
|(h(x + u)− h(x))| p(u)du

≤ L0

∫
ηB
‖u‖p(u)du ≤ L0η

∫
ηB
p(u)du = L0η.

(iv) Note that we have X + ηS ⊆ X + ηB. Thus, from the definition of Xη and h ∈ C0,0(Xη), we
have h ∈ C0,0(X + ηS). As such, we have

‖∇xhη(x)−∇xhη(y)‖ =
∥∥∥nηEv∈ηS [h(x + v) v

‖v‖

]
− n

ηEv∈S
[
h(y + v) v

‖v‖

]∥∥∥
≤ n

ηEv∈ηS
[∥∥∥(h(x + v)− h(y + v)) v

‖v‖

∥∥∥]
≤ L0n

η ‖x− y‖Ev∈ηS
[
‖v‖
‖v‖

]
= L0n

η ‖x− y‖.

(v) First, note that from h ∈ C0,0(Xη), we have that h ∈ C0,0(int(Xη)). Noting that int(Xη) is
an open set, from part (b) of Theorem 3.61 in [59], we have that ‖g̃‖ ≤ L0 for all x ∈ int(Xη) and
g̃ ∈ ∂h(x). The desired statements then follow from part (a) and part (b) of Lemma 2 [195].
(vi) From part (v), function hη is convex and h(y) + ηL0 ≥ hη(y) for any y ∈ X . Thus, for all
x,y ∈ X we have

h(y) + ηL0 ≥ hη(y) ≥ hη(x) +∇hη(x)T (y − x) ≥ h(x) +∇hη(x)T (y − x).

(vii) Note that we can show that
∫
ηS vv

T pv(v)dv = η2

n I. We may then express ∇xh(x) as

∇xh(x) = n
η2

(∫
ηS
vvT pv(v)dv

)
∇xh(x) = n

η2

(∫
ηS
vT∇xh(x)vpv(v)dv

)
= n

η

(∫
ηS
vT∇xh(x) v

‖v‖pv(v)dv

)
= n

ηEv∈ηS
[(
∇xh(x)T v

)
v
‖v‖

]
,

where the third inequality follows from ‖v‖ = η for v ∈ ηS. From this relation, part (i), and by

recalling that n
ηEv∈ηS

[
h(x) v

‖v‖

]
= 0, we can write

‖∇xhη(x)−∇xh(x)‖ =
∥∥∥nηEv∈ηS [(h(x + v)− h(x)) v

‖v‖

]
− n

ηEv∈ηS
[(
∇h(x)T v

)
v
‖v‖

]∥∥∥
≤ n

ηEv∈ηS
[∣∣h(x + v)− h(x)−∇h(x)T v

∣∣ ‖v‖
‖v‖

]
≤ n

ηEv∈ηS
[
L1‖v‖2

]
= nηL1.

(viii) We observe that for any x, Ev∈ηS[‖gη(x, v)‖2] may be bounded as follows.

Ev∈ηS[‖gη(x, v)‖2] =
n2

η2

∫
ηS

‖(h(x + v)− h(x))v‖2

‖v‖2
pv(v)dv

≤ n2

η2

∫
ηS
L2

0‖v‖2pv(v)dv ≤ n2

∫
ηS
pv(v)dv = n2L2

0.
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Remark 5. Local vs global smoothing: Gaussian smoothing as employed in [192] allows for un-
bounded random variables as part of the smoothing process. However, this precludes contending with
compact regimes which we may require to impose Lipschitzian assumptions. Furthermore, in many
settings, the domain of the function is compact and Gaussian smoothing cannot be adopted. Instead,
local smoothing requires that the smoothing random variable have compact support. In [190, 195],
we examine smoothings based on random variables defined on a cube or a sphere. However, most
of the results of the previous Lemma are novel with respect to [195].

We intend to develop schemes for computing approximate stationary points of (89) by an iterative
smoothing scheme. However, this needs formalizing the relationship between the original problem
and its smoothed counterpart. Before proceeding, we define ε-Clarke generalized gradient of h,
denoted by ∂εh(x) at x, as follows [185].

∂εh(x) , conv {ξ | ξ ∈ ∂h(y), ‖y − x‖ ≤ ε} . (96)

It was first shown by Goldstein [185] that ∂εh(x) is nonempty, compact, and convex set.

Proposition 9. Consider the problem (89) where h is a locally Lipschitz continuous function and
X is a closed, convex, and bounded set in Rn.
(i) For any η > 0 and any x ∈ Rn, ∇hη(x) ∈ ∂2ηh(x). Furthermore, if 0 6∈ ∂h(x), then there exists
an η such that ∇xhη̃(x) 6= 0 for η̃ ∈ (0, η].
(ii) For any η > 0 and any x ∈ X ,

[0 ∈ ∇xhη(x) +NX (x)] =⇒ [0 ∈ ∂2ηh(x) +NX (x)] . (97)

Proof. (i) and (ii) represent a constrained counterparts of [196, Prop. 2.2 and Cor. 2.1].

Lemma 24 (v) provides a statement that relates the true objective to its smoothed counterpart
in convex regimes. This provides an avenue for developing finite-time schemes for computing
approximate solutions to the original problem. Prop. 9 (iii) provides a relationship in settings where
h is locally Lipschitz; in particular, it is shown that if x satisfies stationarity of the η-smoothed
problem, it satisfies a suitable 2η−stationarity property for the original problem.

5.3 An implicit zeroth-order framework

In this section, we present and analyze a zeroth-order framework for contending with (MPECimp,exp)
and (MPECimp,as). The remainder of this section is organized as follows. In Section 5.3.1, we
introduce an implicit zeroth-order scheme that can allow for progressive reduction of the smoothing
parameter and can accommodate inexact solutions of the lower-level problem. To address settings
where the implicit problem is convex, we derive rate and complexity guarantees for an iteratively
smoothed gradient framework in Section 5.3.2 when the lower-level problem is either inexactly or
exactly resolved. We extend this framework to accommodate a smoothed accelerated scheme in
Section 5.3.5.

5.3.1 An implicit zeroth-order scheme

Since the function f(•,y(•)) is merely Lipschitz continuous, we employ a zeroth-order frame-
work that relies on computing a zeroth-order approximation of the gradient. Given the function
f(x,y(x)) and a scalar η, we consider a spherical smoothing of fη(x,y(x)) based on (93), defined
as follows:

fη(x,y(x)) , Eu∈B[f(x + ηu,y(x + ηu))], (G-Smooth)
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where u is uniformly distributed in the unit ball B. Let gη(x) denote a zeroth-order approximation
of the gradient of fη(x,y(x)). Invoking Lemma 24, one choice for gη is given by the following for
any x.

gη(x) =

(
n

η

)
Ev∈ηS

[
(f(x + v,y(x + v))− f(x,y(x))) v

‖v‖

]
. (98)

Naturally, gη(x) is challenging to evaluate and a common approach has been in utilizing an unbiased
estimate given by gη(x, v) defined as

gη,N (x, v) ,

(
n

η

)[
(f(x + v,y(x + v))− f(x,y(x))) v

‖v‖

]
. (99)

Given a vector x0 ∈ X , we may employ (99) in constructing a sequence {xk} where xk satisfies the
following projected stochastic gradient update.

xk+1 := ΠX [xk − γkgη(xk, vk)] . (100)

The scheme (100) has been studied for addressing nonsmooth convex and nonconvex optimization
problems [192] while unconstrained nonconvex regimes were also examined in [197]. In particular,
in the work by Nesterov and Spokoiny [192], zeroth-order randomized smoothing gradient schemes
are proposed under a single sample with a fixed smoothing parameter η with the assumption that
the smoothing random variable v has a Gaussian distribution. Importantly, a direct adoption of
such smoothing schemes to address the hierarchical problems studied in this work is afflicted by
several challenges.

(i) Lack of asymptotic guarantees. When η > 0, the scheme generates a sequence that is convergent
to an approximate solution, at best. In addition, the choice of η is contingent on accurate estimates
of other problem parameters (such as L0), in the absence of which, η may be chosen to be extremely
small. This often afflicts the practical behavior of the scheme. Moreover, employing a fixed η
precludes asymptotic convergence to the true counterpart. Instead, in most of our schemes, we
employ a mini-batch approximation of gη(x), denoted by gη,N (x) and defined as

gη,N (x) ,

∑N
j=1 gη(x, vj)

N
. (101)

Furthermore, we replace a fixed η by a diminishing sequence {ηk}, the resulting iterative smoothing
scheme being articulated as follows.

xk+1 := ΠX [xk − γkgηk,Nk(xk)] . (102)

(ii) Unavailability of exact solutions of y(x). Even if y(•) is a single-valued map requiring the
solution of a strongly monotone lower-level problem, computing a solution to this problem is not
necessarily cheap. As a consequence, our scheme needs to account for errors in the computation of
gηk(xk), denoted by ε̃k. As a consequence, the resulting scheme is defined as follows.

xk+1 := ΠX [xk − γk(gηk,Nk(xk) + ε̃k)] . (103)

For instance, when considering problems of the form (SMPECexp), exact solutions of y(xk) are
generally unavailable in finite time. Instead, one can take jk steps of a standard projection scheme.

yj+1 := ΠY
[
yj − βjF̄ (xk,yj)

]
, j = 1, · · · , jk, (104)

76



where F̄ (xk,yj) ,
∑Mj
`=1G(xk,yj ,ωj)

Mj
. When using such a variance-reduced scheme, log(1/εk) steps of

the above scheme are required to obtain an εk-solution of yk.

(iii) Bias in ε̃k. A key issue that arises from (ii) emerges in the form of bias. In particular,
gηk,Nk(xk) + ε̃k is not necessarily an unbiased estimator of gηk(xk). Further, it remains unclear how
the bias and variance of gηk,Nk(xk) + ε̃k propagate through this framework (103)-(104) as γk, ηk,
and Nk are updated iteratively in the outer loop (103). Consequently, in the development of the
inexact smoothing scheme (103)-(104), it remains critical to design prescribed stepsize, smoothing,
and sample-size sequences to control the accuracy of the estimator gηk,Nk(xk)+ ε̃k and consequently,
ascertain the convergence of the generated iterate to an optimal solution of the underlying MPEC.
This concern will be examined in detail in the subsequent sections.

5.3.2 Convex regimes

In this subsection, we consider resolving the implicit formulations when the implicit function is
convex. As we pointed out earlier, the convexity of the implicit problem often holds in practice
(cf. [181–183]). We first consider the inexact case where the exact value of y(•) is not necessar-
ily available. We then specialize our statements to settings where exact solutions of lower-level
problems can be employed. The next result is used in deriving the convergence rate results.

Lemma 25 (cf. Lemma 10 in [180] and Lemma 2.14 in [198]). Let ` and N be arbitrary integers
where 0 ≤ ` ≤ N − 1. The following hold.

(a) ln
(
N+1
`+1

)
≤
∑N−1

k=`
1

k+1 ≤
1
`+1 + ln

(
N
`+1

)
.

(b) If 0 ≤ α < 1, then for any N ≥ 2
1

1−α − 1, we have (N+1)1−α

2(1−α) ≤
∑N

k=0
1

(k+1)α ≤
(N+1)1−α

1−α .

5.3.3 An inexact zeroth-order scheme

We now delve into developing and analyzing an inexact zeroth-order method for resolving the
implicit variant of (SMPECexp), i.e. (MPECimp,exp) where the lower-level problem is complicated
by the presence of expectation-valued maps, i.e., F is defined as (86) and satisfies Assumption 13
(a.iii). In such an instance, obtaining y(x) is impossible in finite time unless the expectation can be
tractably resolved. Instead, by employing stochastic approximation (SA) methods for addressing
the lover-level problem, we consider the case where we have access to an approximate solution
yεk(xk) such that

E[‖yεk(xk)− y(xk)‖2 | xk] ≤ εk, where y(xk) ∈ SOL(Y, F (xk, •)). (105)

As a consequence, we may define an inexact zeroth-order gradient mapping gη,ε(x, v) as follows.

gη,ε(x, v) :=
n(f(x + v,yε(x + v))− f(x,yε(x))v

‖v‖η
, (106)

where v ∈ ηS and yεk(xk) is an output of a variance-reduced stochastic approximation scheme. The
outline of the proposed zeroth-order solver (ZSOL) is presented in Algorithm 10 while an inexact
solution of y(x) is computed by Algorithm 11. We impose the following assumptions on vk and the
lower-level evaluations G(x̂k,yt, ω`,t).

Assumption 15. Given a sequence {ηk}, let vk ∈ Rn be generated randomly and independently
from ηkS for all k ≥ 0.
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Assumption 16. Let the following hold for all k ≥ 0, t ≥ 0, and 1 ≤ ` ≤Mt.
(a) The random realizations ω`,t are independent and identically distributed.
(b) E[G(x̂k,yt, ω`,t) | x̂k,yt] = F (x̂k,yt).
(c) E[‖G(x̂k,yt, ω`,t)− F (xk,yt)‖2 | xk,yt] ≤ ν2

y‖yt‖2 + ν2
G for some νy, νG > 0.

