A MLIR Dialect for Quantum Assembly
Languages

Alexander McCaskey*' and Thien Nguyen*?
*Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
fQuantum Science Center, Oak Ridge, TN, 37831, USA

Abstract—We demonstrate the utility of the Multi-
Level Intermediate Representation (MLIR) for quantum
computing. Specifically, we extend MLIR with a new
quantum dialect that enables the expression and com-
pilation of common quantum assembly languages. The
true utility of this dialect is in its ability to be lowered
to the LLVM intermediate representation (IR) in a
manner that is adherent to the quantum intermediate
representation (QIR) specification recently proposed by
Microsoft. We leverage a gqcor-enabled implementation
of the QIR quantum runtime API to enable a retar-
getable (quantum hardware agnostic) compiler work-
flow mapping quantum languages to hybrid quantum-
classical binary executables and object code. We eval-
uate and demonstrate this novel compiler workflow
with quantum programs written in OpenQASM 2.0.
We provide concrete examples detailing the generation
of MLIR from OpenQASM source files, the lowering
process from MLIR to LLVM IR, and ultimately the
generation of executable binaries targeting available
quantum processors.

Index Terms—quantum computing, quantum pro-
gramming, quantum simulation, programming lan-
guages

I. Introduction

The availability of noisy quantum processing units
(QPUs) from a variety of hardware vendors has raised
new research and development questions into appli-
cation use cases, programming model [9], [13], [19],
[26]. It is anticipated that QPUs may serve as co-
processors or accelerators within existing classical sci-
entific computing workflows in a post-exascale com-
puting era [17]. The heterogeneous quantum-classical
characteristic of this model of computation necessi-
tates the development of quantum languages, compil-
ers, and associated frameworks and tooling that tightly

This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-000R22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with the
DOE Public Access Plan. (http://energy.gov/downloads/doe-public-
access-plan).

integrate with existing classical infrastructures. For
example, the LLVM compiler infrastructure [15] has
proven critical to existing classical accelerator-based
computing workflows, and we anticipate that building
upon this infrastructure for quantum co-processing will
precipitate required tight integration between classical
and quantum compute resources. A number of efforts
are leveraging LLVM and Clang to provide GPU-based
programming models, compilers, and tools [7], [23],
and quantum computing may be well-suited to build
upon these common ideas and concepts.

Recently, a novel infrastructure for domain specific
compilation has been put forward under the LLVM
project umbrella. The Multi-Level Intermediate Rep-
resentation (MLIR) represents a unique approach to
the expression of compiler intermediate representa-
tions that promotes a variety of abstraction levels
(close to the source language all the way down to
machine level IR), enables progressive lowering from
high-level IR abstractions to lower ones, and promotes
easy and efficient extensibility and reusability of IR
components [16]. It has primarily been leveraged in
classical heterogeneous computing workflows to en-
able common machine learning application compila-
tion to available classical co-processors (GPUs, TPUs,
FPGAs, etc.) [11], [14]. As a domain-specific com-
piler infrastructure, the MLIR is be well suited for
the development of compiler infrastructures mapping
quantum assembly languages to executables or object
code targeting available quantum co-processors. The
development of a novel MLIR extension for quantum
computing would enable an integration platform for
vendor-specific languages and promote compilation in
a quantum-backend-retargetable manner.

In an effort to move quantum co-processing compiler
tools towards integration with LLVM, researchers at
Microsoft have recently introduced a novel specifica-
tion called the quantum intermediate representation
(QIR) [2]. This work defines a number of low-level
LLVM callable IR instructions and opaque data types
that are necessary for typical quantum computing
workflows and tasks. The overall goal is to provide

rigetti [
joPmN] o
Stag AST Antlr AST ar
| MURGen | |
Clang AST is ?‘
1 lower E

qcor runtime

execute

MSFT Quantum Intermediate Representation (QIR)

XACC Accelerator — IBM, Rigetti, Honeywell, lonQ, etc.

Figure 1: Our goal is to enable progressive lowering of quantum assembly languages to executable binaries
via the quantum intermediate representation (QIR). We provide a new dialect to MLIR for quantum assembly
languages that can be lowered to LLVM IR adherent to the QIR specification. Linking to a qcor-enabled, QIR
runtime library implementation will enables a retargetable compiler that produces executable binaries and object

code for available quantum co-processors.

a unified representation that quantum languages and
compilers can map to in an effort to promote reusability
of common quantum compilation tools, strategies, and
backend runtime implementations. The integration of
the MLIR with the recently proposed QIR specification
would directly enable quantum code optimization and
progressive lowering to executable code in a quantum
language and hardware agnostic fashion. Extending
MLIR for quantum assembly languages would enable
existing languages to quickly map to the LLVM IR,
and then through appropriate library implementation
linkage, execute on available quantum processors. This
whole workflow would be directly integrated with pop-
ular classical compiler infrastructures and promote a
hybrid quantum-classical workflow that is tightly inte-
grated.

In this work, we present a novel MLIR dialect for
quantum assembly languages and implement lowering
routines to map this representation to an instance of
the LLVM IR adherent to the QIR specification. We
demonstrate this workflow by providing a parser for
the OpenQASM language that generates a correspond-
ing MLIR instance. Ultimately we provide a compiler
for quantum assembly languages (with OpenQASM as
a first example) that takes quantum language source
files and produces executables or library code that
targets a desired quantum co-processor. Our work im-
plements the QIR specification with a quantum runtime
implementation backed by the qcor quantum-classical
compiler platform, enabling execution on currently
available quantum computers.

II. Background

Here we provide some necessary background on the
underlying technologies and specifications we lever-
age to provide a mechanism for compiling quantum
languages through the MLIR, lowered to the LLVM
IR, and ultimately to binary executables or object
code. At a high-level, our approach can be seen in
Figure 1. We put forward an extension to the MLIR
infrastructure specifically for quantum computing, with
the intention that any and all quantum languages are
able to be parsed and mapped to an instance of this
representation. We then provide the implementation
necessary to map that representation to the LLVM
IR which can then be linked with a backend-agnostic
quantum runtime, thus enabling any quantum language
to be compiled to an executable binary. Specifically,
we detail at a high-level the internal structure of the
MLIR, the new quantum intermediate representation
(QIR) specification, and the QCOR quantum-classical
compiler platform recently put foward at ORNL, which
serves as the underlying quantum runtime enabling
execution of the generated QIR code.

