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ABSTRACT

Transportation hubs in major cities generate a significant amount of trips by taxis and for-hail
vehicles (FHV), with many of the trips sharing similar destinations. This suggests promising op-
portunities to leverage the collective travel needs with dedicated ridesharing solutions to reduce
the externalities of excessive traffic at transportation hubs. In this study, we develop a novel dy-
namic ridesharing approach to serve trips from the transportation hub by considering (1) demand
(new passengers) and supply (newly available vehicles) in the near future and (2) the uncertainty
of future predictions. Our approach consists of two stages. In the first stage, we develop a data
structure called hub mobility tree to generate potential combinations of shareable trips as candi-
date schedules efficiently. Then the generated schedules are used in the second stage to formulate
the stochastic hub-based ridesharing problem (SHRP), which is a stochastic integer programming
problem with the objective to maximize the total expected ridesharing profit over time. Due to the
prohibitive number of shareable trips, we then approximately solve SHRP by the sample average
approximate method (SAA), and a dual Lagrangian technique is implemented to further improve
the scalability of the solution approach. We demonstrate the performances of the proposed method
by simulating the ridesharing service at JFK airport using NYC taxi and FHV data. The results in-
dicate that the proposed method outperforms the myopic ridesharing (maximize profit for a single
time step) and the rolling horizon method with point estimation of future demand and supply.
Keywords:Dynamic ridesharing; Transportation hubs; Rolling horizon; Stochastic integer program
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INTRODUCTION

Several inefficiencies in urban transportation systems exist, including the low usage rate of public
transit modes, the excessive private vehicle ownership and the relatively low vehicle occupancy (7).
These lead to wasted vehicle capacity, more substantial congestion and emissions, and unneces-
sary energy consumption (2, 3). Among different places in urban space, transportation hubs such
as railway terminals and airports suffer most from these inefficiencies (4), since they bring together
many commuters in short periods and fail to leverage the collective behaviors to efficiently serve
people with similar itineraries and time schedules. According to the NYC 2018 TLC factbook, the
airports (JFK and LGA) account for more than 30,000 daily pickups of taxis and FHV's, while hav-
ing the lowest level (0-10%) of the share of shared rides among all taxi zones (5). With the number
of visitors increase in transportation hubs and so as the emissions and other negative effects, it is
important to develop a solution to reduce those inefficiencies.

One of the promising solutions to achieve this goal is to promote ridesharing service (6) at
the transportation hub, which can significantly increase vehicle occupancy (7) and therefore reduce
the vehicle mileage and alleviate the traffic congestion surrounding the hub. Here we specifically
consider the ridesharing service provided by a ride-sourcing platform (like Uber or Lyft) as it
is close to the real-world scenario. In this service, passengers at transportation hubs make trip
requests in real-time, then the platform combines different requests into different schedules and
assigns these schedules to available vehicles.

The effectiveness of ridesharing is governed by two factors. The first factor is the passen-
gers’ willingness to share their rides. And the second one is the quality of the vehicle dispatching
and passenger assignment strategies. To increase the number of ridesharing users, current practice
is to provide a discount for using ridesharing service (8, 9). Then with the ridesharing users are
given, the assignment and dispatching algorithms will decide the schedules of vehicles to serve
those passengers, and the platform can make profits by matching more passengers into single rides
to save the payment to drivers. Note with more efficient ridesharing algorithms, additional profit
can be made, and this profit can help to increase the discount level. This creates a positive feedback
to attract more users and further promote the ridesharing service. Therefore, this study focuses on
ridesharing algorithms for vehicle dispatching and passsenger assignments.

Developing a ridesharing algorithm that optimally assigns passengers to drivers has long
been recognized as a challenging problem (/0). Even with the whole set of drivers and passengers
revealed, this problem is recognized as a variant of travel salesman problem with a time window,
which is in NP-complete (/7), let alone in real practice the exact future information is not available.
Most of exist work (//-17) therefore developed algorithms to optimally assign ridesharing trips
to serve passengers within the current time step. Because this type of algorithms only consider
one time step, the long term optimal of ridesharing schedules cannot be guaranteed. Recent stud-
ies started to use future prediction of travel demand in the routing of ridesharing problem (/8, 19)
and management of vehicle fleets (20-22). Yet, few studies consider the predictions of demand and
supply on solving ridesharing scheduling in the system-level. In addition, how to conduct rideshar-
ing optimally in the face of uncertainty, where we do not have accurate point estimation of future
demand and supply, has not been studied. These leave a gap for developing a ridesharing algorithm
which considers the future (demand and supply) information with a probabilistic distribution for
future supply and demand are available.

