
LLNL-CONF-831311

Weighted Minimum Norm
Algorithm for Improved Phase
Unwrapping

T. K. Lakshmanan, K. M. Champley, K. A. Mohan

January 31, 2022

Electronic Imaging
San Francisco, CA, United States
January 17, 2022 through January 17, 2022



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



 

Weighted Minimum Norm Algorithm for Improved Phase 
Unwrapping 
Tegan F. Lakshmanan1, Kyle M. Champley2, K. Aditya Mohan2; 1University of California, Berkeley; Berkeley, CA;  2Lawrence 
Livermore National Laboratory; Livermore, CA. 

Abstract 
Phase unwrapping is an integral part of multiple imaging 

techniques, and as a result, a wide range of algorithms have been 
created to unwrap phases. One such algorithm is the minimum Lp-
norm phase unwrapping algorithm. This algorithm transforms the 
phase unwrapping problem into a minimization problem of a 
certain functional, which it solves with an iterative method. 
However, the problem is usually not convex, and when there are 
many sharp edges in the data to be unwrapped, the algorithm often 
produces a local minimum with new discontinuities in originally 
smooth areas. To prioritize solutions which minimize the 
functional better in smooth areas, we use weights to deprioritize 
data lying along edges in the ground-truth image. This requires a 
method to find ground-truth edges using the wrapped image, which 
we describe. When using the modified algorithm, we generally 
obtain improved results on images with multiple edges (both lower 
errors and more correct edge placement). 

Introduction  
Many imaging technologies, including synthetic aperture 

radar (SAR) and x-ray phase contrast tomography, return a 2d grid 
of wrapped phase values rather than actual phase values.[1]-[5] This 
means we only know the phase values modulo 2𝜋, lying within 
ሺെ𝜋,𝜋ሿ.[1][5] To produce accurate images, it is essential to unwrap 
the wrapped phase data – to recover the actual phase values from 
the wrapped ones.  
 At base, this problem is impossible. For an entry 𝑥 in a grid of  
wrapped values, the unwrapped value could be 𝑥 ൅ 2𝜋𝑘 for any 
integer 𝑘. To unwrap the grid, we must make some assumptions. In 
general, we assume that the image is mostly smooth; few adjacent 
pixels will differ from each other by more than 𝜋.[1]-[3] 

 With this assumption, one way to proceed is to start at a 
specific pixel, take an adjacent pixel, and add/subtract a multiple of 
2𝜋 so that the adjacent pixel is less than 𝜋 away from the first 
one.[1]-[3] Next take a pixel adjacent to the second pixel and repeat 
the process; continue following a path around the entire image.[1]-[3] 
This is known as a path-following algorithm.[1][4][5] The problem is 
that some images contain residues, or cycles of pixels such that 
when traveling along the cycle and repeatedly adding the wrapped 
difference between the current and previous pixel, the resulting 
sum is nonzero.[1]-[3] In images with residues, choosing different 
paths leads to different unwrapped results.[1]-[3] Since most images 
that need to be unwrapped contain residues, this approach has been 
modified several times to produce more useful algorithms.  
 For example, Goldstein et al.’s branch cut method locates 
residues, places branch cuts connecting residues in specific ways, 
and unwraps along a path that does not cross any branch cuts.[2]-[4] 
Another approach, Flynn’s minimum discontinuity method, 
repeatedly divides the image into two regions, adding 2𝜋 to one 
region to minimize the discontinuities in the image.[4]  
 Another type of phase unwrapping algorithm treats the 
problem like a minimization problem. Such minimum norm 

methods aim to find a solution with local gradients as similar as 
possible to wrapped gradients of the wrapped image (these are 
always between െ𝜋 and 𝜋), so they work by minimizing the error 
between the unwrapped gradients and the wrapped gradients of the 
wrapped image.[1][4] One algorithm in this category is the minimum 
Lp-norm algorithm,[1] which will be described in more detail below 
because it is the algorithm we have modified. 
 Our contributions to the phase unwrapping problem are: 

 A modification to the minimum Lp-norm algorithm that 
deprioritizes ground-truth edges in the unwrapping 
process 