MLIR: The Multi-Level Intermediate Representa-
tion (MLIR) is a novel approach for constructing new
domain specific compilers in a reusable and extensible
manner. It puts forward a novel single-static assign-
ment (SSA)-based intermediate representation for com-
piler developers that enables the encoding of higher
levels of language abstraction, and the ability to pro-
gressively lower this representation to other levels of
IR abstraction, ultimately targeting a machine-level IR
(e.g. LLVM IR). For a full description of the framework,
we invite the interested reader to see [3], [16]. Here

we detail a few key points that are important for the
discussion of the work presented here.

The key abstraction promoted by the MLIR is an
operation, represented in the framework as an Op class.
Everything in the language (instructions, functions,
composites of functions) is modeled as an Op, which is
itself an extension point to the framework (developers
can contribute new operations to define new semantics
and functionality). Each Op has a unique string iden-
tifier (the operation name), can take and return zero
or more values (the class mlir: :Value), and retains a
unique dictionary of constant information related to the
Op called Attributes. Since these Attributes must
be constant, they are used to represent compile-time
information about the operation.

Developers contribute new Ops via the introduction
of a custom Dialect subclass. Dialects represent a
logical grouping of Ops under a domain-specific and
unique namespace string identifier. Each new Dialect
registers at creation its provided set of operations,
and in this way promotes modularity and extensibility
of language parsing and lowering within the MLIR
system. MLIR provides a builtin Dialect for express-
ing common concepts such as functions and modules
(composites of functions). Other useful Dialects have
been contributed as well - one representing the LLVM
IR, others for GPU-accelerated programming models,
and still others for operating on vectors and tensors
common to machine-learning application workflows.

Critically, MLIR provides a robust infrastructure for
transformations on operations that enable progressive
lowering of the representation to lower levels of IR
abstraction. The key concepts put forward here are
the ConversionTarget and rewrite patterns repre-
sented as ConversionPattern class instances. First,
one specifies a ConversionTarget sub-type that en-
forces the requirement that all transformed or re-
written Ops are legal with respect to that target
Dialect (i.e. the LLVMConversionTarget enforces the
requirement that all resultant operations are valid
LLVM dialect operations). Next, for each Op in the
custom Dialect that should be lowered, one can de-
fine a ConversionPattern sub-type that exposes a
mechanism for specifying a replacement operation
while marking the original operation as erased. Ul-
timately, these extensions can be contributed to the
MLIR framework and leveraged as part of a built-in
mlir::PassManager pipeline that affects lowering of
the high-level custom Dialect down to the conversion
target.

QIR: The quantum intermediate representation
(QIR) specification has recently been published and
promoted by researchers at Microsoft and is intended

to provide a common, unified compiled representa-
tion for quantum languages targeting any gate-based
quantum computing platform. Critically, QIR is based
on the LLVM IR (ultimately it is the LLVM IR) and
specifies key concepts and rules for representing quan-
tum instructions, register allocation, qubit addressing,
and measurement retrieval. This approach promotes
the utility of the full classical capabilities that LLVM
provides, thereby enabling a mechanism for robust
classical computation in tandem with quantum co-
processing or acceleration.

For the full specification, we direct the reader
to [5], however here we wish to highlight a few
key points that are critical for the work described
here. The key concepts in the specification are
register allocation, qubit addressing, and instruction
invocation, and we provide an example QIR code in
Figure 2 to demonstrates these concepts. First note
that the specification leaves qubits as an opaque type
so that implementations of an associated runtime
library can define it in a way that best fits the
implementation. Similarly, a measurement result
type is also marked as opaque. Next, all runtime
functions are declared but not implemented and
are intended to be provided externally and linked
in later. This design decision enables maximum
flexibility to swap out various quantum runtime
implementations for specific hardware backends.
The specification defines a qubit register allocation
function - __quantum__rt__qubit_allocate_array -
which takes as input the number of qubits to allocate
and returns a pointer to the Qubit array. Individual
qubits are queried or addressed via a declared
__quantum__rt__array_get_element_ptr_1d
function, which takes an allocated qubit register
and a qubit element index integer and returns a
pointer to that Qubit. Quantum instructions are
exposed as declared __quantum__qgis__INSTNAME,
where INSTNAME is the name of the instruction (h
for Hadamard, cnot for CNOT, etc.). The remainder
of the code snippet follows any typical LLVM IR
disassembled code (an LLVM *.I file) where each line
is an instruction call in the SSA form. A call is made
to the quantum runtime functions with given input
values and return results are stored to new value
names. Figure 2 allocates a register of size 2, gets
the 0" qubit, executes a Hadamard on that qubit to
place it in superposition, gets the 1%¢ qubit, executes
a CNOT to entangle the qubits, and finally measures
both to produce single-bit Results.

These are only a few of the quantum runtime func-
tions detailed by the QIR specification, but this should
give an overall perspective on the structure of a com-

SArray = type opaque
%Result = type opaque
%Qubit = type opaque

declare
declare

%Result*x @ _quantum__qis__mz(%Qubit*x %0)

void @ _quantum__qgis__cnot(%Qubit* %0, %Qubitx %1)

declare void @__quantum__qis__h(%Qubit*x %0)

declare %Array* @__quantum__rt__qubit_allocate_array(i64 %0)

declare void @__quantum__rt__qubit_release_array(%Array* %0)

declare i8* @ _quantum__rt__array_get_element_ptr_ld(%Array* %0, i64 %1)

132 @main(i32 %0, i8x*x %1) {

call %Array* @ _quantum__rt__qubit_allocate_array(i64 2)
call i8x @ _quantum__rt__array_get_element_ptr_1ld(%Arrayx %4, i64 0)

%6 = bitcast i8* %5 to %Qubitx*

%7 = load %Qubitx*, %Qubit** %6, align 8

call void @__quantum__qgis__h(%Qubitx* %7)