Algorithm 10 ZSOL: Inexact zeroth-order method for the convex case

1: input: Given x0 ∈ X , x̄0 := x0, stepsize sequence {γk}, smoothing parameter sequence {ηk},
inexactness sequence {εk}, r ∈ [0, 1), and S0 := γr0

2: for k = 0, 1, . . . ,K − 1 do
3: Call Algorithm 11 to obtain yεk(xk) := ytk
4: Generate a random realization vk ∈ ηkS
5: Call Algorithm 11 to obtain yεk(xk + vk) := ytk
6: Evaluate the inexact zeroth-order gradient approximation as follows.

gηk,εk(xk, vk) :=
n (f(xk + vk,yεk(xk + vk))− f(xk,yεk(xk))) vk

‖vk‖ηk

7: Update xk as follows. xk+1 := ΠX [xk − γkgηk,εk(xk, vk)]
8: Update the averaged iterate as follows.

Sk+1 := Sk + γrk+1, x̄k+1 :=
Skx̄k+γrk+1xk+1

Sk+1
(107)

9: end for

Algorithm 11 Variance-reduced SA method for stochastic VI in the lower-level

1: input: An arbitrary y0 ∈ Y, vector x̂k, scalar ρ ∈ (0, 1), stepsize α > 0, mini-batch sequence
{Mt}, integer k, and scalar τ > 0

2: Compute tk := dτ ln(k + 1)e
3: for t = 0, 1, . . . , tk − 1 do
4: Generate random realizations of the stochastic mapping G(x̂k,yt, ω`,t) for ` = 1, . . . ,Mt

5: Update yt as follows.

yt+1 := ΠY

[
yt − α

∑Mt
`=1G(x̂k,yt,ω`,t)

Mt

]
6: end for
7: Return ytk

Before analyzing ZSOL, we review the properties of the exact zeroth-order gradient denoted by
gη(x, v) and show that the exact zeroth-order gradient is an unbiased estimator of the gradient of
the smoothed implicit function. We then derive a bound on the second moment of this stochastic
gradient under the assumption that the implicit function is Lipschitz.

Lemma 26. Consider (MPECimp,exp) and suppose Assumption 13 holds. Given x ∈ X and η > 0,
consider the following zeroth-order mapping for v ∈ ηS and k ≥ 0.

gη(x, v) ,
(
n
η

) (f(x + v,y(x + v))− f(x,y(x))) v

‖v‖
. (108)
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Then, ∇fη(x,y(x)) = E[gη(x, v) | x] and E[‖gη(x, v)‖2 | x] ≤ L2
0n

2 almost surely for all k ≥ 0.

Proof. The two results follow from Lemma 24 (i) and (viii), respectively.

We are now ready to present the properties of the inexact zeroth-order gradient mapping.

Lemma 27 (Properties of the inexact zeroth-order gradient). Suppose Assumption 13
holds. Let gη,ε(x, v) be defined as (106) for v ∈ ηS for η, ε > 0. Suppose E[‖yε(x)− y(x)‖2 | x] ≤ ε
almost surely for any x ∈ X . Then the following hold.

(a) E[‖gη,ε(x, v)‖2 | x] ≤ 3n2
(

2L̃2
0ε

η2 + L2
0

)
, almost surely.

(b) E
[
‖gη,ε(x, v)− gη(x, v)‖2 | x

]
≤ 4L̃2

0n
2ε

η2 , almost surely.

Proof. (a) Adding and subtracting gη(x, v) defined by (101), we obtain from (106)

‖gη,ε(x, v)‖

=

∥∥∥∥(n(f(x + v,yε(x + v))− f(x + v,y(x + v))v

‖v‖η

)
+ gη(x, v) +

(
n(f(x,y(x))− f(x,yε(x)))v

‖v‖η

)∥∥∥∥
≤
∥∥∥∥(n(f(x + v,yε(x + v))− f(x + v,y(x + v)))v

‖v‖η

)∥∥∥∥+ ‖gη(x, v)‖

+

∥∥∥∥(n(f(x,y(x))− f(x,yε(x))v

‖v‖η

)∥∥∥∥
≤
(
‖f(x + v,yε(x + v))− f(x + v,y(x + v))‖n‖v‖

‖v‖η

)
+ ‖gη(x, v)‖

+

(
‖f(x,y(x))− f(x,yε(x))‖n‖v‖

η‖v‖

)
≤

(
L̃0‖yε(x + v)− y(x + v)‖n

η

)
+ ‖gη(x, v)‖+

(
L̃0‖yε(x)− y(x)‖n

η

)
.

Invoking Lemma 26, we may then bound the second moment of ‖gη,ε(x, u)‖ as follows.

E[‖gη,ε(x, v)‖2 | x] ≤ 3E

[(
L̃2

0n
2‖yε(x + v)− y(x + v)‖2

η2

)
| x

]
+ 3E

[
‖gη(x, v)‖2 | x

]
+ 3E

[(
L̃2

0n
2‖yε(x)− y(x)‖2

η2

)
| x

]
≤ 6

(
L̃2

0n
2ε

η2

)
+ 3L2

0n
2, a.s.

(b) Next, we derive a bound on ‖gη,ε(x, v)− gη(x, v)‖.

‖gη,ε(x, v)− gη(x, v)‖

=

∥∥∥∥(n(f(x + v,yε(x + v))− f(x,yε(x)))v

‖v‖η

)
−
(
n(f(x + v,y(x + v))− f(x,y(x))v

‖v‖η

)∥∥∥∥
≤
∥∥∥∥(n(f(x + v,yε(x + v))− f(x + v,y(x + v)))v

‖v‖η

)∥∥∥∥+

∥∥∥∥(f(x,yε(x))− f(x,y(x))

‖v‖η

)
v

∥∥∥∥
≤

(
L̃0n‖yε(x + v)− y(x + v)‖

η

)
+

(
L̃0n‖yε(x)− y(x)‖

η

)
.

It follows that E
[
‖gη,ε(x, v)− gη(x, v)‖2 | x

]
≤ 4L̃2

0n
2ε

η2 .
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We make use of the following results in the convergence and rate analysis.

Lemma 28 (Lemma 2.11 in [198]). Let {x̄k} be generated by Algorithm 10. Let us define the

weights αk,N ,
γrk∑N
j=0 γ

r
j

for k ∈ {0, . . . , N} and N ≥ 0. Then, for any N ≥ 0, we have x̄N =∑N
k=0 αk,Nxk. Furthermore, when X is a convex set, we have x̄N ∈ X .

Lemma 29 (Theorem 6, page 75 in [199]). Let {ut} ⊂ Rn denote a sequence of vectors where
limt→∞ ut = û. Also, let {αk} denote a sequence of strictly positive scalars such that

∑∞
k=0 αk =∞.

Suppose vk ∈ Rn is defined by vk ,
∑k
t=0 αtut∑k
t=0 αt

for all k ≥ 0. Then, lim
k→∞

vk = û.

We are now in a position to develop rate and complexity statements for Algorithms 10–11. The
algorithm parameters for both schemes are defined next.

Definition 5 (Parameters for Algorithms 10–11). Let the stepsize and smoothing sequence in
Algorithm 10 be given by γk := γ0√

k+1
and ηk := η0√

k+1
, respectively for all k ≥ 0 where γ0 and

η0 are strictly positive. In Algorithm 11, suppose α ≤ µF
2L2

F
, Mt := dM0ρ

−te for t ≥ 0 for some

0 < ρ < 1 where M0 ≥
2ν2

y

L2
F

. Let tk := dτ ln(k + 1)e where τ ≥ −2
ln(max{1−µFα,ρ}) . Finally, suppose

r ∈ [0, 1) is an arbitrary scalar.

Theorem 30 (Rate statements and complexity results for Algorithms 10–11). Consider
the sequence {x̄k} generated by applying Algorithm 10 on (MPECimp,exp). Suppose Assump-
tions 13– 16 hold and algorithm parameters are defined by Def. 5.
(a) Suppose x̂k ∈ X and let {ytk} be the sequence generated by Algorithm 11. Then for suitably
defined d̃ < 1 and B > 0, the following holds for tk ≥ 1.

E[‖ytk − y(x̂k)‖2] ≤ εk , Bd̃tk .

(b) For all K ≥ 2
1

1−r − 1, we have

E [f(x̄K ,y(x̄K))]− f∗ ≤ (2− r)

DX
γ0

+
2DXγ0 +

(4+6γ2
0)B

η2
0γ0

+ 2η0L0 + 3n2L2
0γ0

1− r

 1√
K + 1

.

(c) Suppose γ0 = O( 1
nL0

) and r = 0. Let ε > 0 be an arbitrary scalar and Kε be such that
E [f(x̄Kε ,y(x̄Kε))]− f∗ ≤ ε. Then,
(c-1) The total number of upper-level projection steps on X is Kε = O

(
n2L2

0ε
−2
)
.

(c-2) The total sample complexity of upper-level evaluations of y(•) is O
(
n2L2

0ε
−2
)
.

(c-3) The total number of lower-level projection steps on Y is O
(
n2L2

0ε
−2 ln

(
nL0ε

−1
))
.

(c-4) The total sample complexity of lower-level is O
(
n2τ̄L2τ̄

0 ε
−2τ̄
)

where τ̄ ≥ 1− τ ln(ρ).

Proof. (a) We denote the history generated by Algorithm 11 by Ft , ∪t−1
j=0 ∪

Mj

`=1 {ω`,j} for t ≥ 1,

and F0 , ∪M0
`=1{ω`,0}. Let us define F̄ (x̂k,yt) ,

∑Mt
`=1G(x̂k,yt,ω`,t)

Mt
for t ≥ 0 and k ≥ 0. We also

define the errors ∆t , F̄ (x̂k,yt) − F (x̂k,yt) for t ≥ 0. Next, we estimate a bound on the term
E[‖∆t‖2 | Ft]. From Assumption 16 we have

E[‖∆t‖2 | Ft] = E

[∥∥∥∥∑Mt
`=1(G(x̂k,yt,ω`,t)−F (x̂k,yt))

Mt

∥∥∥∥2

| Ft

]

80



= 1
M2
t
E

[
Mt∑
`=1

‖G(x̂k,yt, ω`,t)− F (x̂k, yt)‖2 | Ft

]
≤ ν2

y‖yt‖2+ν2
G

Mt
. (109)

From y(x̂k) ∈ SOL(Y, F (x̂k, •)), we have y(x̂k) = ΠY [y(x̂k)− αF (x̂k,y(x̂k))] for any α > 0. We
have

‖yt+1 − y(x̂k)‖2 = ‖ΠY
[
yt − αF̄ (x̂k,yt)

]
−ΠY [y(x̂k)− αF (x̂k,y(x̂k))] ‖2

≤ ‖yt − αF̄ (x̂k,yt)− y(x̂k) + αF (x̂k,y(x̂k))‖2

= ‖yt − αF (x̂k,yt)− α∆t − y(x̂k) + αF (x̂k,y(x̂k))‖2

= ‖yt − y(x̂k)‖2 + α2‖F (x̂k,yt)− F (x̂k,y(x̂k))‖2 + α2‖∆t‖2

− 2α(yt − y(x̂k))
T (F (x̂k,yt)− F (x̂k,y(x̂k)))

− 2α(yt − y(x̂k)− αF (x̂k,yt) + αF (x̂k,y(x̂k)))
T∆t.

Taking conditional expectations in the preceding relation, using (109), and invoking the strong
monotonicity and Lipschitzian property of the mapping F in Assumption 13, we obtain

E[‖yt+1 − y(x̂k)‖2 | Ft] ≤
(
1− 2µFα+ α2L2

F

)
‖yt − y(x̂k)‖2 +

ν2
y‖yt‖2+ν2

G

Mt
α2.

Taking expectations on both sides, we obtain

E[‖yt+1 − y(x̂k)‖2] ≤
(
1− 2µFα+ α2L2

F

)
E[‖yt − y(x̂k)‖2] +

ν2
yE[‖yt−y(x̂k)+y(x̂k)‖2]+ν2

G

Mt
α2

≤
(

1− 2µFα+ α2L2
F +

2ν2
y

M0
α2
)
E[‖yt − y(x̂k)‖2] +

2ν2
y‖y(x̂k)‖2+ν2

G

Mt
α2.

