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Scientific advancement is requiring ever-increasing compute 
power

 The DOE Exascale Computing Project 
identifies the following challenge areas:
 National Security Needs
 Advances in Materials Science
 New Energy Solutions
 Advances in Healthcare
 Predicting Severe Weather
 Urban Science
 High-Energy Physics
 Astrophysics
 Chemistry
 Computer-Aided Design

HPC Computing Performance

From Reed & Dongarra, 2015
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Scientific advancement is requiring ever-increasing compute 
power

 Luckily, the enabling algorithms remain 
the same:
 Dense Linear Algebra
 Sparse Linear Algebra
 Computation on Grids
 Unstructured Grids
 Finite Elements
 Spectral Methods
 Particle Methods
 Monte Carlo
 Graph Analytics

HPC Computing Performance

From Reed & Dongarra, 2015
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What’s stopping us?

 Supercomputers are increasingly limited 
by power consumption.

 Exascale systems are forecasted to 
begin in the 100,000’s of kW.
 That’s enough electricity to power around 

80,000 US homes for a year.
 Rome, GA has a population of 36,332.

 Are there low-power alternatives that 
can solve the same problems for which 
we currently require traditional high-
performance computing?
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1 exaflop = 1,000,000 teraflops
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Neural-Inspired Computing

 What is neural-inspired, neuromorphic, or brain-inspired computing?
 Fundamental notion of taking inspiration from how the brain performs computation.

Neuromorphic 
Processor 

Architectures
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Spiking Neural Networks

 Subclass of Artificial Neural Network

 Neurons compute their own state 
independently, possibly asynchronously

 Each neuron integrates incoming 
information into a ‘potential’

 If ‘potential’ reaches a predetermined 
threshold, the neuron alerts connected 
neurons

 Neuron communication is single-state 
signals (spikes) 

 A time delay for spike propagation can be 
included

 Enables event-driven computation 
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Spiking Neural Networks – Neuron Dynamics

Each neuron processes these functions at every time step in perfect parallel.

If you can take your algorithm and formulate it 
as a network of these independent processes, it can run on neuromorphic.
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Neuromorphic and the “No Free Lunch” Theorem

No Free Lunch (Wolpert & Macready, 1997) Theorem implies that optimizations to 
improve some calculations will make other calculations more expensive  

Customizing architecture to be good at one thing makes it worse at everything else
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The problem with deep learning …
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 Yay! Deep learning and neural 
networks look like a pretty 
natural fit for neuromorphic 
computing (NMC)!

 BUT… deep learning and 
neural networks are also a 
very natural fit to GPUs.  
Perhaps even a better fit…

 We shouldn’t be surprised… 
GPUs are more mature 
technology and deep learning 
revolution is largely due to 
GPUs being good at them
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The problem with deep learning …

Tasks

Pe
rf

or
m

an
ce

CPU

Tasks

Pe
rf

or
m

an
ce

GPU

Tasks

Pe
rf

or
m

an
ce

NMC

Even bigger problem… neural 
network accelerators
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Where do GPUs not offer an advantage?
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Neuromorphic algorithm can simulate random walks16

Leaky Integrate and Fire Neuron

Smith et al., in review 2021



Neuromorphic Efficiency17

Smith et al., in review 2021



Random Walks and Monte Carlo

 We want to determine the probability 
of landing on any given space in 1 trip 
around the board.

 To make a best estimate, we start a 
token and record the spaces it lands 
on in one trip around the board.

 We estimate the probability of each 
space by repeating the process 
several times, recording the spaces for 
many different instances of a token 
around the board, and averaging.

 The process of gathering the path of 
many tokens around the board is 
called sampling, and the use of 
averaging makes our answer a Monte 
Carlo estimate.
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Monte Carlo Approximations of PDE Solutions

Diffusion:

$
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Math: What PDEs can neuromorphic random walks be useful for?20

Class of Partial Integro-Differential Equations:

Stochastic Process:

Solution to initial value problem (u(0,x)=g(x)): Monte Carlo Approximates This Expectation

NMC Hardware Simulates This Stochastic Process



Neural MC algorithm can run wide range of stochastic processes

Smith et al., in review 2021

Drift

Jumps

Diffusion

Death
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Some Physics Examples

  Heat transport on surface of sphere and barbell
 Not a trivial diffusion surface, complex stochastic process and 

transition probabilities
  Implemented sphere on Loihi; barbell in simulation

Smith et al., in review 2021
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Some Physics Examples

 Boltzmann state transition
 Particle can exist in 2 states (+1 or -1) or be 

absorbed.  
 Implement as simple stochastic process on 

Neuromorphic. 

Smith et al., in review 2021
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Some Physics Examples

Smith et al., in review 2021
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Machine Learning – The General Idea
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Learning Random Walks – An Overview

 This current project has two goals:
 Can Machine Learning (ML) demonstrate 

success on an inverse problem?
 Are simulated data from neuromorphic 

machines ‘good enough’ to use for scientific 
computing purposes?

DTM
C Approx.

Approximate SDE

Implement on Loihi

Gather Sample 
Observations
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The Ornstein-Uhlenbeck Equation
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Results of Learning29

• We used a particular kind of deep learning – a 
convolutional neural net (CNN) – to learn the 
parameters given generated neuromorphic 
random walk data.