%8 = call i8x @ _quantum__rt__array_get_element_ptr_ld(%Array*x %4, i64 1)
%9 = bitcast i8*% %8 to %Qubitx*x

%10 = load %Qubitx, %Qubitx** %9, align 8
call void @ _quantum__qis__cnot(%Qubitx*

%7, %Qubitx* %10)

%11 = call %Result* @ _quantum__qis__mz(%Qubit* %7)
%12 = call %Result*x @ _quantum__qgis__mz(%Qubit* %10)
call void @ _quantum__rt__qubit_release_array(%Arrayx %4)

ret i32 0

Figure 2: Bell state measurement expressed in the QIR. Qubits and Results are opaque types, while quantum
runtime functions are declared and implementations are expected to be linked in later.

piled QIR program. Since this is just LLVM IR, we
get standard program control flow structures and se-
mantics for free, and we are free to integrate these
quantum API calls with existing classical workflows.

gcor: Recently, researchers from Oak Ridge Na-
tional Laboratory have put forward a novel language
extension to C++ for heterogeneous quantum-classical
computing [21]. The gqcor compiler platform promotes
a single-source programming model that enables pro-
grammers to write quantum functions natively in C++
alongside classical code and compile to available quan-
tum processors in a hardware-agnostic manner. qcor
extends C++ through a novel extension to the Clang
plugin system [10] that enables the parsing of invalid
quantum function bodies and their translation to valid
C++ API calls at compile time. To achieve compiler
retargetability, qcor ultimately delegates to the XACC
quantum programming framework [18], which provides
a system-level C++ approach to quantum-classical pro-
gramming, compilation, and execution in a service-
oriented fashion. XACC exposes a number of interfaces

that span the quantum compilation and execution work-
flow that enable quantum language parsing, quantum
intermediate representation generation, circuit opti-
mization, and backend execution on QPUs from IBM,
Rigetti, D-Wave, Honeywell, among others. Ultimately,
XACC provides qcor with an API for ubiquitous quan-
tum compilation and execution tasks.

To promote backend extensibility, qcor puts forward
an extensible QuantumRuntime interface that exposes
an API for quantum gate execution and can be im-
plemented for both remotely hosted QPU protocols as
well as future, tight integration models enabling CPU-
QPU fast-feedback. These implementations directly del-
egate to the XACC Accelerator infrastructure to en-
able overall quantum compiler retargetability. For a
complete background on the qcor compiler, we refer
the reader to [1], [4], [21], but for the purposes of
this work, the QuantumRuntime infrastructure is the
primary background needed to detail the execution of
MLIR-generated QIR code on available QPUs.

Opaque Types:

Quantum MLIR Dialect

QRTInitOp

N/A

Operands
argc: 132
argv: ArgvType

QallocOp

Attributes
name : str
params:
Vec<Float64>

Attributes
name : str
params:
Vec<Float64>

Operands
qubits:
Variadic<Qubit>

Return
Optional<Result>

Qubit Result Array | ArgvType

QRTFinalize

N/A
Operand
N/A
Return
void

DeallocOp

N/A

Operands
qubits: Array

QubitExtractOp

N/A
Operands

qubits: Array
idx : 164

Return
qubit : Qubit

Figure 3: Graphical representation of the operations contributed from the quantum MLIR dialect. These
operations enable qubit array allocation and deallocation, qubit addressing, quantum instruction invocation,

and a mechanism for initializing and finalizing the QIR

runtime implementation. Each operation keeps track of

constant attributes, and can take operands as input and return specific values.

III. A Quantum MLIR Dialect

To enable executable code generation targeting
quantum co-processors from available quantum as-
sembly languages, we seek to leverage the progres-
sive lowering capabilities put forward by the MLIR
compiler framework. This infrastructure provides a
mechanism for mapping language-level intermediate
representations down to classical assembly and object
code via the LLVM IR. To properly interface quantum
assembly languages with MLIR, we must provide a
custom MLIR Dialect that exposes new operations
(Op sub-classes) enabling the expression of common
quantum assembly semantics. Specifically, we envision
this work (this Dialect extension) as a first pass or
initial prototype to demonstrate the overall utility of
the MLIR for quantum code compilation and execution.
Therefore, we keep our required feature-set small and
define a Dialect that enables (1) quantum register
allocation and deallocation, (2) qubit addressing within
an allocated register, (3) simple quantum instruction
invocation on addressed qubits, and (4) composition
of quantum functions. These features enable one to
perform simple circuit compilation and execution, and
other higher-level languages should be able to map
down to this lower-level of abstraction.

We define a QuantumDialect subclass of
mlir::Dialect which serves as an aggregator
for custom Ops exposing these four quantum
assembly features. Figure 3 provides a graphical
representation of this dialect and the operations
it provides. The QuantumDialect exposes a unique
namespace identifier - quantum - and registers six
Op subclasses under the quantum namespace: the

QRTInitOp, QRTFinalizeOp, QallocOp, DeallocOp,
QubitExtractOp, and InstOp. The QRTInitOp and
QRTFinalizeOp enable the initialization and finalization
of a provided QIR runtime library implementation.
Specifically, QRTInitOp expects the typical argc, argv
input arguments coming from main(). We define an
mlir::0paqueType to describe the incoming charxx
argument.

The QallocOp performs qubit register allocation and
exposes a unique name - gqalloc - as well as a dic-
tionary of compile-time attributes indicating the size
and unique variable name for the register. It returns an
Array, and opaque type that maps directly to the QIR
array concept. The Array is assumed to be an array of
the Qubit OpaqueType. The QallocOp does not take any
input argument operands since we treat the register
size as a compile-time constant, however, future itera-
tions may wish to treat the register size as an input
operand. To address individual qubits, the quantum
dialect exposes a QubitExtractOp which takes and
input Array value and a 64-bit integer describing the
index of the array to retrieve. It returns an instance
of Qubit. In order to ensure allocated qubit registers
are deallocated upon going out of scope, the dialect
provides a DeallocOp which takes as input the Array
of Qubits to deallocate.

