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Scientific advancement is requiring ever-increasing compute
4+ I power

= The DOE Exascale Computing Project

identifies the following challenge areas:

National Security Needs
Advances in Materials Science
New Energy Solutions
Advances in Healthcare
Predicting Severe Weather
Urban Science

High-Energy Physics
Astrophysics

Chemistry

Computer-Aided Design
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Scientific advancement is requiring ever-increasing compute
power

Luckily, the enabling algorithms remain

the same:

Dense Linear Algebra
Sparse Linear Algebra
Computation on Grids
Unstructured Grids
Finite Elements
Spectral Methods
Particle Methods
Monte Carlo

Graph Analytics

HPC Computing Performance
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6 I What's stopping us?

Power (kW) - June 2020 Top 500

100,000

10,000

) °® °
. <. ° . °.
e ® .o"o.:.O. (o
o .a‘ ) ) H ¢ °
1,000 o 0o ‘e,
h o0 g“’ «®®
gy -
0‘ )
?.: .:fo
.
100 ®
1,000.00. L 10,000.00
TFlops/Second

100,000.00

1 exaflop = 1,000,000 teraflops

= Supercomputers are increasingly limited
by power consumption.

= Exascale systems are forecasted to
begin in the 100,000’s of kKW.

= That's enough electricity to power around
80,000 US homes for a year.

= Rome, GA has a population of 36,332.

= Are there low-power alternatives that
can solve the same problems for which
we currently require traditional high-
performance computing?
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s I Neural-Inspired Computing

= What is neural-inspired, neuromorphic, or brain-inspired computing?
= Fundamental notion of taking inspiration from how the brain performs computation.

Mathematical Representation

X 0 Wy

fi activation function
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9 I Spiking Neural Networks

= Subclass of Artificial Neural Network

= Neurons compute their own state
independently, possibly asynchronously

Pre-synaptic
= Each neuron integrates incoming Neurons
information into a ‘potential’

= |f ‘potential’ reaches a predetermined
threshold, the neuron alerts connected

neurons Input spikes

= Neuron communication is single-state I |
signals (spikes)

Post-synaptic
Neuron

= A time delay for spike propagation can be
included

= Enables event-driven computation

I I Em B



10 I Spiking Neural Networks — Neuron Dynamics

Generically, a discrete-time leaky-integrate-and-fire neuron is well-modeled by simulators and neuromorphic
hardware.

For random draw n and weights w; ;, delays d; ;, initial voltages V(0), probability of fire P;, and initial action
potentials x(0) being algorithm dependent:

J

xi(t+1) = 1, V(it+1) >V, a.nd nij <P
0, otherwise
7. V. (t), x;(t+1)=0
Viit+1)=4 ! y
(t+1) { 0, xj(t+1)=1

Each neuron processes these functions at every time step in perfect parallel.

If you can take your algorithm and formulate it
as a network of these independent processes, it can run on neuromorphic.



11 # Neuromorphic and the “No Free Lunch” Theorem

No Free Lunch (Wolpert & Macready, 1997) Theorem implies that optimizations to
improve some calculations will make other calculations more expensive

CPU GPU

Performance
Performance
Performance

Tasks Tasks

Customizing architecture to be good at one thing makes it worse at everything else



12 I The problem with deep learning ...
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» Yay! Deep learning and neural
networks look like a pretty
natural fit for neuromorphic
computing (NMC)!

» BUT... deep learning and
neural networks are also a
very natural fit to GPUs.
Perhaps even a better fit...