 A method to find ground-truth edges using only the 
wrapped image 

Background 

Minimum Lp-norm Algorithm 
Assume we have an 𝑀 ൈ𝑁 grid of wrapped phase values 𝜓௜,௝ 

from which we hope to obtain a grid of unwrapped values 𝜙௜,௝. We 
assume that the unwrapped solution is largely smooth; in other 
words, the local phase gradients (differences between adjacent 
pixels) are less than π.[1] Specifically, let W be the wrapping 
operator, which wraps pixels into ሺെ𝜋,𝜋ሿ, and 

𝑓௜,௝ ൌ 𝑊൫𝜓௜ାଵ,௝ െ 𝜓௜,௝൯ (1) 

𝑔௜,௝ ൌ 𝑊൫𝜓௜,௝ାଵ െ 𝜓௜,௝൯ (2) 

We assume that wherever possible, the unwrapped solution is 
such that 𝜙௜ାଵ,௝ െ 𝜙௜,௝ ൌ 𝑓௜,௝ and 𝜙௜,௝ାଵ െ 𝜙௜,௝ ൌ 𝑔௜,௝.[1] This leads 
to the approach of minimizing the functional in (3), with 𝑝 ൎ 0.[1] 

𝐽 ൌ ෍  ෍ห𝜙௜ାଵ,௝ െ 𝜙௜,௝ െ 𝑓௜,௝ห
௣

ேିଵ

௝ୀ଴

ெିଶ

௜ୀ଴

  

൅ ෍  ෍ห𝜙௜,௝ାଵ െ 𝜙௜,௝ െ 𝑔௜,௝ห
௣

ேିଶ

௝ୀ଴

ெିଵ

௜ୀ଴

 

 (3) 

       The result of setting the total variation of J equal to 0 is the 
following system of equations:[1] 

൫𝜙௜ାଵ,௝ െ 𝜙௜,௝൯𝑈ሺ𝑖, 𝑗ሻ ൅ ൫𝜙௜,௝ାଵ െ 𝜙௜,௝൯𝑉ሺ𝑖, 𝑗ሻ െ ൫𝜙௜,௝ െ
𝜙௜ିଵ,௝൯𝑈ሺ𝑖 െ 1, 𝑗ሻ ൅ ൫𝜙௜,௝ െ 𝜙௜,௝ିଵ൯𝑉ሺ𝑖, 𝑗 െ 1ሻ ൌ 𝑐ሺ𝑖, 𝑗ሻ  (4) 

where 



 

 

𝑐ሺ𝑖, 𝑗ሻ ൌ 𝑓௜,௝𝑈ሺ𝑖, 𝑗ሻ െ 𝑓௜ିଵ,௝𝑈ሺ𝑖 െ 1, 𝑗ሻ ൅ 𝑔௜,௝𝑉ሺ𝑖, 𝑗ሻ െ
𝑔௜,௝ିଵ𝑉ሺ𝑖, 𝑗 െ 1ሻ  (5) 

𝑈ሺ𝑖, 𝑗ሻ ൌ ቊห𝜙௜ାଵ,௝ െ 𝜙௜,௝ െ 𝑓௜,௝ห
௣ିଶ

     𝑖𝑓 𝑖 ൏ 𝑀 െ 2, 𝑗 ൏ 𝑁 െ 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (6) 

𝑉ሺ𝑖, 𝑗ሻ ൌ ቊห𝜙௜,௝ାଵ െ 𝜙௜,௝ െ 𝑔௜,௝ห
௣ିଶ

     𝑖𝑓 𝑖 ൏ 𝑀 െ 1, 𝑗 ൏ 𝑁 െ 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (7) 

       The minimum Lp-norm algorithm solves this system 
iteratively, using the previous iteration’s solution to find numerical 
values for 𝑓௜,௝ , 𝑔௜,௝ , 𝑈ሺ𝑖, 𝑗ሻ, and 𝑉ሺ𝑖, 𝑗ሻ and approximate the system 
as a linear system.[1] During each outer iteration, a preconditioned 
conjugate gradient (PCG) method is used to solve the linear 
system.[1] This PCG method involves many inner iterations.[1] If an 
outer iteration produces a partially converged solution 𝜙௟ (where l 
is the outer iteration index) such that the wrapped residual 
𝑊ሺ𝜓 െ 𝜙௟ሻ can be unwrapped uniquely, the algorithm ceases the 
iterations, unwraps 𝑊ሺ𝜓 െ 𝜙௟ሻ using some simple method, adds 
the result back to 𝜙௟, and returns this.[1] In the implementation of 
the algorithm, 𝑈ሺ𝑖, 𝑗ሻ and 𝑉ሺ𝑖, 𝑗ሻ are normalized:[1] 

