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Long duration energy storage systems

[1] U.S. Department of Energy. Long Duration Storage Shot : An Introduction; 2021.
[2]The Climate Group. How California is Driving the Energy storage Market Through 
State Legislation; 2017.

US Department of Energy Goal: reduce the cost of 
grid-scale energy storage by 90% for systems that 
store energy for 10+ hours by 2035

Essential for the development of a low cost, reliable 
electric grid

Cheaper, more efficient energy storage will make it 
easier to capture and store energy from renewable 
sources

The Biden-Harris Administration has a goal of net-
zero carbon emissions by 2050
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Redox flow batteries for energy storage

Redox flow batteries (RFB’s) could be used to
store energy from intermittent energy
generation sources such as, wind and solar
energy

RFB’s allow for long term energy storage in
various redox states of a molecule

RFB’s store power and energy separately,
allowing power and energy to be scaled
individually as needed for a given application

Carrier material can be easily replaced at the
end of its lifetime

[1] Palmer, T. C. ChemSusChem 2021, 14 (5), 1214–1228. 
[2] Cao, J. et. al.. Energy and Fuels 2020, 34 (11), 13384–13411. 
[3] Darling, R. M. et. al. Energy Environ. Sci. 2014, 7 (11), 3459–3477.
[4] Chu, T., et. al., ChemSusChem 2019, 12, 1304–1309.
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Features of the ideal RFB
The ideal RFB will be low in cost and high 
volumetric energy density

Evol = nVcellFCactive

n = numbers of electrons transferred
Vcell = cell voltage
F = faraday’s constant
Cactive = concentration of active species

Non-aqueous redox flow batteries can take 
advantage of a larger solvent window (~5.5 V 
for MeCN) relative to water (~1.8 V)

Water-in salt window is closer to 3.2 V, but this 
is still lower than non-aqueous solvents

[1] Palmer, T. C. ChemSusChem 2021, 14 (5), 1214–1228. 
[2] Cao, J. et. al.. Energy and Fuels 2020, 34 (11), 13384–13411. 
[3] Darling, R. M. et. al. Energy Environ. Sci. 2014, 7 (11), 3459–3477.
[4] Leonard, D. P., et. al., ACS Energy Lett. 2018, 3, 373–374.
[5] Chu, T., et. al., ChemSusChem 2019, 12, 1304–1309. 
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Inorganic carriers in RFB’s

[1] Palmer, T. C., et. al., ChemSusChem 2021, 14 (5), 1214–1228. 
(2) Cabrera, P. J. et. al., Inorg. Chem. 2015, 54, 10214–10223. 
[3] Sevov, C. S., et. al., J. Am. Chem. Soc. 2016, 138, 15378–15384.
[4] Saraidaridis, J. D.; Monroe, C. W. J. Power Souces 2019, 412, 384–390.
[5] Chu, T., et. al., ChemSusChem 2019, 12, 1304–1309. 
[6] Zhen, Y., et. al.,  J. Power Souces 2020, 445, 1–8.
[7] Suttil, J. A., et. al., J. Mater. Chem. A 2015, 3, 7929–7938. 
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V(acac)3 as an inorganic carrier in RFB’s

Saraidaridis, J. D.; Monroe, C. W. J. 
Power Souces 2019, 412, 384–390.

V
O

O O
O
O

O



73/28/2022

Commercialization of RFB’s with inorganic carriers
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Lockheed MartinUniEnergy

Technologies

It takes many years to commercialize this technology after the initial discovery

Vanadium is too high in cost for commercialization on the scale needed to 
meet national and state-wide energy storage goals
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Organic carriers in RFB’s
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Xing, X.; Huo, Y.; Wang, X.; Zhao, Y. Int. J. 
Hydrogen Energy 2017, 42, 17488–17494. 

Wang, X., et. al., Int. J. Electrochem. Sci.
2018, 13 (7), 6676–6683. 

[1]Wu, M., et. al., J. Mater. Chem. A 2021, 47.
[2] Lantz, A. W., et. al., P. G. Appl. Energy Mater.
2019, 2, 7893–7902. 
[3] Wu, M., et. al.,. Batter. Supercaps 2022, 1–7. 

Feng, Ruozhu, et. al., Science. 2021. 372,
836-840.

Attanayake, N. H., et. al., Chem. Mater. 2019, 
31 (12), 4353–4363. 

[1] Yan, Y.; Vaid T.P.; Sanford, M.S. J. Am. 
Chem. Soc. 2020, 10, 17564–17571.
[2] Yan, Y., et. al., J. Am. Chem. Soc.
2019, 141, 15301-15306.
[3] Yan, Y., et. al., J. Am. Chem. Soc. 2021

Negolytes Posolytes
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Benzophenone derivative are promising candidates for 
negolytes in an RFB

Downside: Not stable to extensive cycling

O Oe-

-e-

Highly soluble in MeCN 3.7(1) M

Reversible redox couple at -2.16 V vs. Ag/Ag+ in MeCN

Conjugated pi system allows for delocalization of spin and 
charge density in the radical anion

Highly modifiable on the aromatic rings

[1] Wang, X., et. al., Int. J. Electrochem. Sci. 2018, 13 (7), 6676–6683. 
[2] Xing, X.; Huo, Y.; Wang, X.; Zhao, Y. Int. J. Hydrogen Energy 2017, 42, 17488–17494
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Possible degradation pathways of benzophenone radical 
anions
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Sterically bulky benzophenones should block these 
degradation pathways
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Benefits of asymmetry
• Increased solubility
• Delocalization of charge and 

spin density onto phenyl ring
• Straightforward synthetic route
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Synthesis of 2,4,6-Triisopropylbenzophenone

Br
iPr

iPriPr

1. Mgo

2. benzoyl chloride

3. H3O+ workup

O

1H NMR: CD3CN

IR, C=O stretch: 1662 cm-1

Solubility in MeCN: 350(3) mM

Fleukke, K. H.; Van der Stelt, C.; Nauta, 
W. T. Recueil 1962, 81, 93–101.
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Electrochemical characterization of the reversibility of 
2,4,6-Triisopropylbenzophenone

𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑖𝑖(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

= 1.02
Scan rate (mV/s) Ea (V) Ec (V) ΔE (mV)

300 -2.319 -2.2047 114.3
200 -2.3116 -2.2112 100.4
100 -2.3041 -2.2122 91.9
50 -2.3051 -2.2218 83.3
25 -2.2977 -2.2272 70.5
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Bulk electrolysis of 2,4,6-Triisopropylbenzophenone, 
100% SOC
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Bulk electrolysis of 2,4,6-Triisopropylbenzophenone, 
100% SOC

OiPr

iPriPr

O
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Reversibility in MeCN with 100 mM TBAPF6

OiPr

iPriPr

1 mM of ferrocene and 1 mM of 2,4,6-triisopropylbenzophenone on each side
2 mA
50% SOC by charge 
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Reversibility in MeCN with 100 mM TBAPF6 OiPr

iPriPr

1 mM of ferrocene and 1 mM of 2,4,6-triisopropylbenzophenone on each side
2 mA
50% SOC by charge 

Only cycles well for 
~13 cycles
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Solid and solution state conformation of 2,4,6-
Triisopropylbenzophenone 

1H NMR: CD3CN

Equivalent isopropyl protons
Inequivalent isopropyl –CH3 groups
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Solid and solution state conformation of 2,4,6-
Triisopropylbenzophenone 

O

1H NMR: CD3CN

5 alkyl 
resonances 
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Future directions
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1. Li (2 eq)
2. benzoyl chloride (3 eq)

3. H2O wkup
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