Finally, we define the InstOp to model any operation
that affects execution of a specific quantum instruc-
tion on a provided qubit or qubits. This Op exposes
the unique inst name and a compile-time attribute
dictionary indicating the name of the instruction and
any potential double parameters (gate rotation angles,
for example). Once again, for this first prototype imple-
mentation, we treat potential parameters as compile-

module {

func @main(%sarg@: i32, %argl:
"quantum.init" (%sarg0®, %argl) (132,
%0 = "quantum.galloc"() {name = "q",
%C0_164 = constant 0 : i64
%1 "gquantum.gextract" (%0, %c0_i64)
%2 = "quantum.inst"(%1l) {name = "h"} :
"quantum.dealloc" (%0)
"quantum.finalize" () : ()
%Cc0_132 = constant 0 : 132
return %c0_1i32 i32

-> ()

Iquantum.ArgvType)
'quantum.ArgvType) -> ()

size =1

-> 132 {

i64} : () -> 'quantum.Array

('quantum.Array, i64) -> !quantum.Qubit
(!'quantum.Qubit) -> none
('quantum.Array) -> ()

Figure 4: Example MLIR instance using the quantum dialect. This code allocates a register of size 1, gets
reference to that single qubit, executes a hadamard gate, and then deallocates the register.

time constants, but future iterations may choose to
move this to input operands. Qubits that the instruc-
tion operates on are treated as input operands, and
are modeled as a variadic list of type Qubit, allowing
one to invoke single or multi-qubit operations. Inst0ps
return an optional Result - most instructions do not
return anything, while measurement instruction calls
will return a binary result (qubit measured O or 1).

Figure 4 gives a simple example of a printed MLIR in-
stance leveraging operations from the quantum dialect.
This example affects the application of a hadamard
gate on a single qubit. The example demonstrates the
utility of the various operations and shows runtime
initialization and finalization, quantum register alloca-
tion and deallocation, and qubit addressing and gate
invocation.

IV. MLIR Generation

Now that we have discussed the overall architecture
of the new MLIR quantum dialect, we turn our atten-
tion to an extensible mechanism for the generation
of this representation. The goal here is to enable a
unique extension point that language developers can
implement to take source strings to an instance of the
mlir::ModuleOp containing one or many mlir::FuncOp
instances each composed of quantum dialect opera-
tions.

We put forward the QuantumMLIRGenerator interface
in Figure 5 and intend it to be implemented by quantum
assembly language developers to take in a language
source string and output an MLIR module. The inter-
face is simple, but enables sub-types to perform any
initialization, language parsing to tree-like represen-
tations, tree-to-MLIR translation, and any finalization
routines. Clients of this interface can initialize the

generator and indicate whether to produce an MLIR
instance with a main() function entry point. This fea-
ture is useful for the purposes of compiling assembly
representations to object code versus executables. The
mlirgen() method is meant to be implemented by sub-
types to generate language specific abstract syntax
trees and map that tree to the corresponding MLIR
quantum dialect operations. We demonstrate the imple-
mentation of this interface for OpenQASM in Section
VII, and leave implementations for other languages like
Quil [24] and Jaqal [20] for future work.

V. Lowering to QIR

With a valid MLIR dialect for quantum assembly
languages in place, we now turn our attention to the
specific mechanisms for lowering quantum operations
to valid LLVM dialect operations. Specifically, we seek a
mechanism to lower to the LLVM IR in a manner that is
adherent to the recently defined quantum intermediate
representation (QIR). Fortunately, MLIR currently has
a built-in dialect for the LLVM IR and puts forward a ro-
bust and general mechanism for translating operations
from one dialect to another. We leverage this function-
ality, and provide translation mechanisms that map our
custom Op data structures to valid operations in the
LLVM MLIR Dialect in a way that is QIR specification
adherent.

The basic workflow for lowering one MLIR Dialect
to the LLVM Dialect is demonstrated in Figure 6.
MLIR provides a mlir::PassManager data structure
that orchestrates the execution of custom and default
passes that act to transform the input mlir: :ModuleOp.
Developers can contribute new passes as subclasses
of the mlir::PassWrapper template type, here we
provide one called QuantumToLLVMLoweringPass. This

class QuantumMLIRGenerator {
public:
QuantumMLIRGenerator(mlir::MLIRContext& ctx);

virtual void initialize_mlirgen(bool add_entry_point =

true,

const std::string file_name = "") = 0;

virtual void mlirgen(const std::string& src)
mlir::0wningModuleRef get_module();
virtual void finalize_mlirgen() = 0;
T
class OpenQasmMLIRGenerator :
class QuilMLIRGenerator :
class JagalMLIRGenerator :

=0;

public QuantumMLIRGenerator {...}
public QuantumMLIRGenerator {...}
public QuantumMLIRGenerator {...}

Figure 5: Class definition for the Quantum MLIR generation extension point. Developers can sub-type this class
to provide a mechanism to map language-specific source strings to an instance of the MLIR leveraging the

quantum dialect.

pass sets the conversion target to the LLVM dialect and
contribute a custom Op lowering pattern for one of our
quantum dialect operations. Once the pass manager
workflow is run, the resultant ModuleOp should entirely
consist of Ops from the LLVM Dialect. Finally, MLIR
provides an API function for translating that ModuleOp
to an LLVM Module, which is the top-level abstraction
for LLVM IR. From there, one can readily lower to
object code for the target machine.

The goal of each conversion operation is to erase
the Op from the quantum dialect and replace it with
an Op from LLVM Dialect. Specifically we replace
each with its corresponding QIR runtime function call
represented as a mlir::CallOp with input operand
represented as a LLVM: : FuncOp. Figure 7 demonstrates
the same code in Figure 4 lowered to the LLVM MLIR
dialect via our contributed lowering operations. For
the QRTInitOp we provide a rewrite pattern that erases
the operation and introduces a declaration and call
to the function __quantum__rt__initialize() and
set its input operands to the block arguments coming
from the parent main() function. For the QallocOp,
we extract the size attribute and create a new LLVM
ConstantOp to return a 64-bit integer representation
of the size, which then serves as the input operand of
a call to __quantum__rt__qubit_allocate_array().
The return value for this new LLVM operation
is an LLVM PointerType to the opaque Array
structure. Extracting a qubit from that array,
the QubitExtractOp, is rewritten as a call to
__quantum__rt__array_get_element_ptr_1d()
with the allocated array pointer serving as the input
operand. This function (as per the QIR specification)
returns an i8 pointer, so we therefore also introduce

