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Long duration energy storage systems

[1]1 U.S. Department of Energy. Long Duration Storage Shot : An Introduction; 2021.
[2]The Climate Group. How California is Driving the Energy storage Market Through
State Legislation; 2017.
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US Department of Energy Goal: reduce the cost of
grid-scale energy storage by 90% for systems that
store energy for 10+ hours by 2035

Essential for the development of a low cost, reliable
electric grid

Cheaper, more efficient energy storage will make it
easier to capture and store energy from renewable
sources

The Biden-Harris Administration has a goal of net-
zero carbon emissions by 2050



Redox flow batteries for energy storage
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[1] Palmer, T. C. ChemSusChem 2021, 14 (5), 1214—1228.

Redox flow batteries (RFB’s) could be used to
store energy from intermittent energy
generation sources such as, wind and solar
energy

RFB’s allow for long term energy storage in
various redox states of a molecule

RFB’s store power and energy separately,
allowing power and energy to be scaled
individually as needed for a given application

Carrier material can be easily replaced at the
end of its lifetime

[2] Cao, J. et. al.. Energy and Fuels 2020, 34 (11), 13384-13411.
[3] Darling, R. M. et. al. Energy Environ. Sci. 2014, 7 (11), 3459-3477.

[4] Chu, T., et. al., ChemSusChem 2019, 12, 1304-1309.



Features of the ideal RFB

membrane The ideal RFB will be low in cost and high
volumetric energy density

P

EvoI = nVceIIFCactive

Redox
Carrier
Reservoir

n = numbers of electrons transferred
V. = cell voltage

F = faraday’s constant

C.qiive = CONcentration of active species

Non-aqueous redox flow batteries can take
advantage of a larger solvent window (~5.5V
for MeCN) relative to water (~1.8 V)
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[1] Palmer, T. C. ChemSusChem 2021, 14 (5), 1214-1228.

[2] Cao, J. et. al.. Energy and Fuels 2020, 34 (11), 13384-13411.

[3] Darling, R. M. et. al. Energy Environ. Sci. 2014, 7 (11), 3459-3477.
‘5 Los Alamos [4] Leonard, D. P., et. al., ACS Energy Lett. 2018, 3, 373-374.
== NATIoNAL LABORATORY  [5] Chu, T., et. al., ChemSusChem 2019, 12, 1304—1309.

Water-in salt window is closer to 3.2 V, but this
is still lower than non-aqueous solvents




Inorganic carriers in RFB’s
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V(acac); as an inorganic carrier in RFB’s
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Commercialization of RFB’s with inorganic carriers

Sun Catalytix /
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It takes many years to commercialize this technology after the initial discovery

Vanadium is too high in cost for commercialization on the scale needed to
meet national and state-wide energy storage goals
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Organic carriers in RFB’s

Negolytes Posolytes
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[1IWu, M., et. al., J. Mater. Chem. A 2021, 47. N Xing, X.; Huo, Y.; Wang, X.; Zhao, Y. Int. J.
[2] Lantz, A. W., et. al., P. G. Appl. Energy Mater. Hydrogen Energy 2017, 42, 17488-17494.
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Benzophenone derivative are promising candidates for
negolytes in an RFB
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Possible degradation pathways of benzophenone radical
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In all cases the major decomposition product
determined by GCMS is diphenylmethanol
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Sterically bulky benzophenones should block these
degradation pathways
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Straightforward synthetic route
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Synthesis of 2,4,6-Triisopropylbenzophenone ... ..
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Current (A)

Electrochemical characterization of the reversibility of
2,4,6-Triisopropylbenzophenone

0.00004
i(charge) =1.02
i(discharge) Scanrate (mV/s) E, (V) E_(V) AE (mV)
0.00002 300 -2.319 -2.2047 114.3
200 -2.3116 -2.2112 100.4
= 100 -2.3041 -2.2122 91.9
0.00000 - 50 -2.3051 -2.2218 83.3
e 25 -2.2977 -2.2272 70.5
— 300 mV/s
-0.00002 ~ —— 200 mV/s
100 mV/s
50 mV/s
-0.00004 —25mV/s
-3.0 ' 25 | 20 | 1.5

Potential vs. Ag/Ag+ (V)
1% Los Alamos

AAAAAAAAAAAAAAAAAA



Bulk electrolysis of 2,4,6-Triisopropylbenzophenone,

100% SOC
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Coulombic Efficiency (%)
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Bulk electrolysis of 2,4,6-Triisopropylbenzophenone,

100% SOC

1.0

0.5

n (e-/molecules)

0.0

-

—a— 1 mM, 1 mA, charge
—o— 1 mM, 1 mA, discharge

iPr O

Los Alamos

AAAAAAAAAAAAAAAAAA

10

cycle

20

30

1.0 5

0.8 -

o
»
1

n (e-/molecules)
o
=
|

o
N
1

0.0

=— 1 mM, 1 mA, charge
—0— 1 mM, 1 mA, discharge

0

cycle



WE(1).Potential (V)
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Reversibility in MeCN with 100 mM TBAPF,

-

1 mM of ferrocene and 1 mM of 2,4,6-triisopropylbenzophenone on each side
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Solid and solution state conformation of 2,4,6-
Triisopropylbenzophenone
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Solid and solution state conformation of 2,4,6-
Triisopropylbenzophenone
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Future directions
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