• Three configurations have been tested:
• Basic – no physical information provided to 

the CNN.
• Spatial – information about the spatial 

window is given.
• Spatial + Temporal – all the spatial 

information plus information about the time 
scale.



Non-Academic Career Paths in 
Mathematics and Computer Science

Part  5  o f  5



Non-Academic Career Paths in Mathematics and Computer 
Science

 Government
 National labs
 Three letter orgs like the NSA

 Industry
 Google, Facebook, Intel, IBM
 Corporate owned R&D, like PARC
 Institutional research roles

 Finance
 Actuarial
 Data management
 Modeling/Risk Modeling

 Many, many more!
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NERL

Neural Computing at Sandia32



Neural Exploration & Research Lab (NERL)

 Enables researchers to explore the boundaries of neural computation
◦  The research conducted in the lab evaluates what is possible with neural 

hardware and software for national security benefit and the advancement of 
basic research 

 Consists of a variety of neuromorphic hardware & neural algorithms 
providing a testbed facility for comparative benchmarking and new 
architecture exploration

 Official Lab Partnering Service capability advocating Sandia as a 
neuromorphic center of excellence: 

 https://www.labpartnering.org/facility/3dd34582-6640-4166-b5b2-
56e34a540b46
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Neuromorphic Hardware

*Remote access

 World class research capability offering unique ability to research 
aspects of many different neuromorphic architectures

Intel Loihi
50M

Intel Loihi
Nahuku Bay (8)

Intel Loihi
Kapoho Bay USB

SpiNNaker 48 
Node Board

IBM TrueNorth* IBM TrueNorth 
NS16e*

GraphCore Groq

Intel Neural 
Compute Stick

Google Coral Google 
EdgeTPU

GyrFalcon EtaCompute
Tensai

Cognimem 
CM1K

KnuPath 
Hermosa

Inilabs DAVIS 
240C DVS

Georgia Tech 
FPAA

SNL STPU on 
FPGA

Xilinx PYNQ 
FPGA

Nengo FPGA Nvidia Jetson 
TX1

Nvidia Jetson 
Nano

GPU 
Workstations

*Remote access
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Thanks!

 Sandia Neural PDE team:

Brad Aimone, Aaron Hill, Leah Reeder, Ojas Parekh, William Severa, Brian Franke, Rich 
Lehoucq

 Sandia Learning Random Walks team:
 Brad Aimone, William Severa, Rich Lehoucq

 Neuromorphic Hardware:
 Loihi Access: Craig Vineyard (SNL), Suma Cardwell (SNL), Intel INRC
 TrueNorth Access: Lawrence Livermore National Laboratory

 Funding
 Sandia Laboratory Directed Research and Development
 DOE Advanced Simulation and Computing
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Additional Slides and Information



37 Loihi-specific circuit

1. Supervisor circuit
1. Start buffer
2. Start counter

2. Counter circuit
1. Buffer neurons
2. Counter neurons

3. Probabilistic neurons

4. Output neurons



PDEs you can solve with MC methods 

PDEs that are typically solved with MC 
methods today (efficient on 

conventional)

Big numerical calculations 
(i.e., PDEs)

?

MC-PDEs that are only 
efficient on NMC

Non-MC 
PDEs that 

are 
efficient 
on NMC

?

?

MC-PDEs that are 
ill-suited for NMC

Our hypothesis: There exists a class of scientific computing 
algorithms for which neuromorphic computing is efficient

Things GPUs are really good at

Our Hypothesis
PDEs that can 

efficiently be solved 
with NMC

This 
Talk
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Accuracy Stack for Neuromorphic Implementation39

ᵆ� ᵆ� = ᵅ� (ᵆ� ,ᵆ� ,ᵆ� ᵆ� ,ᵆ� ᵆ�ᵆ� )
PDE Ground Truth

Problem Approximation Visualization

To approximate the 
expectation, we must 
sample paths of the 
stochastic process.

Error/Convergence

Continuous paths cannot be 
sampled, we must employ a 

discretization scheme.

Neurons cannot represent a 
continuum of locations. 
Hence we must limit the 
spatial locations of the 

walk.

1
2ᵅ� Δᵆ� Δᵆ�

There are a finite number of 
neurons, so maximum and 
minimum values for the 
random walk will exist.

varies

Hardware Specific Issues.  
TrueNorth having quantized 
probability, for example.

ℙ ∝
1
256 varies

Smith et al., in review 2021
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PDE Ground Truth

Problem Approximation Visualization

To approximate the 
expectation, we must 
sample paths of the 
stochastic process.

Error/Convergence

Continuous paths cannot be 
sampled, we must employ a 

discretization scheme.

Neurons cannot represent a 
continuum of locations. 
Hence we must limit the 
spatial locations of the 

walk.

1
2ᵅ� Δᵆ� Δᵆ�

There are a finite number of 
neurons, so maximum and 
minimum values for the 
random walk will exist.

varies

Hardware Specific Issues.  
TrueNorth having quantized 
probability, for example.

ℙ ∝
1
256 varies

      
Present for any 
implementation
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Smith et al., in review 2021



Precision example: spherical diffusion

  Transition probabilities between neural mesh 
points are determined by RNGs on probabilistic 
neurons

  On Loihi, PRNGs are 8-bit, effectively making 
transition probabilities 8-bit 

  Comparing sphere Loihi example to MATLAB 
simulation with reduced precision suggests Loihi 
is roughly 7-bit precision

Smith et al., in review 2021
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Generating random walks44