LLVM BitcastOp and LoadOp instances to map
it to a qubit pointer (the opaque Qubit type).
InstOp is mapped to a __quantum__qis__INSTNAME
where INSTNAME is extracted from the instruction
operation’s attributes dictionary. The input operand
for this LLVM function operation is the casted
qubit pointer. Finally, the DeallocOp is mapped to a
call to __quantum__rt__qubit_release_array()

// Create the PassManager for lowering

// to LLVM MLIR and run it

mlir::PassManager pm(&context);

auto g_to_llvm =

std: :make_unique<QuantumToLLVMLoweringPass>();

pm.addPass(g_to_11lvm);

auto module_op = module.getOperation();

if (mlir::failed(pm.run(module_op))) {
std::cout << "Pass Manager Failed\n";
return 1;

//! module_op is now totally in LLVM Dialect !

// Now lower MLIR to LLVM IR
1lvm: :LLVMContext llvmContext;
auto llvmModule =
mlir::translateModuleToLLVMIR(module,
1lvmContext);

Figure 6: Code snippet demonstrating how one may
apply the MLIR pass management system to lower
representations in the quantum dialect to equivalent
expressions using the LLVM dialect.

module {

1lvm. func @ _quantum__rt__qubit_release_array(!llvm.ptr<struct<"Array", opaque>>)
1lvm. func @__quantum__qgis__h(!1lvm.ptr<struct<"Qubit", opaque>>)
1lvm. func @ _quantum__rt__array_get_element_ptr_1ld(!llvm.ptr<struct<"Array", opaque>>, i64) \
-> !llvm.ptr<i8>
1lvm. func @__quantum__rt__qubit_allocate_array(i64) -> !llvm.ptr<struct<"Array", opaque>>
1lvm. func @__quantum__rt__finalize()
1lvm.func @ _quantum__rt__initialize(i32, !llvm.ptr<ptr<i8>>) -> i32
1lvm. func @main(%arg0: i32, %argl: !llvm.ptr<ptr<i8>>) -> i32 {
%0 = 1lvm.call @ _quantum__rt__initialize(%arg@, %argl) (132, !'llvm.ptr<ptr<i8>>) -> 132
%0 = Llvm.mlir.constant(1l : i64) : i64
%1 = llvm.call @ _quantum__rt__qubit_allocate_array(%0) (164) \
-> !llvm.ptr<struct<"Array", opaque>>
%2 = Llvm.mlir.constant(0® : i64) : i64
%3 = llvm.call @ _quantum__rt__array _get_element_ptr_1d(%l, %2) : \
('Ulvm.ptr<struct<"Array", opaque>>, i64) -> !1lvm.ptr<i8>
%4 = 1lvm.bitcast %3 : !llvm.ptr<i8> to !llvm.ptr<ptr<struct<"Qubit", opaque>>>
%5 = llvm.load %4 : !llvm.ptr<ptr<struct<"Qubit", opaque>>>
%6 = Llvm.call @ _quantum__qis__h(%5) ('lvm.ptr<struct<"Qubit", opaque>>) -> !1lvm.void
%7 = 1lvm.call @ _quantum__rt__qubit_release_array(%l) : \
(!'Ulvm.ptr<struct<"Array", opaque>>) -> !1llvm.void
%8 = llvm.call @ _quantum__rt__finalize() () -> !llvm.void
%9 = llvm.mlir.constant(0 : i32) : i32
1lvm.return %9 : i32
}

Figure 7: Translated MLIR code in the LLVM dialect corresponding to the quantum dialect code in Figure 4.

with input operand pointing to the original
allocated qubit array value. We end with a
call to __quantum__rt__finalize() and add a

return operation to terminate the block. These
conversion operations are all contributed to the
MLIR pass management system via our custom
QuantumToLLVMLoweringPass.

Once the quantum assembly code is represented
using the LLVM MLIR dialect, we are able to lower that
representation even further to the LLVM IR using the
built-in mlir::translateModuleToLLVMIR() function.
This returns an instance of the 1lvm::Module which
we are then able to persist to a human-readable, LLVM
assembly language *. 11 file. We can then use existing
tools to lower this even further to object code. Specifi-
cally, LLVM provides the 1lvm-as and l1lc tools which
can lower this file to machine-specific object code. We
can then link this object file with a custom QIR runtime
API implementation to output a binary executable that
will affect execution of the compiled quantum assembly
code on a target quantum co-processor.

VI. QIR Runtime Implementation

We provide an implementation of the QIR runtime
API that is backed by the qcor quantum-classical com-
piler platform. This implementation stipulates that the
Array opaque type maps to a std::vector<int8_tx*>,
and the Qubit and Result map to a uint64_t. We
implement __quantum__rt__initialize() to take in
any input command line arguments and initialize the
gcor runtime. This initialization sets the target quan-
tum co-processor, and any related options, and selects
the runtime mode. This mode can be one of two choices
- the fault-tolerant, tightly integrated ftqc mode, or the
remotely-hosted, loosely-coupled nisq mode (for cur-
rently available quantum processors). The mode can be
configured from the command line as this initialization
runtime function reads input command line arguments.

The qcor quantum runtime exposes API calls
for executing specific instructions on the back-
end quantum co-processor. For each implemen-
tation of __quantum__qis__INSTNAME, we delegate
execution to the appropriate qcor runtime API
call (e.g. __quantum__qis__h(Qubit*x q) maps to
::quantum::h(qubit qg)). gcor represents quantum

registers using a qreg data type that delegates to
the xacc: :AcceleratorBuffer concept. We implement
__quantum__rt__qubit_allocate_array() to create
this underlying AcceleratorBuffer of the given reg-
ister size. Calls to measure persist bit configurations
to this allocated buffer, and return the measured bit
configuration in the case of FTQC execution.

