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ABSTRACT1
In this study, we proposed a novel three-stage framework for planning the optimal demand-adaptive2
transit (DAT) at urban transportation hubs. Given the potential trip demand and road traffic con-3
dition, the proposed framework sequentially generates the optimal set of candidate routes, com-4
bines the outgoing routes and incoming routes at the hub, and derives the optimal fleet size and5
corresponding route frequency under the fixed budget. In particular, we build the route generation6
algorithm which maximizes passenger demand coverage with travel time deviation constraint. And7
a heuristic algorithm is further developed which yields near-optimal operation routes for real-time8
demand. The fleet optimization problem is formulated to minimize the weighted cost of energy9
savings, operation cost and trip revenue. We conduct comprehensive numerical experiments for10
planning DAT with electric buses at JFK airport in NYC using NYC taxi and for-hire vehicle trip11
data and GoogleMap speed data. The results show the superior performance of the proposed route12
generation algorithm which is able to cover citywide passenger demand with only 61 DAT routes.13
The results also suggest that the proposed DAT planning framework may serve over 47% of exist-14
ing taxi and FHV demand by operating 18 routes using the fleet of 62 electric buses.15
Keywords: Transit planning, transportation hub, demand adaptive, route generation,fleet optimiza-16
tion, electric bus17
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INTRODUCTION1
High-capacity public transit such as bus and metro serves as an affordable mobility solution to2
urban commuters. When properly planned and operated, public transit may significantly reduce3
commuters’ dependency on private vehicles and plays a vital role of sustainable mobility system4
in dense populated urban areas (1). Unfortunately, the configuration and infrastructure of many5
existing public transit systems are no longer attractive to urban travelers with fast-changing mo-6
bility needs. One notable evidence is the recent prosperity of ride-hailing industry and the shift of7
passenger demand from public transit to for-hire vehicles (FHVs). For instance, in New York City8
(NYC), the bus ridership declined by 1.3%, 5.1% and 5.8% from year 2016 to 2018 (2) while the9
number of FHV trips have increased by four times during the time (3). This has led to much higher10
road traffic, exacerbating already worse traffic congestion, emission and energy consumption levels11
in cities and poses emerging needs for better public transit systems.12

One challenge associated with planning transit system is the trade-off between the acces-13
sibility and service coverage. It is often impractical for high-capacity urban transit such as fixed-14
route buses to provide (near) door-to-door service to meet the varying mobility needs of general15
public. Nevertheless, with flexible transit of adaptive service routes and schedule, it is possible to16
provide effective transit service for serving passengers sharing similar origins and destinations (4).17
One appealing and applicable scenario is the public transit rooted at urban transportation hubs18
such as airports and railway stations. These locations usually have high passenger volume and19
more number of passengers with similar travel routes to and from the transportation hubs. In par-20
ticular, we observer that over 25% of yellow taxi trips and 15% of FHV trips have either pick-up21
or drop-off at one of the airports in NYC during peak hours. This implies huge opportunity for22
public transit systems to reduce vehicle miles traveled and motivates us to investigate the design of23
demand-adaptive transit at urban transportation hubs.24

In this study, we propose a novel three-stage framework for planning demand-adaptive25
transit (DAT) services at transportation hubs based on trip and traffic data. By demand adaptive,26
we referring to the transit service with temporally varying service route and trip schedule that27
is tailored to the mobility needs of passengers and the road traffic condition. We consider the28
proposed DAT to complement existing fixed route transit services and compete with on-demand29
mobility services such as taxis and FHVs. The primary goal of the planned DAT is to maximize30
passenger coverage and energy savings with minimum operation cost under the capital budget. To31
achieve this goal, the DAT planning consists of (1) routing generation based on potential passen-32
ger demand to and from transportation hubs and road traffic condition, (2) route combination for33
matching generated outgoing and incoming transit routes at hubs with similar demand level and34
(3) fleet optimization that maximizes the effectiveness of the DAT with fixed budget. To the best35
of our knowledge, this study is the first work that focuses on optimal transit planning at urban36
transportation hubs. And we demonstrate the effectiveness of the proposed framework with the37
case study of planning DAT at JFK airport, where the optimal planned DAT may serve over 47%38
of existing taxi and FHV passengers with 18 routes.39

The rest of the study is organized as follows. The second section presents a brief review of40
the transit planning literature. The third section gives an overview of the research framework for41
DAT planning. The fourth section discusses the route generation problem for hub-based DAT and42
proposes an exact solution algorithm and a heuristic solution algorithm for obtaining optimal route43
set. We also present a heuristic route generation mechanism following a popular route generation44
mechanism in the literature. The fifth section presents the route combination problem for joining45
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planned routes to and from hubs. The sixth section develops the optimization problem for the1
optimal scheduling of the DAT given the generated route set and budget constraint. The seventh2
presents the numerical experiment on planning the DAT service at JFK airport in NYC. Finally,3
we conclude our study with major findings and future directions in the last section.4

