

CO₂ Storage prospective Resource Estimation Excel aNalysis (CO₂-SCREEN) User's Manual: Python_V4.1

8 April 2022

Office of Fossil Energy and Carbon Management

DOE/NETL-2022/3729

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Cover Illustration: CO₂-SCREEN Splash Page.

Suggested Citation: Sanguinito, S.; Goodman, A.; Haeri, F.; Myshakin, E. M.; Moore, J.; Crandall, D. *CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂-SCREEN) User's Manual: Python_V4.1*; DOE.NETL-2022.3729; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 40. DOI: 10.2172/1862020

An electronic version of this report can be found at:

<https://netl.doe.gov/energy-analysis/search>

<https://edx.netl.doe.gov/carbonstorage>

**CO₂ Storage prospeCtive Resource Estimation Excel aNalysis
(CO₂-SCREEN) User's Manual: Python_V4.1**

**Sean Sanguinito^{1,2}, Angela L. Goodman¹, Foad Haeri^{1,2}, Eugene Myshakin^{1,2},
Johnathan Moore^{1,2}, Dustin Crandall¹**

**¹U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill
Road, Pittsburgh, PA 15236**

²NETL Support Contractor, 626 Cochrans Mill Road, Pittsburgh, PA 15236

DOE/NETL-2022/3729

8 April 2022

NETL Contacts:

Angela Goodman, Principal Investigator

Dustin Crandall, Technical Portfolio Lead

Bryan Morreale, Executive Director, Research & Innovation Center

This page intentionally left blank.

Table of Contents

ABSTRACT.....	1
1. INTRODUCTION.....	2
2. INSTALLING CO₂-SCREEN.....	3
2.1 SYSTEM REQUIREMENTS	3
2.2 INSTALLATION	3
3. GETTING STARTED	4
3.1 WINDOWS USERS	4
3.2 LINUX USERS.....	4
3.3 MAC USERS	4
4. INSTRUCTIONS FOR USE.....	5
4.1 SIMULATION SETUP	5
4.2 PHYSICAL PARAMETERS.....	5
4.3 EFFICIENCY FACTORS	7
4.4 OUTPUTS.....	15
4.5 MULTIPLE GRID SYSTEM	17
5. CO₂-SCREEN CALCULATIONS	19
5.1 SALINE FORMATIONS	19
5.2 SHALE FORMATIONS.....	19
5.3 RESIDUAL OIL ZONE FORMATIONS	21
6. TROUBLE SHOOTING	23
6.1 CO ₂ -SCREEN KEEPS “RUNNING” FOREVER.....	23
6.2 “SHARING VIOLATION” ERROR.....	23
6.3 OTHER	23
7. REFERENCES.....	25
APPENDIX A: STORAGE EFFICIENCY FACTORS	A-1
APPENDIX B: SENSITIVITY ANALYSIS.....	B-1

List of Figures

Figure 1: Screenshot of the download file for CO ₂ -SCREEN.	3
Figure 2: CO ₂ -SCREEN splash page.	4
Figure 3: Formation Type drop down options on Simulation Setup Tab.	5
Figure 4: Screenshot of the Physical Parameters tab for each formation type.	6
Figure 5: Screenshot of Efficiency Factors tab for each formation type.	8
Figure 6: Reservoir grid domain as a cross-sectional view within a 3D model.	9
Figure 7: Screenshot displaying the green Run button as well as the “Running” animation.	14
Figure 8: Screenshot of Outputs tab showing results displayed for each formation type.....	16
Figure 9: Screenshot of the Excel Outputs sheet generated by CO ₂ -SCREEN.	17
Figure 10: Screenshots of examples of the PhysicalParametersSaline.xlsx and StorageEfficiencySaline.xlsx files.	18
Figure 11: Langmuir adsorption capacity plotted as a function of TOC (%) to calculate Langmuir slope and y-intercept.	21

List of Tables

Table 1: Pertinent Reservoir Model Parameters	10
Table 2: CO2BRA (2022) Lithology and Depositional Environment Options	11
Table 3: IEA (2009) Lithology and Depositional Environment Options	12
Table 4: Geographic Information.....	20
Table 5: Recommended ROZ Values for Data Limited Scenarios.....	22

Acronyms, Abbreviations, and Symbols

Term	Description
2D	Two-dimensional
3D	Three-dimensional
ρ	Density
ρ_{sCO_2}	Maximum mass of CO ₂ sorbed per unit volume solid rock, e.g., the asymptotic value of an appropriate isotherm
ϕ	Porosity
A_t	Area
AGD	Averaged Global Database
CO ₂	Carbon dioxide
CO ₂ -SCREEN	Storage prospeCtive Resource Estimation Excel aNalysis
DOE	U.S. Department of Energy
E_ϕ	Effective-to-total porosity
E_A	Net-to-total area
E_d	Microscopic displacement
E_{Ds}	Fraction of CO ₂ mass dissolved in the oil phase
EDX	Energy Data eXchange
E_h	Net-to-gross thickness
E_s	Sorption efficiency
E_{saline}	Saline efficiency
E_v	Volumetric displacement
Gt	Gigatons
GUI	Graphical user interface
h_g	Thickness
LV	Langmuir volume
L_s	Langmuir slope
L_{y-int}	Langmuir y-intercept
Mt	Million metric tons
NETL	National Energy Technology Laboratory
ORISE	Oak Ridge Institute for Science and Education
ρ_{shale}	Density of shale
$R_{c/o}$	CO ₂ concentration

Acronyms, Abbreviations, Symbols (cont.)

Term	Description
ROZ	Residual oil zones
S_{wirr}	Irreducible water saturation
S_{or}	Residual oil saturation with respect to water
TDS	Total dissolved solids
TOC	Total organic content
X_{ϕ}	Log-odds transformed efficiency factors for porosity
X_A	Log-odds transformed efficiency factors for the area
X_D	Log-odds transformed efficiency factors for microscopic displacement
X_h	Log-odds transformed efficiency factors for thickness
X_V	Log-odds transformed efficiency factors for volumetric displacement

Glossary

Term	Symbol	Units	Description
Area	A_t	km ²	Total area (map view) of the formation being assessed for CO ₂ storage
CO ₂ Concentration	$R_{c/o}$		Concentration of CO ₂ in 1 m ³ of oil at the (averaged) pressure (P) and (averaged) temperature (T) of a reservoir prior to injection
CO ₂ Density	ρ_{CO_2}	kg/m ³	Density of CO ₂ at the (averaged) pressure (P) and (averaged) temperature (T) of formation being assessed for CO ₂ storage prior to injection
CO ₂ Storage	G_{CO_2}		CO ₂ storage resource (mass)
Depositional Environment			The combination of physical, chemical, and biological processes under which sediment accumulates
Effective-to-Total Porosity	E_ϕ		Fraction of formation porosity available for CO ₂ storage
Formation			The fundamental unit of lithostratigraphy. A body of rock that is sufficiently distinctive and continuous that it can be mapped
Microscopic Displacement	E_d		The fraction of pore space unavailable due to immobile in-situ fluids
Net-to-Gross Thickness	E_h		Fraction of formation thickness available for CO ₂ storage
Net-to-Total Area	E_A		Fraction of formation area available for CO ₂ storage
Oil Displacement	E_{Ds}		Fraction of CO ₂ mass dissolved in the oil phase
Physical Parameters			The parameters required to calculate the potential CO ₂ storage resource (i.e., area, thickness, porosity)
Porosity	ϕ_{tot}	%	Average total porosity of formation being assessed for CO ₂ storage
Reservoir Pressure	P	MPa	The pressure of the formation defined by A and h at storage conditions
Residual Oil Zone Formations	ROZ		Reservoir rock containing immobile oil, with respect to water, at oil saturation levels generally less than 40%
Saline Efficiency	E_{saline}		CO ₂ storage efficiency factor that reflects a fraction of the total pore volume that is filled by CO ₂
Saline Formations			Subsurface geographically extensive sedimentary rock layers saturated with waters or brines that have a high total dissolved solids (TDS) content (i.e., over 10,000 mg/L TDS)
Storage Efficiency Values			Values defining the fraction of storage likely for each storage parameter
Swirr	S_{swirr}		Irreducible water saturation

Glossary (cont.)