Internally, qcor circuit execution builds upon the
xacc::Accelerator subsystem. The Accelerator in-
terface exposes a mechanism for execution of the
XACC quantum intermediate representation as well
as methods for querying backend-specific information
like qubit connectivity, noise parameters, gate set, etc.
XACC provides implementations of this interface for
targeting all IBM quantum computing backends, the
Rigetti QCS platform, Honeywell ion trap quantum
computers, and a number of simulators that scale on
Summit-like [12] architectures. Our QIR runtime imple-
mentation inherits this extensibility and retargetability
by delegating to the qcor runtime execution infras-
tructure. Assembly languages lowered to the QIR are
therefore able to be lowered to executable binaries that
target a wide range of quantum co-processors.

VII. Evaluation

Here we evaluate utility and efficacy of this quantum
compiler infrastructure built upon the MLIR frame-
work. We demonstrate its utility for the OpenQASM
quantum assembly language, and describe integration
efforts for compiled OpenQASM libraries with exiting
gcor C++ application codes. Our work provides a mech-
anism for compiling libraries of quantum codes written
in OpenQASM that can then be included and linked
to in future qcor programs. We end with a discussion
and demonstration of the runtime of this language-to-
object code workflow, and compare with the compiler
workflow provided by Q#.

A. OpenQASM Compiler

OpenQASM is a popular assembly language for
currently available IBM quantum processors [8], is
supported by a large number of software toolchains,
and exposes language features like register allocation,
qubit addressing, and instruction invocation, among
others. For this work, we leverage an off-the-shelf
parser for OpenQASM provided by the staq project
[6]. This project provides a Clang-inspired OpenQASM
parser in C++ that translates language strings to a cus-
tom abstract syntax tree (AST) representation. More-
over, the project provides a robust visitor pattern on
top of this representation that makes staq well-suited
for key circuit transformation, optimization, and anal-
ysis tasks. We leverage this visitor pattern to walk the

OpenQASM 2.0;

include "gelibl.inc";

qreg q[2];

creg c[2]; |

h q[0]; | staq ast-gen
cx ql[e]l, qlll; v

measure q -> C;

| - Program
. gelib.inc (not included for brevity)...
| - Register Decl(q[2], quantum)
| - Register Decl(c[2])

| - Declared(h)
|- Var(ql@])
| - Declared(cx) key staq ast nodes:
|- Var(q[0]) - RegisterDecl
|- Var(ql[1l]) - DeclaredGate
| - Measure - CNOTGate
|- Var(q[0]) - UGate
|- Var(c[0]) - MeasureStmt
| - Measure
|- Var(qll1])
|- Var(c[1])

Figure 8: (top) A simple OpenQASM code to create
a 2-qubit bell state followed by a measurement of all
qubits. (bottom) staq AST representation demonstrat-
ing key nodes that need to be visited to map to an
equivalent MLIR representation.

OpenQASM AST and map key nodes to corresponding
MLIR Ops from our quantum dialect.

The staq AST exposes a top-level ASTNode type
that all node-types derive from. The primary nodes
that we care about in the generation of a ModuleOp
composed of operations from the quantum dialect are
the RegisterDecl, UGate, CNOTGate, DeclaredGate,
and MeasureStmt. We provide a visitor implementation
(OpenQasmMLIRGenerator that additionally sub-types
the QuantumMLIRGenerator interface (see Section IV)
and implements mlirgen() to walk the AST and visit
these specific nodes to create corresponding opera-
tions from our quantum dialect. Statements like qreg
gq[2] ultimately map to a RegisterDecl in the staq
AST and visitation of that node provides the register
variable name and size information (q and 2 for qreg
gq[2]). With this information, our visit implementation
can construct a new QallocOp and set its constant
name and size attributes and insert it into an pre-
initialized ModuleOp class member on the visitor class
implementation. Note that downstream InstOps and
QubitExtractOps will need reference to the return

$ qcor bell.qgasm
$./a.out -qrt nisq -qpu ibm:ibmg_paris

Figure 9: Compile the OpenQASM code in Figure 8
(first line). Run the resultant executable targeting an
IBM physical backend (second line).

register from the QallocOp as its input operands, there-
fore, we store all QallocOp instances in a symbol table
stored on as a visitor class member.

Next, for gates that are not U or CNOT (these are
separated out in the tree since they represent the
common basis gate set on the IBM processor), we visit
the DeclaredGate node (h, rx, cx, etc. - these gates
ultimately lower to U and CNOT). This node provides
information about the name of gate instruction and the
qubits being operated on - specifically their address
in the pre-allocated quantum register (h q[0] gives
us the name h, the register q, and the qubit index
0). Within this visit implementation we leverage this
information to construct a new QubitExtractOp that
takes the correct QallocOp return operand retrieved
from the symbol table, and a mlir::ConstantOp for
generating the constant qubit index integer. The return
operand from the QubitExtractOp can then be used
as an input operand on a constructed InstOp, which
is also seeded with corresponding constant attributes
for the name of the instruction and any constant gate
rotation parameters.

We integrate this workflow within the qcor compiler
platform. We provide a qcor-mlir-tool executable
that takes an OpenQASM file as input and outputs
an LLVM IR assembly file. Optionally, users can pass
-emit=mlir, -emit=mlir-1lvm, or -emit=11vm to print
out the MLIR quantum, MLIR LLVM, or LLVM IR
representations to standard out, respectively. Users
may also use this tool to compile to LLVM IR with
or without a main() entry point (the -no-entrypoint
argument causes the workflow to output the LLVM IR
without a main function). Note this is useful in mapping
OpenQASM source files to executables or libraries for
linking later. We have updated the qcor compiler driver
to delegate to this tool when passed OpenQASM source
files. Users can compile and execute OpenQASM codes
as in Figure 9.

It is interesting to note that the same parsing pro-
cess can be performed for other quantum assembly
languages. We anticipate that existing parsing mecha-
nisms for languages such as quil, jaqal, and others rely
on some sort of parse tree representation that can be
traversed with specific general actions being invoked
for differing node types. We observe that a number

of languages provide an extended Bachus-Naur form
grammar specification that could easily generate parse
tree data structures through tools and frameworks
like Antlr [22]. Frameworks such as this also provide
listener and visitor patterns which can be leveraged to
create quantum Ops and effectively map the language
to our MLIR quantum dialect.