Let λ , 1− 2µFα+α2L2
F +

2ν2
y

M0
α2 and recall that Λt ,

2ν2
y‖y(x̂k)‖2+ν2

G

Mt
α2 for t ≥ 0. Note that since

M0 ≥
2ν2

y

L2
F

and that α ≤ µF
2L2

F
, we have λ ≤ 1− µFα < 1. We obtain for any t ≥ 0

E[‖yt+1 − y(x̂k)‖2] ≤ λt+1‖y0 − y(x̂k)‖2 +

t∑
j=0

λt−jΛj

≤ λt+1‖y0 − y(x̂k)‖2 + Λ0(max{λ, ρ})t
t∑

j=0

(
min{λ,ρ}
max{λ,ρ}

)t−j
≤ λt+1‖y0 − y(x̂k)‖2 + Λ0(max{λ,ρ})t

1−(min{λ,ρ}/max{λ,ρ}) ≤ Bd̃
t+1.

where d̃ , max{λ, ρ} and B , supy∈Y ‖y − y0‖2 + Λ0
max{λ,ρ}−min{λ,ρ} . Note that without loss of

generality, we assume ρ 6= λ.
(b) Note that from the compactness of the set X and the continuity of the implicit function, the
set X ∗ is nonempty. Let x∗ ∈ X be an arbitrary optimal solution. We have that

‖xk+1 − x∗‖2 = ‖ΠX [xk − γkgηk,εk(xk, vk)]−ΠX [x∗]‖2 ≤ ‖xk − γkgηk,εk(xk, vk)− x∗‖2

= ‖xk − x∗‖2 − 2γk(xk − x∗)T gηk,εk(xk, vk) + γ2
k‖gηk,εk(xk, vk)‖2

= ‖xk − x∗‖2 − 2γk(xk − x∗)T (gηk(xk, vk) + wk) + γ2
k‖gηk,εk(xk, vk)‖2,

where we define wk , gηk,εk(xk, vk) − gηk(xk, vk). Taking conditional expectations on the both
sides, and invoking Lemma 26 and Lemma 27 (a), we obtain

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2γk(xk − x∗)T∇fηk(xk,y(xk))
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− 2γkE
[
(xk − x∗)Twk | Fk

]
+ 3n2γ2

k

(
2L̃2

0εk
η2
k

+ L2
0

)
.

Invoking the convexity of fηk , bounding −2γk(xk − x∗)Twk, and rearranging the terms, we obtain

2γk (fηk(xk,y(xk))− fηk(x∗,y(x∗))) ≤ ‖xk − x∗‖2 − E
[
‖xk+1 − x∗‖2 | Fk

]
+ γ2

k‖xk − x∗‖2 + E
[
‖wk‖2 | Fk

]
+ 3n2γ2

k

(
2L̃2

0εk
η2
k

+ L2
0

)
.

From Lemma 27 (b) we obtain

2γk (fηk(xk,y(xk))− fηk(x∗,y(x∗))) ≤ ‖xk − x∗‖2 − E
[
‖xk+1 − x∗‖2 | Fk

]
+ γ2

k‖xk − x∗‖2 +
4L̃2

0n
2εk

η2
k

+ 3n2γ2
k

(
2L̃2

0εk
η2
k

+ L2
0

)
.

From Lemma 24 (v) we have that f(xk,y(xk)) ≤ fηk(x∗,y(x∗)) ≤ f∗ + ηkL0. From the preceding
two inequalities we obtain

2γk (E [f(xk,y(xk))]− f∗)

≤ E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]
+ γ2

kE[‖xk − x∗‖2] + (4 + 6γ2
0)
L̃2

0n
2εk

η2
k

+ 2γkηkL0 + 3n2L2
0γ

2
k .

Next, we derive a bound on εk
η2
k
. From part (a) and the update rule of ηk we have

εk
η2
k

=
(

εk
η2
kγ

2
k

)
γ2
k =

(
(max{λ,ρ})tkB(k+1)2

η2
0γ

2
0

)
γ2
k . (110)

Note that from α ≤ µF
2L2

F
and M0 ≥

2ν2
y

L2
F

, we have λ ≤ 1−µFα. Thus, we have τ ≥ −2
ln(max{1−µFα,ρ}) ≥

−2
ln(max{λ,ρ}) . From tk := dτ ln(k + 1)e ≥ τ ln(k + 1) and τ ≥ −2

ln(max{λ,ρ}) we have that

(max{λ, ρ})tk (k + 1)2 ≤
(
(max{λ, ρ})τ e2

)ln(k+1) ≤ (max{λ, ρ})τ e2 ≤ 1.

This relation and (110) imply that εk
η2
k
≤
(

B
η2

0γ
2
0

)
γ2
k . Also, note that since X is bounded, there exists

a scalar DX , 1
2 supx∈X ‖x− x∗‖2. Therefore, we obtain

2γk (E [f(xk,y(xk))]− f∗) ≤ E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]
+ 2γ2

kθ0,

where θ0 , DX +
(2+3γ2

0)B
η2

0γ
2
0

+ η0L0

γ0
+ 1.5n2L2

0. Multiplying both sides by
γr−1
k
2 , we have that

γrk (E [f(xk,y(xk))]− f∗) ≤
γr−1
k

2

(
E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

])
+ γ1+r

k θ0. (111)

Adding and subtracting the term
γr−1
k−1

2 E
[
‖xk − x∗‖2

]
, we obtain

γrk (E [f(xk,y(xk))]− f∗)

≤
γr−1
k−1

2
E
[
‖xk − x∗‖2

]
−
γr−1
k

2
E
[
‖xk+1 − x∗‖2

]
+
(
γr−1
k − γr−1

k−1

) E [‖xk − x∗‖2
]

2
+ γ1+r

k θ0

≤
γr−1
k−1

2
E
[
‖xk − x∗‖2

]
−
γr−1
k

2
E
[
‖xk+1 − x∗‖2

]
+
(
γr−1
k − γr−1

k−1

)
DX + γ1+r

k θ0.
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Summing both sides from k = 1, . . . ,K we obtain

K∑
k=1

γrk (E [f(xk,y(xk))]− f∗) ≤
γr−1

0

2
E
[
‖x1 − x∗‖2

]
+
(
γr−1
K − γr−1

0

)
DX + θ0

K∑
k=1

γ1+r
k .

Writing (111) for k := 0 we have

γr0 (E [f(x0,y(x0))]− f∗) ≤ γr−1
0

2

(
E
[
‖x0 − x∗‖2

]
− E

[
‖x1 − x∗‖2

])
+ γ1+r

0 θ0.

Adding the preceding two relations together and using the definition of DX , we obtain

K∑
k=0

γrk (E [f(xk,y(xk))]− f∗) ≤ DXγr−1
K + θ0

K∑
k=0

γ1+r
k .

From the definition x̄K ,
∑K

k=0 αk,Kxk in Lemma 28 and applying the convexity of the implicit
function, we obtain

E [f(x̄K ,y(x̄N ))]− f∗ ≤
DXγ

r−1
K + θ0

∑K
k=0 γ

1+r
k∑K

k=0 γ
r
k

.

Substituting γk := γ0√
k+1

and invoking Lemma 25, we obtain

E [f(x̄K ,y(x̄K))]− f∗ ≤
DXγ

r−1
0 (K + 1)0.5(1−r) + θ0γ

1+r
0

(K+1)1−0.5(1+r)

1−0.5(1+r)

γr0
(K+1)1−0.5r

2−r

≤ (2− r)

DX
γ0

+
2(DX +

(2+3γ2
0)B

η2
0γ

2
0

+ η0L0

γ0
+ 1.5n2L2

0)γ0

1− r

 1√
K + 1

= (2− r)

DX
γ0

+
2(DXγ0 +

(2+3γ2
0)B

η2
0γ0

+ η0L0 + 1.5n2L2
0γ0)

1− r

 1√
K + 1

.

(c) The results in (c-1) and (c-2) follow directly from part (b) by substituting γ0 and r. To show
part (c-3), note that in Algorithm 10, we have tk := dτ ln(k + 1)e. From part (b), we require the
following total number of iterations of the SA scheme.

2

Kε∑
k=0

tk = 2

Kε∑
k=0

dτ ln(k + 1)e ≤ 2 (Kε + 1) + 2τ

Kε+1∑
k=2

ln(k)

≤ 2 (Kε + 1) + 2τ

∫ Kε+1

2
ln(x)dx ≤ 2 (Kε + 1) + 2τ (Kε + 2) ln (Kε + 2)

≤ 4 max{τ, 1} (Kε + 2) ln (Kε + 2) .

The bound in (c-3) follows from the preceding inequality and the bound on Kε in (c-1). To show
(c-4), note that the total samples used in the lower-level is as follows.

2

Kε∑
k=0

tk∑
t=0

Mt = 2

Kε∑
k=0

tk∑
t=0

dM0ρ
−te ≤ 4M0

Kε∑
k=0

tk∑
t=0

ρ−t = O

(
Kε∑
k=0

ρ−tk

ln(1
ρ)

)
= O

(
Kε∑
k=0

ρ−τ ln(k+1)

ln(1
ρ)

)
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≤ O

(
Kε∑
k=0

e(τ̄−1) ln(k+1)

ln(1
ρ)

)
= O

(
Kε∑
k=0

(k + 1)τ̄−1

ln(1
ρ)

)
= O

(
K τ̄
ε

ln(1
ρ)

)
,

where τ̄ ≥ 1 + τ ln(1
ρ). The bound in (c-4) follows from the preceding inequality and the bound on

Kε in (c-1).

5.3.4 A zeroth-order scheme for addressing the exact regime

In this subsection, we consider the case where an exact solution of the lower-level problem is
available. We develop a zeroth-order method where the gradient mapping is approximated using
two evaluations of the implicit function. Similar to the inexact setting, we allow for iterative
smoothing and provide the convergence analysis in addressing the original implicit problem. the
outline of the scheme is provided by Algorithm 12.

Algorithm 12 Zeroth-order method for exact regimes

1: input: Given x0 ∈ X , x̄0 := x0, stepsize sequence {γk}, smoothing parameter sequence {ηk},
r ∈ [0, 1), and S0 := γr0

2: for k = 0, 1, . . . ,K − 1 do
3: Generate a random realization vk ∈ ηkS
4: Evaluate y(xk) and y(xk + vk)
5: Evaluate the zeroth-order gradient approximation as follows.

gηk(xk, vk) :=
n(f(xk + vk,y(xk + vk))− f(xk,y(xk))vk

‖vk‖ηk

6: Update xk as follows. xk+1 := ΠX [xk − γkgηk(xk, vk)]
7: Update the averaged iterate as follows.

Sk+1 := Sk + γrk+1, x̄k+1 :=
Skx̄k+γrk+1xk+1

Sk+1

8: end for

We make use of the following lemma in the convergence analysis in this subsection (cf. [68]).

Lemma 31. Let vk, uk, αk, and βk be nonnegative random variables, and let the following relations
hold almost surely:

E
[
vk+1 | F̃k

]
≤ (1 + αk)vk − uk + βk for all k,

∞∑
k=0

αk <∞,
∞∑
k=0

βk <∞,

where F̃k denotes the collection v0, . . . , vk, u0, . . . , uk, α0, . . . , αk, β0, . . . , βk. Then, we have almost
surely limk→∞ vk = v and

∑∞
k=0 uk <∞, where v ≥ 0 is some random variable.

In the following, we derive non-asymptotic convergence rate statements and also, show an almost
sure convergence result for the proposed zeroth-order method in the exact regimes.

Theorem 32 (Rate statement and complexity result for Algorithm 12). Consider the
problem (MPECimp,exp). Suppose Assumptions 13– 15 hold. Suppose {x̄k} denotes the sequence
generated by Algorithm 12 in which the stepsize and smoothing sequences are defined as γk :=
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γ0

(k+1)a and ηk := η0

(k+1)b
, respectively, for all k ≥ 0 where γ0 and η0 are strictly positive. Then, the

following statements hold.

(a) Let a = 0.5 and b ∈ [0.5, 1) and 0 ≤ r < 2(1− b). Then, for all K ≥ 2
1

1−r − 1 we have

E [f(x̄K ,y(x̄K))]− f∗ ≤ (2− r)
(
DX
γ0

+
L2

0n
2γ0

1−r

)
1√
K+1

+ (2− r)
(

η0L0

1−0.5r−b

)
1

(K+1)b
.

In particular, when b := 1− δ and r = 0, where δ > 0 is a small scalar, we have for all K ≥ 1

E [f(x̄K ,y(x̄K))]− f∗ ≤ 2
(
DX
γ0

+ L2
0n

2γ0

)
1√
K+1

+
(

2η0L0

δ

)
1

(K+1)1−δ .

(b) Let a := 0.5, b = 0.5, r = 0, γ0 :=
√
DX
nL0

, and η0 ≤
√
DXn. Then, the iteration complexity

in projection steps on X for achieving E [f(x̄Kε ,y(x̄Kε))] − f∗ ≤ ε for some ε > 0 is bounded as
follows.

Kε ≥
64n2L2

0DX
ε2

.

(c) For any a ∈ (0.5, 1] and b > 1 − a, there exists x∗ ∈ X ∗ such that limk→∞ ‖x̄k − x∗‖2 = 0
almost surely.

Proof. (a) Let x∗ ∈ X ∗ be an arbitrary optimal solution. We can write:

‖xk+1 − x∗‖2 = ‖ΠX [xk − γkgηk(xk, vk)]−ΠX [x∗]‖2 ≤ ‖xk − γkgηk(xk, vk)− x∗‖2

= ‖xk − x∗‖2 − 2γk(xk − x∗)T gηk(xk, vk) + γ2
k‖gηk(xk, vk)‖2.

Let the history of the method be denoted by Fk , {v0, v1, . . . , vk−1} for k ≥ 1 where F0 , {v0}.
Taking conditional expectations on the both sides and invoking Lemma 26, we obtain

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2γk(xk − x∗)T∇fηk(xk,y(xk)) + γ2

kL
2
0n

2.

