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ABSTRACT1
Transportation hubs in major cities generate a significant amount of trips by taxis and for-hail2
vehicles (FHV), with many of the trips sharing similar destinations. This suggests promising op-3
portunities to leverage the collective travel needs with dedicated ridesharing solutions to reduce4
the externalities of excessive traffic at transportation hubs. In this study, we develop a novel dy-5
namic ridesharing approach to serve trips from the transportation hub by considering (1) demand6
(new passengers) and supply (newly available vehicles) in the near future and (2) the uncertainty7
of future predictions. Our approach consists of two stages. In the first stage, we develop a data8
structure called hub mobility tree to generate potential combinations of shareable trips as candi-9
date schedules efficiently. Then the generated schedules are used in the second stage to formulate10
the stochastic hub-based ridesharing problem (SHRP), which is a stochastic integer programming11
problem with the objective to maximize the total expected ridesharing profit over time. Due to the12
prohibitive number of shareable trips, we then approximately solve SHRP by the sample average13
approximate method (SAA), and a dual Lagrangian technique is implemented to further improve14
the scalability of the solution approach. We demonstrate the performances of the proposed method15
by simulating the ridesharing service at JFK airport using NYC taxi and FHV data. The results in-16
dicate that the proposed method outperforms the myopic ridesharing (maximize profit for a single17
time step) and the rolling horizon method with point estimation of future demand and supply.18
Keywords:Dynamic ridesharing; Transportation hubs; Rolling horizon; Stochastic integer program19
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INTRODUCTION1
Several inefficiencies in urban transportation systems exist, including the low usage rate of public2
transit modes, the excessive private vehicle ownership and the relatively low vehicle occupancy (1).3
These lead to wasted vehicle capacity, more substantial congestion and emissions, and unneces-4
sary energy consumption (2, 3). Among different places in urban space, transportation hubs such5
as railway terminals and airports suffer most from these inefficiencies (4), since they bring together6
many commuters in short periods and fail to leverage the collective behaviors to efficiently serve7
people with similar itineraries and time schedules. According to the NYC 2018 TLC factbook, the8
airports (JFK and LGA) account for more than 30,000 daily pickups of taxis and FHVs, while hav-9
ing the lowest level (0-10%) of the share of shared rides among all taxi zones (5). With the number10
of visitors increase in transportation hubs and so as the emissions and other negative effects, it is11
important to develop a solution to reduce those inefficiencies.12

One of the promising solutions to achieve this goal is to promote ridesharing service (6) at13
the transportation hub, which can significantly increase vehicle occupancy (7) and therefore reduce14
the vehicle mileage and alleviate the traffic congestion surrounding the hub. Here we specifically15
consider the ridesharing service provided by a ride-sourcing platform (like Uber or Lyft) as it16
is close to the real-world scenario. In this service, passengers at transportation hubs make trip17
requests in real-time, then the platform combines different requests into different schedules and18
assigns these schedules to available vehicles.19

The effectiveness of ridesharing is governed by two factors. The first factor is the passen-20
gers’ willingness to share their rides. And the second one is the quality of the vehicle dispatching21
and passenger assignment strategies. To increase the number of ridesharing users, current practice22
is to provide a discount for using ridesharing service (8, 9). Then with the ridesharing users are23
given, the assignment and dispatching algorithms will decide the schedules of vehicles to serve24
those passengers, and the platform can make profits by matching more passengers into single rides25
to save the payment to drivers. Note with more efficient ridesharing algorithms, additional profit26
can be made, and this profit can help to increase the discount level. This creates a positive feedback27
to attract more users and further promote the ridesharing service. Therefore, this study focuses on28
ridesharing algorithms for vehicle dispatching and passsenger assignments.29

Developing a ridesharing algorithm that optimally assigns passengers to drivers has long30
been recognized as a challenging problem (10). Even with the whole set of drivers and passengers31
revealed, this problem is recognized as a variant of travel salesman problem with a time window,32
which is in NP-complete (11), let alone in real practice the exact future information is not available.33
Most of exist work (11–17) therefore developed algorithms to optimally assign ridesharing trips34
to serve passengers within the current time step. Because this type of algorithms only consider35
one time step, the long term optimal of ridesharing schedules cannot be guaranteed. Recent stud-36
ies started to use future prediction of travel demand in the routing of ridesharing problem (18, 19)37
and management of vehicle fleets (20–22). Yet, few studies consider the predictions of demand and38
supply on solving ridesharing scheduling in the system-level. In addition, how to conduct rideshar-39
ing optimally in the face of uncertainty, where we do not have accurate point estimation of future40
demand and supply, has not been studied. These leave a gap for developing a ridesharing algorithm41
which considers the future (demand and supply) information with a probabilistic distribution for42
future supply and demand are available.43