In addition to the gap, there are several distinct features of the passenger trips that can
facilitate the ridesharing framework with future prediction information. First of all, trips from a
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transportation hub share the same trip origin: the hub itself. Therefore, the complexity of finding
shareable rides can be hugely reduced. Second, the arrival of passengers at transportation hubs
depends highly on the timetable (of trains and flights) at the hubs, thereby leading to more pre-
dictable demand, which makes it more likely to have a reliable prediction model for optimizing
ridesharing scheduling.

In this work, we develop a hub-based ridesharing approach to facilitate the ridesharing ser-
vice within transportation hubs. We first design a data structure called hub mobility tree to facilitate
the generation of candidate schedules of sharing rides. Based on the generated schedules, we for-
mulate a stochastic optimization problem with rolling horizons which considers the demand (new
passengers) and supply (newly available vehicles) in the near future and the stochastic nature of
future predictions. To solve this problem, we adopt the framework of the sample average approxi-
mate method (SAA) and solve the Lagrangian dual of sampled scenarios to improve the scalability.
Finally, we valid the performances of the proposed approach by simulating the ridesharing service
in JFK airport using the real world taxi+FHV operational data in NYC, 2019.

The rest of the paper is structured as follows. In the next section, we formally define the
hub-based ridesharing problem and propose the solution algorithm based on rolling-horizon and
stochastic programming. In section three, we compared our method to the myopic benchmarks
using New York City’s (NYC) taxi and FHV data to demonstrate the effectiveness of our method.
Finally, in section four, we summarize this work and discuss the next steps.

METHODOLOGY

In this section we design a real-time ridesharing mechanism for transportation hubs. For each time
step ¢, we match the passengers and the available vehicles at the hub based on their information
and the prediction of future demand and supply. For the sake of descriptive simplicity, we consider
the case of one hub in the rest of this section.

Assumption
We make the following assumptions to reasonably simplify the problem.

1. The first assumption is on the choice behavior of ridesharing trips. For each person,
we assume his/her trip deviation, measured by the difference between the travel time in
shared ride and the travel time in the directed trip, is less than a threshold, otherwise the
direct trip is preferred.

2. We consider the zonal-level ridesharing and assume the trip destinations are drawn from
a finite set of zones. In real world, each zone can be a partition of the network or other
divisions of urban space. This assumption allows us to consider finite combinations of
rides.

3. We also assume the traffic condition is stable so we can pre-calculate the feasible combi-
nations of the shared rides. This can be relaxed to the statement that the traffic condition
is stable for a certain time period (e.g., one hour) and consider multiple time periods.

4. We consider the number of available vehicles is independent to the ridesharing model.
This allows us to model the vehicle supply independently with the ridesharing assign-
ments. However, in real world, as the ridesharing generally using less vehicles to serve
the same level of demand, less vehicles will be attracted to the hub. This can be im-
proved by using real-time vehicle information to predict the number of newly available
vehicles so we can still get good estimation despite the ridesharing decisions.
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5. Last but not the least, a short-term prediction model is assumed to be available for travel
demand and vehicle supply at the hub. The output of this model will be the number of
new passengers heading toward each zone, the number of newly available vehicles and
the corresponding probability.

Definitions and Notations
This section describes some important concepts and variables in formatting the hub-based rideshar-
ing problem.

Definition 3.1 (Zone). A zone z characterized by its zone ID is a spatial unit for service pickups
and drop-offs. The travel time between zone i and zone j is represented as 7;;, and the travel cost
that corresponds to the optimization objective is denoted as f;;. We assume the travel time satisfies
triangular inequality, that is, T;; < Ty + Ty;.

Definition 3.2 (Schedule). A schedule s consists of an ordered sequence of zone ID to indicate the
service order. For example, s; = (0, 1, 1,2,3) means the vehicle picks up three passengers and then
delivers them with the order z; — zo — z3. The number of passengers heading to zone i served by
schedules s; is denoted as A;;. For this example, we have A;; =2, A;; = 1. We denote the k-th

element in s; as s’;. The travel time from the hub to s’]‘- as ’L'Ss,ﬁ = ):f.‘;ll T, i+1, and the profit generated
j J%i

by this schedule as g;. Here we consider the profit (saved cost) generated by this schedule as
|sjl—1

cj =ity (fogrr = fgirt).