𝑈ሺ𝑖, 𝑗ሻ ൌ
𝜀଴

ห𝜙௜ାଵ,௝ െ 𝜙௜,௝ െ 𝑓௜,௝ห
ଶି௣

൅ 𝜀଴
 

 (8) 

𝑉ሺ𝑖, 𝑗ሻ ൌ
𝜀଴

ห𝜙௜,௝ାଵ െ 𝜙௜,௝ െ 𝑔௜,௝ห
ଶି௣

൅ 𝜀଴
 

 (9) 

It is recommended to set 𝜀଴ ൌ 0.01.[1] 

       The minimum LP-norm algorithm is generally quite successful 
at solving phase unwrapping problems. However, when 𝑝 ൌ 0 
(which is usually the case[1]), the problem is not convex or 
continuous, so the algorithm may produce a non-optimal local 
minimum. Especially when presented with a wrapped image where 
the ground-truth image contains several sharp edges, it often yields 
a sub-optimal solution with larger errors than usual and with extra 
edges in areas that are smooth in the ground-truth image. 

 

Figure 1. Example of the minimum Lp-norm algorithm’s output 
when unwrapping an image with several sharp edges. (a) ground-
truth image; (b) unwrapped image. 

The Modification 
  The minimum Lp-norm algorithm struggles when the ground-
truth image contains many edges because it prioritizes smoothness 
equally everywhere, including areas which are not actually smooth. 
As such, the algorithm may find a solution (a local minimum of the 
functional J) which is smooth in areas that should have edges and 
discontinuous in areas that should be smooth.  
 To mitigate this problem, we assign lower weights to terms in 
the functional J which contain pixels that are on edges in the 
ground-truth image. Weights have been used in other 
modifications to the minimum Lp-norm algorithm,[5] but to our 
knowledge they have not been used to de-prioritize ground-truth 
edges. Modifying the functional in this way forces the algorithm to 
prioritize smoothness in areas that are actually smooth. We let  

  

𝐽 ൌ ෍  ෍ min൫𝑤௜,௝ ,𝑤௜ାଵ,௝൯ ห𝜙௜ାଵ,௝ െ 𝜙௜,௝ െ 𝑓௜,௝ห
௣

ேିଵ

௝ୀ଴

ெିଶ

௜ୀ଴

൅ ෍  ෍ min൫𝑤௜,௝ ,𝑤௜,௝ାଵ൯ ห𝜙௜,௝ାଵ െ 𝜙௜,௝ െ 𝑔௜,௝ห
௣

ேିଶ

௝ୀ଴

ெିଵ

௜ୀ଴

 

 (10) 
where  

𝑤௜,௝ ൌ ൜
1 if the pixel is not on an edge in the ground truth grid
𝛼 if the pixel is on an edge in the ground truth grid  

      (11) 
 
and 0 ൑ 𝛼 ൏ 1. After testing several values of 𝛼, we found that 
𝛼 ൌ 0.35 provides a good compromise between speed and 
accuracy. We obtained the following results for other values of 𝛼: 

 When 𝛼 ൎ 0, the unwrapped image is very inaccurate in 
deprioritized areas 

 For other values of 𝛼 ൏ 0.35, the algorithm runs more 
slowly 

 When 𝛼 ൐ 0.35, there are often larger errors and extra 
edges in the unwrapped image  

 The effect of modifying the functional in this way is that the 
normalized versions of  𝑈ሺ𝑖, 𝑗ሻ and 𝑉ሺ𝑖, 𝑗ሻ are now 

𝑈ሺ𝑖, 𝑗ሻ ൌ
min൫𝑤௜,௝ ,𝑤௜ାଵ,௝൯ 𝜀଴

ห𝜙௜ାଵ,௝ െ 𝜙௜,௝ െ 𝑓௜,௝ห
ଶି௣

൅ min൫𝑤௜,௝ ,𝑤௜ାଵ,௝൯ 𝜀଴
 

 (12) 

𝑉ሺ𝑖, 𝑗ሻ ൌ
min൫𝑤௜,௝ ,𝑤௜,௝ାଵ൯ 𝜀଴

ห𝜙௜,௝ାଵ െ 𝜙௜,௝ െ 𝑔௜,௝ห
ଶି௣

൅ min൫𝑤௜,௝ ,𝑤௜,௝ାଵ൯ 𝜀଴
 

 (13) 

It is not obvious that we could find edges in the ground-truth 
image using only the wrapped image, so we will describe one 
solution to this problem below. 