In addition to the gap, there are several distinct features of the passenger trips that can44
facilitate the ridesharing framework with future prediction information. First of all, trips from a45
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transportation hub share the same trip origin: the hub itself. Therefore, the complexity of finding1
shareable rides can be hugely reduced. Second, the arrival of passengers at transportation hubs2
depends highly on the timetable (of trains and flights) at the hubs, thereby leading to more pre-3
dictable demand, which makes it more likely to have a reliable prediction model for optimizing4
ridesharing scheduling.5

In this work, we develop a hub-based ridesharing approach to facilitate the ridesharing ser-6
vice within transportation hubs. We first design a data structure called hub mobility tree to facilitate7
the generation of candidate schedules of sharing rides. Based on the generated schedules, we for-8
mulate a stochastic optimization problem with rolling horizons which considers the demand (new9
passengers) and supply (newly available vehicles) in the near future and the stochastic nature of10
future predictions. To solve this problem, we adopt the framework of the sample average approxi-11
mate method (SAA) and solve the Lagrangian dual of sampled scenarios to improve the scalability.12
Finally, we valid the performances of the proposed approach by simulating the ridesharing service13
in JFK airport using the real world taxi+FHV operational data in NYC, 2019.14

The rest of the paper is structured as follows. In the next section, we formally define the15
hub-based ridesharing problem and propose the solution algorithm based on rolling-horizon and16
stochastic programming. In section three, we compared our method to the myopic benchmarks17
using New York City’s (NYC) taxi and FHV data to demonstrate the effectiveness of our method.18
Finally, in section four, we summarize this work and discuss the next steps.19

METHODOLOGY20
In this section we design a real-time ridesharing mechanism for transportation hubs. For each time21
step t, we match the passengers and the available vehicles at the hub based on their information22
and the prediction of future demand and supply. For the sake of descriptive simplicity, we consider23
the case of one hub in the rest of this section.24

Assumption25
We make the following assumptions to reasonably simplify the problem.26

1. The first assumption is on the choice behavior of ridesharing trips. For each person,27
we assume his/her trip deviation, measured by the difference between the travel time in28
shared ride and the travel time in the directed trip, is less than a threshold, otherwise the29
direct trip is preferred.30

2. We consider the zonal-level ridesharing and assume the trip destinations are drawn from31
a finite set of zones. In real world, each zone can be a partition of the network or other32
divisions of urban space. This assumption allows us to consider finite combinations of33
rides.34

3. We also assume the traffic condition is stable so we can pre-calculate the feasible combi-35
nations of the shared rides. This can be relaxed to the statement that the traffic condition36
is stable for a certain time period (e.g., one hour) and consider multiple time periods.37

4. We consider the number of available vehicles is independent to the ridesharing model.38
This allows us to model the vehicle supply independently with the ridesharing assign-39
ments. However, in real world, as the ridesharing generally using less vehicles to serve40
the same level of demand, less vehicles will be attracted to the hub. This can be im-41
proved by using real-time vehicle information to predict the number of newly available42
vehicles so we can still get good estimation despite the ridesharing decisions.43
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5. Last but not the least, a short-term prediction model is assumed to be available for travel1
demand and vehicle supply at the hub. The output of this model will be the number of2
new passengers heading toward each zone, the number of newly available vehicles and3
the corresponding probability.4

Definitions and Notations5
This section describes some important concepts and variables in formatting the hub-based rideshar-6
ing problem.7

Definition 3.1 (Zone). A zone z characterized by its zone ID is a spatial unit for service pickups8
and drop-offs. The travel time between zone i and zone j is represented as τi j, and the travel cost9
that corresponds to the optimization objective is denoted as fi j. We assume the travel time satisfies10
triangular inequality, that is, τi j ≤ τik + τk j.11

Definition 3.2 (Schedule). A schedule s consists of an ordered sequence of zone ID to indicate the12
service order. For example, s j = (0,1,1,2,3) means the vehicle picks up three passengers and then13
delivers them with the order z1→ z2→ z3. The number of passengers heading to zone i served by14
schedules s j is denoted as λi j. For this example, we have λ1 j = 2, λ2 j = 1. We denote the k-th15
element in s j as sk

j. The travel time from the hub to sk
j as τ

s j

sk
j
= ∑

k−1
i=1 τsi

js
i+1
j

, and the profit generated16

by this schedule as g j. Here we consider the profit (saved cost) generated by this schedule as17

c j = ∑
|s j|−1
i=1 ( f0si+1

j
− fsi

js
i+1
j
).18

Definition 3.3 (Deviation threshold). A deviation threshold for each passenger is defined as the19
maximal additional travel time that one can accept for switching from the direct trip to a shared20
ride, that is, τs

i ≤ (1+α)τ0i. We call the (τs
i − τ0i)/τ0i as the deviation factor. In practice, the21

deviation threshold α can be assumed to be constant or mined from historical orders, and can be22
extended to more inclusive functions based on passengers’ behaviors.23