Invoking the convexity of fηk , we obtain

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2γk (fηk(xk,y(xk))− fηk(x∗,y(x∗))) + γ2

kL
2
0n

2. (112)

Taking expectations from both sides of the preceding relation and rearranging the terms, we obtain

2γk (E [fηk(xk,y(xk))]− fηk(x∗,y(x∗))) ≤ E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]
+ γ2

kL
2
0n

2.

From the Lipschitzian property of the implicit function and Lemma 24 (v), we have that

fηk(x∗,y(x∗)) ≤ f(x∗,y(x∗)) + ηkL0. (113)

From the preceding two inequalities and that f(xk,y(xk)) ≤ fηk(xk,y(xk)), we obtain

2γk (E [f(xk,y(xk))]− f∗) ≤ E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]
+ γ2

kL
2
0n

2 + 2γkηkL0.

Multiplying both sides by
γr−1
k
2 , we have that

γrk (E [f(xk,y(xk))]− f∗) ≤
γr−1
k

2

(
E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

])
+ 0.5γ1+r

k L2
0n

2 + γrkηkL0.

(114)
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Adding and subtracting the term
γr−1
k−1

2 E
[
‖xk − x∗‖2

]
, we obtain

γrk (E [f(xk,y(xk))]− f∗)

≤
γr−1
k−1

2
E
[
‖xk − x∗‖2

]
−
γr−1
k

2
E
[
‖xk+1 − x∗‖2

]
+
(
γr−1
k − γr−1

k−1

)
DX + 0.5γ1+r

k L2
0n

2 + γrkηkL0.

Summing both sides from k = 1, . . . ,K we obtain

K∑
k=1

γrk (E [f(xk,y(xk))]− f∗) ≤
γr−1

0

2
E
[
‖x1 − x∗‖2

]
+
(
γr−1
K − γr−1

0

)
DX

+ 0.5L2
0n

2
K∑
k=1

γ1+r
k + L0

K∑
k=1

γrkηk.

Writing (114) for k := 0 we have

γr0 (E [f(x0,y(x0))]− f∗) ≤ γr−1
0

2

(
E
[
‖x0 − x∗‖2

]
− E

[
‖x1 − x∗‖2

])
+ 0.5γ1+r

0 L2
0n

2 + γr0η0L0.

Adding the preceding two relations together and using the definition of DX , we obtain

K∑
k=0

γrk (E [f(xk,y(xk))]− f∗) ≤ DXγr−1
K + 0.5L2

0n
2
K∑
k=0

γ1+r
k + L0

K∑
k=0

γrkηk.

From the definition x̄K ,
∑K

k=0 αk,Kxk in Lemma 28 and applying the convexity of the implicit

function, for all K ≥ 2
1

1−r − 1 we have

E [f(x̄K ,y(x̄N ))]− f∗ ≤
DXγ

r−1
K + 0.5L2

0n
2
∑K

k=0 γ
1+r
k + L0

∑K
k=0 γ

r
kηk∑K

k=0 γ
r
k

.

Substituting γk := γ0√
k+1

and ηk := η0

(k+1)b
, and invoking Lemma 25, we obtain

E [f(x̄K ,y(x̄K))]− f∗ ≤
DXγ

r−1
0 (K + 1)0.5(1−r) + 0.5L2

0n
2γ1+r

0
(K+1)1−0.5(1+r)

1−0.5(1+r) + γr0η0L0
(K+1)1−0.5r−b

1−0.5r−b

γr0
(K+1)1−0.5r

2−r

≤ (2− r)
(
DX
γ0

+
L2

0n
2γ0

1−r

)
1√
K+1

+ (2− r)
(

η0L0

1−0.5r−b

)
1

(K+1)b
.

(b) Under the specified setting, from part (a) we have

E [f(x̄K ,y(x̄K))]− f∗ ≤ 2
(
DX
γ0

+ L2
0n

2γ0

)
1√
K+1

+
(

2η0L0

0.5

)
1√
K+1

= 2(nL0

√
DX + nL0

√
DX ) 1√

K+1
+
(

4nL0

√
DX

)
1√
K+1

= 8nL0
√
DX√

K+1
≤ ε.

This implies the desired bound.
(c) Consider relation (112). Invoking (113), for all k ≥ 0 we have

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖xk − x∗‖2 − 2γk(f(xk,y(xk))− f∗) + 2γkηkL0 + γ2
kL

2
0n

2.
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Note that we have
∑∞

k=0 γ
2
k <∞ and

∑∞
k=0 γkηk <∞ since b > 0.5. Thus, in view of Lemma 31, we

have that {‖xk−x∗‖2} is a convergent sequence in an almost sure sense and
∑∞

k=0 γk(f(xk,y(xk))−
f∗) <∞ almost surely. The former statement implies that {xk} is a bounded sequence. Further, the
latter statement and

∑∞
k=0 γk =∞ imply that lim infk→∞ f(xk,y(xk)) = f∗. Thus, from continuity

of the implicit function, there is a subsequence of {xk} for k ∈ K with its limit point denoted by x̂
such that x̂ ∈ X ∗. Since {‖xk−x∗‖2} is a convergent sequence for all x∗ ∈ X ∗, we have {‖xk− x̂‖2}
is a convergent sequence. But already have that limk→∞, k∈K ‖xk − x̂‖2 = 0 almost surely. Hence
limk→∞ ‖xk − x̂‖2 = 0 almost surely where x̂ ∈ X ∗. Next, we show that limk→∞ ‖x̄k − x̂‖2 = 0. In
view of Lemmas 28 and 29, it suffices to have

∑∞
k=0 γ

r
k =∞ or equivalently, we must have ar ≤ 1.

This is already satisfied as a consequence of a ∈ (0.5, 1] and r ∈ [0, 1).

5.3.5 Accelerated schemes

In this subsection, we consider an accelerated scheme for resolving the problem (SMPECas), whose
implicit form is defined as

min
x∈X

f(x) , E[f̃(x,y(x, ω))] (115)

where y(x, ω) is the unique solution of an ω-specific strongly monotone variational inequality prob-
lem parametrized by x. Note that to ease the exposition, we consider the slightly simplified version
of (SMPECas) in which the uncertainty only arises through the lower-level decision y(x, ω). The
deterministic counterpart of this problem is the standard MPEC in which the lower-level problem
is a parametrized strongly monotone variational inequality problem. While the previous subsection
has considered a standard gradient-based framework, we consider an accelerated counterpart mo-
tivated by Nesterov’s celebrated accelerated gradient method [36] that produces a non-asymptotic
rate of O(1/k2) in terms of suboptimality for smooth convex optimization problems. In [192], Nes-
terov and Spokoiny develop an accelerated zeroth-order scheme for the unconstrained minimization
of a smooth function. Instead, we present an accelerated gradient-free scheme for a nonsmooth
function by leveraging the smoothing architecture. Notably, this scheme can contend with MPECs
with convex implicit functions. In this subsection, we assume that y(x, ω) can be generated by
invoking a suitable variational inequality problem solver.
We provide convergence theory for acc-ZSOL by appealing to related work on smoothed accelerated
schemes for nonsmooth stochastic convex optimization [26]. There are two key differences between
the framework presented here and that of our prior work.

(a) Smoothing. In [26], we employ a deterministic smoothing technique [59] while in this paper,
we consider a locally randomized smoothing technique in a zeroth-order regime. Notably, the
latter leads to similar (but not identical) smoothness properties with related relationships (but not
identical) between the smoothed function and its original counterpart.

(b) Zeroth-order gradient approximation. In [26], a sampled gradient of the smoothed function
is available. However, faced by the need to resolve hierarchical problems, we do not have such
access in this paper. Instead, we utilize an increasingly accurate zeroth-order approximation of the
gradient by raising the sample-size Nk in constructing this approximation.

If gηk(xk) is defined as

gηk(xk) = Ev∈ηS
[
E
[
f̃(x + v,y(x + v, ω)) | v

]]
, (118)

we may define w̄k,Nk as follows.

w̄k,Nk = gηk,Nk(xk)− gηk(xk). (119)
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Algorithm 13 acc-ZSOL: Variance-reduced accelerated zeroth-order method

1: input: Given x0 ∈ X , x̄0 := x0, λ0 = 1, stepsize sequence {γk}, smoothing parameter sequence
{ηk}, sample-size {Nk}

2: for k = 0, 1, . . . ,K − 1 do
3: Generate a random realization vj,k ∈ ηkS and y(xk + vj,k, ωj,k) for j = 1, · · · , Nk

4: Evaluate the variance-reduced zeroth-order gradient approximation as follows.

gηk,Nk(xk) :=

Nk∑
j=1

n
(
f̃(xk + vj,k,y(xk + vj,k, ωj,k))− f̃(xk,y(xk, ωj,k))

)
vj,k

‖vj,k‖Nkηk
. (116)

5: Update xk as follows.

zk+1 := ΠX [xk − γkgηk,Nk(xk, vk)]

λk+1 :=
1+
√

1+4λ2
k

2

xk+1 = zk+1 + (λk−1)
λk+1

(zk+1 − zk) .

(117)

6: end for

The following claims can be made about w̄k,Nk obtained by generating NK independent realizations

given by {vj,k}Nkj=1 and {y(xk, ωj,k)}Nkj=1.

Assumption 17. Let the following hold and for all k ≥ 0 and 1 ≤ ` ≤ Nk.
(a) The random realizations {ωk,`} are independent and identically distributed.
(b) Eω,v[w̄k,Nk | xk] = 0, almost surely.

(c) Eω,v[‖w̄k,Nk‖2 | xk] ≤
ν2

Nk
for some ν > 0.

Lemma 33. [26, Lemma 4] Consider the problem (5.3.5). Suppose Assumptions 13– 15, 17
hold. Suppose {xk, zk} denote the sequence generated by Algorithm 13 in which the stepsize and
smoothing sequences are defined as ηk = 1

k and γk = 1
2k , and Nk = bkac for k ≥ 1. Suppose

E[‖x0 − x∗‖] ≤ C. Then the following holds for a = 1 + δ.

E [fηK (zK)− fηK (x∗)] ≤ 2

γK−1(K − 1)2

K−1∑
k=1

γ2
kk

2ν2

Nk−1
+

2C2

γK−1(K − 1)2
. (120)

We may now provide the main rate statement for the smoothed accelerated scheme by adapting [26,
Thm. 5].

Proposition 10 (Rate statement for Algorithm 13). Consider the problem (5.3.5). Suppose
Assumptions 13– 15, 17 hold. Suppose {xk, zk} denote the sequence generated by Algorithm 13
in which the stepsize and smoothing sequences are defined as ηk = 1

k and γk = 1
2k , and Nk = bkac

for k ≥ 1. Suppose E[‖x0 − x∗‖] ≤ C. Then the following hold for a = 1 + δ.
(a) For E[f(zk)− f(x∗)] ≤ O

(
1
k

)
. Then the iteration complexity in zeroth-order gradient steps is

O(1/ε).
(b) Suppose Kε is such that E[f(zk)− f(x∗)] ≤ ε. Then

∑Kε
k=1Nk ≤ O(1/ε2+δ) implying that the

iteration complexity in terms of lower-level calls to the VI solver is O(1/ε2+δ).
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Proof. (a) From Lemma 33, we have that

E [fηK (zK)− fηK (x∗)] ≤ 2

γK−1(K − 1)2

K−1∑
k=1

γ2
kk

2ν2

Nk−1
+

2C2

γk−1(K − 1)2
. (121)

From Lemma 24 (v), we have that f(x) ≤ fη(x) ≤ f(x) + ηL0. Consequently, we have that

E [f(zK)− f(x∗)] ≤ E [fηK (zK)− fηK (x∗)] + ηKL0

≤ 2

γK−1(K − 1)2

K−1∑
k=1

γ2
kk

2ν2

Nk−1
+

2C2

γK−1(K − 1)2
+ ηKL0 ≤ O( 1

K ),

by invoking γk = 1/(2k), ηk = 1/k, and Nk = bkac where a = 1 + δ.
(b) Omitted.

Remark 6. Several points deserve emphasis. (i) The proposed scheme employs diminishing smooth-
ing sequences rather than fixed, leading to asymptotic convergence guarantees, a key distinction from
the scheme proposed in [192]. (ii) By adapting the framework employed for the inexact oracles, one
may consider similar extensions to the accelerated framework. However, this would lead to bias in
the gradient approximation and one would expect this to adversely affect the rate. This remains a
goal of future study.

5.4 Nonconvex settings

In this section, in addressing (MPECimp,exp) in the nonconvex case, we consider a smoothed implicit
problem given by the following.

min fη(x,y(x))

subject to x ∈ X ,
(122)

where fη is defined by (G-Smooth) for a given η > 0. The outline of the proposed zeroth-order
scheme is given by Algorithms 14–15. We make the following assumptions.

Assumption 18. Given a mini-batch sequence {Nk} and a smoothing parameter η > 0, let vj,k ∈
Rn, for j = 1, . . . , Nk and k ≥ 0 be generated randomly and independently, from ηS for all k ≥ 0.