Finding Ground-truth Edges 
Consider an edge in the wrapped image that is not present in 

the ground-truth image but rather caused by wrapping. Such an 
edge is characterized by pixels on one side with values near െ𝜋 
and pixels on the other side with values near 𝜋. If we add some 
𝛿 ൐ 0 to each pixel in the wrapped image, pixels on one side of the 
edge now have values near െ𝜋 ൅ 𝛿, and pixels on the other side 
now have values near 𝜋 ൅ 𝛿. When this new image is wrapped, the 
pixels with values near 𝜋 ൅ 𝛿 come to have values near െ𝜋 ൅ 𝛿. 



 

 

Hence, the new wrapped image is continuous where the original 
wrapped image had an edge.  

On the other hand, if an edge in the wrapped image 
corresponds to an edge in the ground-truth image, as long as the 
pixels across the edge are not uniformly 2𝜋 apart, adding 𝛿 
throughout the image will not remove the edge.  

Thus, to find ground-truth edges, we can run an edge-
detection algorithm on the wrapped image, add some 𝛿 ൐ 0 to the 
wrapped image, rewrap, run edge detection on this, and take the 
edges which appear in the same places in both images. This 
process is illustrated in Figure 2. If the images are noisy and the 
edge detection is imperfect, it may be helpful to add a few different 
values of 𝛿 to the image and take the edges which appear in all of 
the corresponding rewrapped images.  

The Modified Algorithm 
Presented below is a summary of the modified algorithm. For 

more details on the implementation of the minimum Lp-norm 
algorithm, one should consult Ghiglia & Romero’s paper.[1] 
 
algorithm 𝜙 ← ModifiedMinNormሾ𝜓, 𝑝, 𝑙௠௔௫ ,𝑘௠௔௫ሿ 

Run edge detection on the wrapped image. 
Add 𝛿 throughout the wrapped image, rewrap, and run edge 
detection on the resulting image. 
Define 𝑤௜,௝ as in equation (11), assuming ground-truth edges 
are those that appear in the same places in both images. 
Set 𝜙௟ ൌ 0. 
for 𝑙 ൑ 𝑙௠௔௫ do 

Compute 𝑊ሺ𝜓 െ 𝜙௟ሻ and test for residues. 
if 𝑊ሺ𝜓 െ 𝜙௟ሻ contains residues do 

Compute 𝑈௟ሺ𝑖, 𝑗ሻ and 𝑉௟ሺ𝑖, 𝑗ሻ from equations (12) 
and (13), using 𝜙௟ to obtain numerical values. Using 
these values, compute 𝑐௟ሺ𝑖, 𝑗ሻ from equation (5). 
Solve system of equations (4) using Ghiglia & 
Romero’s Algorithm WLS (a PCG algorithm) with 
𝑘௠௔௫ the maximum number of inner iterations.[1] 
Update 𝜙௟ with the output of Algorithm WLS. 

else  
Unwrap 𝑊ሺ𝜓 െ 𝜙௟ሻ with a simple phase 
unwrapping algorithm. Add the result to 𝜙௟.  
𝜙 ← 𝜙௟. Stop. 

end if-else 
if the algorithm has converged do 

𝜙 ← 𝜙௟. Stop. 
end if 

end for 
end algorithm 

Results 
We present three test cases, where we compared the results of 

the modified and original algorithms (with 𝑝 ൌ 0) on wrapped 
images for which we know the ground-truth images. In each test, 
we measured the error in the unwrapped images in two ways. The 
first error measure, 𝐸ଵ, is calculated according to the following 
formula, where the ground-truth phase values are given by 𝜃௜,௝: 
𝐸ଵሺ𝑖, 𝑗ሻ