Definition 3.4 (Prediction model). Let dt be the number of new passengers represented by a n×124
vector with the i-th element be the number of passengers heading to zone i and vt be the number of25
new available vehicles from the beginning of step t to the start of time step t+1. A prediction model26
ξ generates the prediction of these information, that is, ξt =(dt ,dt+1, . . . ,dt+Tpred−1,vt , . . . ,vt+Tpred−1),27
and the corresponding probability pξt . We further assume the prediction results for different time28
steps are independent to each other.29

The essential notations used in this paper are summarized in Table 1.30
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TABLE 1: Notations

Variables Description
Z Set of zones for ridesharing service, Z = {z0,z1,z2, . . . ,zn}, where z0 is the hub
S Set of schedules, S = {s1,s2, . . . ,sm}, the k-th element of s j is denoted as sk

j
T Set of time steps, T = {1,2, . . . ,T}
at Number of passengers at the start of time step t, represented by a n×1 vector
bt Number of available vehicles at the hub at the beginning of time step t
dt Number of new passenger within time step t
vt Number of new available vehicles in time step t

ξt
Prediction result for future demand and supply in time step t,

ξt = (dt ,dt+1, . . . ,dt+Tpred−1,vt ,vt+1, . . . ,vt+Tpred−1)

τi j Travel time for traveling from zone i to zone j
τs

sk Travel time to zone sk in the schedule s, τs
sk = ∑

k−1
i=1 τsisi+1

c Profit generated by schedules, denoted as a m×1 vector c = {c1,c2, . . . ,cm}

Λ
Incidence matrix between passengers and schedules. The i-th row, j-th column λi j

denotes the number of passengers heading to zone i served by schedule s j
α The deviation threshold of the ridesharing trip
β Compensation for additional waiting for one passenger per time step
γ Capacity of each vehicle.

Problem definition1
Before we dive into the dynamic version of the hub-based ridesharing problem (HRP), it is helpful2
to introduce the static version first. With the perfect information of new demand dt and supply vt at3
each time step t, the hub-based ridesharing problem is to find the schedules for all available vehicles4
to maximize the profit (saved cost) generated by this service while satisfying the vehicle capacity5
and deviation constraints. This can be formulated as the following integer linear programming6
(ILP) with a set of the decision variable xt which is a vector with the length as the size of the7
schedule set S . The j-th element of xt represents the number of vehicles assigned to schedule j in8
time step t.9

(HRP) max
x1,x2,...,xT

T

∑
t=1

[cᵀxt +β1ᵀn×1(Λxt−at)] (1)

s.t. Λxt ≤ at , t = 1,2, . . . ,T (2)
1ᵀn×1xt ≤ bt , t = 1,2, . . . ,T (3)

τ
s j
i ≤ (1+α)τ0i, i = 1,2, . . . ,n; j = 1,2, . . . ,m (4)
n

∑
i=1

λi j ≤ γ, j = 1,2, . . . ,m (5)

at+1 = at +dt−Λxt , t = 1,2, . . . ,T (6)
bt+1 = bt + vt−1ᵀn×1xt , t = 1,2, . . . ,T (7)

xt ∈ Nm, t = 1,2, . . . ,T (8)
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where 1n×1 is the n× 1 all-ones vector, N is the set of non-negative integers. The initial1
demand a1 and supply b1 are given. The objective of this ILP consists of two parts: cT xt which2
is the profit (saved cost) generated by the ridesharing service, and β1ᵀn×1(Λxt −at) which denotes3
the compensation for additional waiting for passengers. Equation (2) ensures the number of served4
passengers does not exceed the actual demand. Equation (3) states one vehicle can only be as-5
signed to one schedule. Equation (4) restricts the deviation factor for each trip does not exceed the6
deviation threshold. Equation (5) defines the capacity constraints. Finally, Equation (6) and (7)7
ensure the numbers of vehicles and passengers are consistent over time.8

We recognize three fundamental difficulties in solving the HRP. The first one lies in the9
horizon T which can be very large (infinite if we consider the service is 24/7) in real world. As10
ILP is known as belonging to NP-complete, it is unlikely that we can get the solution for the full11
horizon. The second challenge comes from S , the set of possible schedules. Given the number of12
zone n and the vehicle capacity γ , the number of all possible schedules is ∑

γ

i=1 ni = nγ+1

n−1 . Since the13
number of decision variables in each time step is equal to the number of candidate schedules, this14
also significantly increases the computational load for solving HRP. The last issue is the absence15
of the perfect information of future demand and supply in real practice.16

The first challenge can be addressed heuristically with rolling horizon approach, and stud-
ies suggest that close-to-optimal solution can be achieved with the rolling horizon heuristic (23).
Assume we are at time step t0 and want to solve the HRP. Instead of maximizing ∑

