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Abstract

Phase unwrapping is an integral part of multiple imaging
techniques, and as a result, a wide range of algorithms have been
created to unwrap phases. One such algorithm is the minimum LP-
norm phase unwrapping algorithm. This algorithm transforms the
phase unwrapping problem into a minimization problem of a
certain functional, which it solves with an iterative method.
However, the problem is usually not convex, and when there are
many sharp edges in the data to be unwrapped, the algorithm often
produces a local minimum with new discontinuities in originally
smooth areas. To prioritize solutions which minimize the
functional better in smooth areas, we use weights to deprioritize
data lying along edges in the ground-truth image. This requires a
method to find ground-truth edges using the wrapped image, which
we describe. When using the modified algorithm, we generally
obtain improved results on images with multiple edges (both lower
errors and more correct edge placement).

Introduction

Many imaging technologies, including synthetic aperture
radar (SAR) and x-ray phase contrast tomography, return a 2d grid
of wrapped phase values rather than actual phase values.[!I8] This
means we only know the phase values modulo 27, lying within
(—m, m].NB) To produce accurate images, it is essential to unwrap
the wrapped phase data — to recover the actual phase values from
the wrapped ones.

At base, this problem is impossible. For an entry x in a grid of
wrapped values, the unwrapped value could be x + 2wk for any
integer k. To unwrap the grid, we must make some assumptions. In
general, we assume that the image is mostly smooth; few adjacent
pixels will differ from each other by more than 7r.l!3]

With this assumption, one way to proceed is to start at a
specific pixel, take an adjacent pixel, and add/subtract a multiple of
2w so that the adjacent pixel is less than mw away from the first
one '] Next take a pixel adjacent to the second pixel and repeat
the process; continue following a path around the entire image.['13]
This is known as a path-following algorithm.['4I5] The problem is
that some images contain residues, or cycles of pixels such that
when traveling along the cycle and repeatedly adding the wrapped
difference between the current and previous pixel, the resulting
sum is nonzero.l'M3] In images with residues, choosing different
paths leads to different unwrapped results.[''3] Since most images
that need to be unwrapped contain residues, this approach has been
modified several times to produce more useful algorithms.

For example, Goldstein et al.’s branch cut method locates
residues, places branch cuts connecting residues in specific ways,
and unwraps along a path that does not cross any branch cuts.[?4l
Another approach, Flynn’s minimum discontinuity method,
repeatedly divides the image into two regions, adding 2w to one
region to minimize the discontinuities in the image.!

Another type of phase unwrapping algorithm treats the
problem like a minimization problem. Such minimum norm

methods aim to find a solution with local gradients as similar as
possible to wrapped gradients of the wrapped image (these are
always between —m and 1), so they work by minimizing the error
between the unwrapped gradients and the wrapped gradients of the
wrapped image.!'l One algorithm in this category is the minimum
LP-norm algorithm,!' which will be described in more detail below
because it is the algorithm we have modified.

Our contributions to the phase unwrapping problem are:

e A modification to the minimum LP-norm algorithm that
deprioritizes ground-truth edges in the unwrapping
process

e A method to find ground-truth edges using only the
wrapped image

Background

Minimum LP-norm Algorithm

Assume we have an M X N grid of wrapped phase values ; ;
from which we hope to obtain a grid of unwrapped values ¢; ;. We
assume that the unwrapped solution is largely smooth; in other
words, the local phase gradients (differences between adjacent
pixels) are less than T.[l Specifically, let W be the wrapping
operator, which wraps pixels into (—7, ], and
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We assume that wherever possible, the unwrapped solution is
such that ¢i+1,j - d)i,j = fl,] and ¢i,j+1 - d)i,j = gi'j.[l] This leads
to the approach of minimizing the functional in (3), withp = 0.1
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The result of setting the total variation of J equal to 0 is the
following system of equations:!'!
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The minimum LP-norm algorithm solves this system
iteratively, using the previous iteration’s solution to find numerical
values for f; j, g; j, U(i,j), and V (i, j) and approximate the system
as a linear system.[!] During each outer iteration, a preconditioned
conjugate gradient (PCG) method is used to solve the linear
system.[!l This PCG method involves many inner iterations.['l If an
outer iteration produces a partially converged solution ¢; (where /
is the outer iteration index) such that the wrapped residual
W () — ¢;) can be unwrapped uniquely, the algorithm ceases the
iterations, unwraps W (3 — ¢;) using some simple method, adds
the result back to ¢, and returns this.[l In the implementation of
the algorithm, U(i, j) and V (i, j) are normalized:!!]
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The minimum LP-norm algorithm is generally quite successful
at solving phase unwrapping problems. However, when p =0
(which is usually the casel'), the problem is not convex or
continuous, so the algorithm may produce a non-optimal local
minimum. Especially when presented with a wrapped image where
the ground-truth image contains several sharp edges, it often yields
a sub-optimal solution with larger errors than usual and with extra
edges in areas that are smooth in the ground-truth image.

