EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-833478

Preliminary Transfer Learning
Results on Israel Data

Q. Kong, A. Price, S. Myers

April 1, 2022



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



Preliminary Transfer Learning Results on Israel Data

Qingkai Kong, Amanda Price, Stephen Myers
2022-03-31

Summary

In this preliminary report, we use publicly available data recorded in Israel to test and expand
upon existing machine learning models for seismic-phase detection and arrival-time
measurement. We downloaded 3-years of waveform data from Geofon, and cross referenced the
waveforms to Israel bulletin picks (Schardong et al., 2021). The initial results using existing models
directly generated ubiquitous false detections and that obscured detections of signals that are
clearly visible in the waveforms. However, after applying transfer learning (tuning parameters in
the existing ML models using one year of the Israel-network data), the results are encouraging,
i.e. ML picks agree within a few tenths of a second with bulletin picks and the number of false
detections is greatly reduced. The bulletin picks are a good starting point, but they cannot be
considered ground-truth. To test potential improvement in picking using ML we would like to
relocate the events using the ML picks to see if the events cluster more tightly at known mine
locations. However, in order to constrain event locations, we need ML picks for the whole Israeli-
Jordanian network, which requires waveforms that are not publicly available.

Method

We tested three existing algorithms that were trained on the STEAD dataset (Mousavi et al.,
2019), i.e. EQTransformer (EQT) (Mousavi et al., 2020), PhaseNet (PN) (Zhu & Beroza, 2019), and
Generalized Seismic Phase Detection (GPD) (Ross et al., 2018). We used the models trained on
this same STEAD dataset to make sure the performance can be compared. The results of these
three algorithms applied directly to the data from Israel, and a representative example is shown
in figure 1. We can see the results are not ideal. EQT misses the obvious P and S phases. Both PN
and GPD detected the phase, but with many false detections. This is due to data from Israel
having slightly different characteristics than the STEAD dataset. Since we don’t have sufficient
Israel data to develop a new ML detection/picking model, we use Transfer Learning (TL), which
has shown great performance in many different domains (Tan et al., 2018).

Transfer learning is a method in machine learning (ML) that focuses on storing knowledge gained
while solving one problem and applying it to a different but related problem. In this case, the ML
models are developed using a large seismic dataset with good labels (the STEAD dataset).
Although STEAD has different characteristics than Israel data, the fundamental features needed
to detect P-waves and S-waves and determine arrival time are identified. By using a small dataset
from Israel, we can use the features that were identified using the STEAD data and fine-tune the
model (instead of developing a model from scratch) based on new characteristics in Israeli data.
As a first step, we use PhaseNet as the base model for transfer learning.
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Figure 1. Test of the three different algorithms directly on data from Israel. The bottom three
panels show the P (blue) and S (orange) estimated probabilities.

Data
Catalog files from the Schardon et al. (2021) study contain the origins of the events and the
arrivals:

e FILEL: origins_ned_stats_max2.5_renum.out

e FILE2: arrivals.out

We downloaded data from the Israelian Broadband Seismological Network (Network code 1S)
for 3 years by windowing stations according to the origin of the events listed in FILE1. The
beginning of the window is set to 300 s before the origin time. The end of the window is
calculated using a travel-time velocity of 1 km/s and the estimated event-station distance, with
a majority of window lengths being approximately 10 minutes. The downloaded data details are
showing in Table 1.

Year BH* SH* HH* N stations | Total Matched Phases
2016 11735 8073 346 31 20154 433
2017 13036 7520 716 28 21272 300
2018 49023 34007 2101 32 85131 4,848

Table 1. Details for data downloaded for 3 years. BH*, SH* and HH* columns are number of 3-
components waveforms for each sensor type. N stations column shows the number of unique
stations for the year. Total column shows the total number of waveforms downloaded for the
year. The matched phases show the number of downloaded waveforms that have
corresponding matched P and S phases in FILE2, which we can use for training model purposes.