B. Linking to Compiled Assembly Code

The ability to compile assembly languages with qcor
using the -no-entrypoint command line option en-
ables one to produce libraries of quantum functions
that one should be able to link to and invoke from
existing C++ application codes. To do this, one would
need some means to retrieve execution results from the
linked OpenQASM function. In gcor, execution results
are persisted to an allocated qreg instance, so what
we need is a mechanism for passing an allocated qreg
to the quantum function provided by the compiled
object file. To achieve this, we extend the quantum
dialect with a SetQregOp operation that takes as in
put a value of opaque type greg. Runtime implemen-
tations are free to define the qreg and provide it

$ gcor -no-entrypoint bell.gasm
$ s
bell.o bell.gasm

#include "qcor.hpp"

// Macro that maps to
// extern "C" void bell(qregq);
include_qcor_qgasm(bell)

int main() {
auto q = galloc(2);
// Function from bell.o

bell(q)

for (auto [bit, count] : g.counts()) {
print(bit, ":", count);

}

return 0;

$ qcor bell.o test.cpp -o test.x

$./test.x -qrt nisq -shots 2048 -qpu aer
00 : 1025

11 : 1023

Figure 10: Code snippet demonstrating the compilation
of an OpenQASM code and subsequent linking within
a standard qcor C++ code.

at the link phase, and we map it to the qcor qreg
data type. The SetQregOp operation lowers to a new
runtime function we define in the QIR API specification
__quantum__rt__set_qreg(qreg*), and is injected at
the start of the top-level, entry-point quantum MLIR
function. Our implementation provides this function
and takes the greg for use in persisting measurement
results.

This functionality promotes the ability for program-
mers to define quantum code in stand-alone Open-
QASM source files, compile them with qcor (delegating
to our gcor-mlir-tool to generate LLVM IR) using
the -no-entrypoint flag, and link them into other
gcor codes for invocation of the pre-compiled quantum
assembly code. Figure 10 demonstrates this workflow,
where users compile OpenQASM to an object file, call a
pre-defined macro include_qcor_qasm() to setup the
external linkage, and then call the function like any
other C++ function.

C. Compiler Benchmarks

In this evaluation, we compare the compilation time
of the QCOR compiler using the MLIR-based compi-
lation workflow vs. the code-rewrite via syntax han-
dler plugin approach. Specifically, in the hierarchical
MLIR compilation workflow, the compilation runtime
involves QASM to MLIR to QIR lowering and LLVM
IR compilation (via llvm-as and llc -filetype=obj.
On the other hand, when using the syntax handler, we
embed the QASM source into the .cpp source file as
a quantum kernel and use QCOR to compile the mixed
quantum-classical source.

For comparison, we transpile the QASM test cases
into Q# and time the Q# compilation!. The result is
shown in Figure 11 for a set of OpenQASM source
files [25] for common arithmetic quantum algorithms,
such as adder, quantum Fourier transform, etc.

The benefit of hierarchical lowering via MLIR to
compilation time is significant (up to 1 to 2 order
of magnitude) compared to the Clang syntax-hander
plugin (CSP) approach [21]. It is worth noting that the
CSP approach comprises two steps: (1) transformation
of embedded QASM into C++ data structures and (2)
compilation of the rewritten source code. The second
step is equivalent to the compilation workflow of the
Q# compiler since the QASM sources have been tran-
spiled into Q# code.

Both the Q# and QCOR-CSP compilers can handle
higher-level language constructs, such as conditional
statements, loops, function calls, etc., thus, are gear-
ing towards quantum kernels written in that manner.

lCommand-line Q# compiler (gqsc) from Microsoft Quantum SDK
version 0.14.2011120240 for Linux

Compilation Benchmark

10000

1000

-
S
]

Compile Time [secs]
15

-

0.1
123 45 6 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Test Case #

——QCOR-MLIR QCOR-CSP QSharp

Figure 11: Compilation time comparison between
MLIR-based (QCOR-MLIR) and syntax handler plugin-
based (QCOR-CSP) QCOR compilation and the Q# com-
piler (QSharp). The test cases are flattened OpenQASM
source files for the QCOR compiler and transpiled Q#
sources for the Q# compiler. In this plot, the x-axis
represents individual test cases sorted by the runtime
of the QCOR-MLIR compiler.

On the other hand, direct QASM to MLIR then QIR
lowering and external linkage, as demonstrated in sub-
section VII-B, is a more efficient compilation approach
to integrate pure QASM kernels into the heterogeneous
quantum-classical programming workflow of QCOR.

VIII. Conclusion

We have presented a compilation infrastructure for
quantum assembly languages that builds upon the ex-
tensible and reusable MLIR infrastructure and enables
progressive lowering to the LLVM IR in a manner that
is adherent to the Microsoft quantum intermediate
representation (QIR). We extend the MLIR with a new
dialect for quantum computing exposing operations for
qubit memory management, addressing, and quantum
instruction invocation. We have provided lowering rou-
tines for taking this operations to valid operations in
the LLVM dialect. Our LLVM representation adheres to
the QIR, and we provide a runtime API implementation
that delegates execution to the qcor runtime library.
We demonstrate the utility of this approach for a pro-
totypical assembly language - OpenQASM. Our work
enables quantum-classical compilation to executables
or libraries, and for the latter can be leveraged within
existing application use cases.

We see this work as a foundational layer for con-
tinued development of quantum-classical compilers,
frameworks, and tools. We envision the current Open-
QASM workflow as a template that other developers
may follow to extend this MLIR compiler workflow to

other quantum assembly languages. This internal MLIR
representation, and the lower QIR representation, can
serve as a unified representation that enables integra-
tion across a number of quantum software research
and development activities. We also note that a new
version of OpenQASM (version 3.0) has recently been
released that provides a more rich feature set enabling
a hybrid quantum-classical approach at a higher-level
of abstraction then low-level assembly. We belive this
infrastructure could serve as a base foundation for
the development of a true ahead-of-time compiler for
OpenQASM 3.0 codes, enabling backend execution on
available quantum co-processors.

Acknowledgment

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Na-
tional Quantum Information Science Research Centers.
ORNL is managed by UT-Battelle, LLC, for the US
Department of Energy under contract no. DE-ACO05-
000R22725.