» We shouldn’t be surprised...
GPUs are more mature
technology and deep learning
revolution is largely due to
GPUs being good at them



13 I The problem with deep learning ...

Performance
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Even bigger problem... neural
network accelerators

ASIC
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14 | Where do GPUs not offer an advantage?
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Neural Random Walks and
Applications
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16 I Neuromorphic algorithm can simulate random walks
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Neuromorphic Efficiency

1.E+09 .
® TrueNorth Single-Mesh
¢ TrueNorth Multi-Mesh
9L
g . ® Loihi
- . : i
© 1 E+08 » CPU Single-Core
g_ . ¢ CPU Multi-Core
§ mGPU
©
s O
Q.
- 1.E+07
—
Q
= >
= >
= =
1.E+06

1.E+05  1.E+06  1.E+07  1.E+08  1.E+09  1.E+10
Walker Updates per Second

Smith et al., in review 2021



Random Walks and Monte Carlo

We want to determine the probability
of landing on any given space in 1 trip
around the board.

To make a best estimate, we start a
token and record the spaces it lands
on in one trip around the board.

We estimate the probability of each
space by repeating the process
several times, recording the spaces for
many different instances of a token
around the board, and averaging.

The process of gathering the path of
many tokens around the board is
called sampling, and the use of
averaging makes our answer a Monte
Carlo estimate.
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Monte Carlo Approximations of PDE Solutions
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20 I Math: What PDEs can neuromorphic random walks be useful for?

Class of Partial Integro-Differential Equations:

kil
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Stochastic Process:
NMC Hardware Simulates This Stochastic Process

dE(® = @ B dih @ HEE dee( -+ e ), ) d e 60 .

Solution to initial value problem (u(0,x)=g(x)):

Monte Carlo Approximates This Expectation
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21 I Neural MC algorithm can run wide range of stochastic processes
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2 I Some Physics Examples

» Heat transport on surface of sphere and barbell

» Not a trivial diffusion surface, complex stochastic process and

transition probabilities

» Implemented sphere on Loihi; barbell in simulation

Time = 0.00

1.5

0.5

1-0.5

Time = 0.000

20

18

16

14

12

10

Smith et al., in review 2021
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23 I Some Physics Examples

’ == Analytical Solution
> Boltzmann state transition 4 —
» Particle can exist in 2 states (+1 or -1) or be
absorbed.
» Implement as simple stochastic process on
Neuromorphic. |

Physical Cartoon
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Some Physics Examples

» 1D particle transport
~ We allow directionsin [—1,1].
~ Particle moves with a fixed velocity.

~ Track total flux of particles as a function of
both position and direction.
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Learning Random Walks — An Inverse
Problem

Part 4 of 5
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Machine Learning — The General Idea
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27 I Learning Random Walks — An Overview

[dX (D) = a(X(0), Hdt + BX (D), AW (D]
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= This current project has two goals:

= Can Machine Learning (ML) demonstrate
success on an inverse problem?

= Are simulated data from neuromorphic
machines ‘good enough’ to use for scientific
computing purposes?

Implement on Loihi

*xoi4ddy JW1Q

Gather Sample
Observations

a only

We may sample paths of an SDE by
simulating them through an
approximating DTMC. The DTMC is
well suited for implementation on Loihi,
where sample observations can be
generated. This project aims to use
machine learning to help solve the
Y , finding @ and 8

] 0.5 1 15 2 when only sample observations are
available.




28 I The Ornstein-Uhlenbeck Equation

+ To limit the focus, we consider the known
equation:
dX(t) = —k(X(t) — 2)dt + V2DdW (t).
+ Used to model
+ Brownian particle in a harmonic well;
* Hookean spring;
- Biology applications - in cell transport;
« Optical tweezers.
» k - spring constant
» z - center position
« D - diffusivity
« This is an easy problem to start with since
analysis methods are known!

Low Diffusivity

High Diffusivity

I I Em B
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Results of Learning

*  We used a particular kind of deep learning - a
convolutional neural net (CNN) - to learn the
parameters given generated neuromorphic
random walk data.

« Three configurations have been tested:

* Basic - no physical information provided to
the CNN.

-+ Spatial - information about the spatial
window is given.

« Spatial + Temporal - all the spatial
information plus information about the time
scale.