LITERATURE5
Transit design problem is a well studied subject in the transportation field and readers may refer6
to (5–7) for more comprehensive reviews of related literature. As summarized by (6), the solution7
methodologies for the transit planning problem can be generalized in two main directions. The8
first direction divides the process of transit planning into route generation and frequency assign-9
ment. The second direction introduces the iterative route generation algorithm (RGA) where both10
route and frequency are calculated in an iterative process. Majority of the studies in the literature11
follows the first direction and various methods for route generation were proposed. Lampkin and12
Saalmans (8) developed the route generation method that started with 4 random control points and13
consecutively adds stops in between of these nodes based on travel time and number of passengers14
served by the route. Silman et al. (9) divided the city into zones and used a heuristic algorithm15
for calculating routes based on the minimization of walk time. Recently, Cipriano et al. (10) used16
Genetic Algorithms (GA) to generate candidate route sets which were evolved according to a travel17
time measure of fitness. Nikolic and Teodorovic (11) developed the RGA based on bee colony opti-18
mization, where some random routes got improved by modeling each route as a bee and modifying19
it’s route with a pheromone objective function. According to Farahani et al. (7), the transit design20
problem also involves various objective functions such as the minimization of energy consumption21
and the introduction of environmental effects in the economic assessment. Studies also focused22
on building models to search energy efficiency and environmental friendly routes as in Iliopoulou23
et al. (12) and Pternea et al. (13) developed the model for searching sustainable routes from both24
environmental and economics aspects and they used the continuous generation approach to find an25
optimal solution. Studies that follow the second direction include Drezner et al. (14), Fan and Wei26
(15), Chakroborty and Partha (16), where genetic algorithms were widely adopted to create routes27
and constantly evolve the routes on a iterative processes and links or control points were chosen as28
genes which may change in search to an optimal solution.29

OVERALL FRAMEWORK30
In this study, we follow the first transit planning framework as summarized in (6) by first generating31
the set of candidate routes and then framing the optimal route configurations. We propose a three-32
stage framework for developing hub-based DAT system as shown in Figure 1. Our framework33
is different from the existing studies in that an innovative route generation algorithm is proposed34
and is objective driven and deterministic. The overall framework takes the trip demand and road35
traffic condition as the inputs, and gives the fleet size and set of selected operation routes and their36
corresponding operation frequency under the budget constraint.37
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FIGURE 1: AEV Planning framework

In the first stage, we develop the route generation algorithm which builds the set of K1
feasible candidate routes that maximizes the coverage of potential passengers, where K is the user2
specified number. A route is considered as feasible if the trip time of all passengers is no larger3
than δ times the minimum trip time by taking alternative travel modes. Given the trip demand and4
road traffic condition, the route generation algorithm will first create two sets of feasible routes for5
incoming and outgoing trips at transportation hubs respectively.6

The second step then identifies the optimal combination of the two sets of routes. And the7
route combination step focuses on balancing the passenger demand between two directions under8
vacant trip distance constraints.9

The integrated routes will then serve as the input for the third stage problem, which is10
to optimize the fleet size and route service frequency. For the fleet optimization problem, our11
objective is to minimize the weighted cost of energy saving, trip revenue and operation expenditure12
under the fixed capital budget B. And the fixed capital budget restricts the number of available13
buses for operation. The fleet optimization also considers the rational choice of passengers between14
the developed DAT and alternative trip modes. We next describe the details of the three-stage15
framework.16

ROUTE GENERATION17
Problem description18
As the first step of the sequential planning of hub-based transit, the route generation problem19
focuses on identifying the set of K candidate routes that yield the highest possible passenger cov-20
erage. We term this target set of K routes as the maximum coverage routes (MCR). We consider21
the study area consisted of |V | zones and we denote G(V,E,Q,W ) as the network representation22
of the study area, with V being the set of zones, ei, j ∈ E denoting the shortest travel path between23
zone i and zone j, qi ∈Q being the potential passenger demand (to hub or from hub) at zone i, and24
wi j ∈W being the weight (travel time) on edge ei, j. We make the following reasonable assumptions25
to assist framing the routing generation problem:26

1. We assume DAT as a zone-based system and passenger demand of zone i will be covered27
by DAT if there exists a route that stops at i.28

2. The DAT service will take the path with shortest travel time when travelling between29
two stops.30

3. The shortest travel time should satisfy the triangular inequality constraint.31
4. Passengers are time sensitive and will not ride DAT if the route travel time exceeds their32

expectation.33
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The first two assumptions state how we will consider DAT demand and travel time in this problem.
The third constraint imposes a practical constraint on travel time, ti, j+t j,k > ti,k, so that route travel
time should strictly increase with the addition of intermediate stops. And the third assumption
suggests that the all passengers served by DAT should be satisfied with the travel time by DAT
over other alternative modes. For time sensitive passengers, we define a route k is feasible for
passengers in zone i if:

tk
i ≤ δmintm

i . (1)

which suggests that the travel time of transit route k ∈RK for passengers at location i should be
no greater than δ times the travel time of the mode that offers the lowest travel time. For instance,
if we set δ = 1.5, this may suggest that passengers will not use the DAT service if the travel time
is 50% higher than the travel time of riding taxis. Based on this constraint, the route generation
problem can be mathematically formulated an optimization problem:

maximize
|V |

∑
i=1

1iqi

s.t. tk
i ≤ δmintm

i ,∀i,k
(2)

where 1i is an indicator variable and takes the value of 1 if zone i is served by at least one of the1
generated routes.2
Problem 2 is a NP-hard problem. This is because we can reduce the longest path problem, a3

known NP-hard problem, to Problem 2 under K = 1 case when δ is set to be ∑i, j ti, j
mini, jti, j