Assumption 19. Let the following hold and for all k ≥ 0 and t ≥ 0.
(a) The random realizations ωt for t ≥ 0 are independent and identically distributed.
(b) E[G(x̂k,yt, ω`,t) | x̂k,yt] = F (x̂k,yt).
(c) E[‖G(x̂k,yt, ω`,t)− F (xk,yt)‖2 | xk,yt] ≤ ν2

G for some νG > 0.

We utilize the following definition and lemma in the analysis in this subsection.

Definition 6 (The residual mappings). Suppose Assumption 13 holds. Given a scalar β > 0 and
a smoothing parameter η > 0, for any x ∈ Rn, let the residual mappings Gη,β(x) and G̃η,β(x) be
defined as follows.

Gη,β(x) , β
(
x−ΠX

[
x− 1

β∇xfη(x,y(x))
])
, (123)

G̃η,β(x) , β
(
x−ΠX

[
x− 1

β (∇xfη(x,y(x)) + ẽ)
])
, (124)

where ẽ ∈ Rn is an arbitrary given vector.
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Algorithm 14 VR-ZSOL: Variance reduced inexact zeroth-order method for the nonconvex case

1: input: Given x0 ∈ X , x̄0 := x0, stepsize γ > 0, smoothing parameter η > 0, mini-batch
sequence {Nk} such that Nk := k + 1, an integer K, a scalar λ ∈ (0, 1), and an integer R
randomly selected from {dλKe, . . . ,K} using a uniform distribution

2: for k = 0, 1, . . . ,K − 1 do
3: Call Algorithm 11 to obtain yεk(xk) := ytk
4: for j = 1, . . . , Nk do
5: Generate a random batch vj,k ∈ ηS for j = 1, . . . , Nk

6: Call Algorithm 11 to obtain yεk(xk + vj,k) := ytk
7: Compute a sample zeroth-order gradient approximation as follows.

gη,εk(xk, vj,k) :=
n (f(xk + vj,k,yεk(xk + vj,k))− f(xk,yεk(xk))) vj,k

‖vj,k‖η

8: end for

9: Evaluate the mini-batch inexact zeroth-order gradient. gη,Nk,εk(xk) =
∑Nk
j=1 gη,εk (xk,vj,k)

Nk
10: Update xk as follows. xk+1 := ΠX [xk − γgη,Nk,εk(xk)]
11: end for
12: Return xR

Algorithm 15 SA method for stochastic VI in the lower-level

1: input: An arbitrary y0 ∈ Y, vector x̂k, and initial stepsize α0 >
1

2µF
2: Set tk := k + 1
3: for t = 0, 1, . . . , tk − 1 do
4: Generate a random realization of the stochastic mapping G(x̂k,yt, ωt)
5: Update yt as follows. yt+1 := ΠY [yt − αtG(x̂k,yt, ωt)]
6: Update the stepsize using αt+1 := α

t+Γ
7: end for
8: Return ytk

It may be observed that Gη,β is a residual for stationarity for the minimization of smooth nonconvex
objectives over convex sets (cf. [59]). In fact, the first part of (125) is a consequence of the well
known result relating the residual function Gη,β(x) to the standard stationarity condition (cf. [200,
Thm. 9.10]) while the second implication in (125) is Prop. 9.

Lemma 34. Consider the problem (122). Then the following holds for any η, β > 0.

[Gη,β(x) = 0] ⇐⇒ [0 ∈ ∇xfη(x,y(x)) +NX (x)] =⇒ [0 ∈ ∂2ηfη(x,y(x)) +NX (x)] . (125)

Consequently, a zero of the residual of the η-smoothed problem satisfies an η-approximate station-
arity property for the original problem. The residual G̃η,β represents the counterpart of Gη,β when
employing an error-afflicted estimate of the gradient. We now derive a bound on Gη,β in terms of
G̃η,β and ẽ, the error in the gradient.

Lemma 35. Let Assumption 13 hold. Then the following holds for any β > 0, η > 0, and x ∈ Rn.

‖Gη,β(x)‖2 ≤ 2‖G̃η,β(x)‖2 + 2‖ẽ‖2.
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Proof. From Definition 6, we may bound Gη,β(x) as follows.

‖Gη,β(x)‖2 =
∥∥∥β (x−ΠX

[
x− 1

β∇xfη(x,y(x))
])∥∥∥2

=
∥∥∥β (x−ΠX

[
x− 1

β (∇xfη(x,y(x)) + ẽ)
])

+ βΠX

[
x− 1

β (∇xfη(x,y(x)) + ẽ)
]
− βΠX

[
x− 1

β∇xfη(x,y(x))
]∥∥∥2

≤ 2
∥∥∥β (x−ΠX

[
x− 1

β (∇xfη(x,y(x)) + ẽ)
])∥∥∥2

+ 2
∥∥∥βΠX

[
x− 1

β (∇xfη(x,y(x)) + ẽ)
]
− βΠX

[
x− 1

β∇xfη(x,y(x))
]∥∥∥2

≤ 2‖G̃η,β(x)‖2 + 2‖ẽ‖2,

where the last inequality is a consequence of the non-expansivity of the Euclidean projector.

The proposed scheme can be compactly represented as follows.

xk+1 := ΠX [xk − γ (∇xfη(xk,y(xk)) + ek)] , (126)

where we define the stochastic errors ek , gη,Nk,εk(xk) −∇xfη(xk,y(xk)) for all k ≥ 0. We make
use of the following result in the convergence analysis.

Lemma 36. Let Assumption 13. Suppose xk is generated by Algorithm 14 in which γ ∈ (0, η
nL0

)
for a given η > 0. Then, we have for any k,

fη(xk+1,y(xk+1)) ≤ fη(xk,y(xk)) +
(
−1 + nL0γ

η

)
γ
4‖Gη,1/γ(xk)‖2 +

(
1− nL0γ

2η

)
γ‖ek‖2.

Proof. Note that by Lemma 24 (iv), ∇fη(•,y(•)) is Lipschitz with parameter L , nL0
η . By the

descent lemma, we have that

fη(xk+1,y(xk+1)) ≤ fη(xk,y(xk)) +∇xfη(xk,y(xk))
T (xk+1 − xk) + L

2 ‖xk+1 − xk‖2

= fη(xk,y(xk)) + (∇xfη(xk,y(xk)) + ek)
T (xk+1 − xk)

− eTk (xk+1 − xk) + L
2 ‖xk+1 − xk‖2.

From the properties of the Euclidean projection, we have that

(xk − γ(∇xfη(xk,y(xk)) + ek))− xk+1)T (xk − xk+1) ≤ 0

=⇒ (∇xfη(xk,y(xk)) + ek))
T (xk+1 − xk) ≤ − 1

γ ‖xk+1 − xk‖2.

In addition, for any u, v ∈ Rn we can write uT v ≤ 1
2

(
γ‖u‖2 + ‖v‖2

γ

)
. Thus, we have that

−eTk (xk+1 − xk) ≤ γ
2‖ek‖

2 + 1
2γ ‖xk+1 − xk‖2.

Consequently, from the preceding three inequalities we have that

fη(xk+1,y(xk+1)) ≤ fη(xk,y(xk))− 1
γ ‖xk+1 − xk‖2 + γ

2‖ek‖
2 + 1

2γ ‖xk+1 − xk‖2 + L
2 ‖xk+1 − xk‖2

= fη(xk,y(xk)) +
(
− 1

2γ + L
2

)
‖xk+1 − xk‖2 + γ

2‖ek‖
2.
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From γ < 1
L , we have

fη(xk+1,y(xk+1)) ≤ fη(xk,y(xk)) +
(
− 1

2γ + L
2

)
‖xk+1 − x‖2 + γ

2‖ek‖
2

= fη(xk,y(xk)) +
(
− 1

2γ + L
2

)
γ2‖G̃η,1/γ(xk)‖2 + γ

2‖ek‖
2

= fη(xk,y(xk)) + (−1 + Lγ) γ2‖G̃η,1/γ(xk)‖2 + γ
2‖ek‖

2

Lemma 35

≤ fη(xk,y(xk)) + (−1 + Lγ) γ4‖Gη,1/γ(xk)‖2 + (1− Lγ) γ2‖ek‖
2 + γ

2‖ek‖
2

= fη(xk,y(xk)) + (−1 + Lγ) γ4‖Gη,1/γ(xk)‖2 +
(

1− Lγ
2

)
γ‖ek‖2.

Substituting L := nL0
η we obtain the desired inequality.

We make use of the following result in the convergence analysis.

Lemma 37. Let {ek} be a non-negative sequence such that for an arbitrary non-negative sequence
{γk}, the following relation is satisfied.

ek+1 ≤ (1− αγk)ek + βγ2
k , for all k ≥ 0. (127)

where α and β are positive scalars. Suppose γk = γ
k+Γ for any k ≥ 0, where γ > 1

α and Γ > 0.
Then, we have

ek ≤
max

{
βγ2

αγ−1 ,Γe0

}
k+Γ , for all k ≥ 0. (128)

Next, we present the rate and complexity result for the proposed inexact method for addressing
the nonconvex case.

Theorem 38 (Rate statements and complexity results for Algorithms 14–15). Consider
Algorithms 14–15 for solving (MPECimp,exp) and suppose Assumptions 13, 18, and 19 hold.
(a) Given x̂k ∈ X , let y(x̂k) denote the unique solution of VI(Y, F (•, x̂k)). Let ytk be generated
by Algorithm 15. Let us define CF , maxx∈X, y∈Y ‖F (x,y)‖. Then for all tk ≥ 0, we have

E[‖ytk − y(x̂k)‖2] ≤ εk ,
max

{
(C2
F+ν2

G)α2

2αµF−1 ,Γ supy∈Y ‖y−y0‖2
}

tk+Γ .

(b) The following holds for any γ < η
nL0

, ` , dλKe, and all K > 2
1−λ .

E
[
‖Gη,1/γ(xR)‖2

]
≤
n2γ(1− 2 ln(λ))

(
1− nL0γ

2η

)(
4L̃2

0
η2 + L2

0

)
+ E [f(x`,y(x`))]−f∗ + 2L0η(

1− nL0γ
η

)
γ
4 (1− λ)K

.

(c) Suppose γ = η
2nL0

and η = 1
L0

. Let ε > 0 be an arbitrary scalar and Kε be such that

E
[
‖Gη,1/γ(xR)‖2

]
≤ ε. Then,

(c-1) The total number of upper-level projection steps on X is Kε = O
(
n2L2

0ε
−1
)
.

(c-2) The total sample complexity of upper-level is O
(
n4L4

0ε
−2
)
.

(c-3) The total number of lower-level projection steps on Y is O
(
n6L6

0ε
−3
)
.

(c-4) The total sample complexity of lower-level is O
(
n6L6

0ε
−3
)
.

92



Proof. (a) Let us define the errors ∆t , G(x̂k, yt, ωt)− F (x̂k, yt) for t ≥ 0. Also, let the history of
Algorithm 11 be denoted by Ft , {ω0, . . . , ωt−1} for t ≥ 1, and F0 , {ω0}. We have

‖yt+1 − y(x̂k)‖2 = ‖ΠY [yt − αtG(x̂k,yt, ωt)]−ΠY [y(x̂k)] ‖2 ≤ ‖yt − αtG(x̂k,yt, ωt)− y(x̂k)‖2

= ‖yt − αtF (x̂k,yt)− αt∆t − y(x̂k)‖2

= ‖yt − y(x̂k)‖2 + α2
t ‖F (x̂k,yt)‖2 + α2

t ‖∆t‖2 − 2αt(yt − y(x̂k))
TF (x̂k,yt)

− 2αt(yt − y(x̂k)− αtF (x̂k,yt))
T∆t.

Taking conditional expectations from the preceding relation and invoking Assumption 19, we obtain

E[‖yt+1 − y(x̂k)‖2 | Ft] ≤ ‖yt − y(x̂k)‖2 + α2
t (C

2
F + ν2

G)− 2αt(yt − y(x̂k))
TF (x̂k, yt).

From strong monotonicity of mapping F (x̂k, •) uniformly in x̂k and the definition of y(x̂k), we have

(yt − y(x̂k))
TF (x̂k, yt) ≥ (yt − y(x̂k))

TF (y(x̂k), x̂k) + µF ‖yt − y(x̂k)‖2 ≥ µF ‖yt − y(x̂k)‖2.

From the preceding relations, we obtain

E[‖yt+1 − y(x̂k)‖2 | Ft] ≤ (1− 2µFαt)‖yt − y(x̂k)‖2 + α2
t (C

2
F + ν2

G).

Taking expectations from both sides, we have

E[‖yt+1 − y(x̂k)‖2] ≤ (1− 2µFαt)E[‖yt − y(x̂k)‖2] + α2
t (C

2
F + ν2

G).

Noting that in Algorithm 15 we have α0 >
1

2µF
, using Lemma 37, we obtain that

E[‖yt − y(x̂k)‖2] ≤
max

{
(C2
F+ν2

G)α2

2αµF−1 ,Γ supy∈Y ‖y−y0‖2
}

t+Γ , for all t ≥ 0.