Term	Symbol	Units	Description
S_{or}	S_{or}		Residual oil saturation with respect to water
Sorbed CO ₂	ρ_{SCO_2}		Maximum mass of CO ₂ sorbed per unit volume solid rock, e.g., the asymptotic value of an appropriate isotherm
Sorbed CO ₂ Efficiency	E_s		Fraction of the total potential sorbed volume of CO ₂ within the net effective volume of the formation
Temperature	T	°C	The temperature of the formation defined by A and h at storage conditions
Thickness	h_g	m	Average gross thickness of formation being assessed for CO ₂ storage
Volumetric Displacement	E_v		The combined fraction of immediate volume surrounding an injection well that can be contacted by CO ₂ and the fraction of net thickness that is contacted by CO ₂ as a consequence of the density difference between CO ₂ and in-situ water

Acknowledgments

This work was completed as part of National Energy Technology Laboratory (NETL) research for the U.S. Department of Energy's (DOE) Office of Fossil Energy and Carbon Management Carbon Storage Program. The authors wish to acknowledge Bryan Morreale (NETL Research & Innovation Center), and Mark McKoy (NETL Technology Development and Integration Center).

The authors wish to acknowledge Timothy Jones and Joel Chittum from MATRIC for their work building the graphical user interface (GUI) in Java. This research was supported in part by appointments from the NETL Research Participation Program, sponsored by the U.S. DOE and administered by the Oak Ridge Institute for Science and Education (ORISE).

This page intentionally left blank.

ABSTRACT

This user's manual guides the use of the National Energy Technology Laboratory's (NETL) CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂-SCREEN) tool, which was developed to aid users in screening geologic formations for prospective CO₂ storage resources. This manual is specific to the CO₂-SCREEN 4.1 version which is based in Python. The 4.1 version of CO₂-SCREEN adds in newly updated storage efficiency factors for saline formations. CO₂-SCREEN applies U.S. Department of Energy (DOE) methods and equations for estimating prospective CO₂ storage resources for saline formations, shale formations, and residual oil zones (ROZ). CO₂-SCREEN was developed to be substantive and user-friendly and provide a consistent method for calculating prospective CO₂ storage resources. CO₂-SCREEN uses a Java-based graphical user interface (GUI) for data inputs and uses Python to calculate prospective CO₂ storage resources.

1. **INTRODUCTION**

Since 2011, the U.S. Department of Energy, National Energy Technology Laboratory (DOE-NETL) Carbon Storage Program has developed methods and equations for assessing the prospective storage resource of carbon dioxide (CO₂) in various geologic formations (Goodman et al., 2011; Goodman et al., 2013; NETL, 2015; Goodman et al., 2016; Levine et al., 2016; Sanguinito et al., 2020). In order to make high-level, energy-related government policy and business decisions the ability to accurately predict the CO₂ storage resource is needed. NETL's Best Practice manual (NETL, 2013) defines prospective CO₂ storage resource as a mass estimate of CO₂ that can be stored in a geologic reservoir at the primary stage of a CO₂ storage project. This definition comes from the CO₂ geologic storage classification system, which was modified from the petroleum industry classification system (Oil and Gas Reserves Committee, 2011). This system outlines how to identify and characterize potential CO₂ storage locations at regional and site scales.

This user's manual describes version 4.1 of the CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂-SCREEN) tool and provides instructions for use. CO₂-SCREEN is available on the Energy Data eXchange (EDX) and can be downloaded here:

<https://edx.netl.doe.gov/dataset/co2-screen>.

2. INSTALLING CO₂-SCREEN

2.1 SYSTEM REQUIREMENTS

The following computer capabilities are recommended for using CO₂-SCREEN:

- **Personal computer (PC) with 64-bit operating system and operating system of Microsoft Windows 7 or later**
- **Mac with operating system of Mojave or later**

The tool may be able to operate on computers with fewer capabilities, but the user may experience lengthy simulation run times.

2.2 INSTALLATION

CO₂-SCREEN can be downloaded off EDX from the following link:

<https://edx.netl.doe.gov/dataset/co2-screen>.

Download the zipped folder named “co2-screen-v4.1_python.zip” seen in Figure 1.

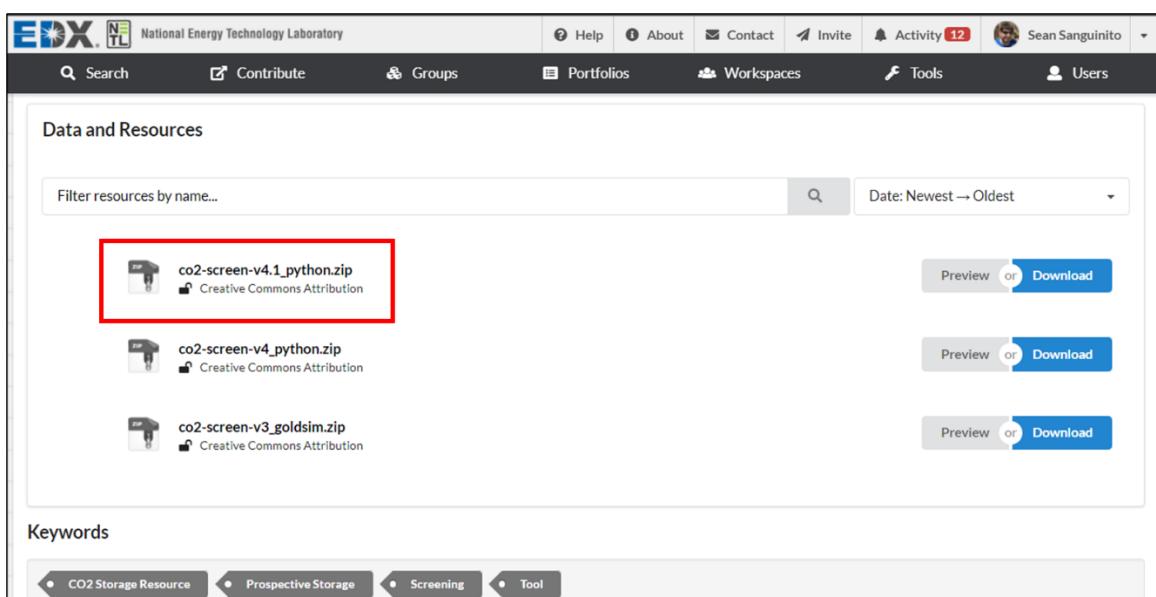


Figure 1: Screenshot of the download file for CO₂-SCREEN.

After the zipped folder is downloaded, extract the folder contents and place them in any directory on your computer. Keep all files associated with CO₂-SCREEN in the same directory (i.e., do not move input or output files around). Windows users can simply double click on the CO2SCREEN.jar file to run the tool. Mac users may need to use Terminal to open the tool (see Section 3.3 below).

3. GETTING STARTED

3.1 WINDOWS USERS

To run CO₂-SCREEN, simply double click on the “CO2SCREEN.jar” file. This will open the CO₂-SCREEN splash page seen in Figure 2.