(a) (b)

Figure 1. Example of the minimum LP-norm algorithm’s output
when unwrapping an image with several sharp edges. (a) ground-
truth image; (b) unwrapped image.

The Modification

The minimum LP-norm algorithm struggles when the ground-
truth image contains many edges because it prioritizes smoothness
equally everywhere, including areas which are not actually smooth.
As such, the algorithm may find a solution (a local minimum of the
functional J) which is smooth in areas that should have edges and
discontinuous in areas that should be smooth.

To mitigate this problem, we assign lower weights to terms in
the functional J which contain pixels that are on edges in the
ground-truth image. Weights have been used in other
modifications to the minimum LP-norm algorithm, but to our
knowledge they have not been used to de-prioritize ground-truth
edges. Modifying the functional in this way forces the algorithm to
prioritize smoothness in areas that are actually smooth. We let
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where
_ (1ifthe pixel is not on an edge in the ground truth grid
L { «a if the pixel is on an edge in the ground truth grid

(In

=0

-,

and 0 < a < 1. After testing several values of a, we found that
a =0.35 provides a good compromise between speed and
accuracy. We obtained the following results for other values of a:
e  When a = 0, the unwrapped image is very inaccurate in
deprioritized areas
e  For other values of @ < 0.35, the algorithm runs more
slowly
e  When a > 0.35, there are often larger errors and extra
edges in the unwrapped image
The effect of modifying the functional in this way is that the
normalized versions of U(i, j) and V (i, j) are now
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It is not obvious that we could find edges in the ground-truth
image using only the wrapped image, so we will describe one
solution to this problem below.

Finding Ground-truth Edges

Consider an edge in the wrapped image that is not present in
the ground-truth image but rather caused by wrapping. Such an
edge is characterized by pixels on one side with values near —m
and pixels on the other side with values near 7. If we add some
6 > 0 to each pixel in the wrapped image, pixels on one side of the
edge now have values near —m + §, and pixels on the other side
now have values near  + §. When this new image is wrapped, the
pixels with values near w + § come to have values near —m + 6.



Hence, the new wrapped image is continuous where the original
wrapped image had an edge.

On the other hand, if an edge in the wrapped image
corresponds to an edge in the ground-truth image, as long as the
pixels across the edge are not uniformly 27 apart, adding &
throughout the image will not remove the edge.

Thus, to find ground-truth edges, we can run an edge-
detection algorithm on the wrapped image, add some § > 0 to the
wrapped image, rewrap, run edge detection on this, and take the
edges which appear in the same places in both images. This
process is illustrated in Figure 2. If the images are noisy and the
edge detection is imperfect, it may be helpful to add a few different
values of § to the image and take the edges which appear in all of
the corresponding rewrapped images.

The Modified Algorithm

Presented below is a summary of the modified algorithm. For
more details on the implementation of the minimum LP-norm
algorithm, one should consult Ghiglia & Romero’s paper.!!]

algorithm ¢ « ModifiedMinNorm[y, p, Lax) Kmax]
Run edge detection on the wrapped image.
Add 6 throughout the wrapped image, rewrap, and run edge
detection on the resulting image.
Define w; ; as in equation (11), assuming ground-truth edges
are those that appear in the same places in both images.
Set ¢, = 0.
for [ < 4, do
Compute W (i) — ¢;) and test for residues.
if W( — ¢,;) contains residues do
Compute U;(i,j) and V;(i,j) from equations (12)
and (13), using ¢, to obtain numerical values. Using
these values, compute ¢; (i, j) from equation (5).
Solve system of equations (4) using Ghiglia &
Romero’s Algorithm WLS (a PCG algorithm) with
kmax the maximum number of inner iterations.!
Update ¢; with the output of Algorithm WLS.
else
Unwrap W@ —¢;) with a simple
unwrapping algorithm. Add the result to ¢;.
¢ < ¢;. Stop.
end if-else
if the algorithm has converged do
¢ < ¢;. Stop.
end if
end for
end algorithm

phase

Results

We present three test cases, where we compared the results of
the modified and original algorithms (with p = 0) on wrapped
images for which we know the ground-truth images. In each test,
we measured the error in the unwrapped images in two ways. The
first error measure, E;, is calculated according to the following
formula, where the ground-truth phase values are given by 6, ;:

E 1 (lr] )
0  ifthe corresponding pixel is on an
edge in the ground truth image

|(dis1y — bij) — (Bix15 — 635)| +
|(dij+1 — dij) — (Bij+1 — 615)| otherwise

(14
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(e)

Figure 2. Illustration of the edge-finding process. (a) ground-truth
image; (b) wrapped image; (c) edges of wrapped image, (d) edges
of the image obtained by adding § = 1.5 throughout the wrapped
image and rewrapping; (e) edges common to (c) and (d). Note that
these are precisely the edges of the ground-truth image.

E; measures the error in local phase gradients of the
unwrapped image in areas that are smooth in the ground-truth
image. When calculating the average E; value of an image, we
only average over areas that are smooth in the ground-truth image.

The second measure, E,, is given by the following formula:

E,(i,j) = |W ((¢i+1,j - ¢i,j) - (9i+1,j - eiri))l
+ |W ((¢i,j+1 —&ij) = (Bijur — ei.i))|
(15)

E, measures the wrapped error in local phase gradients
throughout the image. We wrap the error because in general, we
cannot expect either the original minimum LP-norm algorithm or
the modified algorithm to produce results with accurate phase
gradients across sharp edges. The best that we can hope for is that
these phase gradients are off by multiples of 2.



The algorithms were written in Python and timed on a laptop
with an Intel 17 processor, 2.8 GHz processor speed, and 16GB of
RAM. Because our method of finding ground-truth edges requires
edge detection on wrapped images, and the focus of this project
was not to find an accurate edge-detection method for noisy
wrapped images, we used our knowledge of the ground-truth edges
in the noisy test cases. In the noiseless test, we used the method of
finding ground-truth edges described in this paper, with a very
simple algorithm to find wrapped edges. We consider each
algorithm to have converged if the value of the functional J has not
changed in four successive outer iterations.

The first set of results is shown in Figure 3. The ground-truth
image is a 200x200 pixel noiseless image with few edges, which
the original algorithm performed well on. The goal was to test how
the modified algorithm’s performance would compare.

In Figure 3, we see that the unwrapped results of the modified
and original algorithms look identical. The error plots in Figure 4
reveal that the modified method’s result has more accurate phase
gradients. It has average E; and E, values almost three times lower
than the original algorithm’s output, as shown in Table 1. Both
algorithms ran for approximately the same amount of time. Even in
images with few edges, the modified algorithm often performs
better than the original.

(a) (b)
(c) (d)

Figure 3. Comparison of the modified and original algorithm on
the first test image. (a) ground-truth image; (b) wrapped image;
(c) unwrapped image obtained from the original algorithm, (d)
unwrapped image obtained from the modified algorithm.

The second set of results is shown in Figure 5. The ground-
truth image is a noisy 200x200 image with several edges, which
the original algorithm struggles to unwrap correctly. The goal is to
test whether the modified algorithm will improve the results.

From Figure 5, we can see that the modified algorithm’s
result better reflects the structure of the ground-truth image. Table
2 also shows that the modified algorithm’s result has an E; value
almost twenty times lower than the original algorithm’s result, and

an E, value almost twice as low. Additionally, in this case, the
modified algorithm is faster than the original.
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Figure 4. Comparison of the errors in the unwrapped images
obtained via running the modified and original algorithm on the
first test image. (a) plot of measure E; for the image from Figure
3c¢; (b) plot of measure E; for the image from Figure 3d; (c) plot of
measure E, for the image from Figure 3c; (d) plot of measure E,
for the image from Figure 3d.
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Table 1: Average error measures in the unwrapped results from
the first test image

Unwrapped with Unwrapped with
Original Algorithm Modified Algorithm
{verage £y 0.000978 0.000345
alue
C"erage E, 0.00210 0.000739
alue
Runtime 137 seconds 131 seconds

The third set of results is shown in Figure 7. The ground-truth
image is another noisy 200x200 image with several edges. Again,
the original algorithm’s result has structural issues.