References
Aide-qc documentation. Accessed:
2021-01-15.
Introducing quantum intermediate representa-
tion (qir). https://devblogs.microsoft.com/qsharp/
introducing-quantum-intermediate-representation-qir/.
Accessed: 2021-01-15.
Mlir documentation. https://mlirllvm.org. Accessed: 2021-01-
15.
Qcor github. https://github.com/ornl-qci/qcor. Accessed: 2021-
01-15.
Quantum intermediate representation (qir) specification.
https://github.com/microsoft/gqsharp-language/tree/main/
Specifications/QIR. Accessed: 2021-01-15.
Matthew Amy and Vlad Gheorghiu. staq - A full-stack quan-
tum processing toolkit. arXiv e-prints, page arXiv:1912.06070,
December 2019.
Samuel F. Antao, Alexey Bataev, Arpith C. Jacob, Gheorghe-
Teodor Bercea, Alexandre E. Eichenberger, Georgios Rokos,
Matt Martineau, Tian Jin, Guray Ozen, Zehra Sura, Tong Chen,
Hyojin Sung, Carlo Bertolli, and Kevin O’Brien. Offloading
support for openmp in clang and llvm. In Proceedings of
the Third Workshop on LLVM Compiler Infrastructure in HPC,
LLVM-HPC '16, page 14AS11. IEEE Press, 2016.
Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M.
Gambetta. Open Quantum Assembly Language. arXiv e-prints,
page arXiv:1707.03429, Jul 2017.
E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D.
Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski.
Cloud quantum computing of an atomic nucleus. Phys. Rev.
Lett., 120:210501, May 2018.
Hal Finkel, Alexander McCaskey, Tobi Popoola, Dmitry Lyakh,
and Johannes Doerfert. Really embedding domain-specific lan-
guages into c++, 2020.
Tobias Gysi, Christoph MAijller, Oleksandr Zinenko, Stephan
Herhut, Eddie Davis, Tobias Wicky, Oliver Fuhrer, Torsten Hoe-
fler, and Tobias Grosser. Domain-specific multi-level ir rewriting
for gpu, 2020.
[12] J. Hines. Stepping up to summit.

Engineering, 20(2):78-82, 2018.

http://docs.aide-qc.org.

[71

(8]

[10]

[11]

Computing in Science

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey,
Alexey Lvov, Frederic T. Chong, and Margaret Martonosi. Scaf-
fcc: Scalable compilation and analysis of quantum programs.
Paralle] Computing, 45:2 — 17, 2015. Computing Frontiers
2014: Best Papers.

Tian Jin, Gheorghe-Teodor Bercea, Tung D. Le, Tong Chen,
Gong Su, Haruki Imai, Yasushi Negishi, Anh Leu, Kevin O’Brien,
Kiyokuni Kawachiya, and Alexandre E. Eichenberger. Compiling
onnx neural network models using mlir, 2020.

Chris Lattner and Vikram Adve. LLVM: A compilation frame-
work for lifelong program analysis and transformation. pages
75-88, San Jose, CA, USA, Mar 2004.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen,
Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman,
Nicolas Vasilache, and Oleksandr Zinenko. Mlir: A compiler
infrastructure for the end of moore’s law, 2020.

Alexander McCaskey, Eugene Dumitrescu, Dmitry Liakh, and
Travis Humble. Hybrid programming for near-term quantum
computing systems. In 2018 IEEE International Conference on
Rebooting Computing (ICRC), pages 1-12. IEEE, 2018.
Alexander] McCaskey, Dmitry I Lyakh, Eugene F Dumitrescu,
Sarah S Powers, and Travis S Humble. XACC: a system-level
software infrastructure for heterogeneous quantum-classical
computing. Quantum Science and Technology, 5(2):024002, feb
2020.

Alexander]J. McCaskey, Zachary P. Parks, Jacek Jakowski,
Shirley V. Moore, Titus D. Morris, Travis S. Humble, and
Raphael C. Pooser. Quantum chemistry as a benchmark for
near-term quantum computers. npj Quantum Information,
5(1):99, 2019.

Benjamin C. A. Morrison, Andrew J. Landahl, Daniel S. Lobser,
Kenneth M. Rudinger, Antonio E. Russo, Jay W. Van Der Wall,
and Peter Maunz. Just another quantum assembly language
(Jaqal). arXiv e-prints, page arXiv:2008.08042, August 2020.
Thien Nguyen, Anthony Santana, Tyler Kharazi, Daniel
Claudino, Hal Finkel, and Alexander McCaskey. Extending c++
for heterogeneous quantum-classical computing, 2020.

T. J. Parr and R. W. Quong. Antlr: A predicated-11(k) parser
generator. Software: Practice and Experience, 25(7):789-810,
1995.

H. Peng and J. J. Shann. Translating openacc to llvm ir with spir
kernels. In 2016 IEEE/ACIS 15th International Conference on
Computer and Information Science (ICIS), pages 1-6, 2016.
Robert S Smith, Michael J Curtis, and William J Zeng. A
practical quantum instruction set architecture, 2016.
softwareQ Inc. Benchmarking qgasm source files, 2020.
https://github.com/softwareQinc/stag/tree/main/demos/benchmarks.
Krysta Svore, Alan Geller, Matthias Troyer, John Azariah,
Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia
Mykhailova, Andres Paz, and Martin Roetteler. Q#: Enabling
scalable quantum computing and development with a high-
level dsl. In Proceedings of the Real World Domain Specific
Languages Workshop 2018, RWDSL2018, New York, NY, USA,
2018. Association for Computing Machinery.

http://docs.aide-qc.org
https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir/
https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir/
https://mlir.llvm.org
https://github.com/ornl-qci/qcor
https://github.com/microsoft/qsharp-language/tree/main/Specifications/QIR
https://github.com/microsoft/qsharp-language/tree/main/Specifications/QIR

	Introduction
	Background
	A Quantum MLIR Dialect
	MLIR Generation
	Lowering to QIR
	QIR Runtime Implementation
	Evaluation
	OpenQASM Compiler
	Linking to Compiled Assembly Code
	Compiler Benchmarks

	Conclusion
	References