. With such4

δ , the travel time constraints are satisfied directly. And K = 1 is a special case of Problem 2,5
demonstrating that it is indeed NP-hard.6

Solution algorithm7
Problem 2 is a difficult mixed integer linear programming problem and there are |V |K binary8
variables and |V |K constraints. And the problem may not be solved efficiently by using solvers9
due to the large search space and the complex interactions among the binary variables incurred by10
the travel time constraints. But the problem may be solved efficiently by utilizing the topological11
properties of the road network and the problem specific property that the generated routes have one12
end at the transportation hub.13

First, denote RK as an optimal solution of problem 2 and the route ri ∈RK as the ordered14
set of zones it traverses through, e.g. ri = {v1,v2,v3, ...vLi} and v1,v2, ...vLi ∈ V . Then RK can15
be reduced to R ′K of which for any ri,r j ∈ R ′K , we have ri

⋂
r j = /0. And we term R ′K as the16

mutually disjoint MCR. To see this, we may assume that ri
⋂

r j = S 6= /0 and we may remove17
the set of nodes in S from either ri or r j. This step will not affect the coverage of passengers as18
the removed nodes from one route is still served by the other route. In addition, the route after19
node removal is still feasible since the route travel time strictly decreases with the removal of an20
intermediate stop following the triangular inequality. Based on this property, we can therefore21
solve the route generation problem by sequentially and independently identifying route of highest22
passenger coverage and generating the mutually disjoint MCR.23

On the other hand, finding the mutually disjoint route with maximum passenger coverage
itself is still nontrivial. In the worst case, one may have to enumerate all possible routes in the
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network and select the route with the highest served passengers. However, the time constraint in
Problem 2 introduces a promising direction for reducing the search space for finding MCR. In
particular, if we starting from the hub (denoted as h), the maximum passenger coverage path can
be obtained by tracking the potential passenger coverage of the set of zones that are reachable from
the hub. And we define potential passenger coverage of zone j as the largest possible passenger
demand that can be covered by extending the route from the zone i to zone j. If we denote Γ(i) as
the operator for the potential passenger coverage of a route starting from location i, we can express
the previous statement as:

Γ(i) = qi +max j∈REACH(i)Γ( j) (3)

In the equation, REACH(i) represents the set of zones that are reachable from zone i, where j is1
said to be reachable from i the travel time of the extended route from i to j will not exceed the2
δ times the corresponding shortest travel time as shown in Problem 2. Instead of enumerating all3
routes and select the best one, we can therefore build the solution algorithm for finding maximum4
passenger coverage route based on these two properties recursively and the proposed hub-based5
MCR generation algorithm is presented in Algorithm 1.6

While the complexity of the problem is still exponential, for real-world problems, the tri-7
angular inequality of travel time will help to reduce the size of the reachable set as the route being8
extended from the hub. The computation time is therefore much faster than its worst case perfor-9
mance and we also observe the exact algorithm to generate MCR efficiently based on our NYC10
case study. In case when the exact algorithm may not find the solution in a timely manner, we11
further observe the following two properties of the proposed algorithm which suggest the direction12
for developing an efficient heuristic algorithm.13

Proposition 1. The induced reachable set of a node is a subset of the reachable set of its prede-14
cessor node.15

Proposition 2. The potential of a node is no larger than the sum of the potential of the nodes in its16
reachable set.17

Proposition 1 results from the triangular inequality constraint for travel time. Proposition 2
gives the upper bound of the maximum possible potential of a node since a route may not server
more than the number of nodes in the current reachable set. Based on these two propositions, we
can relax the Gamma operator with a heuristic operator Gammah as the sum of the node potential
in its reachable set:

Γ(i) = qi +max j∈REACH(i)Γ
h( j) (4)

where

Γ
h( j) = ∑

m∈REACH( j)
qm (5)

This step is equivalent to relax the MAXP function in Algorithm 1 by replacing the recursion with18
the sum of penitential of nodes in the reachable set. In this regard, the computation time of the19
heuristic is O(V 3) and we are able to find near-optimal MCR for large instances in polynomial20
time. And the relaxed MAXP function is presented in Algorithm 2.21
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Algorithm 1 Hub-based Route Generation Algorithm

Input: G=(V,A,Q,W ) network of study area, K number of routes to be generated, h hub location,
δ deviation threshold

Output: RK the set of candidate operation routes.
1: for i=1,2,...,K do
2: Pi← 0
3: Li← 0
4: Nh← REACH(h,V,Q,Li,δ )
5: Pi,ri←MAXP(h,Nh,Pi,Li,Q,W )
6: Q←UPDAT EP(ri,Q)
7: Add ri to RK
8: end for
9: return RK

1: function REACH(i,V,W,L,δ )
2: Ni← /0
3: for j ∈V do
4: if L+wi, j < δw j, j then
5: Ni← Ni