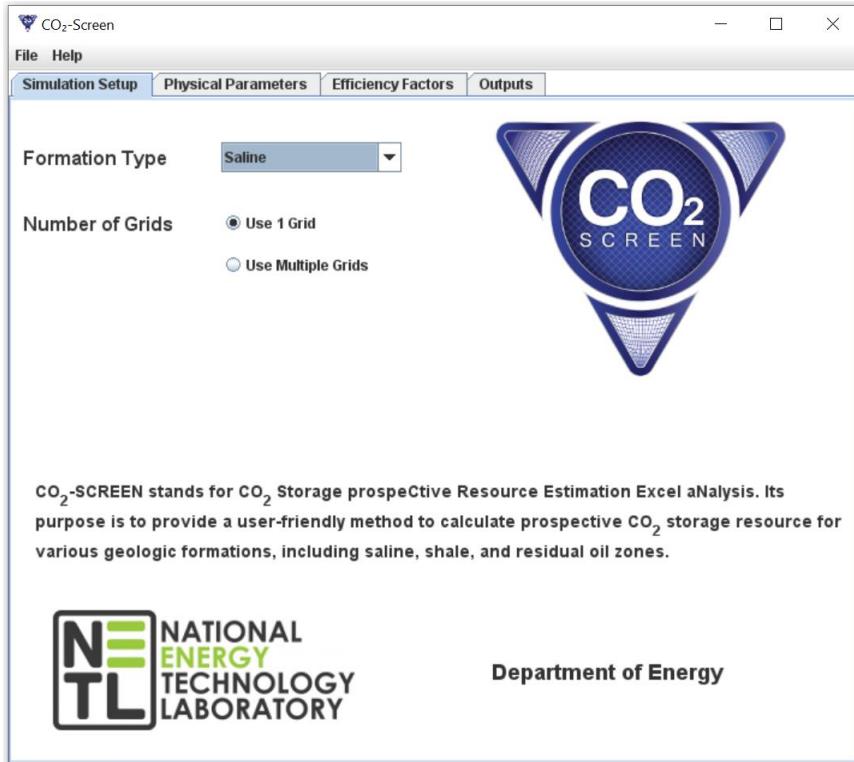
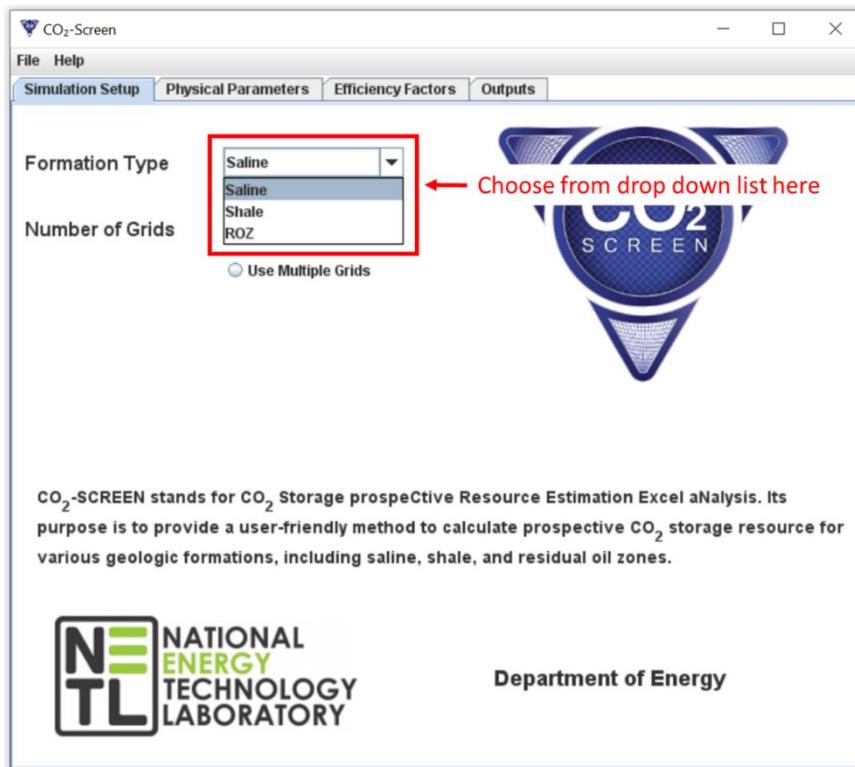


Figure 2: CO₂-SCREEN splash page.

3.2 LINUX USERS

To run CO₂-SCREEN using Linux open a console/terminal and execute the “CO2SCREEN.jar” file using 'java -jar CO2SCREEN.jar' (without the apostrophes). This will open the CO₂-SCREEN splash page seen in Figure 2.


3.3 MAC USERS

To run CO₂-SCREEN on newer versions of MacOS (Catalina and newer) the user will need to ensure the files have permission to execute and write on your system. To do this, open Terminal and navigate to the directory that contains the CO₂-SCREEN files, specifically the FormationApps folder. Execute 'chmod +x *Mac'. Then execute './SalineMac', './ShaleMac', and './ROZMac' (without the apostrophes). Navigate back to the CO₂-SCREEN folder and execute 'java -jar CO2SCREEN.jar'. This will open the CO₂-SCREEN splash page seen in Figure 2. The permissions to write will remain for future uses of CO₂-SCREEN, but it may still need to be opened using terminal for each use.

4. INSTRUCTIONS FOR USE

4.1 SIMULATION SETUP

CO₂-SCREEN is organized into 4 tabs: Simulation Setup, Physical Parameters, Efficiency Factors, and Outputs. The Simulation Setup tab is automatically opened when CO₂-SCREEN is first launched (see Figure 2). The first choice a user must make is deciding what geologic formation they would like to estimate prospective CO₂ resource for. The user can choose their formation type from a dropdown list (Figure 3), which includes: Saline, Shale, or ROZ (residual oil zones).

Figure 3: Formation Type drop down options on Simulation Setup Tab.

The next choice is deciding how many grids to divide the formation or region of interest into. A user can use a single grid, which will calculate CO₂ storage and efficiency values based on a single region. Or the user can use multiple grids, which allows the user to enter different data values on a grid by grid basis, which can be useful to account for geologic heterogeneity. If a user chooses a single grid, they can move onto the Physical Parameters tab (see Section 4.2) to begin entering geologic data. If a user chooses to use multiple grids, they will need to enter their Physical Parameter and Efficiency Factor data into provided Excel files (see Section 4.5 for details on multiple grid use).

4.2 PHYSICAL PARAMETERS

After selecting formation type and single grid, navigate to the Physical Parameters tab. Depending on what formation type was chosen previously, the user will see various geologic

parameters (Figure 4). Enter a mean and standard deviation value for each parameter. Values entered here must be positive.

The figure consists of three vertically stacked windows, each representing a different formation type in the CO₂-SCREEN software. Each window has a title bar with the CO₂-Screen logo, a menu bar with File, Help, Simulation Setup, Physical Parameters (which is highlighted in blue), Efficiency Factors, and Outputs, and a toolbar with a magnifying glass icon.

Saline Window: The title is "Saline". The "Enter Values" section contains five parameters: Area (km²), Gross Thickness (m), Porosity (%), Pressure (MPa), and Temperature (°C). Each parameter has a "Mean" input field and a "Standard Deviation" input field to its right.

Shale Window: The title is "Shale". The "Enter Values" section contains nine parameters: Area (km²), Gross Thickness (m), Porosity (%), Pressure (MPa), Temperature (°C), Shale Density (kg/m³), TOC (%), Langmuir Slope, and Langmuir Y-Intercept. Each parameter has a "Mean" input field and a "Standard Deviation" input field to its right.

ROZ Window: The title is "ROZ". The "Enter Values" section contains seven parameters: Area (km²), Gross Thickness (m), Porosity (%), Pressure (MPa), Temperature (°C), S_{wir} , S_{or} , and $R_{c/o}$ (kg/m³). Each parameter has a "Mean" input field and a "Standard Deviation" input field to its right.

Figure 4: Screenshot of the Physical Parameters tab for each formation type.

For saline formations, there are five physical parameters including Area, Gross Thickness, Porosity, Pressure, and Temperature. These five terms are used for shale and ROZ formations as well. To account for CO₂ storage as a sorbed phase, shale also requires inputs for Shale Density, Total Organic Content (TOC), Langmuir Slope, and Langmuir Y-intercept (see Section 5.2). To account for residual oil reducing free phase storage but also increasing storage via CO₂ dissolution in oil, ROZ formations require inputs for irreducible water saturation (S_{wirr}), residual oil saturation (with respect to water) (S_{or}), and the concentration of CO₂ in oil ($R_{c/o}$). After entering all required formation data on the Physical Parameters tab, navigate to the Efficiency Factors tab.

4.3 EFFICIENCY FACTORS

Once again, based on the formation originally chosen (saline, shale, or ROZ), the user will see different options for entering efficiency factor values (Figure 5). All efficiency factors are entered as P₁₀ and P₉₀ values and must range between 0 and 1 (i.e., 0 = 0% efficiency and 1 = 100% efficiency).