Definition 3.3 (Deviation threshold). A deviation threshold for each passenger is defined as the
maximal additional travel time that one can accept for switching from the direct trip to a shared
ride, that is, 77 < (1 + a)7y;. We call the (77 — 70;)/70; as the deviation factor. In practice, the
deviation threshold & can be assumed to be constant or mined from historical orders, and can be
extended to more inclusive functions based on passengers’ behaviors.

Definition 3.4 (Prediction model). Let d; be the number of new passengers represented by a n x 1
vector with the i-th element be the number of passengers heading to zone i and v; be the number of
new available vehicles from the beginning of step ¢ to the start of time step 7+ 1. A prediction model
& generates the prediction of these information, that is, & = (d;,d;+ 1, - - - ,dt+Tm d—1>Vis e s Vi T, —1)5
and the corresponding probability pg,. We further assume the prediction results for different time
steps are independent to each other.

The essential notations used in this paper are summarized in Table 1.
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TABLE 1: Notations

Variables Description

Z Set of zones for ridesharing service, Z = {zo,21,22,. . .,2n}» Where zg is the hub

S Set of schedules, § = {s1,52,...,5n}, the k-th element of s; is denoted as s’]‘.

T Set of time steps, T ={1,2,...,T}

a; Number of passengers at the start of time step 7, represented by a n x 1 vector

b; Number of available vehicles at the hub at the beginning of time step ¢

d; Number of new passenger within time step ¢

Vs Number of new available vehicles in time step ¢

£ Prediction result for future demand and supply in time step ¢,

' & = (di,dis1,- dz+de LV Vit Ty e ooy Vi Tyreg—1)

Tij Travel time for traveling from zone i to zone j

T Travel time to zone s* in the schedule s, Ty = Zf;ll Tigit1

c Profit generated by schedules, denoted as a m x 1 vector ¢ = {c1,¢2,...,¢m}

A Incidence matrix between passengers and schedules. The i-th row, j-th column A;;
denotes the number of passengers heading to zone i served by schedule s

o The deviation threshold of the ridesharing trip

B Compensation for additional waiting for one passenger per time step

Y Capacity of each vehicle.

Problem definition
Before we dive into the dynamic version of the hub-based ridesharing problem (HRP), it is helpful
to introduce the static version first. With the perfect information of new demand d; and supply v; at
each time step ¢, the hub-based ridesharing problem is to find the schedules for all available vehicles
to maximize the profit (saved cost) generated by this service while satisfying the vehicle capacity

and deviation constraints.

This can be formulated as the following integer linear programming

(ILP) with a set of the decision variable x; which is a vector with the length as the size of the
schedule set S. The j-th element of x; represents the number of vehicles assigned to schedule j in

time step 7.

(HRP) max Z [cTx; + B1

X15X25-- ,XT nXl(Ax _a[)]

S.t. A.xt Sa[,t: 1,2,...,T
12;><1Xt Sbt,t: 1,2,...,T
< (l+a)t, i=1,2,...,mj=1,2,....m
n
Zlij <v, j= 1,2,....m
i=1
al+1 :at—l—d,—/\x,,t: 1,2,...,T
bl+1 :bt-l-vt—llxlxt,t: 1,2,...,T
Xt ENm,l': 1,2,...,T

6]

2)
3)
4

(&)

(6)
(7
®)
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where 1, is the n x 1 all-ones vector, N is the set of non-negative integers. The initial
demand a; and supply b; are given. The objective of this ILP consists of two parts: ¢! x; which
is the profit (saved cost) generated by the ridesharing service, and B17 | (Ax; —a;) which denotes
the compensation for additional waiting for passengers. Equation (2) ensures the number of served
passengers does not exceed the actual demand. Equation (3) states one vehicle can only be as-
signed to one schedule. Equation (4) restricts the deviation factor for each trip does not exceed the
deviation threshold. Equation (5) defines the capacity constraints. Finally, Equation (6) and (7)
ensure the numbers of vehicles and passengers are consistent over time.

We recognize three fundamental difficulties in solving the HRP. The first one lies in the
horizon T which can be very large (infinite if we consider the service is 24/7) in real world. As
ILP is known as belonging to NP-complete, it is unlikely that we can get the solution for the full
horizon. The second challenge comes from §, the set of possible schedules. Given the number of
zone n and the vehicle capacity 7, the number of all possible schedules is ZL] n' = % Since the
number of decision variables in each time step is equal to the number of candidate schedules, this
also significantly increases the computational load for solving HRP. The last issue is the absence
of the perfect information of future demand and supply in real practice.