ൌ

⎩
⎪
⎨

⎪
⎧ 0        if the corresponding pixel is on an                            

edge in the ground truth image
ห൫ϕ୧ାଵ,୨ െ ϕ୧,୨൯ െ ൫θ୧ାଵ,୨ െ θ୧,୨൯ห ൅                                              

ห൫ϕ୧,୨ାଵ െ ϕ୧,୨൯ െ ൫θ୧,୨ାଵ െ θ୧,୨൯ห otherwise

 

                        (14) 

 
 
Figure 2. Illustration of the edge-finding process. (a) ground-truth 
image; (b) wrapped image; (c) edges of wrapped image; (d) edges 
of the image obtained by adding 𝛿 ൌ 1.5 throughout the wrapped 
image and rewrapping; (e) edges common to (c) and (d). Note that 
these are precisely the edges of the ground-truth image. 

 
𝐸ଵ measures the error in local phase gradients of the 

unwrapped image in areas that are smooth in the ground-truth 
image. When calculating the average 𝐸ଵ value of an image, we 
only average over areas that are smooth in the ground-truth image. 

The second measure, 𝐸ଶ, is given by the following formula:  

𝐸ଶሺ𝑖, 𝑗ሻ ൌ ቚ𝑊 ቀ൫ϕ୧ାଵ,୨ െ ϕ୧,୨൯ െ ൫θ୧ାଵ,୨ െ θ୧,୨൯ቁቚ

൅ ቚ𝑊 ቀ൫ϕ୧,୨ାଵ െ ϕ୧,୨൯ െ ൫θ୧,୨ାଵ െ θ୧,୨൯ቁቚ 

 (15) 
  

𝐸ଶ measures the wrapped error in local phase gradients 
throughout the image. We wrap the error because in general, we 
cannot expect either the original minimum Lp-norm algorithm or 
the modified algorithm to produce results with accurate phase 
gradients across sharp edges. The best that we can hope for is that 
these phase gradients are off by multiples of 2𝜋.  



 

 

 The algorithms were written in Python and timed on a laptop 
with an Intel i7 processor, 2.8 GHz processor speed, and 16GB of 
RAM. Because our method of finding ground-truth edges requires 
edge detection on wrapped images, and the focus of this project 
was not to find an accurate edge-detection method for noisy 
wrapped images, we used our knowledge of the ground-truth edges 
in the noisy test cases. In the noiseless test, we used the method of 
finding ground-truth edges described in this paper, with a very 
simple algorithm to find wrapped edges. We consider each 
algorithm to have converged if the value of the functional J has not 
changed in four successive outer iterations. 
 The first set of results is shown in Figure 3. The ground-truth 
image is a 200x200 pixel noiseless image with few edges, which 
the original algorithm performed well on. The goal was to test how 
the modified algorithm’s performance would compare. 
 In Figure 3, we see that the unwrapped results of the modified 
and original algorithms look identical. The error plots in Figure 4 
reveal that the modified method’s result has more accurate phase 
gradients. It has average 𝐸ଵ and 𝐸ଶ values almost three times lower 
than the original algorithm’s output, as shown in Table 1. Both 
algorithms ran for approximately the same amount of time. Even in 
images with few edges, the modified algorithm often performs 
better than the original. 

 
Figure 3. Comparison of the modified and original algorithm on 
the first test image. (a) ground-truth image; (b) wrapped image; 
(c) unwrapped image obtained from the original algorithm; (d) 
unwrapped image obtained from the modified algorithm. 
 

The second set of results is shown in Figure 5. The ground-
truth image is a noisy 200x200 image with several edges, which 
the original algorithm struggles to unwrap correctly. The goal is to 
test whether the modified algorithm will improve the results. 

From Figure 5, we can see that the modified algorithm’s 
result better reflects the structure of the ground-truth image. Table 
2 also shows that the modified algorithm’s result has an 𝐸ଵ value 
almost twenty times lower than the original algorithm’s result, and 

an 𝐸ଶ value almost twice as low. Additionally, in this case, the 
modified algorithm is faster than the original. 