The figure consists of three vertically stacked windows, each representing a different formation type in the CO₂-SCREEN software. Each window has a title bar, a menu bar with 'File' and 'Help', and a tab bar with 'Simulation Setup', 'Physical Parameters', 'Efficiency Factors' (which is highlighted in blue), and 'Outputs'.

Saline Formation: The lithology and depositional environment is set to 'Sandstone: Shallow Marine'. The 'Injection Duration (years)' is set to 1. The 'Enter Values' section contains the following data:

	P ₁₀	P ₉₀
Net-to-Total Area		
Net-to-Gross Thickness		
Effective-to-Total Porosity		
Volumetric Displacement	0.16	0.39
Microscopic Displacement	0.35	0.76

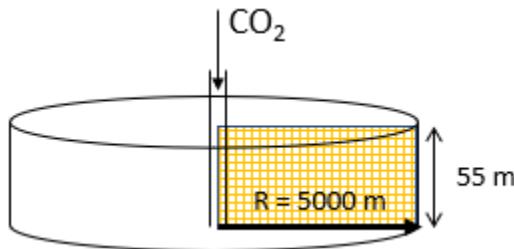
Shale Formation: The 'Years of injection' is set to 5. The 'Enter Values' section contains the following data:

	P ₁₀	P ₉₀
Net-to-Total Area	0.4	0.7
Net-to-Gross Thickness	0.3	0.8
Effective-to-Total Porosity	0.25	0.53
Effective-to-Total Sorption	0.14	0.34

ROZ Formation: The lithology and depositional environment is set to 'Clastics: Unspecified'. The 'Enter Values' section contains the following data:

	P ₁₀	P ₉₀
Net-to-Total Area	0.2	0.8
Net-to-Gross Thickness	0.21	0.76
Effective-to-Total Porosity	0.64	0.77
Volumetric Displacement	0.16	0.39
Microscopic Displacement	0.35	0.76
CO ₂ Dissolution in Oil	0.009	0.011

Each window has a green 'Run' button in the bottom right corner.


Figure 5: Screenshot of Efficiency Factors tab for each formation type.

Ideally, efficiency factor ranges should be based on geologic parameters specific to the formation being assessed but in the absence of detailed geologic data, users have the option to auto-populate P₁₀ and P₉₀ ranges for all five saline efficiency terms (Net-to-Total Area, Net-to-Gross Thickness, Effective-to-Total Porosity, Volumetric Displacement, and Microscopic Displacement).

For saline formations, there are two options for selecting auto-populated efficiency factor values: 1) CO2BRA (2022) and 2) IEA (2009). In both options, the efficiency factors were estimated using numerical simulation based on the methodology described in Section 5.1.

CO2BRA (2022)

The first option is CO2BRA (2022). This set of efficiency factors were estimated by numerical simulations with input parameters described in Table 1. This option allows users to auto-populate P₁₀ and P₉₀ ranges for five depositional environments (see Table 2). With this option, users also can choose a CO₂ injection duration (e.g., 1, 5, 10, 20, or 30 years) based on their storage scenario. The new experimental relative permeability data were extracted from the CO2BRA database for five major combinations of lithology and depositional environments (Table 2; Crandall et al., 2019). TOUGH3 reservoir models were coupled with the new data using a tabular input. To expedite the computational time required to run multiple cases, three-dimensional (3D) cylindrical models of a hypothetical saline reservoir were simplified into two-dimensional (2D) cross-sectional models taking advantage of the symmetry (Figure 6). In numerical simulations, a cylindrical computational domain with a thickness of 25 or 55 m and radius of 5,000 m was utilized. The lateral boundary was treated as permeable for heat and mass flow providing an open system for CO₂ injection.

Figure 6: Reservoir grid domain as a cross-sectional view within a 3D model.

Porosity and coupled permeability distributions were generated using geostatistical realizations based on interpreted core-based well logs and correlations derived from core sample measurements for the corresponding lithology/depositional environments. Modeling cases were created using minimum and maximum values for pressure, temperature, thickness, permeability anisotropy, and injection rate. Table 1 summarizes the parameters of reservoir models used in the simulations. For each modeling case, efficiency factors were determined at 1, 5, 10, 20, and 30 years of CO₂ injection (details of the method can be found in Haeri et al. (2022)). Finally, P₁₀ and P₉₀ values were calculated using the efficiency factors of all the modeling cases for each lithology/depositional environment.

Table 1: Pertinent Reservoir Model Parameters

	Parameter	Value	Unit
Model Dimensions			
	Thickness	5,000	m
	Radius	25 and 55	m
	Domain discretization	45×500	
	Number of grids	22,500	
Rock Properties			
	Porosity	heterogenous	
	Permeability (lateral)	heterogeneous	
	Permeability anisotropy	0.1 & 0.5	
	Relative permeability	Experimental (CO ₂ BRA)	
	Capillary pressure	variable*	
Reservoir Properties			
	Initial pressure	9.6 & 27.6	MPa
	Pressure gradient	10.14	kPa/m
	Initial temperature	variable**	
	Temperature gradient	0.02	°C/m
	Brine concentration	8	%
	Pore compressibility	4.5E-10	Pa ⁻¹
Operation Properties			
	Injection rate	400 & 800	tons/d
	Injection period	30	years
	Perforation	Injection well-entire zone	

*Varies based on lithology (Haeri et al., 2022)

**Varies based on GASIS Database (Haeri et al., 2022)

IEA (2009)

The second option is IEA (2009). This set of efficiency factors were developed by the International Energy Agency Greenhouse Gas R&D Programme (IEA GHG, 2009) and offers users the ability to auto-populate P₁₀ and P₉₀ ranges for 15 lithology/depositional environments (Table 3).

This set of efficiency factors was estimated through numerical simulations using a rectangular model with areal dimensions of 3,200 m by 3,200 m and thickness of 26 m divided into 204,000 grid cells. CO₂ injection volume was set at 1 Mt over 5 years. Three lithologies, five structural settings (dome, anticline, 10° inclined fault, 5° inclined fault, and flat) and ten depositional environments were based on the P₁₀, P₅₀, and P₉₀ properties and classifications derived from the Averaged Global Database (AGD) constructed by using hydrocarbon reservoir properties as a proxy for deep saline formation characteristics (details in (IEA GHG, 2009). Two type logs and two consistent relative permeability curves were used in the models, for clastics and carbonate reservoirs.

Table 2: CO2BRA (2022) Lithology and Depositional Environment Options

Lithology	Depositional Environment
Sandstone	Shallow Marine
Sandstone	Fluvial
Sandstone	Aeolian
Carbonate	Shallow Marine Dolomite
Carbonate	Reef Limestone

Table 3: IEA (2009) Lithology and Depositional Environment Options

Lithology	Depositional Environment
Clastics	Unspecified
Dolomite	Unspecified
Limestone	Unspecified
Clastics	Alluvial Fan
Clastics	Delta
Clastics	Eolian
Clastics	Fluvial
Clastics	Peritidal
Clastics	Shallow Shelf
Clastics	Shelf
Clastics	Slope Basin
Clastics	Strand Plain
Limestone	Peritidal
Limestone	Reef
Limestone	Shallow Shelf

If a dataset does not require an efficiency term, a user can enter a 1 (100 percent efficiency) for the P₁₀ and P₉₀ range. An example of this situation would be if a dataset were using net area instead of gross area. In this case, the user would enter a 1 for the P₁₀ and P₉₀ range for Net-to-Gross Area to avoid double discounting. In large datasets, that may have varying degrees of uncertainty in the data, and it is encouraged to use the multiple grid system to account for this uncertainty using varying ranges for efficiency factors.