⋃
{ j}

6: end if
7: end for
8: return Ni
9: end function

10: function MAXP(i,N,Pi,Li,V,Q,W )
11: if |N|= 1 then return q j, j
12: else if |N|= /0 then return 0, /0
13: else
14: P← 0,r = /0
15: for j ∈ N do
16: N j←REACH( j,V,W,Li +wi, j,δ )
17: p,r′←MAXP( j,N j,Pi +di,Li +wi, j,V,Q,W )
18: if p > P then
19: P← p,r← r′

⋃
i

20: end if
21: end for
22: end if
23: return P,r
24: end function
25: function UPDATEP(r,Q)
26: for i ∈ r do
27: qi← 0
28: end forreturn Q
29: end function
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Algorithm 2 Heuristic MAXP
1: function HEURISTIC-MAXP(i,N,Pi,Li,V,D,W )
2: if |N|= 1 then return D j, j
3: else if |N|= /0 then return 0, /0
4: else
5: P← 0,r = /0
6: for j ∈ N do
7: N j←REACH( j,V,W,Li +wi, j,δ )
8: p← ∑k∈N j qk
9: if p > P then

10: p← P,r← r′
⋃
{i, j}

11: end if
12: end for
13: end if
14: return P,r
15: end function

Heuristic route generation1
In addition to the developed algorithm for MCR generation, we also introduce a shortest-path2
based heuristic route generation algorithm that is popular in the literature (17) and we compare the3
effectiveness between MCR and the heuristic route set. The main idea of the heuristic algorithm4
is to first generate a large collection of candidate routes and the final set of operation routes is5
determined by pruning the candidate routes based on user-specified thresholds and through the6
optimization problem. Following this philosophy, the proposed heuristic approach in this study7
consists of three major steps including initial route generation, feasible route expansion and route8
pruning. The output of the heuristic algorithm is the set of candidate transit routes for optimization9
and we next discuss briefly the steps of the heuristic approach.10

Initial route generation11
The initial candidate routes are created by first finding k-shortest routes from each zone i to and
from hubs using k-shortest path algorithm (18). This ensures the route to be expanded and com-
bined in the next steps will not deviate too much from the passengers’ shortest travel route and
therefore may meet the time sensitivity constraint in a heuristic manner. The process results in the
heuristic candidate path set Rh with k|V | candidate routes and we also keep track of the zones that
each r ∈ Rh traverses through and denote it as Nr. Since there may be multiple candidate routes
that stop at zone i, we then perform passenger demand assignment based on the travel time of each
shortest route following the logit assignment:

Pr
i =

e−tr
i

∑r′∈Rh
i
e−tr′

i

,∀ i ∈V,r ∈ Rh
i , (6)

where tr
i is the route travel time if passengers at zone i take route r and Rh

i is the set of heuristically
generated routes that traverse from zone i. We can therefore measure the relative importance of
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each zone and each route as zone weight Wi and route weight W r:

Wi = ∑
j∈V

∑
r∈Rh

j

1
r
i q jPr

j , W r = ∑
i∈Nr

Wi (7)

where 1r
i denotes whether route r travels by zone i.1

Candidate route expansion2
The candidate routes generated in the previous step are the set of k-shortest routes from zone i,3
and each pair path in Rh may be further combined to create new routes that extend the coverage of4
passenger demand. We consider expanding two routes r1,r2 ∈ Rh following two rules: 1) if r1 is a5
sub-route of r2 where Nh

r1
⊆ Nh

r2
and 2) if r1 and r2 may share common link segments. The route6

expansion is then performed based on crossover operation over the actual link segments of the two7
routes following Algorithm 3. And the weight of the expanded route is also calculated by the zone8
weight Wi.9

Algorithm 3 candidate routes extension
Input: r1 = {l1, l2, ..., lL},r2 = {p1, p2, ..., pP},Nh

r1
,Nh

r2
.

Output: Route expansion algorithm.
1: G← /0
2: for li ∈ r1, p j ∈ r2 do
3: if li = p j then
4: if Nh

r1
⊆ Nh

r2
then

5: r̄←{l1, l2, ...li, p j+1, ..., pP}
6: G← G∪ r̄
7: else
8: r̄1={l1, l2, ..., li, p j+1, ..., pP}
9: r̄2={p1, p2, ..., p j, li+1, ..., lL}

10: G← G
⋃
{r̄1, r̄2}

11: end if
12: end if
13: end for
14: return G

Route pruning10
The set of candidate routes may grow rapidly after the route expansion step with new routes gener-11
ated through the crossover operations. On the other hand, directly using this large candidate route12
set may prevent the optimization problem from identifying the set of optimal operation routes due13
to the large search space. Meanwhile, not all routes in the expanded set are practical in real-world14
applications and there may exist many routes that are similar. To eliminate unnecessary routes, we15
next conduct route pruning based on three metrics.16
The first metric is route circuity computed as total route length divided by the euclidean distance17
between the start and end location. With user-specified length and circuity threshold lthd and Cthd ,18
we choose routes with length longer than lthd , and circuity smaller than Cthd and get the new Rh.19
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The second metric is the subset relationship. If a route is a sub-route of the other route with
smaller length, then the shorter length will be discarded. Accordingly, we find the following set of
routes and remove them from the Rh:

{r1|∃r2 ∈ Rh,Nh
r1
⊆ Nh

r2
,Lr1 < Lr2} (8)

The last metric is based on route similarity and it is measured as the summation of the
nearest distance between each pair of individual link segments over the total link segments of the
two routes as:

S(r1,r2) =
∑l∈r1 minp∈r2 dist(l, p)+∑p∈r2 minl∈r1 dist(p, l)

Lr1 +Lr2

(9)

where Lr is the length of route r and dist(p, l) is the euclidean distance between the center of two
road segments p and l respectively. The similarity index quantifies the spatial adjacency of two
routes. To prune similar routes, we first sort the weight of the routes in Rh in descending order as:

Wi=1 ≥Wi=2 ≥Wi=3 ≥ ...≥Wi=|Rh| (10)

We then remove the following set of routes from Rh based on route similarity threshold Sthd:

{ri|∃1≤ j ≤ i−1,S(ri,r j)< Sthd} (11)

In this manner, it removes the repetitive routes with lower weight (importance) and only keeps1
those with higher passenger coverage. And we can adjust the number of routes to keep for the2
optimization problem by changing the threshold values in these three metrics.3

Route combination4
The proposed route generation algorithms can be applied separately to obtain MCRs for passengers5
traveling to and from transportation hubs. Denote Rd

K as the MCR for serving passengers traveling6
to hubs and Ro

K as the MCR for serving passengers traveling from hubs, the next step is to connect7
Rd

K and Ro
K to form round routes and therefore reduce the amount of vacant mileage.8

The route combination is conducted following two rules: 1) routes to and from hubs with9
similar demand level should be combined and 2) the connecting distance between the end of two10
routes should not exceed the route distance. The first rule helps to balance the service frequency11
between two combined routes and the second rule is set to avoid excessive vacant travel distance to12
combine two routes of similar demand level but are dist anted from each other. Based on these two13
settings, we develop a bipartite matching problem as a solution approach for optimally combining14
routes in Rd

K and Ro
K . In particular, we denote gr1,r2 as the gap between the demand level of route15

r1 ∈ Ro
K and r2 ∈ Rd

K . Moreover, if the connecting travel time between the two routes exceeds the16
shorter route travel time between the two routes, gr1,r2 is set to an arbitrary large value to denote17
infeasible combination. Consequently, the optimal route combination can be obtained by solving18
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the following optimization problem:1

minimize∑
r1

∑
r2

xr1,r2gr1,r2

s.t. ∑
r1

xr1,r2 = 1,∀r2 ∈ Rd
K

∑
r2

xr1,r2 = 1,∀r1 ∈ Ro
K

xr1,r2 ∈ {0,1}

(12)

The problem is equivalent to the minimum weight perfect biaprtite matching problem and can be2
solved efficiently using the Hungarian algorithm. Readers may refer to (19) for implementation3
details.4

Fleet optimization5

TABLE 1: Table of notation

Parameter Descriptions
R Set of candidate routes.
qi Total induced passenger arrival rate at location i.
q̄k

i Served passenger arrival rate at location i by transit route k.
tk
i Total travel time between i and hub using transit route k.

t j,i In vehicle travel time between zone i and zone j.
tl Loading (unloading) time per unit passenger.
wk Expected waiting time for route k.
ei Energy consumption per passenger for trips from location i to trans-

portation hub.
xk Frequency over route k, number of vehicles per hour,k ∈R.
C Maximal capacity of the selected electric bus.
sk

i Indicator variable and sk
i = 1 if route k stops at zone i. 0 otherwise.

dk Travel length of route k.
ts average stopping time per stop.
cc Capital cost per vehicle.
co Operational cost per vehicle per kilometer.
cr Cost per ride.
B Total project budget.

Given the set of candidate routes, the optimization problem aims at planning the service6
frequency xk of each routes and hence the fleet setting which maximizes the energy savings and7
service revenue while minimizing operation and capital cost. The mathematical notion used in the8
optimization problem is shown in Table 1. We consider the realistic scenario where passengers9
have access to both planned DAT service and other trip modes. And their choices depend on10
the utility they perceived (travel time and trip cost) following the classical discrete choice model.11
The travel time of a passenger at location i using route k consists of the transit operation time12
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between each pair of stations, the expected waiting time at the location and the cumulative loading1
(unloading) time before arriving at her final destination:2

tk
i = wk + ∑

j∈Pk
i

(t j−1, j + tlq j) (13)

where Pk
i is the set of stops proceeding to i on route k. We can further write t̄k

i = ∑ j∈Pk
i
t j−1, j3

(constant value) to represent the total segment travel time to reach the transportation hub if the4
passenger ride route k at location i.5

The objective function consists of three components. The energy saving of the DAT can be
computed as the energy cost (in monetary value) of the served passengers if they use their original
trip mode:

Fenergy = ∑
i∈V

∑
k∈R

eiqk
i (14)

where ei measures the energy cost of the alternative mode associated with each passenger for6
commuting to hubs at location i.7

The trip revenue of the DAT service can be written as:

Frevenue = cr ∑
i∈V

∑
k∈R

qk
i (15)

where a flat rate cr is considered in this study.8
Finally, the operation cost of DAT can be expressed as:

Foperation = co ∑
k∈R

xkdk (16)

where ∑k∈R xkdk measures the total operation distance per hour for the proposed DAT service.9
Given the travel time and the objective function, the optimization problem follows10

maximize Fenergy +Frevenue +Foperation

tk
i = t̄k

i +
1

2xk + ∑
j∈Pk

i

tlq j

qk
i =

Qk
i ectransit

1 tk
i +ctransit

2 cr+btransit

∑m∈M ecM
1 tM

i +cM
2 cM

i +bM

∑
i

qk
i sk

i ≤Cxk, ∀k ∈R

xk(1− xk)≤ 0

cc ∑
k

xkTk ≤ B

xk ≥ 0, ∀k ∈R

(17)11

The first constraint is the calculation of average travel time from zone i to hub h using route k,12
where wk is computed as the expected headway of route k as 1

2xk . The second constraint models13
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the choice made by passengers for selecting between DAT and other modes based on trip cost1
and travel time. The third constraint states that the capacity provided by each route should be2
higher than the induced passenger demand. The fourth constraint restricts that there should be3
at least one trip if we plan to operate route k. Finally, the fifth constraint sets the budget for4
purchasing buses for serving the planned routes. The optimization problem is a difficult nonlinear5
programming problem, and we solve the problem by iteratively relaxing the nonlinear constraints6
using sequential quadratic programming approach (20). We omit the reformulation details here7
due to the page limit. While the problem may only be solved to local optimal solution, we use a8
cross-validation approach which creates a candidate set of starting points and we report the best9
solution identified from the set of starting points.10

RESULTS11
Experiment setup12
We choose NYC as the study area and demonstrate the effectiveness of the proposed DAT frame-13
work by developing the DAT service at JFK airport. To quantify the modeling parameters, we14
collect information from publicly available datasets including road information, geographical sub-15
divisions of the city, public transit information and demand of taxi and for hire vehicles (FHV).16
The network of our study area is built from the taxi zone shapefile of NYC which has 263 taxi17
zones across 5 major boroughs. The State Island is not included due to low demand level (less18
than 0.5% of total demand to hubs such as LGA, JFK and Penn Station) which reduces the total19
number of zones to 234. And the route generation problem is therefore to find the MCR over the20
234 zones.21

For the numerical experiments, we consider the proposed DAT to compete with FHV and22
yellow taxis for potential passengers. In 2018, FHVs serve an average of 550,000 trips per day23
(only workdays taken into account) and the demand for yellow taxis is around 300,000. Among24
those trips, approximately 30,670 trips have either their origins or destinations at the JFK airport25
(3.5%) and we use the weekday’s hourly FHV and taxis’ passenger demand associated with the26
JFK airport in each taxi zone in 2018 (21) as the total potential demand for the DAT service. We27
summarize the parameter setting for the numerical experimens in Table 2. We set the parameters in28
the discrete choice model following the results of the passengers’ behavior study at the airport (22).29
And the mean trip cost and travel time for FHV and taxis can be calculated directly from the trip30
data.31

TABLE 2: Model parameters

Parameter Descriptions Value Reference
δ Distance threshold 1.5 -
e Energy saving per passenger for trip

(measured as price per gallon gaso-
line)

3 -

C Capacity of one electric bus 40 -
cc Capital cost per electric bus 850,000 (23)
co Operational cost (electricity cost +

maintenance cost)
0.42$/mile
(0.10+0.32)

(23)

cr Cost per ride $ 10 -
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We consider the energy saving of DAT as the total energy cost of the served passengers if
they take taxis and FHVs. And the energy saving of each taxi trips are calculated as the product of
trip distance and the fuel consumption multiplier estimated by COPERT model (24):

F =
217+0.253V +0.00965V 2

1+0.096V −0.000421V 2 (18)

where V is the average trip speed (km/h) that are calculated from the taxi trip data.1
For the bus configuration, we consider the fleet of pure electric buses and we find that Pro-2

terra, Inc. and BYD, Inc. are the two major suppliers of electric buses. Based on their specification3
data (25, 26), we choose the electric bus of battery capacity 100 kWh and the estimated charging4
cost is 0.10 $/mile. A recent electric bus report (23) presented that the purchase price of a normal5
electric bus is between $800,000 and $900,000 and the maintenance cost is about three times of the6
electricity cost. We therefore assume that the capital price is $850,000 per bus and the maintenance7
cost is 0.32 $/mile. The typical electric bus has the capacity of 40 seats. Finally, we consider each8
purchased electric bus has the lifetime of 12 years (23) and each bus will operate for 12 hours per9
day. And we set the budget constraint in the experiments as $1000/h which approximately equals10
a fleet of 62 buses.11