In the previous tests, both algorithms converged before
reaching a point where the residual W — ¢;) could be
unwrapped uniquely. In this test, the original algorithm reached the
residual stopping condition. When this happens, we unwrap
W — ¢;) with a method from the Python package skimage. The
result is extremely accurate wrapped phase gradients and near-zero
E, values, as shown in Figure 8. The modified algorithm
converged before reaching this stopping condition, meaning its E,
values are much larger. Plus, it took significantly longer for the
modified algorithm to run (287 seconds vs. 91). However, Table 3




shows that the modified algorithm’s E; values are over ten times
lower, and the structure of its unwrapped image is correct.

(c) (d)
Figure 5. Comparison of the modified and original algorithm on
the second test image. (a) ground-truth image; (b) wrapped image;
(c) unwrapped image obtained from the original algorithm, (d)
unwrapped image obtained from the modified algorithm.
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Figure 6. Comparison of the errors in the unwrapped images
obtained via running the modified and original algorithm on the
second test image. (a) plot of measure E; for the image from
Figure 5¢; (b) plot of measure E; for the image from Figure 5d;
(c) plot of measure E, for the image from Figure 5S¢, (d) plot of
measure E, for the image from Figure 5d.

Table 2: Average error measures in the unwrapped results from
the second test image

Unwrapped with Unwrapped with
Original Algorithm Modified Algorithm
Average £, 0.0201 0.00117
Value
{verage £, 0.00202 0.00108
alue
Runtime 321 seconds 261 seconds

This demonstrates that occasionally, there are trade-offs
between the modified and original algorithms. In our experience, it
is usually the case that when the original algorithm reaches a point
where W (Y — ¢;) can be unwrapped uniquely, the modified
algorithm also does. But on occasion, the modified algorithm
converges instead. In these cases, the modified algorithm produces
higher E, values and may run more slowly, but it also results in a
more accurate image structure and lower E; values. It may be
possible to make these cases even rarer by strengthening the
condition for convergence. It should also be noted that on
occasion, the modified algorithm reaches the residual stopping
condition when the original algorithm does not, leading to marked
improvement with the modified algorithm.

(b)

(c) (d)
Figure 7. Comparison of the modified and original algorithm on
the third test image. (a) ground-truth image; (b) wrapped image;
(¢) unwrapped image obtained from the original algorithm; (d)
unwrapped image obtained from the modified algorithm.
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Figure 8. Comparison of the errors in the unwrapped images
obtained via running the modified and original algorithm on the
third test image. (a) plot of measure E; for the image from Figure
7¢, (b) plot of measure Ey for the image from Figure 7d; (c) plot of
measure E, for the image from Figure 7c, (d) plot of measure E,
for the image from Figure 7d. While the E, values produced by the
modified method are higher in this case, the E; values are lower
and the overall image structure is more accurate.
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Table 3: Average error measures in the unwrapped results from
the third test image

Unwrapped with Unwrapped with
Original Algorithm Modified Algorithm
Average E; 0.0340 0.00273
Value
Average £, 2.60x10°16 0.000683
Value
Runtime 91 seconds 287 seconds
Conclusion

We have presented a modification to the minimum LP-norm
phase unwrapping algorithm that involves finding edges in the
ground-truth image and weighting these parts of the image lower in
the unwrapping process. As part of this, we have described a
method of finding edges in the ground-truth image using only the
wrapped image. After finding these edges, the modification
requires very few adjustments to the original algorithm.

When testing the performance of the modified algorithm, we
found encouraging results. In test cases with few edges, where the
original algorithm already performs well, the modified algorithm
produces results with lower errors and the same correct structure

(Figures 3 and 4). In test cases with more edges, where the original
algorithm produces images with structural problems, the modified
algorithm generally produces much improved results, with lower
errors and more correct overall structures (Figures 5 and 6). In rare
cases, there are trade-offs between the modified and original
algorithms, and one must choose between a more accurate image
structure and lower wrapped phase gradient errors (Figures 7 and
8). However, on the whole, the results from the modified method
are very promising.
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