T
t=t0[c

ᵀxt +
β1ᵀn×1(Λxt−at)], we solve xt0 under the same constraints but with the objective as

max
t0+Thorizon

∑
t=t0

[cᵀxt +β1ᵀn×1(Λxt−at)] (9)

Although by no means the solution of (9) is equivalent to the solution of the full horizon17
HRP when t0 +Thorizon < T , we may still obtain a better solution than doing optimization for the18
single time step. For the choice of Thorizon, note a passenger need to be served before waiting for19
Tpro f it = bcmax/βc steps in order to have positive benefit, where cmax is the maximum profit can20
be obtained among all potential schedules. One can choose Thorizon > Tpro f it to fully exploit the21
potential for matching passengers within t0 with future demand.22

For the second issue, we propose three strategies to reduce the number of possible schedules23
|S |. First note constraints (4) and (5) are independent to the xt , so we can reduce the size of |S | by24
pre-calculating the schedules that satisfy (4) and (5). In addition, with the demand at in each time25
step t is given, we can draw the schedules that cover at . We further develop a data structure called26
hub-mobility tree to reduce the repeated computational efforts for generating the set of candidate27
schedules. Thirdly, as the number of candidate schedules can still be too large, a heuristic method28
is adopted to drop schedules with little profit. Thereby, we obtain the set of candidate schedules29
St for each time step t using the demand vector at0 +∑

t−1
i=t0 di. We denote the size of St as mt , the30

profit vector as ct , and the corresponding incidence matrix as Λt .31
Finally, to address the uncertainty of future demand and supply, we extend the rolling32

horizon HRP to a stochastic setting. we assume we have the prediction of future demand and33
supply for Thorizon steps, denote as ξt0 . The stochastic hub-based ridesharing problem is then34
defined as follows.35
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(SHRP)max
xt0

cᵀt0xt0 +β1ᵀn×1(Λt0xt0−at0)+E[Q(xt0,ξt0)] (10)

s.t. Λxt0 ≤ at0 (11)
1ᵀn×1xt0 ≤ bt0 (12)

xt0 ∈ Nmt0 (13)

where ξt0 = (dt0,dt0+1, . . . ,dt0+Thorizon−1,vt0 ,vt0+1, . . . ,vt0+Thorizon−1)1

Q(xt0 ,ξt0) = max
xt0+1,...,xt0+Thorizon

t0+Thorizon

∑
t=t0+1

[cᵀt xt +β1ᵀn×1(Λtxt−at)] (14)

s.t. Λtxt ≤ at , t = t0 +1, . . . , t0 +Thorizon (15)
1ᵀn×1xt ≤ bt , t = t0 +1, . . . , t0 +Thorizon (16)

at+1 = at +dt−Λtxt , t = t0, . . . , t0 +Thorizon−1 (17)
bt+1 = bt + vt−1ᵀn×1xt , t = t0, . . . , t0 +Thorizon−1 (18)

xt ∈ Nmt , t = t0 +1, . . . , t0 +Thorizon (19)

Formulation (SHRP) represents a two-stage stochastic integer program. In the first stage2
we want to find the xt0 , the optimal assignment between vehicles and schedules at time step t0, to3
maximize the expected total profit within Thorizon. In the second stage, the optimal benefit together4
with the corresponding path is solved for given xt0 and ξt0 from the expectation of the recourse5
function Q(xt0,ξt0). We then solve the SHRP by a sample average approximate (SAA) method,6
which derives the expected objective function of the stochastic problem by an average estimation7
from a random sample, and then solves sample average approximating problem by deterministic8
optimization techniques.9

The rest of the section shows the details of the schedule generation and SAA method.10

Schedule generation11
Hub mobility tree12
We first present a special data structure named hub mobility tree that can facilitate the searching13
of the possible schedules. The root of the tree is the hub, and the maximal depth is the maximal14
capacity of the vehicle. The first level of the tree involves the first delivery zone and the corre-15
sponding travel time from the hub, then the second level involves the second delivery zone and the16
corresponding travel time from, etc. Each branch keeps growing until it reaches the maximal depth17
or the deviation threshold is violated.18

Figure 1 shows an toy example of the hub mobility tree. Consider in the current time step,19
we observe three from-hub requests r1,r2,r3 with zd

r1
= z1, zd

r2
= z2 , zd

r3
= z3. Then we perform a20

top down search to obtain all possible schedules are (z0,z1), (z0,z2), (z0,z3), (z0,z1,z2), (z0,z1,z3),21
(z0,z2,z1), (z0,z2,z3), (z0,z1,z2,z3), (z0,z2,z1,z3).22