(b) Let the history of Algorithm 14 be denoted by Fk , ∪k−1
i=0 ∪

Ni
j=1 {vj,i} for k ≥ 1, and F0 ,

∪N0
j=1{vj,0}. We can write

E
[
‖ek‖2 | Fk

]
= E

[
‖gη,Nk,εk(xk)−∇xfη(xk,y(xk))‖2 | Fk

]
= E

[∥∥∥∥∑Nk
j=1 gη,εk (xk,vj,k)

Nk
−∇xfη(xk,y(xk))

∥∥∥∥2

| Fk

]

≤ 2E

[∥∥∥∥∑Nk
j=1 gη,εk (xk,vj,k)

Nk
−
∑Nk
j=1 gη(xk,vj,k)

Nk

∥∥∥∥2

| Fk

]
+ 2E

[∥∥∥∥∑Nk
j=1 gη(xk,vj,k)

Nk
−∇xfη(xk,y(xk))

∥∥∥∥2

| Fk

]

≤
2
∑Nk
j=1 E

[
‖gη,εk (xk,vj,k)−gη(xk,vj,k)‖2|Fk

]
Nk

+
2
∑Nk
j=1 E

[
‖gη,(xk,vj,k)−∇xfη(xk,y(xk))‖2|Fk

]
N2
k

≤ 8L̃2
0n

2εk
η2 +

2
∑Nk
j=1

(
E
[
‖gη,(xk,vj,k)‖2|Fk

]
−‖∇xfη(xk,y(xk))‖2

)
N2
k

≤ 8L̃2
0n

2εk
η2 +

2n2L2
0

Nk
,

where in the second inequality, the first term is implied by the relation ‖
∑m

i=1 ui‖
2 ≤ m

∑m
i=1 ‖ui‖

2

for any ui ∈ Rn for all i = 1, . . . ,m. The second term in the second inequality is implied by noting
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that from Lemma 26, gη(xk, v) is an unbiased estimator of ∇xfη(xk,y(xk)). From Lemma 35 we
have (

1− nL0γ
η

)
γ
4‖Gη,1/γ(xk)‖2 ≤ fη(xk,y(xk))− fη(xk+1,y(xk+1)) +

(
1− nL0γ

2η

)
γ‖ek‖2.

Let f∗η , infx∈X fη(x,y(x)). Summing the preceding relation from k = `, . . . ,K−1 where ` , dλKe,
we have that(

1− nL0γ
η

)
γ
4

K−1∑
k=`

‖Gη,1/γ(xk)‖2 ≤ fη(x`,y(x`))− fη(xK ,y(xK)) +
(

1− nL0γ
2η

)
γ
K−1∑
k=`

‖ek‖2.

Taking expectations from the both sides, it follows that(
1− nL0γ

η

)
γ
4 (K − `)E

[
‖Gη,1/γ(xR)‖2

]
≤
(

1− nL0γ
2η

)
γ

K−1∑
k=`

E
[
‖ek‖2

]
+ E [fη(x`,y(x`))]− f∗η

≤
(

1− nL0γ
2η

)
γ
K−1∑
k=`

E
[
‖ek‖2

]
+ E [f(x`,y(x`)) + fη(x`,y(x`))− f(x`,y(x`))]− f∗η + f∗ − f∗

≤
(

1− nL0γ
2η

)
γ
K−1∑
k=`

E
[
‖ek‖2

]
+ E [f(x`,y(x`))]− f∗ + E [|fη(x`,y(x`))− f(x`,y(x`))|]+

∣∣f∗ − f∗η ∣∣
≤
(

1− nL0γ
2η

)
γ
K−1∑
k=`

(
8L̃2

0n
2εk

η2 +
2n2L2

0
Nk

)
+ E [f(x`,y(x`))]−f∗ + 2L0η,

where the preceding relation is implied by invoking the bound on E
[
‖ek‖2

]
and Lemma 24 (iii).

Note that from part (a), we have εk =
2(C2

F+ν2
G)

µ2
F tk

where tk := k + 1. Also, Nk := k + 1. Note that

K > 2
1−λ implies ` ≤ K − 1. From Lemma 25, using ` ≥ 1 we have

∑K−1
k=`

1
k+1 ≤

1
`+1 + ln

(
K
`+1

)
≤

0.5 + ln
(

N
λN+1

)
≤ 0.5− ln(λ). Also, K − ` ≥ K − λK = (1− λ)K. Thus, we obtain

E
[
‖Gη,1/γ(xR)‖2

]
≤

(
1− nL0γ

2η

)
2n2γ

(
4L̃2

0
η2 + L2

0

)
(0.5− ln(λ)) + E [f(x`,y(x`))]−f∗ + 2L0η(

1− nL0γ
η

)
γ
4 (1− λ)K

.

(c) To show (c-1), using the relation in part (b) and substituting γ = η
2nL0

we obtain

E
[
‖Gη,1/γ(xR)‖2

]
≤

6n2(1− 2 ln(λ))
(

4L̃2
0

η2 + L2
0

)
+ 16nL0

η (supx∈X f(x,y(x))− f∗) + 32nL2
0

(1− λ)K
.

Further, from η = 1
L0

we obtain

E
[
‖Gη,1/γ(xR)‖2

]
≤

6n2L2
0(1− 2 ln(λ))

(
4L̃2

0 + 1
)

+ 16nL2
0(supx∈X f(x,y(x))− f∗) + 32nL2

0

(1− λ)K
.

This implies that E
[
‖Gη,1/γ(xR)‖2

]
≤ O(n2L2

0)
K and thus, we obtain Kε = O

(
n2L2

0ε
−1
)
. Next, we

show (c-2). The total sample complexity of upper-level is as follows.

Kε∑
k=0

Nk =

Kε∑
k=0

(k + 1) = O(K2
ε ) = O

(
n4L4

0ε
−2
)
.
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To show (c-3), note that the total number of lower-level projection steps is given by

Kε∑
k=0

(1 +Nk)tk =

Kε∑
k=0

(k + 1)(k + 2) = O(K3
ε ) = O

(
n6L6

0ε
−3
)
.

Noting that at each iteration in Algorithm 15 a single sample is taken, we obtain the bound in
(c-4).

5.5 Numerical results

In this section, we demonstrate the proposed methodology by solving some instances of MPECs
inspired from the literature. All of the schemes were implemented in MATLAB on a PC with 16GB
RAM and 6-Core Intel Core i7 processor (2.6GHz).

5.5.1 Numerics for SMPECas

In this section, we apply the schemes on a stochastic Stackelberg-Nash-Cournot equilibrium prob-
lem. The deterministic setting of the problem is derived from [168]. Consider a market with N
profit-maximizing by competing in Cournot (quantities) under the Cournot assumption that the
remaining firms will hold their outputs at existing levels. In addition, there is a Stackelberg firm
(leader), supplying the same product which sets production levels by explicitly considering the
reaction of the other N firms to its output variations. We assume that the ith Cournot firm (fol-
lower) supplies qi units of the product while fi(qi) denotes the total cost. In a similar fashion,
suppose x denotes the output of the Stackelberg firm and let f(x) denote the total cost. Next, let
p(·, ω) represent the random inverse demand curve. The N Cournot firms have sufficient capacity
installed and thus they can wait to observe the quantities supplied by the Stackelberg firm as well
as the realized demand function before making a decision on their supply quantities. For a given
x ≥ 0, let (q1(x, ω), . . . , qN (x, ω)) be a set of quantities for every ω ∈ Ω and each qi(x, ω) solve the
following profit maximization problem assuming that qj(x, ω), j 6= i are fixed:

max
qi≥0

qip
(
qi + x+

∑N
j=1,j 6=iqj(x, ω), ω

)
− fi(qi). (129)

Accordingly, let Q(x, ω) ,
∑N

i=1 qi(x, ω). In addition, we assume there exits a capacity limit xu for
x. Then x∗ is said to be a Stackelberg-Nash-Cournot equilibrium solution if x∗ solves

maximize
0≤x≤xu

E[xp(x+Q(x, ω), ω)]− f(x). (130)

We consider the case of a linear demand curve with convex quadratic cost functions. Specifically,
let p(x, ω) = a(ω) − bx and let fi(q) = 1

2cq
2 for i = 1, · · · , N , and f(x) = 1

2dx
2. Under this

condition, the follower’s objective can be shown to be strictly concave in qi [183]. Consequently,
the concatenated necessary and sufficient equilibrium conditions of the follower-level game are given
by the following conditions.

0 ≤ q ⊥ ∇qF (q)− p(x+Q(x, ω), ω)1− p′(x+Q(x, ω)ω)q ≥ 0, (131)

where F (q) = [f1(q1), · · · , fN (qN )]′. We observe that (131) is a strongly monotone variational
inequality problem for x ≥ 0 and for every ω ∈ Ω. Consequently, q : R+ × Ω → RN+ is a single-
valued map and is convex in its first argument for every ω if cj is quadratic and convex [181,
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Prop. 4.2]. In fact, it can be claimed that q(·, ω) is a piecewise C2 and non-increasing function with
∂xq(x, ω) ⊂ (−1, 0] for X ≥ 0. Consider the leader’s problem (130) Consequently, we have that

0 3 x ⊥ E [−p(x+Q(x, ω), ω) + (1 + ∂xQ(x, ω))bx− a(ω)] +∇xf(x) ∈ 0.

This may be viewed as the following inclusion which has been shown to be monotone [181, Thm. 4.4].

0 ∈ E[T (x, ω)] +NR+
n
,

where T (x, ω) , E [−p(x+Q(x, ω), ω)1− a(ω)1] +∇xf(x) + {E[(1 + ∂xQ(x, ω))bx]}.

Problem parameters. Suppose there are N = 10 Cournot firms and c = d = 0.1. Furthermore,
b = 1 and a(ω) ∼ U(7.5, 12.5) where U(l, u) denotes the uniform distribution on [l, u].

Algorithm parameters. We choose γk = 1√
k

and ηk = 1√
k
, ∀k ≥ 1 in (ZSOL) and γk = 1

2k and

ηk = 1
k , ∀k ≥ 1 in (acc-ZSOL). In addition, we choose sample size Nk = bk1.01c.

We compare the performance of (ZSOL) and (acc-ZSOL) with Nesterov’s fixed smoothing scheme
under the same number of iterations in Fig. 7. Next we change the size and parameters of the
original game to ascertain parametric sensitivity. In Table 16, we consider a set of 12 problems
where the settings, the empirical errors, and elapsed time are shown in Table 16. Note that we have
access to the true solution from [168] and this is employed for computing the sub-optimality metrics.
In addition, to show the performance of our proposed schemes, we consider the (SAA) scheme
(utilizing the average of 100 samples) used in [181]. Let (ωk)

K
k=1 denote independent identically

distributed (i.i.d.) samples. Then, with (SAA) we solve the following formulation of problem:

max
0≤x≤xu

1
K

K∑
k=1

[x · (a(ωk)− b · (x+Q(x, ωk)))]− 1
2dx

2

subject to 0 ≤ qi ⊥ (c+ 2b)qi − a(wk) + b ·
(
x+

∑N
j=1,j 6=iqj(x, ωk)

)
≥ 0, ∀i, k.

This problem allows for utilizing NLPEC [201] in GAMS to compute a solution.

Figure 7: Trajectories for (ZSOL), (ac-ZSOL) and Nesterov on the convex SMPECas

Insights.

• Scalability. Both (ZSOL) and (acc-ZSOL) show far better scalability in terms of N with
modest impact on accuracy and run-time. SAA schemes on the other hand grow by a factor
of 10 when number of firms double. In fact, for N = 20, the SAA framework requires
CPU time which is between 50 and 100 times greater than that required by the zeroth-order
schemes.
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Table 16: Errors and time comparison of the three schemes with different parameters
(ZSOL) (acc-ZSOL) (SAA)

f∗ − f(x̄K) Time f∗ − f(xK) Time f∗ − f(x̂) Time

N = 10
b = 1

c = 0.05 1.2e-3 0.1 6.6e-5 5.6 5.4e-4 130.2
c = 0.1 8.2e-4 0.1 4.8e-5 5.4 4.2e-4 109.2

b = 0.5
c = 0.05 1.7e-3 0.1 7.0e-5 5.4 3.8e-4 122.5
c = 0.1 1.2e-3 0.1 6.3e-5 5.5 2.2e-4 116.8

N = 20
b = 1

c = 0.05 4.5e-4 0.1 2.6e-5 5.6 2.6e-4 426.7
c = 0.1 4.0e-4 0.1 1.3e-5 5.7 5.7e-4 443.1

b = 0.5
c = 0.05 6.3e-4 0.1 2.3e-5 5.7 4.8e-4 419.1
c = 0.1 4.2e-4 0.1 2.9e-5 5.6 3.1e-4 450.0

N = 100
b = 1

c = 0.05 9.9e-5 0.2 3.2e-6 7.5 – –
c = 0.1 2.3e-5 0.2 1.3e-6 7.5 – –

b = 0.5
c = 0.05 2.6e-4 0.2 4.7e-6 7.9 – –
c = 0.1 2.5e-5 0.2 1.4e-6 7.5 – –

N = 1000
b = 1

c = 0.05 2.2e-5 0.6 3.6e-7 27.9 – –
c = 0.1 1.7e-6 0.6 8.3e-8 28.8 – –

b = 0.5
c = 0.05 2.5e-5 0.6 3.1e-7 29.1 – –
c = 0.1 1.4e-6 0.6 8.9e-8 28.4 – –

N = 10000
b = 1

c = 0.05 1.0e-5 4.6 5.2e-7 403.5 – –
c = 0.1 6.0e-6 4.5 3.8e-8 392.4 – –

b = 0.5
c = 0.05 1.1e-5 4.7 5.6e-8 334.2 – –
c = 0.1 7.1e-6 4.6 2.7e-8 399.7 – –

The error and time pf (ZSOL) and (acc-ZSOL) are the average results of 20 runs (‘–’
means the running time is over 3600)

• Accuracy. The accelerated scheme provides nearly 10 times more accurate solutions than the
unaccelerated scheme at a modest computational cost.