Parameter Multiplier Level
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Non-Academic Career Paths in
Mathematics and Computer Science

Part 5 of 5



Non-Academic Career Paths in Mathematics and Computer
31 I Science

Government
= National labs

= Three letter orgs like the NSA

Industry
= Google, Facebook, Intel, IBM

= Corporate owned R&D, like PARC
= |nstitutional research roles

Finance
= Actuarial

= Data management
= Modeling/Risk Modeling

Many, many more!



Neural Computing at Sandia

32

NERL
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Neural Exploration & Research Lab (NERL)

Enables researchers to explore the boundaries of neural computation
> The research conducted in the lab evaluates what is possible with neural
hardware and software for national security benefit and the advancement of
basic research

Consists of a variety of neuromorphic hardware & neural algorithms
providing a testbed facility for comparative benchmarking and new
architecture exploration

Official Lab Partnering Service capability advocating Sandia as a

neuromorphic center of excellence:
https://www.lab or/faC|I|tv/3dd345§“Z8364F("f“4 166-5582="""
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https://www.labpartnering.org/facility/3dd34582-6640-4166-b5b2-56e34a540b46
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34 I Neuromorphic Hardware

World class research capability offering unique ability to research
aspects of many different neuromorphic architectures

Intel Loihi Intel Loihi Intel Loihi SpiNNaker 48 IBM TrueNorth* IBM TrueNorth GraphCore Groq
50M Nahuku Bay (8) Kapoho Bay USB Node Board NS16e*

Intel Neural Google Coral Google GyrFalcon EtaCompute Cognimem KnuPath Inilabs DAVIS

Compute Stick EdgeTPU Tensai CM1K Hermosa 240C DVS

SNL STPU on Xilinx PYNQ Nengo FPGA Nvidia Jetson Nvidia Jetson GPU
FPAA FPGA FPGA TX1 Nano Workstations

TG

*Remote access



35 I Thanks!

» Sandia Neural PDE team:

Brad Aimone, Aaron Hill, Leah Reeder, Ojas Parekh, William Severa, Brian Franke, Rich
Lehoucq

» Sandia Learning Random Walks team:
» Brad Aimone, William Severa, Rich Lehoucq

» Neuromorphic Hardware:
» Loihi Access: Craig Vineyard (SNL), Suma Cardwell (SNL), Intel INRC
» TrueNorth Access: Lawrence Livermore National Laboratory

» Funding
» Sandia Laboratory Directed Research and Development
» DOE Advanced Simulation and Computing



Additional Slides and Information
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Loihi-specific circuit

From Other Units

Re
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adout

To Other Units
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A 4
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1. Supervisor circuit
1. Start buffer

2. Start counter

2. Counter circuit
1. Buffer neurons

2. Counter neurons

3. Probabilistic neurons

4. Qutput neurons
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Our hypothesis: There exists a class of scientific computing
algorithms for which neuromorphic computing is efficient

ﬂig numerical calculations
(i.e., PDEs)

MC-PDEs that are
ill-suited for NMC

Things GPUs are really good at

N

? \ conventional)

PDEs you can solve with MC methods
4 PDEs that are typically solved with MC\\

| methods today (efficient on

MC-PDEs that are only
efficient on NMC

~

Non- MC \
PDEs that
are
efficient
on NMC

?

- s - s - -




39 I Accuracy Stack for Neuromorphic Implementation

Up = f(EuMsin )
u(t,x) = E[g(t, X,)|X, = x]

Approximation Error/Convergence

PDE Ground Truth

M
To approximate the 1 i (0
expectation, we must u(t,x) ~ Hz Q(t: Xt)i Xop =x
sample paths of the i=1
stochastic process.