Although the complexity of building the hub mobility tree in the worst case is O(nγ), real23
network is usually easy to deal with since the deviation factor is monotonically increasing as more24
nodes are inserted, so for each node we may reduce the searching scope significantly by iterating25
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(a) Grid network with 1 hub and
4 zones

(b) Hub mobility tree

FIGURE 1: Toy example for hub mobility tree

the corresponding zones of the nodes in the same level and with the same parent. In case the1
computational time is too long, we propose a heuristic algorithm which grows the hub mobility2
tree in a greedy manner based on the potential of saving travel cost measured by the saved cost and3
the deviation factor. In this algorithm, each node N is characterized by seven parameters: its level4
N.level, zone N.zone, the travel time to this node N.time, the saving cost to this node N.save, the5
parent node N.parent, the child nodes N.child and the potential N.potential.6

The algorithm is presented in Algorithm 1. We use a sorted array S to manage all nodes to7
search. Since the time complexity of insertion in such data structure is O(log(n)), each iteration8
for growing a new node is in O(nlog(n)), which is clearly tractable.9

Schedule generation from the hub mobility tree10
With the hub-based mobility tree, we extract the candidate schedules for the input demand vector11
by the following three steps. First, a top-down search is performed to obtain all candidate schedules12
that satisfy those demands. Second, we query duplicate schedules that cover the same group of13
passengers and keep the one with the highest saving cost. Finally, we trim the set of candidate14
routes by dropping the schedules with little saving which less than a given threshold C. The15
detailed algorithm is shown as follows.16

The sample average approximation method17
The sample average approximate method (SAA) is a general framework for solving stochastic
programs, usually with the prohibitive number of scenarios. For SHRP, SAA proceeds by solving
the following approximated SHRP (ASHRP) problem.

(ASHRP)max
xt0

cᵀxt0 +β1ᵀn×1(Λt0xt0−at0)+
1
M

M

∑
i=1

Q(xt0,ξ
i
t0) (20)

where the constraints are the same as in SHRP, and ξ 1
t0,ξ

2
t0, . . . ,ξ

M
t0 are the predictions of18

possible future demand and supply information that are independently generated from the predic-19
tion model.20

Although SAA is using 1
M ∑

M
i=1[Q(xt0,ξ

i
t0)] to approximate the true expectation of the sec-21

ond stage optimal value E[Q(xt0,ξt0)], it has been shown in (24) that under mild conditions by22
solving the approximated problem one can obtain an optimal solution to the true problem with23
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Algorithm 1 Hub Mobility Tree Generation Algorithm
Input: Z = (z0,z1,z2, . . . ,zn) service zones, where z0 is the hub, the function of travel time t, the function

of travel cost f , the deviation threshold α , the vehicle capacity γ .
Output: The root R of the hub mobility tree.

1: R← new Node.
2: R.level← 0, R.zone← z0, R.time← 0, R.save← 0, R.parent←−1
3: A sorted array of nodes to search S← empty set
4: for i=1,2,...,n do
5: N← new Node.
6: N.level← 1, N.zone← zi, N.time← t(z0,zi), N.save← 0, N.parent← R, N.potential← ∞

7: Add N to R.child
8: Add N to S
9: end for

10: while S is not empty and not reach the maximal running time do
11: Select the node M ∈ S with the largest potential
12: Set of nodes Snew = GROW (M)
13: for N ∈ Snew do
14: Insert N into S based on N.potential,
15: end for
16: end while
17: return R

1: function GROW(M)
2: Sadd ← empty set
3: for Ncandidate ∈M.parent.child do
4: zcandidate← Ncandidate.zone
5: if zcandidate! = M.parent.parent.zone or zcandidate == M.parent.zone then
6: if M.time+ t(M.zone,zcandidate)< (1+α)t(z0,zcandidate) then
7: N← new Node.
8: N.level ← M.level + 1, N.zone ← zcandidate, N.time ← M.time + t(M.zone,zcandidate),

N.save←M.save+ f (z0,zcandidate)− f (M.zone,zcandidate), N.parent←M
9: if (N.time− t(z0,N.zone)−1) 6= 0 then

10: N.potential← N.save/(N.time− t(z0,N.zone)−1)
11: else
12: N.potential← ∞

13: end if
14: Add N to M.child
15: if N.level < γ then
16: Add N to Sadd
17: end if
18: end if
19: end if
20: end for
21: return Sadd
22: end function
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Algorithm 2 Schedule Generation Algorithm
Input: The root R of the hub mobility tree, demand vector a, and the minimum saving C
Output: The set of candidate schedules S , profit vector c, incidence matrix between passengers and sched-

ules Λ

1: S ← empty list, c← empty list, Λ← empty list
2: for Node N ∈ R.child do
3: new schedule s← empty list, new incidence vector λ = 0n×1.
4: Add N.zone to s
5: λ [N.zone]← λ [N.zone]+1
6: if λ [N.zone]≤ a[N.zone] then
7: if N.save≥C then
8: Add s to S , add N.save to c, add λ to Λ