The first challenge can be addressed heuristically with rolling horizon approach, and stud-
ies suggest that close-to-optimal solution can be achieved with the rolling horizon heuristic (23).
Assume we are at time step #y and want to solve the HRP. Instead of maximizing Z,T:,O [cTx; +
B1].., (Ax; — a;)], we solve x;, under the same constraints but with the objective as

o+ Thoriz(m

max Z [T + BT (Ax — ay)] 9)

1=l

Although by no means the solution of (9) is equivalent to the solution of the full horizon
HRP when 19 + Tjorizon < T, we may still obtain a better solution than doing optimization for the
single time step. For the choice of Tj,,;,,,, note a passenger need to be served before waiting for
Tyrofic = |cmax/B | steps in order to have positive benefit, where cyax is the maximum profit can
be obtained among all potential schedules. One can choose Tjorizon > Tprofir to fully exploit the
potential for matching passengers within 7y with future demand.

For the second issue, we propose three strategies to reduce the number of possible schedules
|S|. First note constraints (4) and (5) are independent to the x;, so we can reduce the size of |$| by
pre-calculating the schedules that satisfy (4) and (5). In addition, with the demand g, in each time
step ¢ is given, we can draw the schedules that cover a;,. We further develop a data structure called
hub-mobility tree to reduce the repeated computational efforts for generating the set of candidate
schedules. Thirdly, as the number of candidate schedules can still be too large, a heuristic method
is adopted to drop schedules with little profit. Thereby, we obtain the set of candidate schedules
S for each time step ¢ using the demand vector a;, + Z?;}O d;. We denote the size of S; as my;, the
profit vector as ¢;, and the corresponding incidence matrix as A;.

Finally, to address the uncertainty of future demand and supply, we extend the rolling
horizon HRP to a stochastic setting. we assume we have the prediction of future demand and
supply for Thorizon steps, denote as &,. The stochastic hub-based ridesharing problem is then
defined as follows.
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(SHRP)max cjxi, + By, (A, — any) + E[Q (x5, &) (10)
o
S.t. A)C[O S Ay, (11)
Ly < brg (12)
X1, € N6 (13)
where ét() = (dt07d10+17 s 7dl‘0+Th0r,'zo,,71 »Vigr Vig+15- - - 7Vt0+Thorizon*1)
lO+Thorizon
O(xyy, &) = max Z lefxe+ B (At —ay)] (14)
Ko +1o - Xto+Thorizon  p=go+1
s.t. Apxy < ar,t =to+ 1, .. 10 + Thorizon (15)
l;lrxlxt < bt =to+1,...,00 + Thorizon (16)
ary1 = ar +dy — Mexy 0 =10, - 10 + Thorizon — 1 (17)
bry1 =bi+v — llxl-xtut =10, >80 + Thorizon — 1 (18)
xteNmtat:t0+1>-~7t0+Th0riz0n (19)

Formulation (SHRP) represents a two-stage stochastic integer program. In the first stage
we want to find the x;,, the optimal assignment between vehicles and schedules at time step 79, to
maximize the expected total profit within 73,,;,.,. In the second stage, the optimal benefit together
with the corresponding path is solved for given x;, and &, from the expectation of the recourse
function Q(x;,,&;,). We then solve the SHRP by a sample average approximate (SAA) method,
which derives the expected objective function of the stochastic problem by an average estimation
from a random sample, and then solves sample average approximating problem by deterministic
optimization techniques.

The rest of the section shows the details of the schedule generation and SAA method.

Schedule generation
Hub mobility tree
We first present a special data structure named hub mobility tree that can facilitate the searching
of the possible schedules. The root of the tree is the hub, and the maximal depth is the maximal
capacity of the vehicle. The first level of the tree involves the first delivery zone and the corre-
sponding travel time from the hub, then the second level involves the second delivery zone and the
corresponding travel time from, etc. Each branch keeps growing until it reaches the maximal depth
or the deviation threshold is violated.