• Comparison of accelerated schemes. Figure 7 demonstrates the benefits of diminishing smooth-
ing sequences as the scheme suggested in [192] degenerates for different values of the fixed
smoothing parameter. Notably, (acc-ZSOL) shows no such degeneration and progressively
improves in function value.

5.5.2 Numerics for SMPECexp

A convex implicit function Here, we consider a situation of the previous example when the lower
level is SVI, which means we consider the following lower level problem for each qi,

max
qi≥0

E[qi(a(ω)− b(qi + x+
∑

j 6=i qj(x))]− 1
2cq

2
i ,

and accordingly, the upper level problem is as follows

max
0≤x≤xu

E
[
x(a(ω)− b(x+

∑N
i=1 qi(x)))

]
− 1

2dx
2.

Similarly, this implicit function can be shown a convex function. We assume b = 0.01 and c = 3
here, other parameters are the same as in the previous section. It can be shown that µF = 3.01 and
LF = 3.11. For the algorithm parameters, we suppose γk = 1√

k
and ηk = 1√

k
for (ZSOL). In (ZSOL)

we run 103 iterations. In the lower level’s variance-reduced stochastic approximation scheme, we
choose steplength α = 0.15, sampling rate ρ = 1

1.5 and the sample size Mt = d10−4 · 1.5te. Thus
we may calculate that τ ≥ 4.9 and then we choose tk = d5 ln(k + 1)e. In Fig. 8, we show the
trajectories for (ZSOL) under various algorithm parameters.
Again, we compare the errors and time between (ZSOL) and (SAA) in Table 17. Here, with (SAA)
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Figure 8: Trajectories for (ZSOL) on the convex SMPECexp

we solve the following optimization problem

maximize
0≤x≤xu

1
K

K∑
k=1

[x · (a(ωk)− b · (x+Q(x)))]− 1
2dx

2

subject to 0 ≤ qi ⊥ 1
L

∑L
`=1

[
(c+ 2b)qi − a(w`) + b ·

(
x+

∑N
j=1,j 6=iqj(x)

)]
≥ 0, ∀i.

In (SAA), we use 103 samples in both the upper and lower level problems.

Table 17: Errors and time comparison of (ZSOL) and (SAA) with various parameters
(ZSOL) (SAA)

f∗ − f(x̄K) Time f∗ − f(x̂) Time

N = 102
b = 0.01

c = 3 6.9e-4 0.1 2.2e-4 0.05
c = 5 3.7e-4 0.1 2.4e-4 0.05

b = 0.02
c = 3 8.1e-4 0.1 7.3e-4 0.05
c = 5 3.5e-4 0.1 4.0e-4 0.05

N = 103
b = 0.01

c = 3 7.0e-4 0.4 7.0e-4 1.2
c = 5 4.3e-4 0.4 5.0e-4 1.1

b = 0.02
c = 3 8.0e-4 0.4 6.8e-4 1.2
c = 5 4.7e-4 0.4 4.2e-4 1.2

N = 104
b = 0.01

c = 3 5.1e-4 5.8 7.3e-4 88.6
c = 5 2.5e-4 5.2 5.4e-4 85.7

b = 0.02
c = 3 6.4e-4 5.6 4.3e-4 93.5
c = 5 3.1e-4 5.3 4.7e-4 87.3

N = 105
b = 0.01

c = 3 8.7e-4 45.6 – –
c = 5 6.5e-4 47.1 – –

b = 0.02
c = 3 9.7e-4 46.3 – –
c = 5 7.5e-4 46.7 – –

The error and time of (ZSOL) are the average results of 20 runs
(‘–’ means the running time is over 3600)

Insights. Again we observe that the CPU times grow by a factor of 4 for the zeroth-order schemes;
however the SAA schemes show a growth in time of more than 150 when N changes from 10 to 100.
Both approaches provide similar accuracy but zeroth-order schemes require less than 1s in CPU
time while the SAA framework requires approximately 15s for N = 100. The accuracy of ZSOL is
relatively robust to changing steplength and sampling rates at the lower level but does tend to be
sensitive to changing the initial steplength at the upper level; however, as the scheme progresses,
the impact of initial steplengths tends to be muted.
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Table 18: Errors and confidence intervals for high dimensional problems from Table 16 and 17
(ZSOL) (acc-ZSOL)

f∗ − f(x̄K) CI f∗ − f(xK) CI

Table 16 b = 1
c = 0.05 1.0e-5 [0.9e-5,1.1e-5] 5.2e-7 [5.0e-7,5.4e-7]
c = 0.1 6.0e-6 [5.9e-6,6.1e-6] 3.8e-8 [3.4e-8,4.2e-8]

N = 104 b = 0.5
c = 0.05 1.1e-5 [1.0e-5,1.2e-5] 5.6e-8 [5.2e-8,6.0e-8]
c = 0.1 7.1e-6 [7.0e-6,7.2e-6] 2.7e-8 [2.4e-8,3.0e-8]

Table 17 b = 0.01
c = 3 8.7e-4 [7.5e-4,9.9e-4] – –
c = 5 6.5e-4 [5.9e-4,7.1e-4] – –

N = 105 b = 0.02
c = 3 9.7e-4 [8.0e-4,1.1e-3] – –
c = 5 7.5e-4 [6.4e-4,8.6e-4] – –

5.5.3 A nonconvex implicit function

The second example is inspired from [202] and is a bilevel problem with a strongly monotone
mapping in the lower level. We add a stochastic component in the lower level to make the mapping
expectation-valued. Formally, this problem is defined as follows.

min
x

−x2
1 − 3x2 − 4y1 + y2

2

subject to x2
1 + 2x2 ≤ 4

≤ x1 ≤ 1

0 ≤ x2 ≤ 2

where y is a solution to

min
y

E[2x2
1 + y2

1 + y2
2 − ξ(ω)y2]

subject to x2
1 − 2x1 + x2

2 − 2y1 + y2 ≥ −3

x2 + 3y1 − y2 ≥ 4

y1 ≥ 0, y2 ≥ 0,

(132)

where we assume ξ(ω) ∼ U(4, 6). Based on the rule, we run 104 iterations and choose η = 10−2,
γ = 10−3 in (VR-ZSOL). In addition, we choose α0 = 1 and αt = α0

t+0.01 for t = 0, 1, . . . , tk − 1 in
the stochastic approximation method applied to the lower level. We compare the performance of
(VR-ZSOL) on this problem in Fig. 9 for varying algorithm parameters, all of which suggest that
the resulting sequences steadily converge to the global minimizer. To test the power of (ZSOL) on
different problems, we change the objective function of upper level and lower level to −ax2

1− bx2
2−

3x2 − 4y1 + y2
2 and E[2x2

1 + cy2
1 + dy2

2 − ξ(ω)y2], respectively. Then we vary the values of a, b, c
and d. For comparison, we also run each problem using solvers NLPEC and BARON [203, 204] on the
NEOS Server [205–207]. We record the empirical errors of each scheme for 9 different settings, as
shown in Table 17. In (VR-ZSOL), we use 104 samples in each test problem.
Insights. From Fig. 9, we observe that while all of the implementations perform well, large initial
steplengths at the lower-level tend to lead relatively worse compared to more modest steplengths.
Table 17 is instructive in that it shows that (VR-ZSOL) produces values close to the global minimum
as obtained by BARON for all nine problem instances. Notably, solvers such as NLPEC are equipped
with convergence guarantees to first-order points and tend to provide somewhat poorer values upon
termination.
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Figure 9: Trajectories for (VR-ZSOL) on the non-convex SMPECexp

Table 19: Errors comparison of the three schemes with different parameters
ZSOL NLPEC BARON

f(xK) local optimum global optimum

(a, b) = (1, 0)
(c, d) = (1, 1) -7.50 -7.20 -7.50
(c, d) = (2, 2) -9.23 -9.04 -9.23
(c, d) = (3, 3) -9.25 -9.10 -9.25

(a, b) = (5, 0)
(c, d) = (1, 1) -11.50 -7.20 -11.50
(c, d) = (2, 2) -13.23 -9.04 -13.23
(c, d) = (3, 3) -13.25 -9.10 -13.25

(a, b) = (10, 0)
(c, d) = (1, 1) -16.48 -7.20 -16.50
(c, d) = (2, 2) -18.20 -9.04 -18.23
(c, d) = (3, 3) -18.23 -9.10 -18.25

The error of (ZSOL) in the table is the average results of 20 runs

5.5.4 More academic problems

We test our schemes on several academic MPEC problems from the literature. In all the test prob-
lems, the VI is strongly monotone which means the lower-level decision is uniquely determined by
a x ∈ X . We use the same algorithm parameters as in 5.5.3.

Problem 1. This problem is described in [170].

f(x,y) = r1(x)− xp(x+ y1 + y2 + y3 + y4),

where ri(v) = civ + βi
βi+1K

1/βi
i v(1+βi)/βi , p(Q) = 50001/γQ−1/γ , ci, βi, Ki, i = 1, · · · , 5 are given

positive parameters in Table 21, γ is a positive parameter, Q = x+ y1 + y2 + y3 + y4.

X = {0 ≤ x ≤ L}.

F (x,y) =


∇r2(y1)− p(Q)− y1∇p(Q)

...

∇r5(y4)− p(Q)− y4∇p(Q)

 .

Y = {0 ≤ yj ≤ L, j = 1, 2, 3, 4}.

Based on different values of L and γ, we show the optimal value and optimal solution found by
(ZSOL).
The following three examples were tested in [170].
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Table 20: Parameter specification for problem 1

i 1 2 3 4 5

ci 10 8 6 4 2
Ki 5 5 5 5 5
βi 1.2 1.1 1.0 0.9 0.8

Table 21: Results comparison with solutions from the literature

Problem
ZSOL Literature

f∗ x∗ f∗ x∗

Problem 1
L = 150, γ = 1.0 -343.35 55.57 -343.35 55.55
L = 150, γ = 1.1 -203.15 42.57 -203.15 42.54
L = 150, γ = 1.3 -68.14 24.19 -68.14 24.14

Problem 2 -1.00 (0.50,0.50) -1.00 (0.50,0.50)
Problem 3 0.01 (0.00,0.00) 0.01 (0.00,0.00)
Problem 4 0.00 (5.00,8.99) 0.00 (5.00,9.00)

Problem 5
0.5((y1 − 3)2 + (y2 − 4)2) 3.20 4.06 3.20 4.06

0.5((y1 − 3)2 + (y2 − 4)2 + (y3 − 1)2) 3.45 5.13 3.45 5.15
0.5((y1 − 3)2 + (y2 − 4)2 + 10y2

4) 4.60 2.39 4.60 2.39

Problem 2.

f(x,y) = x2
1 − 2x1 + x2

2 − 2x2 + y2
1 + y2

2.

X = {0 ≤ xi ≤ 2, i = 1, 2}.

F (x,y) =

(
2y1 − 2x1

2y2 − 2x2

)
.

Y = {(yj − 1)2 ≤ 0.25, j = 1, 2}.

Problem 3.

f(x,y) = 2x1 + 2x2 − 3y1 − 3y2 − 60 +R[max{0, x1 + x2 + y1 − 2y2 − 40}]2.
X = {0 ≤ xi ≤ 50, i = 1, 2}.

F (x,y) =

(
2y1 − 2x1 + 40

2y2 − 2x2 + 40

)
.

Y = {−10 ≤ yj ≤ 20, xj − 2yj − 10 ≥ 0, j = 1, 2}.

Problem 4.

f(x,y) = 1
2((x1 − y1)2 + (x2 − y2)2).

X = {0 ≤ xi ≤ 10, i = 1, 2}.

F (x,y) =

(
−34 + 2y1 + 8

3y2

−24.25 + 1.25y1 + 2y2

)
.

Y = {−x3−j − yj + 15 ≥ 0, j = 1, 2}.

The next problem is taken from [170]. In all tests, the only difference is the objective function.
Problem 5.

X = {0 ≤ x ≤ 10}.
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F (x,y) =



(1 + 0.2x)y1 − (3 + 1.333x)− 0.333y3 + 2y1y4 − y5

(1 + 0.1x)y2 − x+ y3 + 2y2y4 − y6

0.333y1 − y2 + 1− 0.1x

9 + 0.1x− y2
1 − y2

2

y1

y2


.

Y = {yj ≥ 0, j = 3, 4, 5, 6}.