9: end if
10: Query(N,s,λ ,a)
11: end if
12: end for
13: function QUERY(M, s, λ , a)
14: for Node N ∈M.child do
15: Add N.zone to s
16: λ [N.zone]← λ [N.zone]+1
17: if λ [N.zone]≤ a[N.zone] then
18: if N.save≥C then
19: Add s to S , add N.save to c, add λ to Λ

20: end if
21: Query(N,s,λ ,a)
22: end if
23: end for
24: end function
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probability approaching one exponentially fast as the sample size is increased. These conditions1
are that (1) the set of feasible solutions in the first stage is finite, (2) the recourse function is mea-2
surable, that is, E[Q(xt0,ξt0)] is finite and (3) the distribution of ξ i

t0 has a finite support which3
means ξ i

t0 has finite number of possible realizations. For SHRP, the first condition clearly holds4
as the number of passengers and schedules in the current time step is finite. The second and third5
conditions always hold in case the number of passengers in future time steps dt and the length of6
the horizon Thorizon are finite.7

ASHRP is a deterministic ILP and can be solved directly by commercial integer program-
ming solvers. However, with the number of scenarios M gets higher, the computational time will
increase exponentially so this type of methods is doomed to fail. To address this issue here we
introduce the dual decomposition technique proposed in (25). The basic ideal of this method is to
relax some of the constraints to decompose the original problem into several subproblems. Note
the ASHRP is equivalent to solving

zD = max
x1

t0
,x2

t0
,...,xM

t0

{ 1
M

M

∑
i=1

[cᵀxi
t0 +β1ᵀn×1(Λt0xi

t0−at0)+Q(xi
t0,ξ

i
t0)] : x1

t0 ≤ x2
t0 ≤ ·· · ≤ xM

t0 ≤ x1
t0}

(21)

where the above constraints ensure that x1
t0 = x2

t0 = · · ·= xM
t0 , and xi

t0 also need to satisfy the
same constraints of xt0 in SHRP. By relaxing the constraints shown in (21) we can solve the above
problem by solving single scenario and them combine all scenarios together. Let λ be the vector of
Lagrangian multipliers and a proper matrix H i to describe the coefficients of xi

t0 in the constraints,
we solve

Di(λ ) = max
xi

t0

{cᵀxi
t0 +β1ᵀn×1(Λt0xi

t0−at0)+Q(xi
t0,ξ

i
t0)+λ

ᵀH ixi
t0 : λ ≥ 0} (22)

D(λ ) =
1
M

M

∑
i=1

Di(λ ) (23)

The Lagrangian dual of ASHRP can be written as

zLD = min
λ

D(λ ) (24)

where λ can be updated by its sub-gradient in D(λ ) which is ∂D(λ ) = 1
M ∑

M
i=1 H ixi

t0 .8
A well-established result (26) is that the optimal value of the Lagrangian dual, z∗LD, is the9

upper bound of the optimal value of original problem z∗D since z∗LD gives the optimal value over the10
convex hull of the feasible region. Therefore for some choice of λ with the corresponding solution11
of D(λ ) satisfies the constraints in the original problem, the solution is also the optimal solution12
of the original problem, and λ is the optimal solution of the Lagrangian dual problem. Based on13
this result, a branch and bound algorithm is proposed in (25) and we implement that algorithm for14
solving ASHRP. The detailed algorithm is shown as follows.15

Step 1: Set the lower bound and upper bound of xt0 to ensure for every element x(k)t0 , Λ
(k)
t0 x(k)t016

does not violate the demand constraint (Constraint (11)); Let P1 be the problem (1),17
add it to the set of problems P ; Set the current known upper bound to be ∞ and18
lower bound to be −∞.19
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Step 2: Select the problem Pi ∈ P with the highest upper bound, solve its Lagrangian re-1
laxation (Equation (24)).2

Step 3: Set the solved objective value to be the upper bound of problem Pi, if Pi’s upper3
bound is lower than the current known lower bound, then (stop exploring it and)4
go to Step 2.5

Step 4: Take the average of all scenario solutions xi
t0 , round each element by the order of6

corresponding profit ck
t0 and ensure the demand constraint is not violated, that is,7

for each element x̄k
t0 , its rounded result x̂k

t0 =min (rounded value of x̄k
t0 , the maximal8

value that fit the demand constraint).9
Step 5: Solve the optimal value of cᵀx̂t0 + β1ᵀn×1(Λt0 x̂t0 − at0)+

1
M ∑

M
i=1 Q(x̂t0 ,ξ

i
t0) to get10

the lower bound of problem Pi, if the lower bound of Pi is greater than the current11
known lower bound, then let the current lower bound be Pi’s lower bound and12
remove all problem in P with upper bound lower than current lower bound.13