For shale formations, there are only four efficiency factor terms (Net-to-Total Area, Net-to-Gross Thickness, Effective-to-Total Porosity, and Effective-to-Total Sorption). Again, users are encouraged to enter P₁₀ and P₉₀ ranges based on their geologic formation-specific data, but they have the option here to auto-populate the Effective-to-Total Porosity and Effective-to-Total Sorption efficiency factors based on years of injection. These auto-populated values are derived from Myshakin et al. (2018) who used numerical modeling to study the efficiency of free phase and sorbed phase storage of CO₂ in shale.

ROZ formations are geologically similar to saline formations except they contain some amount of residual oil. Because of this, they utilize the same five storage efficiency factors with an additional factor to account for oil, CO₂ Dissolution in Oil. Users once again have the option to

manually enter values or they can auto-populate values for the same efficiency factors as saline based on lithology and depositional environment. The efficiency factor for CO₂ Dissolution in Oil defaults to a P₁₀ and P₉₀ range of 0.009 to 0.011 sourced from Sanguinito et al. (2020) which used numerical simulations to analyze this term.

As a final reiteration, users should enter P₁₀ and P₉₀ efficiency factor ranges based on the geologic data of the formation they are assessing and only rely on auto-populated values when necessary. When values for all terms are entered, click the green Run button (Figure 7). A “Running” animation should be displayed as the tool works. When it finishes, users can navigate to the Output tab.

CO₂-Screen
–
□
×

File
Help

Simulation Setup
Physical Parameters
Efficiency Factors
Outputs

Saline

Enter Values

CO2BRA (2022) IEA (2009)

IEA (2009)*

Lithology and Depositional Environment: Clastics: Unspecified

	P_{10}	P_{90}
Net-to-Total Area	0.2	0.8
Net-to-Gross Thickness	0.21	0.76
Effective-to-Total Porosity	0.64	0.77
Volumetric Displacement	0.16	0.39
Microscopic Displacement	0.35	0.76

*Values calculated after 5 years of CO₂ injection

Run

CO₂-Screen
–
□
×

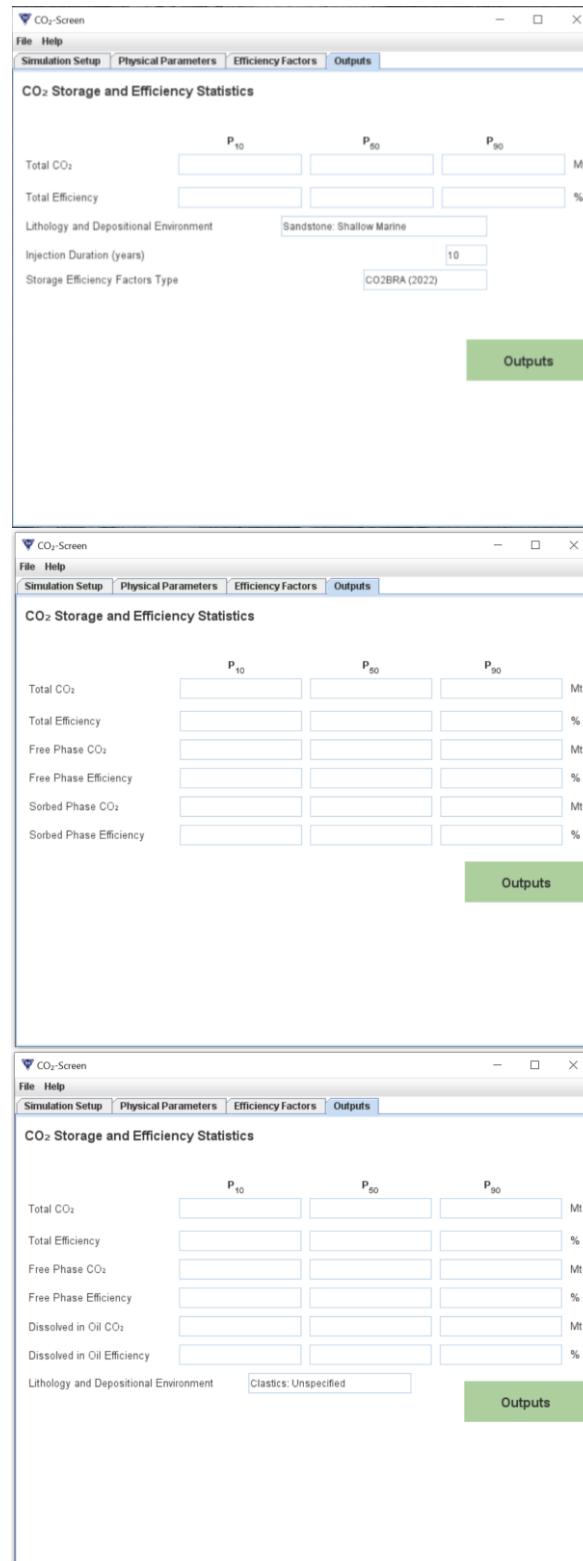
File
Help

Simulation Setup
Physical Parameters
Efficiency Factors
Outputs

Saline

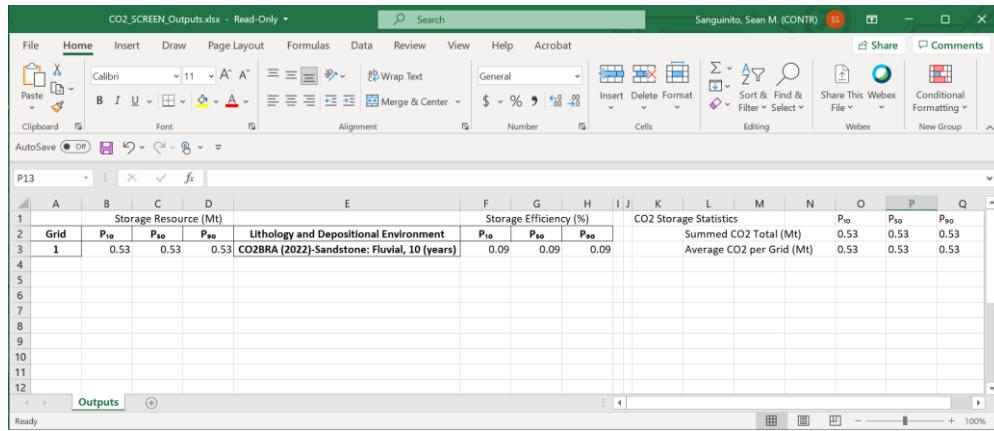
Enter Values

Lithology and Depositional Environment: Clastics: Unspecified


	P_{10}	P_{90}
Net-to-Total Area	0.2	0.8
Net-to-Gross Thickness	0.21	0.76
Effective-to-Total Porosity	0.64	0.77
Volumetric Displacement	0.16	0.39
Microscopic Displacement	0.35	0.76

Running

Figure 7: Screenshot displaying the green Run button as well as the “Running” animation.


4.4 OUTPUTS

The Outputs tab (Figure 8) will display different information depending on the formation being assessed while all outputs are presented as a P₁₀, P₅₀, and P₉₀ value. Saline formations will display the selected Total CO₂ storage resource, the Total Efficiency, Lithology and Depositional Environment, Injection Duration, and the Storage Efficiency Factors Type. Shale formations will display the Total CO₂ storage resource, Total Efficiency, Free Phase CO₂ storage resource, Free Phase Efficiency, Sorbed Phase CO₂ Storage, and Sorption Efficiency. ROZ formations will display the Total CO₂ storage resource, Total Efficiency, Free Phase CO₂ storage resource, Free Phase Efficiency, Dissolved in Oil CO₂ storage resource, Dissolved in Oil Efficiency, and Lithology and Depositional Environment chosen.

Figure 8: Screenshot of Outputs tab showing results displayed for each formation type.

Clicking on the green Outputs button will open up an Excel spreadsheet (Figure 9) with this same information. It can easily be copied, printed, or exported for external use.

The screenshot shows an Excel spreadsheet titled 'CO2 SCREEN Outputs.xlsx - Read-Only'. The 'Outputs' sheet is active. The data is organized into several columns:

Grid	Storage Resource (Mt)			Storage Efficiency (%)			CO2 Storage Statistics			P _o	P _{so}	P _{eo}
	P _o	P _{so}	P _{eo}	Lithology and Depositional Environment	P _o	P _{so}	P _{eo}	Summed CO2 Total (Mt)	Average CO2 per Grid (Mt)			
1	0.53	0.53	0.53	CO2BRA (2022)-Sandstone: Fluvial, 10 [years]	0.09	0.09	0.09	0.53	0.53	0.53		

Figure 9: Screenshot of the Excel Outputs sheet generated by CO₂-SCREEN.