Consider the stochastic N -dimensional counterpart of Problem 1, defined as follows.

f(x,y) = E

[
r1(x)− xp

(
x+

n∑
i=1

yi, ω

)]
,

where ri(v) = civ + βi
βi+1K

1/βi
i v(1+βi)/βi , p(Q,ω) = 50001/γ(ω)Q−1/γ(ω), ci = 6, βi = 1, Ki = 5,

i = 1, · · · , 5, γ(ω) ∈ U [0.9, 1.1] is a positive parameter, Q = x+
∑N

i=1 yi.

X = {0 ≤ x ≤ L}.

F (x,y, ω) =


∇r2(y1)− p(Q,ω)− y1∇p(Q,ω)

...

∇rn(yn)− p(Q,ω)− yn∇p(Q,ω)

 .

Y = {0 ≤ yj ≤ L, j = 1, · · · , n}.

Table 22: Results of high-dimensional counterparts

Problem N
(ZSOL) (SAA)

f̂(xK) CI Time lb CI f̂(x̂) CI Time

Problem 1

5 -462.6 [-463.1,-462.1] 0.8 -462.8 [-464.0,-461.5] -461.9 [-463.1,-460.7] 5.3
10 -174.4 [-174.6,-174.2] 0.9 -174.7 [-175.2,-174.2] -174.2 [-174.8,-173.6] 23.3
100 -5.101 [-5.105,-5.097] 1.3 – – – – –
1000 -0.071 5.2 – – – – –

Problem 2

2 -0.882 [-0.883,-0.881] 0.6 -0.883 [-0.886,-0.880] -0.882 [-0.886,-0.878] 4.2
10 -4.408 [-4.410,-4.406] 0.9 -4.408 [-4.414,-4.402] -4.406 [-4.414,-4.398] 29.6
100 -44.0 5.5 -44.1 3544.4
1000 -416.7 98.1 – –

The stochastic N -dimensional counterpart of Problem 2.

E[f(x,y(ω))], where f(x, y(ω)) = ‖x− 1‖2 + ‖y(ω)‖2

X = {0 ≤ xi ≤ 2, i = 1, · · · , n}.
F (x,y, ω) =

(
2y − 2x+ ω

)
.

Y = {‖y − 1‖2 ≤ 0.25}.

where ω ∈ U [−0.5, 0.5].
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6 Commercial Development

Power systems operational problems have traditionally been modeled as linear and mixed-integer
linear programs. Both can be resolved by commercial mixed-integer programming (MIP) solvers
such as cplex and gurobi. Increasingly, the models that lead to such linear formulations do not
suffice. The GO competition has introduced a formulation for managing resources but such prob-
lems are complicated by uncertainty, nonlinearity, nonconvexity, and discreteness. Existing solvers
can at best process small instances of such problems, if at all. This requires a comprehensive de-
velopment of new tools. In this section, we discuss the pathway towards commercial development,
emphasizing both the barriers and opportunities.

(a) Market. Possibly, the first question is whether such a tool that can process large-scale electrical
networks, a range of contingency instances, and allow for a broad range of operational models is
even of value. We believe that in the face of climate goals, the penetration of renewables is ex-
pected to grow even further. This brings forth new challenges in managing power systems at the
bulk level, paerticularly in terms of the nature of models employed and the need to contend with
uncertainty. The latter concern is itself becoming far more relevant with the growth in climate
change impacts and demand variability. We believe such tools would be of particular value to sys-
tem operators, independent power producers, utilities, and financial participants. In short, almost
all stake-holders in the power market would find it beneficial to have such a tool. More generally,
the algorithmic underpinnings of such tools have significant benefits that extend well beyond the
power systems arena, spanning a range of application regimes including manufacturing, energy and
building systems, logistics and supply-chain management, amongst others.

(b) Commercial tool. The commercial tool of interest would have the following broad features:

(i) Computational optimization engine. An underlying computational engine that can process
two-stage stochastic optimization problems complicated by discreteness, nonlinearity, nons-
moothness, risk, and nonconvexity (in some structured form). This engine will probably be
coded in a lower level language and may need to employ some of the linear algebra subroutines
(akin to lapack etc.).

(ii) Parallel and asynchronous implementations. The engine in (i) should be implementable in
a multi-core multi-processing environment that takes advantage of parallelism and allow for
asynchronous and distributed computation.

(iii) Flexibility of modeling platform. The framework should be flexible and user-friendly in terms
of building and processing models that can then allow for being processed.

(iv) Management of contingencies. The tool should allow for managament of a large number of
contingencies each of which requires data for the entire network (which could be of the order
of 1e5 nodes or so).

(v) Bounds and sensitivity analysis. Finally, the tool should provide upper and lower bounds to
provide some notion of quality for the solution. In addition, it should allow for conducting
sensitivity analysis to parameters.

(c) Progress. The considering the overall framework for resolving large-scale power systems opera-
tion problems, complicated by risk, uncertainty, nonlinearity, and discreteness. We believe that we
have made significant progress in developing such a branching framework. Yet, there are at least

103



two significant questions that remain to be addressed for building the computational engine and the
parallel implementations as part of the tool described above. First, any serious attempt at building
such a tool requires contending with the AC power flow equations in a systematic fashion, that may
include (but is not restricted to) modeling enhancements or the introduction of reformulations and
cuts. Second, scalability concerns require building parallel implementations that can leverage the
inherent parallelism in the sampling-based schemes employed. This will allow for building schemes
whose serial computation time can allow for commercial implementations for massive networks and
a large number of contingencies.

(d) Barriers and opportunities . Barriers: We envisage two key barriers to our progress in devel-
oping a computational engine: (i) A key barrier to progress has been the ability to get students to
aid in the development in the face of COVID-19. Most of our student body is international and
a significant portion has been affected both in terms of coming to initiate their studies as well as
in their ability to carry out their program. (ii) A second challenge arises in obtaining high quality
programmers who can take working prototypes in Python and develop counterparts in lower level
languages. Opportunities. At Penn. State, we have a broad set of resources in terms of the
Institute of Computational and Data Sciences (ICDS) that manages our computing facility and has
resources for aiding in the computational development. In addition, we also have a large cadre of
students in computer science and other engineering disciplines that we hope to engage, despite the
impact of COVID-19.

7 Summary and future work

In this section, we summarize the main contributions of our work and discuss some future directions.

7.1 Summary of contributions

The main contributions can be quantified as follows.
(i) Stochastic and risk-averse nonsmooth convex optimization. In the context of nonsmooth two-
stage stochastic/risk-averse optimization, we develop a smoothed accelerated variance-reduced
scheme that is characterized by an optimal rate of a convergence of O(1/k) and a near opti-
mal sample complexity of O(1/ε2+δ) to compute an ε-optimal solution where δ > 0. Notably, this
framework can contend with a broad range of two-stage stochastic nonlinear optimization problems
where the second-stage problems may be nonlinear convex programs (with a suitable structure).

(ii) Stochastic mixed-integer nonlinear optimization. When one overlays discreteness in the first
and second-stage problems, we apply a stochastic branch-and-bound scheme in which the relax-
ations are continuous and convex two-stage optimization problems. We leverage the techniques
from (i) and show that this framework can contend with a broad range of two-stage mixed-integer
nonlinear programs (albeit with convex relaxations). In particular, the scheme provides sampling-
based upper and lower bounds. In addition, we demonsrate that the introduction of cuts provides
further improvements on the quality of the solution developed.

(iii) Stochastic mathematical programs with equilibrium constraints. Complementarity constraints
emerge in some models presented in the GO competition. Such problems lead to nonconvexity
and ill-posedness and to date, there have been no efficient schemes for their resolution even in
deterministic regimes. We present an implicit framework that can contend with a subclass of
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regimes where the lower-level problems are characterized by strong monotonicity of the lower-level
map. Notably, we present efficient schemes for computing an ε-solution for either a first or a two-
stage stochastic MPEC when the implicit problem is either convex or nonconvex. Notably, when
one overlays discreteness, a branching scheme can again be employed where the relaxations can be
resolved as per the schemes developed in this section.

7.2 Future work on methodology and computation.

(a) Nonconvexity. As part of our efforts on addressing complementarity constraints, we have been
able to deal with one form of nonconvexity. But contending with nonconvexities arising from AC
power flow equations remain. We will consider two approaches to address such a question. The first
lies in assessing whether computing stationary points via stochastic variants of sequential quadratic
programming schemes (as developed in our prior work [208]) may be employed. The second avenue
may consider utilizing a combination of branching schemes for computing under and over estima-
tors, similar to those employed in the commercial solver baron.

(b) Parallel implementations. A key concern in developing branching schemes lies in scalability.
There has been an effort to develop parallel implementations of branching schemes. Our intention
is to consider this avenue in developing scalable tools for contending with mixed-integer variants
of stochastic optimization problems, complicated by risk, nonlinearity, and the presence of comple-
mentarity constraints.
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[51] R. I. Boţ and C. Hendrich, “A double smoothing technique for solving unconstrained non-
differentiable convex optimization problems,” Computational Optimization and Applications,
vol. 54, no. 2, pp. 239–262, 2013.

[52] O. Devolder, F. Glineur, and Y. Nesterov, “Double smoothing technique for large-scale
linearly constrained convex optimization,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 702–727, 2012.

[53] Q. Tran-Dinh, “Adaptive smoothing algorithms for nonsmooth composite convex minimiza-
tion,” Computational Optimization and Applications, vol. 66, no. 3, pp. 425–451, 2017.

[54] H. Ouyang and A. Gray, “Stochastic smoothing for nonsmooth minimizations: Accelerating
SGD by exploiting structure,” arXiv preprint arXiv:1205.4481, 2012.

[55] W. Zhong and J. Kwok, “Accelerated stochastic gradient method for composite regulariza-
tion,” in Artificial Intelligence and Statistics, pp. 1086–1094, 2014.

[56] Q. Van Nguyen, O. Fercoq, and V. Cevher, “Smoothing technique for nonsmooth composite
minimization with linear operator,” arXiv preprint arXiv:1706.05837, 2017.

[57] F. Orabona, A. Argyriou, and N. Srebro, “Prisma:proximal iterative smoothing algorithm,”
arXiv:1206.2372, 2012.
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vol. 83, no. 1-3, pp. 229–252, 1998.

[135] S. R. Tayur, R. R. Thomas, and N. Natraj, “An algebraic geometry algorithm for scheduling
in presence of setups and correlated demands,” Mathematical Programming, vol. 69, no. 1-3,
pp. 369–401, 1995.

[136] C. C. Carøe, Decomposition in stochastic integer programming. Institute of Mathematical
Sciences, Department of Operations Research, 1999.

[137] S. Sen and J. L. Higle, “The c 3 theorem and a d 2 algorithm for large scale stochastic
mixed-integer programming: Set convexification,” Mathematical Programming, vol. 104, no. 1,
pp. 1–20, 2005.

[138] M. H. Van Der Vlerk, “Convex approximations for complete integer recourse models,” Math-
ematical Programming, vol. 99, no. 2, pp. 297–310, 2004.

[139] G. Laporte and F. V. Louveaux, “The integer l-shaped method for stochastic integer programs
with complete recourse,” Operations research letters, vol. 13, no. 3, pp. 133–142, 1993.

[140] H. D. Sherali and B. M. Fraticelli, “A modification of benders’ decomposition algorithm for
discrete subproblems: An approach for stochastic programs with integer recourse,” Journal
of Global Optimization, vol. 22, no. 1-4, pp. 319–342, 2002.

[141] C. C. Carøe and J. Tind, “L-shaped decomposition of two-stage stochastic programs with
integer recourse,” Mathematical Programming, vol. 83, no. 1-3, pp. 451–464, 1998.

[142] S. Ahmed, M. Tawarmalani, and N. V. Sahinidis, “A finite branch-and-bound algorithm for
two-stage stochastic integer programs,” Mathematical Programming, vol. 100, no. 2, pp. 355–
377, 2004.

114



[143] N. Kong, A. J. Schaefer, and B. Hunsaker, “Two-stage integer programs with stochastic right-
hand sides: a superadditive dual approach,” Mathematical Programming, vol. 108, no. 2-3,
pp. 275–296, 2006.

[144] C. C. CarøE and R. Schultz, “Dual decomposition in stochastic integer programming,” Op-
erations Research Letters, vol. 24, no. 1-2, pp. 37–45, 1999.

[145] Y. Guan, S. Ahmed, and G. L. Nemhauser, “Cutting planes for multistage stochastic integer
programs,” Operations research, vol. 57, no. 2, pp. 287–298, 2009.

[146] L. Ntaimo and M. W. Tanner, “Computations with disjunctive cuts for two-stage stochastic
mixed 0-1 integer programs,” Journal of Global Optimization, vol. 41, no. 3, pp. 365–384,
2008.

[147] H. D. Sherali and X. Zhu, “On solving discrete two-stage stochastic programs having
mixed-integer first-and second-stage variables,” Mathematical programming, vol. 108, no. 2-3,
pp. 597–616, 2006.

[148] S. Sen and H. D. Sherali, “Decomposition with branch-and-cut approaches for two-stage
stochastic mixed-integer programming,” Mathematical Programming, vol. 106, no. 2, pp. 203–
223, 2006.
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