 
Figure 4. Comparison of the errors in the unwrapped images 
obtained via running the modified and original algorithm on the 
first test image. (a) plot of measure 𝐸ଵ for the image from Figure 
3c; (b) plot of measure 𝐸ଵ for the image from Figure 3d; (c) plot of 
measure 𝐸ଶ for the image from Figure 3c; (d) plot of measure 𝐸ଶ 
for the image from Figure 3d. 

Table 1: Average error measures in the unwrapped results from 

the first test image 

 
Unwrapped with 
Original Algorithm 

Unwrapped with 
Modified Algorithm 

Average 𝐸ଵ 
Value 

0.000978 0.000345 

Average 𝐸ଶ 
Value 

0.00210 0.000739 

Runtime 137 seconds 131 seconds 

  
The third set of results is shown in Figure 7. The ground-truth 

image is another noisy 200x200 image with several edges. Again, 
the original algorithm’s result has structural issues. 

In the previous tests, both algorithms converged before 
reaching a point where the residual 𝑊ሺ𝜓 െ 𝜙௟ሻ could be 
unwrapped uniquely. In this test, the original algorithm reached the 
residual stopping condition. When this happens, we unwrap 
𝑊ሺ𝜓 െ 𝜙௟ሻ with a method from the Python package skimage. The 
result is extremely accurate wrapped phase gradients and near-zero 
𝐸ଶ values, as shown in Figure 8. The modified algorithm 
converged before reaching this stopping condition, meaning its 𝐸ଶ 
values are much larger. Plus, it took significantly longer for the 
modified algorithm to run (287 seconds vs. 91). However, Table 3 



 

 

shows that the modified algorithm’s 𝐸ଵ values are over ten times 
lower, and the structure of its unwrapped image is correct. 

 
Figure 5. Comparison of the modified and original algorithm on 
the second test image. (a) ground-truth image; (b) wrapped image; 
(c) unwrapped image obtained from the original algorithm; (d) 
unwrapped image obtained from the modified algorithm. 
 

 
Figure 6. Comparison of the errors in the unwrapped images 
obtained via running the modified and original algorithm on the 
second test image. (a) plot of measure 𝐸ଵ for the image from 
Figure 5c; (b) plot of measure 𝐸ଵ for the image from Figure 5d; 
(c) plot of measure 𝐸ଶ for the image from Figure 5c; (d) plot of 
measure 𝐸ଶ for the image from Figure 5d.  

Table 2: Average error measures in the unwrapped results from 

the second test image 

 
Unwrapped with 
Original Algorithm 

Unwrapped with 
Modified Algorithm 

Average 𝐸ଵ 
Value 

0.0201 0.00117 

Average 𝐸ଶ 
Value 

0.00202 0.00108 

Runtime 321 seconds 261 seconds 

 
This demonstrates that occasionally, there are trade-offs 

between the modified and original algorithms. In our experience, it 
is usually the case that when the original algorithm reaches a point 
where 𝑊ሺ𝜓 െ 𝜙௟ሻ can be unwrapped uniquely, the modified 
algorithm also does. But on occasion, the modified algorithm 
converges instead. In these cases, the modified algorithm produces 
higher 𝐸ଶ values and may run more slowly, but it also results in a 
more accurate image structure and lower 𝐸ଵ values. It may be 
possible to make these cases even rarer by strengthening the 
condition for convergence. It should also be noted that on 
occasion, the modified algorithm reaches the residual stopping 
condition when the original algorithm does not, leading to marked 
improvement with the modified algorithm.  
 

 
Figure 7. Comparison of the modified and original algorithm on 
the third test image. (a) ground-truth image; (b) wrapped image; 
(c) unwrapped image obtained from the original algorithm; (d) 
unwrapped image obtained from the modified algorithm. 



 

 

 
Figure 8. Comparison of the errors in the unwrapped images 
obtained via running the modified and original algorithm on the 
third test image. (a) plot of measure 𝐸ଵ for the image from Figure 
7c; (b) plot of measure 𝐸ଵ for the image from Figure 7d; (c) plot of 
measure 𝐸ଶ for the image from Figure 7c; (d) plot of measure 𝐸ଶ 
for the image from Figure 7d. While the 𝐸ଶ values produced by the 
modified method are higher in this case, the 𝐸ଵ values are lower 
and the overall image structure is more accurate. 
 