4.5 MULTIPLE GRID SYSTEM

Using the multiple grid system can be very helpful to handle geologic heterogeneity as well as variable data uncertainty. Entering data for multiple grids requires using Excel input files. These files are located in the FormationApps folder which is part of the downloaded zip file. In the FormationApps Folder, open the Inputs folder. Here the user will find six input files; PhysicalParametersSaline.xlsx, PhysicalParametersShale.xlsx, PhysicalParametersROZ.xlsx, StorageEfficiencyFactorsSaline.xlsx, StorageEfficiencyFactorsShale.xlsx, and StorageEfficiencyFactorsROZ.xlsx. The user should open up the PhysicalParameters and StorageEfficiency files for the formation they are assessing (See Figure 10 for a Saline Example).

PhysicalParametersSaline.xlsx - Read-Only

	Area (km ²)		Gross Thickness (m)		Total Porosity (%)		Pressure (MPa)		Temperature (°C)	
Grid #	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
1	100	0	100	0	10	0	30	0	130	0
2										
3										
4										
5										
6										
7										
8										
9										
10										

StorageEfficiencySaline.xlsx - Read-Only

	Lithology and Depositional Environment, Injection Duration (years)		Net-to-Total Area		Net-to-Gross Thickness		Effective-to-Total Porosity		Volumetric Displacement		Microscopic Displacement	
Grid #	P _{inj}	P _{ext}	P _{inj}	P _{ext}	P _{inj}	P _{ext}	P _{inj}	P _{ext}	P _{inj}	P _{ext}	P _{inj}	P _{ext}
1	CO2BRA (2022)-Sandstone: Fluvial, 10 (years)		0.2	0.8	0.21	0.76	0.64	0.77	0.03	0.03	0.03	0.03
2												
3												
4												
5												
6												
7												
8												
9												
10												

Figure 10: Screenshots of examples of the PhysicalParametersSaline.xlsx and StorageEfficiencySaline.xlsx files.

Users should note that their files may look different than Figure 10 because every time CO₂-SCREEN is run, the input files are overwritten with the current input data. To avoid confusion, example files for all six input files are provided in the FormationApps>Examples folder. Add data for as many grids as needed to each file. Make sure data are provided for the same number of grids for Physical Parameters as well as Efficiency Factors. When all data are entered, save and close the Excel files. Now choose the formation type and select the “Use Multiple Grids” option on the Simulation Setup tab. Then navigate to the Efficiency Factors tab and click the green Run button. When utilizing the multiple grid system, the results displayed on the Outputs tab will be limited to the summed total CO₂ storage resource of all the grids. Saline will have Total CO₂, shale will have Total CO₂, Free Phase CO₂, and Sorbed Phase CO₂, and ROZ will have Total CO₂, Free Phase CO₂, and Dissolved in Oil CO₂. The Excel spreadsheet of outputs will have each grid’s individual CO₂ storage and efficiency estimates.

5. CO₂-SCREEN CALCULATIONS

CO₂-SCREEN uses embedded DOE-NETL equations and methods to provide a method for calculating prospective CO₂ storage resources. These equations are described below.

5.1 SALINE FORMATIONS

CO₂-SCREEN calculates CO₂ storage resource for saline formations following the methodology detailed in Goodman et al. (2011) and refined in Goodman et al. (2016). This method uses the following equation:

$$G_{CO_2} = A_t h_g \phi_{tot} \rho_{CO_2} E_{saline} \quad (1)$$

where,

$$E_{saline} = E_A E_h E_\phi E_V E_d \quad (2)$$

All variables are described in the glossary. These terms are treated stochastically, and a log odds approach is used for distribution transformation (Goodman et al., 2011). See Appendix A for details on the log odds approach. Monte Carlo sampling from these distributions is performed using the following equation:

$$G_{CO_2} = A_t h_g \phi_{tot} \rho_{CO_2} \frac{1}{(1+e^{(-X_A)})} * \frac{1}{(1+e^{(-X_h)})} * \frac{1}{(1+e^{(-X_\phi)})} * \frac{1}{(1+e^{(-X_V)})} * \frac{1}{(1+e^{(-X_D)})} \quad (3)$$

where, X_A , X_h , X_ϕ , X_V , and X_D , are log-odds transformed efficiency factors for the area, thickness, porosity, volumetric displacement, and microscopic displacement, respectively. Monte Carlo sampling is simulated 10,000 times and the P₁₀, P₅₀, and P₉₀ values of the volumetric CO₂ mass storage resource are calculated.

5.2 SHALE FORMATIONS

CO₂-SCREEN calculates CO₂ storage resource for shale formations following the methodology detailed in Levine et al. (2016). This method uses the following equation:

$$G_{CO_2} = A_t E_A h_g E_h [\rho_{CO_2} \phi_{tot} E_\phi + \rho_{sCO_2} (1 - \phi) E_s] \quad (4)$$

All variables are defined in the glossary . Once again, these terms are treated stochastically, and Monte Carlo sampling is performed using the following equation:

$$G_{CO_2} = \left[A_t h_g \phi_{tot} \rho_{CO_2} \frac{1}{(1+e^{(-X_A)})} * \frac{1}{(1+e^{(-X_h)})} * \frac{1}{(1+e^{(-X_\phi)})} \right] + \left[A_t h_g \rho_{sCO_2} \rho_{shale} (LV) (1 - \phi) \frac{1}{(1+e^{(-X_A)})} * \frac{1}{(1+e^{(-X_h)})} * \frac{1}{(1+e^{(-X_s)})} \right] \quad (5)$$

where, ρ_{shale} is the density of shale and LV is the Langmuir volume. CO₂-SCREEN calculates Langmuir volume as:

$$LV = TOC * L_s * L_{y-int} \quad (6)$$

where, TOC is the total organic content as a percent, L_s is the Langmuir slope, and L_{y-int} is the Langmuir y-intercept. As always, using region/formation specific data are encouraged for all input parameters. However, if data are not available for Langmuir slope or y-intercept, it is recommended that users use values of 27 and 73 respectively. These values were calculated based on data from 10 different Marcellus Shale samples and thus only act as a proxy to other shale formations. Geographic information on these samples is provided in Table 2. Langmuir adsorption capacity data were plotted against total organic carbon percentage to calculate the slope and y-intercept seen in Figure 11.

Table 4: Geographic Information

Sample Suffix	Sample ID (Lat:Long:Suffix)	Formation	Type	Geographic Location
F5	390011790800F5	Marcellus	Bulk	Petersburg, WV
F3	390041790754F3	Marcellus	Bulk	Petersburg, WV
F4	391610790358F4	Marcellus	Bulk	Whip Gap, WV
F1	392005785407F1	Marcellus	Bulk	Burlington, WV
F2	392005785407F2	Marcellus	Bulk	Burlington, WV
Bedford	400817783501BD	Marcellus	Bulk	Bedford, PA
OCSC	425120764726OC	Oatka Crk	Bulk	Canoga, NY
USSC	425120764726US	Union Spr	Bulk	Canoga, NY
Type	425828762002TS	Marcellus	Bulk	Marcellus, NY
Oatka	425843775918OC	Oatka Crk	Bulk	Le Roy, NY