==

Continuous paths cannot be 1 M _ )
sampled, we must employ a u(jit, x) = EZHUM’X;‘M); X(E'} =x
discretization scheme. i=1

S

Neurons cannot represent a . M 1
continuum of locations. - Z ar vl gl —
u(jAt, x,) = — At XL ), XY =x AtAs
Hence we must limit the UALXi) = 3 — 90t Xiae): Xy ¥ 2‘]
spatial locations of the
walk
—+ ]
There are a finite number of "
neurons, so maximum and , 1 A (D) .
minimum values for the | *UAL i) = EZ 9UAL Xjp )i Xy = xi varies
i=1

random walk will exist.

Hardware Specific Issues. 1 o)l .
TrueNorth having quantized Pox— m varies
probability, for example. 256 - ) Smith et al., in review 2021



40 | Accuracy Stack for Neuromorphic Implementation

U= f(tuply )
PDE Ground Truth N
u(t,x) = E[g(t,X,)|X, = x] :‘

Problem Approximation
M
To approximate the 1 i (0 1
expectation, we must u(t,x) ~ Hz a(t.X¢); Xy =x S \ "
sample paths of the =1 AN VM
stochastic process. lew T

Continuous paths cannot be 1 M _ _
sampled, we must employ a u(jat, x) = EZEUM'X&H); X(E"’ =y
i=1

discretization scheme.

S

X(t)

Present for any
implementation




41 I Accuracy Stack for Neuromorphic Implementation

Up = f(EuMsin )

PDE Ground Truth
u(t,x) = E[g(t,X,)|X, = x|

Problem Approximation Visualization Error/Convergence

Neuromorphic Specific
LR LRIRI AL

Neurons cannot represent a 1 M . 1
continuum of locations. : Z A gY@ — —j
At, =— At X ) X7 = =
Hence we must limit the uaL ) M =t 90 ‘[M) o =% = ZjAtAS
spatial locations of the 7
walk
There are a finite number of o —+
neurons, so maximum and . 1 A = () = .
minimum values for the | “UALXk) = EZ 90bt Xiae )i Xy = xi = varies
random walk will exist. =1 =

i il




2 I Accuracy Stack for Neuromorphic Implementation

Up = f(EuMsin )

PDE Ground Truth
u(t,x) = E[g(t,X,)|X, = x]

Approximation Visualization Error/Convergence

Hardware Specific
JLLLLY

Hardware Specific Issues. 1
TrueNorth having quantized Pox—

varies
probability, for example. 256

Smith et al., in review 2021




23 I Precision example: spherical diffusion

» Transition probabilities between neural mesh
points are determined by RNGs on probabilistic

neurons
» On Loihi, PRNGs are 8-bit, effectively making
transition probabilities 8-bit 0.4}
» Comparing sphere Loihi example to MATLAB =
simulation with reduced precision suggests Loihi 80
is roughly 7-bit precision 7,
$0.2 |
@ 5 Bit
- 6 Bit
e E A R AR A A e S —7 Bit
E AL 2Bk
s —16 Bit
(1-pl) E :E;mdard
.922900128 : 0 i a " A " 4 3
; 0 0.5 1 1.5 2 2.5 3 3.0
2 / E Time (1)
/.5 :
pl*p2 plI*(1-p2) (I-ply*p3 (I-p1)*(1-p3)
.922900128 0
.038549936 .038549936

Smith et al., in review 2021




44 | Generating random walks

AR1/Harmonic Well Data Generation:
« A spatial and temporal discretization is chosen, Ax and At.

« The SDE is used to determine a discretized update scheme.

dX(t) = —a(X(t) — 2)dt + VZDAW(t) — X(t;) = X(t;_1) — a(X(t;i_1) — 2)At +1;

« ADTMC is constructed using the law of the update scheme and the spatial discretization size.

p(x; = x;)=p (X(t,g) € [xj —%,xj +%‘ ‘X(ti_l) = x}-)

* Collected data yields the number of random walkers on each mesh point at each time step.

« Neuromorphic requires restricting the state space. In this example, x € [—L, L].