Table 3: Average error measures in the unwrapped results from 

the third test image 

 
Unwrapped with 
Original Algorithm 

Unwrapped with 
Modified Algorithm 

Average 𝐸ଵ 
Value 

0.0340 0.00273 

Average 𝐸ଶ 
Value 

2.60x10-16 0.000683 

Runtime 91 seconds 287 seconds 

Conclusion 
We have presented a modification to the minimum Lp-norm 

phase unwrapping algorithm that involves finding edges in the 
ground-truth image and weighting these parts of the image lower in 
the unwrapping process. As part of this, we have described a 
method of finding edges in the ground-truth image using only the 
wrapped image. After finding these edges, the modification 
requires very few adjustments to the original algorithm. 

When testing the performance of the modified algorithm, we 
found encouraging results. In test cases with few edges, where the 
original algorithm already performs well, the modified algorithm 
produces results with lower errors and the same correct structure 

(Figures 3 and 4). In test cases with more edges, where the original 
algorithm produces images with structural problems, the modified 
algorithm generally produces much improved results, with lower 
errors and more correct overall structures (Figures 5 and 6). In rare 
cases, there are trade-offs between the modified and original 
algorithms, and one must choose between a more accurate image 
structure and lower wrapped phase gradient errors (Figures 7 and 
8). However, on the whole, the results from the modified method 
are very promising. 

References 
[1] D. Ghiglia & L. Romero, “Minimum Lp-Norm Two-Dimensional 

Phase Unwrapping,” Jour. Opt. Soc. Am. A, vol. 13, no. 10, pp. 1999-
2013. 

[2] H. Zebker & Y. Lu, “Phase Unwrapping Algorithms for Radar 
Interferometry: Residue-cut, Least-squares, and Synthesis 
Algorithms,” Jour. Opt. Soc. Am. A, vol. 15, no. 3, pp. 586-598. 

[3] R. Goldstein, H. Zebker & C. Werner, “Satellite Radar 
Interferometry: Two-dimensional Phase Unwrapping,” Radio 
Science, vol. 23, no. 4, pp. 713-720. 

[4] S. Heshmat, S. Tomioka & S. Nishiyama, “Performance Evaluation 
of Phase Unwrapping Algorithms for Noisy Phase Measurements,” 
International Jour. of Optomechatronics, vol. 8, no. 4, pp. 260-274. 

[5] Y. Lu & X. Zhang, “Minimum L0-Norm Two-Dimensional Phase 
Unwrapping Algorithm Based on the Derivative Variance Correlation 
Map,” Jour. Phys.: Conf. Ser., vol. 48, no. 57, pp. 308-312. 

Acknowledgement 
This work was performed under the auspices of the U.S. 

Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52- 07NA27344, document 
number LLNL-CONF-831311. 
 
Author Biography  

Tegan Lakshmanan (lakshmanan2@llnl.gov) is a fourth-year 
undergraduate student at UC Berkeley studying math and linguistics. She 
spent the summer of 2021 working with Lawrence Livermore National Lab 
on computational imaging research, and she plans to begin pursuing a 
math PhD in the next year. 

Kyle Champley, PhD: Kyle joined LLNL in 2012 and is an applied 
mathematician who works in the Nondestructive Characterization Institute 
and is the lead for the Signal and Image Processing Research Group.  He 
develops algorithms and writes software for data processing and 
reconstruction of Computed Tomography (CT) data.  Kyle is the primary 
developer for the Livermore Tomography Tools (LTT) software package.  
He currently serves as a scientific consultant for three medical imaging 
startup companies.  Previously, he was a staff scientist at the General 
Electric Global Research center where he developed CT reconstruction 
algorithms for GE’s Revolution CT system.  Kyle received his Ph.D. in 
Electrical Engineering from the University of Washington where he 
performed research in Positron Emission Tomography (PET). 

K. Aditya Mohan (mohan3@llnl.gov) received his Ph.D. degree in 
electrical and computer engineering from Purdue University in 2017. He is 
affiliated with the Computational Engineering Division at Lawrence 
Livermore National Laboratory, Livermore, California, 94551, USA. His 
research interests include computational imaging, inverse problems, and 
machine learning. As a principal investigator, he is also experienced in 
leading research projects in these areas. He is a Senior Member of IEEE. 

 