Generated path12
Given the input parameters, we next evaluate the performance of the route generation algorithms13
on the resulting coverage of passenger demand. In particular, we evaluate the increment in pas-14
senger coverage by increasing the number of routes generated by the route generation algorithms15
and the results are shown in Figure 2(a). Among the three algorithms (MCR with exact solution,16
MCR with heuristic solution and heuristic routes), the MCR with exact solution gives the best17
performance where all demand from JFK airports can be covered by 61 mutually disjoint routes18
with travel time constraints satisfied for all passengers. Moreover, we observe that over 40% of19
passengers may be covered by operating as few as 9 routes. This implies the effectiveness of MCR20
generation to identify most valuable operation routes and indicates great potential for operating21
DAT at transportation hubs. Moreover, the MCR with heuristic solution also results in high qual-22
ity candidate routes and its performance is on par with the exact algorithm especially on the first 523
paths generated. But the solution of MCR heuristic gets worse with increasing number of paths and24
the passenger coverage may be 20% lower than the results from the exact solution. On the other25
hand, the heuristically generated routes are observed to have the worst performance as compared26
to the results from two other MCR generation algorithms and the passenger coverage is 50-70% of27
that of the exact solution for MCR. This states the ineffectiveness of the routes generation mech-28
anisms proposed in the literature, which is primarily a general purpose route generation approach29
and may fail to obtain solutions for hub-based transit effectively. Finally, the computational time30
for obtaining the MCR exact solution is 59.3 seconds and is 15.7 seconds for MCR with heuristic31
solution respectively. This demonstrates the efficiency of the exact algorithm even for real-world32
problems, nevertheless, the computation time will increase significantly if the threshold for pas-33
senger travel time is relaxed to 2 or larger. For δ = 2, it takes 10 hours and 35 minutes for the exact34
algorithm to find the exact optimal solution while the computational time for heuristic is 63.7 sec-35
onds. In this case, the size of the reachable set may not drop quickly and the computational time36
for obtaining the heuristic solution will be barely affected and becomes the better option. Based37
on these results, we choose the set of 9, 18 and 37 routes generated by each of these algorithms as38
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the input for the fleet optimization problem which cover approximately 43%, 67% and 87% of taxi1
and FHV passengers respectively as shown in Figure 2(b).2

0 10 20 30 40 50 60
Number of routes

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

rd
 p

as
se

ng
er

s (
%

)

MCR (heuristic)
MCR (exact)
Heuristic routes
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FIGURE 2: Comparison of heuristic approach and deterministic algorithm

In addition to the passenger coverage, we also visualize the routes generated by the algo-3
rithms for four different time periods of the day and the results are shown in Figure 3. These routes4
are generated based on the passenger demand and traffic condition at the particular time of the day5
to reflect the value of being demand adaptive. And we visualize the top three routes of largest6
passenger coverage after the route combination process. As we can see in the figures, for maxi-7
mum passenger coverage, the generated routes share similar philosophy by serving the zones in8
Manhattan of high passenger demand but also visit several intermediate locations in Queens along9
the route under the travel time constraint. And the incoming and outgoing routes at transportation10
hubs are observed to be well paired to form the round loops based on their trip demand and con-11
nection distance. The first route remains largely the same across different time of day, by visiting12
two zones near the JFK airport and then goes directly into mid-Manhattan areas for dropping off13
passengers from the hub and picking up passengers to the hub. And the other two routes are found14
to complement the first routes by visiting locations at middle to lower Manhattan and middle to15
upper Manhattan areas. And there are some subtle differences for these two routes depending on16
time of day. For instance, there are no stops in upper-east side of Manhattan, which is primarily of17
residential areas, during morning peak hours. And this region is covered with drop-off stops during18
evening peak hours and pick-up stops during late night hours which may be because of business19
travelers returning home and leaving for trips for the next business day.20
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(a) Morning peak results
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(b) Off-peak results
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(d) Late night results

FIGURE 3: Generated path. For route based algorithm, the paths from hub and to hub are over-
lapping.

Optimized fleet1
We use the set of candidate routes generated by the three different route generation approaches2
as the input for the fleet optimization problem. And we conduct experiments for travel demand3
under five different scenarios: morning peak hours (7:00-9:00), off-peak hours (11:00-13:00),4
evening peak hours (17:00-19:00), late night hours (21:00-23:00), and daily average (average over5
24 hours). The results for comparing different route generation approaches are presented in Table 36
and the results for different time of day using MCR algorithm are shown in Table 4 and Table 5.7

As shown in Table 3, by operating only 9 routes, the planned DAT at JFK with the routes8
generated by MCR exact algorithm may serve 36.8% of the passengers from taxis and FHVs. And9
the service rate may reach 45.53% and 46.41% respectively if we use the 18 and 37 candidate routes10
respectively, under the same budget constraint. On the other hand, the planned DAT with MCR11
heuristic algorithm and the heuristically generated routes have consistently worse performance as12
compared to the MCR exact approach. For all three approaches, the optimization results for 913
candidate routes yield the capital expenditure being lower than the proposed budget constraint,14
indicating the room for scheduling service for more routes. And the budget constraint is binding15
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for 18 and 37 candidate routes scenarios, with 37 routes resulting in higher objective function1
values. But there are only minor differences between the results of 18 routes and 37 routes, where2
the optimal planned DAT may serve 0.9% more passengers and achieve 2.02% higher objective3
function value under 37 candidate routes than 18 candidate routes (using MCR exact). This again4
demonstrates the quality of the MCR approach where the algorithms are able to precisely identify5
the most effective set of candidate routes for the fleet optimization problem. And there is a huge6
gap between the objective function value as well as the served number of passengers between7
heuristically generated routes and other two approaches. We therefore conclude that the type of8
route generation mechanism are not effective for hub-based DAT planning and we exclude it from9
further evaluations.10