Figure 1 shows an toy example of the hub mobility tree. Consider in the current time step,
we observe three from-hub requests ry, 7, r3 with zfl =27, zfz =2, zjg = z3. Then we perform a
top down search to obtain all possible schedules are (zo,z1), (20,22), (20,23), (20,21,22), (20,21,23)5
(z0,22,21), (20,22,23), (20,21,22,23)s (20,22,21,23)-

Although the complexity of building the hub mobility tree in the worst case is O(n?), real
network is usually easy to deal with since the deviation factor is monotonically increasing as more
nodes are inserted, so for each node we may reduce the searching scope significantly by iterating
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Fass
Eaans)

(a) Grid network with 1 hub and (b) Hub mobility tree
4 zones

FIGURE 1: Toy example for hub mobility tree

the corresponding zones of the nodes in the same level and with the same parent. In case the
computational time is too long, we propose a heuristic algorithm which grows the hub mobility
tree in a greedy manner based on the potential of saving travel cost measured by the saved cost and
the deviation factor. In this algorithm, each node N is characterized by seven parameters: its level
N.level, zone N.zone, the travel time to this node N.time, the saving cost to this node N.save, the
parent node N.parent, the child nodes N.child and the potential N.potential.

The algorithm is presented in Algorithm 1. We use a sorted array S to manage all nodes to
search. Since the time complexity of insertion in such data structure is O(log(n)), each iteration
for growing a new node is in O(nlog(n)), which is clearly tractable.

Schedule generation from the hub mobility tree

With the hub-based mobility tree, we extract the candidate schedules for the input demand vector
by the following three steps. First, a top-down search is performed to obtain all candidate schedules
that satisfy those demands. Second, we query duplicate schedules that cover the same group of
passengers and keep the one with the highest saving cost. Finally, we trim the set of candidate
routes by dropping the schedules with little saving which less than a given threshold C. The
detailed algorithm is shown as follows.

The sample average approximation method

The sample average approximate method (SAA) is a general framework for solving stochastic
programs, usually with the prohibitive number of scenarios. For SHRP, SAA proceeds by solving
the following approximated SHRP (ASHRP) problem.

1M :
(ASHRP) max g+ BLT  (Argxey — azy) + i Z Q(xyy, &) (20)
0 i=1
where the constraints are the same as in SHRP, and 6,3), 6,%, ...,&M are the predictions of

possible future demand and supply information that are independently generated from the predic-
tion model.

Although SAA is using 1 ¥, [0 (xy,, &!)] to approximate the true expectation of the sec-
ond stage optimal value E[Q(x;,,&;, )], it has been shown in (24) that under mild conditions by
solving the approximated problem one can obtain an optimal solution to the true problem with
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Algorithm 1 Hub Mobility Tree Generation Algorithm

Input: Z = (29,21,22,---,2x) S€rvice zones, where zg is the hub, the function of travel time 7, the function

of travel cost f, the deviation threshold ¢, the vehicle capacity 7.
Output: The root R of the hub mobility tree.
: R < new Node.
: R.level < 0, R.zone < 79, R.time < 0, R.save < 0, R.parent < —1
: A sorted array of nodes to search S <— empty set
: fori=1,2,...,ndo

N < new Node.

N.level < 1, N.zone < z;, N.time < t(z9,z;), N.save < 0, N.parent <— R, N.potential < oo

Add N to R.child

AddNto S
end for
while S is not empty and not reach the maximal running time do
11 Select the node M € § with the largest potential
12: Set of nodes S;.,, = GROW (M)
13: for N € S,,,, do
14: Insert NV into S based on N.potential,
15: end for
16: end while
17: return R

. function GROW(M)
Sada < empty set
for N gngidare € M .parent.child do

1
2
3
4 Zeandidate <— Neandidate-20M€

S: if Zeandidare! = M. parent.parent .zone Ot Zeangidare == M. parent .zone then
6

7

8

XN R RN

_
e

if M .time + t(M.zone, anndidate) < (1 + OC)I(ZO, anndidate) then
N < new Node.
: N.level <— M.level + 1, N.zone < Zeandidare» N-time <— M .time + t(M.zone, Zcandidate )
N.save < M .save + f(z()yzcandidate) - f(M.ZOl’lé, anndidate)y N.parent < M

9: if (N.time —t(z0,N.zone) — 1) # 0 then
10: N.potential <— N.save/(N .time —t(zo,N.zone) — 1)
11 else
12: N.potential < o
13: end if
14: Add N to M.child
15: if N.level < 7y then
16: Add N to Squa
17: end if
18: end if
19: end if
20: end for

21: return S,y
22: end function
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Algorithm 2 Schedule Generation Algorithm

Input: The root R of the hub mobility tree, demand vector a, and the minimum saving C
Output: The set of candidate schedules §, profit vector ¢, incidence matrix between passengers and sched-
ules A
1: § < empty list, ¢ < empty list, A <— empty list
2: for Node N € R.child do