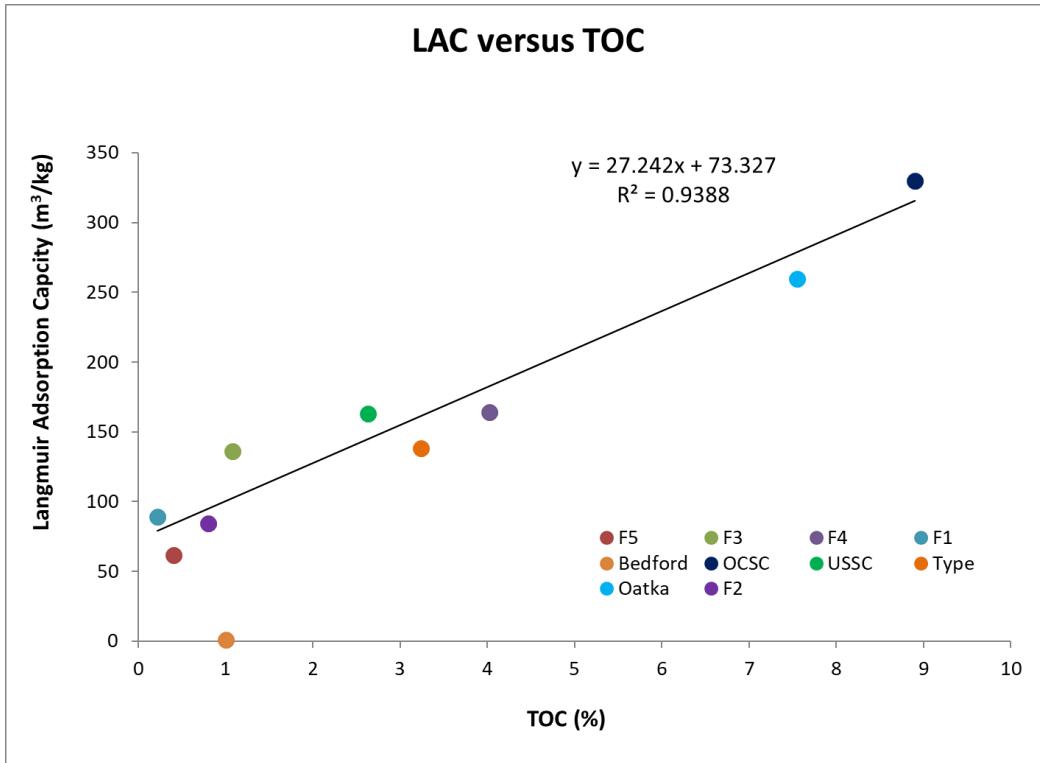


Figure 11: Langmuir adsorption capacity plotted as a function of TOC (%) to calculate Langmuir slope and y-intercept.

5.3 RESIDUAL OIL ZONE FORMATIONS

CO₂-SCREEN calculates CO₂ storage resource for shale formations following the methodology detailed in Sanguinito et al. (2020). This method uses the following equation:

$$G_{CO_2} = A_t E_A h_g E_h \phi_{tot} E_\phi [(1 - S_{wirr} - S_{or}) \rho_{CO_2} E_v + S_{or} R_{c/o} E_{DS}] \quad (7)$$

Again, all terms are described in the glossary above and the terms are treated stochastically performing Monte Carlo sampling using the following equation:

$$G_{CO_2} = \left[A_t h_g \phi_{tot} \rho_{CO_2} (1 - S_{wirr} - S_{or}) \frac{1}{(1+e^{(-X_A)})} * \frac{1}{(1+e^{(-X_h)})} * \frac{1}{(1+e^{(-X_\phi)})} * \frac{1}{(1+e^{(-X_v)})} \right] + \left[A_t h_g \phi_{tot} S_{or} R_{c/o} \frac{1}{(1+e^{(-X_A)})} * \frac{1}{(1+e^{(-X_h)})} * \frac{1}{(1+e^{(-X_{DS})})} \right] \quad (8)$$

It is recommended that values for $R_{c/o}$ and E_{DS} be based on region/formation specific data but if none exists users may wish to utilize a range of values, such as those found in Table 3, which were generated using numerical modeling based on practical values in the literature (Sanguinito et al., 2020).

Table 5: Recommended ROZ Values for Data Limited Scenarios

Parameter	Low Value	High Value
$R_{c/o}$	679.23	741.44
E_{Ds}	0.009	0.011

6. **TROUBLE SHOOTING**

6.1 CO₂-SCREEN KEEPS “RUNNING” FOREVER

If the CO₂-SCREEN tool keeps running for longer than expected (i.e., longer than several minutes) it is likely having an issue with reading input files or writing output files.

- **Write Permissions**
 - **If you are a Mac user, you may need to add write permissions depending on your operating system. See Section 3.3 for details on how to do this.**
 - **If you are a Windows user, make sure any anti-virus software (i.e., Windows Defender) is not blocking Java write permissions.**
- **Numbering Multiple Grids**
 - **When inputting data for multiple grids, make sure the grids are labeled sequentially and the number of grids matches between the StorageParameters file and StorageEfficiencyFactors file.**

6.2 “SHARING VIOLATION” ERROR

Sometimes, a user may experience a “sharing violation” error when trying to save a StorageEfficiencyFactors input file. This can happen in certain cases as a function of how anti-virus software interacts with Microsoft Office. Typically, the file the user is attempting to edit/save is being used by the CO₂-SCREEN tool and thus cannot be changed while the tool is in use. To avoid this, simply exit the CO₂-SCREEN tool, edit the input files and save them, then reopen CO₂-SCREEN and run it.

6.3 OTHER

If users experience other issues with executing this tool, they should contact the following individuals for extra troubleshooting help.

Sean Sanguinito
Research Scientist
Sean.Sanguinito@netl.doe.gov

Angela Goodman
Physical Scientist
Angela.Goodman@netl.doe.gov

Foad Haeri
Research Scientist
Mohammad.Haeri@netl.doe.gov

This page intentionally left blank.

7. REFERENCES

Aitchison, J.; Shen, S. M. Logistic-normal distributions: Some properties and uses. *Biometrika* **1980**, *67*, 261–272.

Ballio, F.; Guadagnini, A. Convergence assessment of numerical Monte Carlo simulation in groundwater hydrology. *Water Resources Research* **2004**, *40*, W04603. DOI: 10.1029/2003WR002876.

Crandall, D.; Moore, J.; Brown, S.; King, S. NETL-CO2BRA Relative Permeability Database. U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2019. <https://edx.netl.doe.gov/hosting/co2bra>.

Goodman, A.; Bromhal, G.; Strazisar, B.; Rodosta, T.; Guthrie, W.; Allen, D.; Guthrie, G. Comparison of methods for geologic storage of carbon dioxide in saline formations. *Int. J. of Greenhouse Gas Control* **2013**, *18*, 329–342.

Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; Huerta, N.; McIntyre, D.; Kutchko, B.; Guthrie, G. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. *Int. J. of Greenhouse Gas Control* **2011**, *5*, 952–965.

Goodman, A.; Sanguinito, S., Levine, J. Prospective CO₂ Saline Resource Estimation Methodology: Refinement of Existing DOE-NETL Methods Based on Data Availability. *Int. J. of Greenhouse Gas Control* **2016**, *54*, 242–249.

Haeri, F., Myshakin, E.M., Sanguinito, S., Moore, J., Crandall, D., Gorecki, C.D., Goodman, A.L. Refined CO₂ storage efficiency factors for saline formations based on new experimental relative permeability data for three lithologies and six depositional environments: *Int. J. of Greenhouse Gas Control* **2022**.

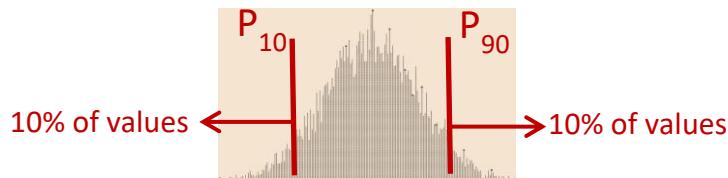
IEA GHG. *Development of Storage Coefficients for CO₂ Storage in Deep Saline Formations: Technical Study*; Report No. 2009/13; International Energy Agency Greenhouse Gas R&D Programme, 2009, p. 118.

Levine, J. S.; Fukai, I.; Soeder, D. J.; Bromhal, G.; Dilmore, R. M.; Guthrie, G. D.; Rodosta, T.; Sanguinito, S.; Frailey, S.; Gorecki, D.; Peck, W.; Goodman, A. L. U.S. DOE NETL Methodology for Estimating the Prospective CO₂ Storage Resource of Shales at the National and Regional Scale. *Int. J. of Greenhouse Gas Control* **2016**, *51*, 81–94.