Step 6: Select the component of xk
t0 with the largest variance among the multi-scenario’s14

solutions for Pi. Add two new problems to P obtained from Pi by adding the con-15
straints xk

t0 ≤ bx̂
k
t0c and xk

t0 ≥ bx̂
k
t0 +1c. Let the upper bound of new problems be the16

upper bound of Pi.17
Step 7: Set the current known upper bound to be the maximal upper bound of all problems18

in P . If P = /0 or the difference between current known upper bound and current19
known lower bound is less than a given threshold. Stop the algorithm and output20
x̂t0 as the optimal solution.21

Note for solving one instance of ASHRP using the above algorithm, the computational time22
is polynomial to three factors: the time of solving single scenario subproblem Di(λ ), the number23
of scenarios and the number of iterations for updating λ . In practice, one can solve different24
subproblems in parallel, and test a group of randomly generated Lagrangian multipliers also in25
parallel, then choose the one that returns the maximal objective value to approximate the original26
solution. Thereby, the time consumption for solving one problem in the above algorithm can be27
brought down to the same level of solving single scenario subproblem and the sub-optimal choice28
of the Lagrangian multiplier will just lead to a slightly worse upper bound.29

After solving one instance of ASHRP, the remaining problem is to evaluate the quality of30
the solution. This can be done by testing the solution on another group of scenarios (usually with a31
larger size than for solving the solution) generated independently. And one framework to improve32
the solution is to solve ASHRP for multiple scenario sets, evaluate each of them and select the best33
one. Nevertheless, this will increase the computational cost. Since solving one instance of ASHRP34
is already challenging, here we only test the performance of one instance of ASHRP. Interested35
readers are referred to (24) to find more details.36

NUMERICAL EXPERIMENT37
Experiment settings38
We demonstrate the effectiveness of our method on a real scale problem by simulating the hub-39
based ridehsharing service at JFK airport in NYC. To quantify the modeling parameters, we collect40
information from publicly available datasets including road information, geographical subdivisions41
of the city, trip records of taxi and for-hail vehicle (FHV) associated with each taxi zone in March42
2019 during which there is no reported exceptional event.43
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(b) Demand and supply per time step

FIGURE 2: Overview of NYC data for numerical experiment

As shown in Figure 2 (a), we take the entire NYC except for the State Island (due to the low1
level of demand) as our study area, and consider serving all demand with ridesharing algorithm2
to investigate the potential of hub-based ridesharing services. Since for FHV trips the passenger3
number is not provided in the dataset, we randomly assign the passenger number to FHV trips4
based on the passenger number distribution for taxi trips. Then we aggregate the demand by three5
different time steps (30s, 60s and 120s) to obtain the mean and variance of demand for each OD6
pair within each time step. Figure 2 (b) shows the average number of passengers for each time7
step and the shaded area represents the standard deviation observed in the historical data. For8
supply information, we use the mean and variance of requests served per time step as the mean9
and variance of the corresponding vehicle flows. We select three time periods to present AM peak10
(7:30-7:40), off-peak (12:30-12:40), and evening peak(21:30-21:40) as our study period to perform11
numerical experiments. In the simulation, the demand and supply for each time step dt and vt are12
draw from the normal distributions based on the mean and variance extracted from historical data,13
then the value is rounded and truncated (to [0,dmean+ 3 ∗ variancee]) to get valid inputs in the14
simulation.15

We use the travel distance as the profit function between different zones; In other words,16
we consider each element of profit matrix c as the saving of travel distance for each candidate17
schedule. And we set the trade-off coefficient between saved travel distance and additional waiting18
of one passenger β as 2km per minute. The vehicle capacity γ is set to 3.19

We implement the branch and bound algorithm for solving ASHRP in Python 3.7, which20
calls CPLEX 12.5.1 in parallel to obtain the solution for each scenario. The numerical experiments21
are performed on a workstation with 16 Intel 2.90 GHz Xeon E3-2690 CPUs to take advantage of22
parallelism. After some preliminary tests, we select the number of scenarios M = 5, Thorizon = 5,523
and 3 respectively for time step length ∆t = 30s, 60s and 120s. The threshold for stopping criteria24
is 2% for the overall problem and for each subproblem solved by CPLEX, the minimal gap is set25
to 1% to ensure one instance of ASHRP can be solved within one time step in most of the case.26
We also set the maximum number of problems to explore in the branch and bound algorithm as 5027
to ensure the result will be returned in reasonable time.28
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FIGURE 3: Ridesharing profits (saved vehicle distance) under different approaches and parame-
ters