3: new schedule s <— empty list, new incidence vector A = 0,,1.
4: Add N.zoneto s
5: A[N .zone] <— A[N.zone] + 1
6: if A[N.zone| < a[N.zone] then
7: if N.save > C then
8: Add s to S, add N.save to ¢, add A to A
9: end if
10: Query(N,s,A,a)
11: end if
12: end for

13: function QUERY(M, s, A, a)
14: for Node N € M.child do

15: Add N.zoneto s

16: A[N .zone| <— A[N.zone] + 1

17: if A[N.zone| < a[N.zone] then

18: if N.save > C then

19: Add s to S, add N.save to ¢, add A to A
20: end if

21: Query(N,s,A,a)

22: end if

23: end for

24: end function
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probability approaching one exponentially fast as the sample size is increased. These conditions
are that (1) the set of feasible solutions in the first stage is finite, (2) the recourse function is mea-
surable, that is, E[Q(x;,,&,)] is finite and (3) the distribution of étg has a finite support which
means 6,‘0 has finite number of possible realizations. For SHRP, the first condition clearly holds
as the number of passengers and schedules in the current time step is finite. The second and third
conditions always hold in case the number of passengers in future time steps d; and the length of
the horizon 7}, are finite.

ASHRP is a deterministic ILP and can be solved directly by commercial integer program-
ming solvers. However, with the number of scenarios M gets higher, the computational time will
increase exponentially so this type of methods is doomed to fail. To address this issue here we
introduce the dual decomposition technique proposed in (25). The basic ideal of this method is to
relax some of the constraints to decompose the original problem into several subproblems. Note
the ASHRP is equivalent to solving

zp=  max {MZ[chtﬁBlnxl(Amxto ary) + O, §0)] 1 xy <xp < <yl <

1
xto 7xt0 I8 7x§g 1=

21

where the above constraints ensure that xt = xto = xM and xfo also need to satisfy the
same constraints of x;, in SHRP. By relaxing the constraints shown in (21) we can solve the above
problem by solving single scenario and them combine all scenarios together. Let A be the vector of
Lagrangian multipliers and a proper matrix H' to describe the coefficients of xfo in the constraints,
we solve

Di(A) = max{ch,0 +[31nxl(A,0xfO —ay,)+ Q(xfo, éti)) +7l,THix£0 :A >0} (22)
¥
| M
D(A) = M ZD,()L) (23)

The Lagrangian dual of ASHRP can be written as

LD = rr}LinD(l) (24)

where 2 can be updated by its sub-gradient in D(1) which is dD(A) = - ¥Y¥ | H ’x,o
A well-established result (26) is that the optimal value of the Lagrangian dual, 27 p- 18 the
upper bound of the optimal value of original problem zj, since z7 , gives the optimal value over the
convex hull of the feasible region. Therefore for some choice of A with the corresponding solution
of D(A) satisfies the constraints in the original problem, the solution is also the optimal solution
of the original problem, and A is the optimal solution of the Lagrangian dual problem. Based on
this result, a branch and bound algorithm is proposed in (25) and we implement that algorithm for
solving ASHRP. The detailed algorithm is shown as follows.
Step 1: Set the lower bound and upper bound of x;, to ensure for every element xt((f ), A,(f )x,(f )
does not violate the demand constraint (Constraint (11)); Let P; be the problem (1),
add it to the set of problems ?; Set the current known upper bound to be o and
lower bound to be —oo.
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Step 2: Select the problem P; € ¢ with the highest upper bound, solve its Lagrangian re-
laxation (Equation (24)).

Step 3: Set the solved objective value to be the upper bound of problem P, if P,’s upper
bound is lower than the current known lower bound, then (stop exploring it and)
go to Step 2.

Step 4: Take the average of all scenario solutions xﬁo, round each element by the order of
corresponding profit cﬁ) and ensure the demand constraint is not violated, that is,
for each element Xﬁ), its rounded result iﬁ) = min (rounded value of Xﬁ), the maximal
value that fit the demand constraint).

Step 5: Solve the optimal value of Ty, + B1T_ | (Ayfi, — ar,) + 25 Loty Q% &l) to get
the lower bound of problem P, if the lower bound of P; is greater than the current
known lower bound, then let the current lower bound be P’s lower bound and
remove all problem in ? with upper bound lower than current lower bound.