While the set of candidate routes generated by MCR are based on the maximum potential11
of the route set, we also observe that the optimally planned DAT is able to retain majority of the12
passengers. For instance, the 9 candidate routes may cover up to 43% of total passengers and13
the planned DAT based on the 9 candidate routes eventually serve 36.84% of total passengers or14
equivalently satisfy 85.7% of the covered passengers considering their rational choice. And with15
the budget constraint, the planned DAT based on 18 candidate routes may still satisfy 68% of16
the covered passengers. These results confirm the effectiveness of our proposed DAT planning17
framework and also suggest the feasibility of the DAT as a sustainable and more eco-friendly18
mobility solution at uber transportation hubs. And we conclude that our proposed route generation19
algorithm and the fleet optimization approach are able to generate high quality DAT solutions and20
the framework may even meet the needs of real-time DAT planning at transportation hubs based21
on our MCR heuristic algorithm.22

Finally, the effectiveness of the proposed DAT planning framework can be further validated23
by the results during different time of the day. Note that the travel demand at transportation hubs24
is largely affected by the flight or train schedules and the trip needs to and from hubs at different25
time of day are therefore very different. In these experiments we consider only the case with 1826
candidate routes and the optimal planned DAT is found to have consistent performances across all27
these scenarios. The planned DAT is observed to serve the highest number of passengers during28
PM peak (reflected by the highest revenue) which suggests the trip origins and destinations to and29
from hubs during this time period are more similar. On the other hand, the late night period is30
the scenario with the lowest number of passengers and lowest percentage of passengers served.31
And this is due to the fact that the demand between the incoming and outgoing routes are more32
unbalanced than other time periods and such scenario is indeed inefficient for any type of transit33
systems. But even under this scenarios, we still find the planned DAT to serve over 42% of the total34
passengers with the MCR exact approach and this result and the performances of MCR heuristic35
are found to be close to the exact solutions.36
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TABLE 3: Results for different size of candidate routes (Daily Average)

Routes
(selected /
candidates)

Objective
function

Passenger
served
(%)

Energy
saving
($ / hour)

Revenue
($ / hour)

Operation
cost
($ / hour)

Capital
cost
($ /hour)

Diff(%)

MCR
(exact)

9 / 9 4359.30 36.84 497.8 4227.9 366.4 754.6 -
18 / 18 5329.92 45.53 602.7 5211.3 484 1000 -
25 / 37 5437.43 46.41 612.5 5311.3 486.3 1000 -

MCR
(heuristic)

9 / 9 3549.39 30.6 408.9 3502.2 361.7 670.1 19.6
18 / 18 4568.02 40.05 528.4 4583.7 544.1 1000 14.3
26 / 37 4605.53 40.34 526.7 4617.4 538.6 1000 15.3

Heuristic
9 / 9 1553.95 14.98 169.9 1670.1 286.1 716.1 64.4
18 / 18 2437.68 23.02 270.4 2634.5 467.2 991.2 54.3
34 / 37 3767.15 34.14 431.4 390.7 571.3 1000 30.7

TABLE 4: Result for different time period (MCR heuristic)

Scenario
Objective
function

Served
passengers
(%)

Energy
saving
($ / hour)

Revenue
($ / hour)

Operation
cost
($ / hour)

Capital
cost
($ / hour)

Daily Average 4568.02 40.05 528.4 4583.7 544.1 1000
AM Peak 4591.03 41.46 525.1 4597.3 531.3 1000
PM Peak 5923.28 42.96 676.8 5783.6 537.1 1000
Off Peak 5390.52 44.53 613.7 5311.0 534.1 1000
Night Period 4178.82 38.69 490.3 4210.3 521.7 1000

TABLE 5: Result for different time period (MCR exact)

Scenario
Objective
function

Served
passengers
(%)

Energy
saving
($ / hour)

Revenue
($ / hour)

Operation
cost
($ / hour)

Capital
cost
($ / hour)

Daily Average 5329.92 45.53 602.7 5211.3 484.0 1000
AM Peak 5185.30 45.84 585.2 5082.1 482.0 1000
PM Peak 6541.57 46.77 733.7 6296.4 488.5 1000
Off Peak 5778.96 47.24 649.0 5634.4 504.4 1000
Night Period 4636.11 42.26 527.5 4598.3 489.7 1000

CONCLUSION1
In this study, we present the three-stage framework for optimal planning of DAT at urban trans-2
portation hubs. The proposed framework consists of route generation, route combination, and fleet3
optimization. And we develop both efficient and effective route generation algorithms to generate4
high quality candidate route set for the fleet optimization problem. To demonstrate the perfor-5
mance of our proposed solution, we conduct comprehensive numerical experiments for planning6
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optimal DAT at JFK airport in NYC. To best capture real-world settings, we use NYC taxi and1
FHV data to calibrate the potential demand and use GoogleMap API to obtain the corresponding2
road traffic information. The results highlight the effectiveness of the proposed DAT service which3
may serve 47% of the passengers originally riding taxis and FHVs. The results also demonstrate4
the quality of the candidate routes generated by our MCR algorithm and the consistency of the5
planned DAT to reach optimal performance across different time of the day. For future studies, the6
MCR heuristic algorithm can be modified to take the spatial properties of planar graph to further7
tighten the solution obtained so that close to optimal solutions can be found more efficiently. And8
the proposed framework can be further validated in other countries and under larger numerical9
experiments with more refined zone configurations.10
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