Besides our proposed method, we consider two other approaches as the baselines in this1
study.The first one is the myopic ridesharing algorithm which maximizes the profit within a sin-2
gle time step; The second one is the deterministic rolling horizon algorithm in which only one3
scenario represented by the mean of the future demand and supply is considered. Then for each4
method with each set of parameters, we calculate the ridesharing profits under four random seeds5
(0,10,100,1000,10000) and take the average as the final performance.6

Performance comparison7
Figure 3 shows the performance of different ridesharing approaches, the errorbars represent the8
standard deviation of the results generated by using different random seeds. It can be observed9
that ASHRP outperforms both the myopic ridesharing and deterministic rolling horizon approach10
in all cases. For ∆t = 30s, ASHRP outperforms the myopic ridesharing by 490 km (22%) in AM11
peak, 469 km (37%) in off-peak and 1132 km (25%) in PM peak; ASHRP obtains more savings12
than deterministic rolling horizon by 431 km (19%) in AM peak, 431 km (33%) and 1073 km13
(22%). We also observe that ASHPR has more stable gains. Similar statements hold for ∆t = 60s,14
except in off-peak the ASHRP savings have relatively high variance. The performance of myopic15
and deterministic methods also becomes better when compared with the corresponding results for16
∆t = 30s. For ∆ = 120s, the performance of baseline methods become even better given more17
information is revealed for each step, while the saving of ASHRP decreases due to the increased18
problem complexity, especially for PM peak, where the level of demand is the highest and the19
ASHRP fails to reach the optimality condition before the maximum iteration reached. It is worth20
to noting that ASHRP still has better performance with ∆t = 30s than the deterministic rolling21
horizon method with ∆t = 120s. Since in real world application, small ∆t is preferred to support22
quick response to the users’ request, these results sufficiently demonstrate the effectiveness of23
ASHRP.24

To gain further insights on the differences among the three methods, we visualize the ac-25
cumulated savings and vehicle occupancy (passengers per vehicle trip) under different choices of26
model parameters. Figure 4 shows the accumulated savings under different parameters for dif-27
ferent time periods. It can be observed that ASHRP results have relatively low savings in the28
beginning. Then after certain time steps, the performance of ASHRP surpasses the other methods.29
For ∆t = 120s, given the total number of the time steps is low, we hardly can observe this phe-30
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FIGURE 4: Accumulative profit (gain in savings) under different parameters

nomenon. This also explains why the performance of ASHRP would decrease for large ∆t in our1
case study.2

Figure 5 shows the average vehicle occupancy of vehicle trips per time step in different3
cases. It can be observed that ASHRP results in the highest vehicle occupancy in nearly all cases.4
The results of the deterministic rolling horizon method have higher vehicle occupancy than the5
myopic algorithm’s, but the difference is much smaller than the gap between ASHRP and other6
methods. This suggests that although the deterministic rolling horizon method can capture some7
potential matching between exist passengers and future demand, it not as competitive as ASHRP8
which exploits more potential ridesharing schedules based on the probability.9

Computational time10
We record the total CPU time spent on solving every single time step’s ASHRP problem from11
CPLEX Python API and summarize the statistics of the CPU time for each case in Figure 6. Note12
we solve each subproblem in parallel, so the real time cost for solving each ASHRP instance is13
smaller than the total CPU time. Here we still use the CPU time because it is directly generated by14
commercial solver while other timers (like Python runtime) can be hugely influenced by detailed15
implementations. From Figure 6, we first observe that a few records have extremely high CPU16
times, which heavily inflate the mean for solving each ASHRP. This suggests an early stop mecha-17
nism is required for adopting this algorithm in practice. Besides this, we also observe that the CPU18
time surges as the time step increases from 60s to 120s. The underlying reason is that the number19
of schedules increases exponentially as more passengers are considered into a single time step,20
and so as the time cost for solving single scenario subproblems. To our surprise, when ∆t = 30s,21
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FIGURE 5: Vehicle occupancy under different parameters

the computational cost for solving the off-peak problem is higher than solving the problem of AM1
peak and PM peak. This might be caused by the low objective value, which leads to a more strict2
threshold for the solution algorithm to converge.3

CONCLUSION4
In this study, we develop a dynamic ridesharing algorithm tailored to transportation hubs. In the5
problem formulation, we consider both the future effect and the stochastic of the future state of de-6
mand/supply. Based on the theory of stochastic integer program, we propose a solution algorithm7
based on scenario decomposition using Lagrangian relaxation. To demonstrate the effectiveness8
of the proposed approach, we use NYC taxi+FHV data and Google Map API to obtain the road9
traffic information, then simulate the ridesharing services at JFK airport. The numerical results10
confirmed that our approach consistently outperform the myopic solution and the rolling horizon11
solution with point-wise estimation. For future studies, the solution algorithm can be further im-12
proved by introducing early stop mechanisms and the proposed approach can be further validated13
with more comprehensive configurations.14
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