Step 6: Select the component of xg) with the largest variance among the multi-scenario’s
solutions for P,. Add two new problems to 2 obtained from P, by adding the con-
straints xfo < L)?f‘oj and xfo > L)?f‘o + 1]. Let the upper bound of new problems be the
upper bound of P;.

Step 7: Set the current known upper bound to be the maximal upper bound of all problems
in 2. If P = 0 or the difference between current known upper bound and current
known lower bound is less than a given threshold. Stop the algorithm and output
X1, as the optimal solution.

Note for solving one instance of ASHRP using the above algorithm, the computational time
is polynomial to three factors: the time of solving single scenario subproblem D;(4), the number
of scenarios and the number of iterations for updating A. In practice, one can solve different
subproblems in parallel, and test a group of randomly generated Lagrangian multipliers also in
parallel, then choose the one that returns the maximal objective value to approximate the original
solution. Thereby, the time consumption for solving one problem in the above algorithm can be
brought down to the same level of solving single scenario subproblem and the sub-optimal choice
of the Lagrangian multiplier will just lead to a slightly worse upper bound.

After solving one instance of ASHRP, the remaining problem is to evaluate the quality of
the solution. This can be done by testing the solution on another group of scenarios (usually with a
larger size than for solving the solution) generated independently. And one framework to improve
the solution is to solve ASHRP for multiple scenario sets, evaluate each of them and select the best
one. Nevertheless, this will increase the computational cost. Since solving one instance of ASHRP
is already challenging, here we only test the performance of one instance of ASHRP. Interested
readers are referred to (24) to find more details.

NUMERICAL EXPERIMENT

Experiment settings

We demonstrate the effectiveness of our method on a real scale problem by simulating the hub-
based ridehsharing service at JFK airport in NYC. To quantify the modeling parameters, we collect
information from publicly available datasets including road information, geographical subdivisions
of the city, trip records of taxi and for-hail vehicle (FHV) associated with each taxi zone in March
2019 during which there is no reported exceptional event.
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FIGURE 2: Overview of NYC data for numerical experiment

As shown in Figure 2 (a), we take the entire NYC except for the State Island (due to the low
level of demand) as our study area, and consider serving all demand with ridesharing algorithm
to investigate the potential of hub-based ridesharing services. Since for FHV trips the passenger
number is not provided in the dataset, we randomly assign the passenger number to FHV trips
based on the passenger number distribution for taxi trips. Then we aggregate the demand by three
different time steps (30s, 60s and 120s) to obtain the mean and variance of demand for each OD
pair within each time step. Figure 2 (b) shows the average number of passengers for each time
step and the shaded area represents the standard deviation observed in the historical data. For
supply information, we use the mean and variance of requests served per time step as the mean
and variance of the corresponding vehicle flows. We select three time periods to present AM peak
(7:30-7:40), off-peak (12:30-12:40), and evening peak(21:30-21:40) as our study period to perform
numerical experiments. In the simulation, the demand and supply for each time step d; and v; are
draw from the normal distributions based on the mean and variance extracted from historical data,
then the value is rounded and truncated (to [0, [mean + 3 * variancel]) to get valid inputs in the
simulation.

We use the travel distance as the profit function between different zones; In other words,
we consider each element of profit matrix ¢ as the saving of travel distance for each candidate
schedule. And we set the trade-off coefficient between saved travel distance and additional waiting
of one passenger 8 as 2km per minute. The vehicle capacity 7 is set to 3.

We implement the branch and bound algorithm for solving ASHRP in Python 3.7, which
calls CPLEX 12.5.1 in parallel to obtain the solution for each scenario. The numerical experiments
are performed on a workstation with 16 Intel 2.90 GHz Xeon E3-2690 CPUs to take advantage of
parallelism. After some preliminary tests, we select the number of scenarios M =5, Tjyrizon = 5,5
and 3 respectively for time step length At = 30s, 60s and 120s. The threshold for stopping criteria
is 2% for the overall problem and for each subproblem solved by CPLEX, the minimal gap is set
to 1% to ensure one instance of ASHRP can be solved within one time step in most of the case.
We also set the maximum number of problems to explore in the branch and bound algorithm as 50
to ensure the result will be returned in reasonable time.
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FIGURE 3: Ridesharing profits (saved vehicle distance) under different approaches and parame-
ters

Besides our proposed method, we consider two other approaches as the baselines in this
study.The first one is the myopic ridesharing algorithm which maximizes the profit within a sin-
gle time step; The second one is the deterministic rolling horizon algorithm in which only one
scenario represented by the mean of the future demand and supply is considered. Then for each
method with each set of parameters, we calculate the ridesharing profits under four random seeds
(0,10, 100, 1000, 10000) and take the average as the final performance.