We assembled the following dataset based on the matched phases waveforms shown in Table 1
for training and testing the model.

e Training data: 4,848 (2018)

e Validation data: 300 (2017)

e Testing data: 433 (2016)

There are multiple reasons why we only have a very small number of waveforms matched the
phases (1) there are some stations missing (cannot find using the IS network code). (2) due to
some of the events in FILE1 cannot find corresponding event listed in ISC. (3) also | have some
quality control, such as the number of data points shorter than | cut, | will not use it.

Transfer Learning Results

Figure 2 shows one example comparing the results from our transfer learning model, as well as
the original model that was trained using the STEAD dataset. We can clearly see the transfer
learning-based model performs better, while the STEAD trained model missed the P wave.
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Figure 2. Example of the P and S pickings from different models. The top panel overlays the 3
components seismic data (normalized); 2" row shows the bulletin (labeled ground truth) label
from the arrival file, where blue, orange and green are probabilities for P, S and noise; 3" row
shows the estimation from the original PhaseNet data that was trained using STEAD data, and
the last row shows the transfer learning result.

Application of the two models to longer waveforms is shown in Figure 3. Like Figure 2, we find
that the transfer learning-based model detects and picks P and S waves more accurately and with
few false detections. The model trained only using STEAD data has multiple (false) S picks at times
when only noise exist. But the transfer-learning-based model does not have the multiple false
picks.
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Figure 3. Model performance for a 10+ minute time window. Top: normalized vertical component
time series. Middle: P and S estimated probabilities from the original model trained using the
STEAD dataset. Bottom: P and S estimated probabilities from our transfer learning model trained
on 4848 3-components waveforms from Israel.

ST_P 0.74  0.63
TL_P 7 20 52 272 82 091 0.84
ST_S 16 5 74 277 61 0.93 0.79
TL_S 5 1 53 302 72 098 0.85

Table 2. Model performance table for 433 test detections in 2016. FP_1: False positive 1,
algorithm detects phases when there is no bulletin label. FP_2: False positive 2, the estimated
time is larger than 3s from the bulletin label. FN: False negative. TP: True positive. Prec.: Precision.
Recall: Recall. ST_P and ST_S are the PhaseNet model trained on STEAD for P and S wave picks.
TL_P and TL_S are the transfer learning model for P and S picks.

In order to systematically evaluate the model performance, we used the 2016 data that have P
and S labels from the arrival files that are also listed in the ISC bulletin. Basic metrics such as false
positive, false negative, true positive, true positive, as well as precision and recall values are
shown in Table 2. For both P and S picks, the transfer learning outperforms the model trained
only using STEAD, i.e. the precision and recall are 0.91 and 0.84 for the P picks for our transfer
learning model, increased from 0.74 and 0.63 respectively, while the values for S picks are 0.98
and 0.85, increased from 0.93 and 0.79.



Figure 4 shows the time difference distribution between the two models’ estimations and the
labels from the arrival file for both P and S wave picks. From the mean and standard deviation
values, we can see the transfer learning-based model performs much better, especially for the P
wave.
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Figure 4. Time difference between the estimated picks and the arrivals from the file (assumed
ground truth) on the 2016 test data. Blue histogram is for the transfer learning-based model
while the orange histogram is for the model trained with STEAD data. The mean and standard
deviation values are listed using the same colors.

Data request for further analysis
Initial work demonstrates the applicability of transfer learning to detection and arrival-time
estimation seismic phases recorded in Israel. The publicly available PhaseNet package performs
pooly, but performance is dramatically improved after transfer learning (parameter tuning). In
order to further test and develop our transfer learning model, we need data from the entire
Israeli and Jordanian network. A refined data set of phase labels and arrival times — if available —
would also be of great utility. The data we downloaded contains a subset of stations matching
the arrival files, thus only a small number of picks have corresponding waveforms. We tried to
associate the estimated picks and relocate events but accurate locations are not possible with
the sparse network. Thus we request the following for further development if it is possible:
1. Continuous waveforms for the Israel-Jordan network for 1 or 2 years
2. Good quality labels, i.e. manually picked phases. This is not high priority, the data we
currently have can be used to develop a good model. But if we have this data, it can help
us to (a) develop better models with more training data, (b) more accurate evaluation
against these labels.
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