Myshakin, E. M.; Singh, H.; Sanguinito, S.; Bromhal, G. S.; Goodman, A. L. Numerical estimations of storage efficiency for the prospective CO₂ storage resource of shales. *Int. J. Greenhouse Gas Control* **2018**, *76*, 24–31.

NETL. *Best Practices for: Site Screening, Site Selection, and Initial Characterization for Storage of CO₂ in Deep Geologic Formations: Revised Edition*; U.S. Department of Energy, National Energy Technology Laboratory, 2013.

NETL. *Carbon Storage Atlas*, 5th Ed; U.S. Department of Energy, National Energy Technology Laboratory, Office of Fossil Energy, 2015.


Oil and Gas Reserves Committee. *Guidelines for Application of the Petroleum Resources Management System*; Society of Petroleum Engineers; 2011; p. 221.

Sanguinito, S.; Singh, H.; Myshakin, E. M.; Goodman, A. L.; Dilmore, R. M.; Grant, T. C.; Morgan, D.; Bromhal, G.; Warwick, P. D.; Brennan, S. T.; Freeman, P. A.; Karacan, C. O.; Gorecki, C.; Peck, W.; Burton-Kelly, M.; Dotzenrod, N.; Frailey, S.; Pawar, R. 2020. Methodology for estimating the prospective CO₂ storage resource of residual oil zones at the national and regional scale. *Int. J. Greenhouse Gas Control* **2020**, 96, 1–8.

APPENDIX A: STORAGE EFFICIENCY FACTORS

The auto-populated storage efficiency values associated with the various lithologies and depositional environments were sourced from CO2BRA (2022) and the International Energy Agency Greenhouse Gas R&D Programme (IEA GHG, 2009; Crandall et al., 2019). These values were developed using numerical modeling and simulations.

When a user selects a lithology and depositional environment, P₁₀ and P₉₀ values, calculated by CO2BRA (2022) or IEA GHG (2009), are auto-populated. P₁₀ and P₉₀ values are the 10th and 90th percent probability based on a Gaussian function (Figure A1).

Figure A1: Gaussian function showing P₁₀ and P₉₀ range.

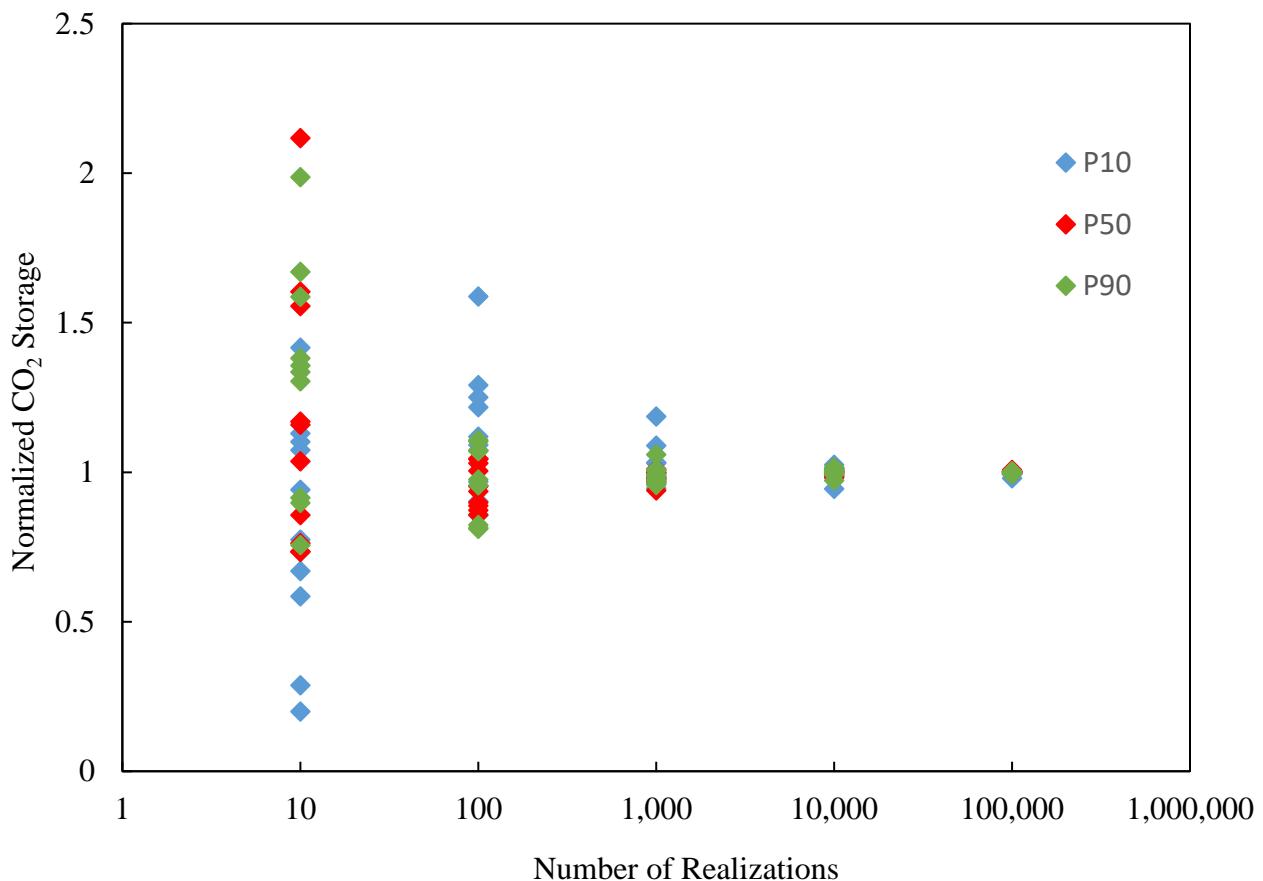
These values are then transformed using a log-odds normal distribution (Aitchison and Shen, 1980):

$$X = \ln \left(\frac{p}{1-p} \right). \quad (\text{A1})$$

X₁₀ and X₉₀ values are calculated using Equation A1. Then the mean (μ_X) and standard deviation (σ_X) are calculated from the X₁₀ and X₉₀ values using standard Gaussian distribution relationships for a log-odds distribution:

$$\sigma_X = \frac{X_{90} - X_{10}}{Z_{90} - Z_{10}} \quad (\text{A2})$$

and


$$\mu_X = X_{10} - \sigma_X Z_{10}, \quad (\text{A3})$$

where Z_p is the Pth percentile value of the standard normal distribution. Here, Z₁₀ equals -1.28 and Z₉₀ equals 1.28.

This page intentionally left blank.

APPENDIX B: SENSITIVITY ANALYSIS

Monte Carlo methods are commonly used to quantify uncertainty within complex systems such as the storage of CO₂ in geologic media (see Goodman et al., 2011). Models requiring probabilistic interpretations benefit from Monte Carlo methods through the optimization achieved by simulating a large number of realizations. Monte Carlo results will begin to converge on the most probable result with increasing number of realizations. A sensitivity analysis of CO₂-SCREEN (Figure B1) shows how Monte Carlo convergence occurs (Ballio and Guadagnini, 2004). Probabilistic CO₂ storage resource results are normalized to one million realizations and indicate a reasonable convergence by 10,000 realizations.

Figure B1: Sensitivity analysis showing probabilistic CO₂ storage resource values normalized to one million realizations plotted against the number of realizations for that simulation.

This page intentionally left blank.

Brian Anderson

Director
National Energy Technology Laboratory
U.S. Department of Energy

Mark McKoy

Carbon Storage Technology Director
National Energy Technology Laboratory
U.S. Department of Energy

Darin Damiani

Carbon Storage Program Manager
National Energy Technology Laboratory
U.S. Department of Energy

Bryan Morreale

Executive Director
Research and Innovation Center
National Energy Technology Laboratory
U.S. Department of Energy