Performance comparison

Figure 3 shows the performance of different ridesharing approaches, the errorbars represent the
standard deviation of the results generated by using different random seeds. It can be observed
that ASHRP outperforms both the myopic ridesharing and deterministic rolling horizon approach
in all cases. For At = 30s, ASHRP outperforms the myopic ridesharing by 490 km (22%) in AM
peak, 469 km (37%) in off-peak and 1132 km (25%) in PM peak; ASHRP obtains more savings
than deterministic rolling horizon by 431 km (19%) in AM peak, 431 km (33%) and 1073 km
(22%). We also observe that ASHPR has more stable gains. Similar statements hold for Az = 60s,
except in off-peak the ASHRP savings have relatively high variance. The performance of myopic
and deterministic methods also becomes better when compared with the corresponding results for
At = 30s. For A = 120s, the performance of baseline methods become even better given more
information is revealed for each step, while the saving of ASHRP decreases due to the increased
problem complexity, especially for PM peak, where the level of demand is the highest and the
ASHREP fails to reach the optimality condition before the maximum iteration reached. It is worth
to noting that ASHRP still has better performance with Ar = 30s than the deterministic rolling
horizon method with A, = 120s. Since in real world application, small At is preferred to support
quick response to the users’ request, these results sufficiently demonstrate the effectiveness of
ASHRP.

To gain further insights on the differences among the three methods, we visualize the ac-
cumulated savings and vehicle occupancy (passengers per vehicle trip) under different choices of
model parameters. Figure 4 shows the accumulated savings under different parameters for dif-
ferent time periods. It can be observed that ASHRP results have relatively low savings in the
beginning. Then after certain time steps, the performance of ASHRP surpasses the other methods.
For At = 120s, given the total number of the time steps is low, we hardly can observe this phe-
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FIGURE 4: Accumulative profit (gain in savings) under different parameters

nomenon. This also explains why the performance of ASHRP would decrease for large Az in our
case study.

Figure 5 shows the average vehicle occupancy of vehicle trips per time step in different
cases. It can be observed that ASHRP results in the highest vehicle occupancy in nearly all cases.
The results of the deterministic rolling horizon method have higher vehicle occupancy than the
myopic algorithm’s, but the difference is much smaller than the gap between ASHRP and other
methods. This suggests that although the deterministic rolling horizon method can capture some
potential matching between exist passengers and future demand, it not as competitive as ASHRP
which exploits more potential ridesharing schedules based on the probability.

Computational time

We record the total CPU time spent on solving every single time step’s ASHRP problem from
CPLEX Python API and summarize the statistics of the CPU time for each case in Figure 6. Note
we solve each subproblem in parallel, so the real time cost for solving each ASHRP instance is
smaller than the total CPU time. Here we still use the CPU time because it is directly generated by
commercial solver while other timers (like Python runtime) can be hugely influenced by detailed
implementations. From Figure 6, we first observe that a few records have extremely high CPU
times, which heavily inflate the mean for solving each ASHRP. This suggests an early stop mecha-
nism is required for adopting this algorithm in practice. Besides this, we also observe that the CPU
time surges as the time step increases from 60s to 120s. The underlying reason is that the number
of schedules increases exponentially as more passengers are considered into a single time step,
and so as the time cost for solving single scenario subproblems. To our surprise, when At = 30s,
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FIGURE 5: Vehicle occupancy under different parameters

the computational cost for solving the off-peak problem is higher than solving the problem of AM
peak and PM peak. This might be caused by the low objective value, which leads to a more strict
threshold for the solution algorithm to converge.

CONCLUSION

In this study, we develop a dynamic ridesharing algorithm tailored to transportation hubs. In the
problem formulation, we consider both the future effect and the stochastic of the future state of de-
mand/supply. Based on the theory of stochastic integer program, we propose a solution algorithm
based on scenario decomposition using Lagrangian relaxation. To demonstrate the effectiveness
of the proposed approach, we use NYC taxi+FHV data and Google Map API to obtain the road
traffic information, then simulate the ridesharing services at JFK airport. The numerical results
confirmed that our approach consistently outperform the myopic solution and the rolling horizon
solution with point-wise estimation. For future studies, the solution algorithm can be further im-
proved by introducing early stop mechanisms and the proposed approach can be further validated
with more comprehensive configurations.
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