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3 | Motivation for Metals Tribology Researct
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Estimated 150 Metric Tons ($6.9B) of Au
used in Electrical Contacts per Year:

Refs: Gold Survey, Gold Fields Mineral Survey Ltd, 2011
Gold Bulletin 2010, Vol. 43-3, C. Hagelliken and C.W. Corti,
Gold Bulletin 1986, Vol. 19-3, T.D. Cooke
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a1 Structure-Dependent Friction of (Bare) Metals

Alloying reduces friction coefficient:

1.5, 99.999% pure Au
5 ol Alloying improves
£ friction & wear
S | performance by reducing
5 05| 99.9% Au 13 i
2 05/ y and stabilizing grain size
- (add immiscible species like Ni or ZnO)
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...by reducing grain size:
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s | Realizing the Potential of AM

Long-Term Goal: Enable tools like SNL’s LENS (Laser Eng. Net Shaping)...
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Focusedlaser Hatch width
Powder feed — 1 s

. Single layer
_ thickness

Scan direction (X)

... to make “born qualified” parts (i.e., reliably high strength, ductility, etc):

Prototype
Airbus

A380
bracket

Source:
https://wwy" metal
am.com/ duttion
-to-metal-a. tive:
manufacturing-and«
3d-printing/

Source: https://www.sciaky.com/additive-manufacturing/contract-additive-manufacturing-services
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s | But Conventional Alloys (Steel) Not Optimal For AM

Laser consolidated (powder bed) 17-4 PH Steel: 99,9 elbull plots & 95% conf. bounds

R8s

________________________ A ...

i= B7 - . £

% H— el

2 &} | &1

[o] . L

ot ‘y i 1 ;

o el . B
P s i

i -
e 900 1100 1300 1500
Yield Strength, MPa
99.9 I
80
2 50
g2
Conclusion: Reduced strength AND elongation g 10
to failure (ductility) attributed to higher g :
surface roughness, porosity, and a 1]
microstructure (e.g., grain size).
0.1

i 10
Elongation, %
Ref: B. Salzbrenner, et al., J. Mat. Proc. Tech. 2017




71 Why Are We Printing High-Entropy Alloys?

High Entropy Alloys: primarily solid solution alloys that contain 5+ alloying constituents,
where microstructures have high configurational entropy (> 1.4R).
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Miracle, et al., Acta Mat., 2017
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These alloys derive much of their
strength from solution strengthening,
and are insensitive to processing

0 ety T nditions (i.e. ,
300 Temperature (K) T, conditions (i.e., thermal history)

D. Miracle et al., Entropy, 2014




s | Why Are We Printing High-Entropy Alloys?
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fracture toughness, K_(MPa-m'?)
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high/medium-entropy alloys c.cw cryogenic steels
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HEAs have properties exceeding most conventional alloys, suggesting improved resistance
to failures AM defects.

Goal: demonstrate these alloys as a materials-based solution to achieve the promise of meta)”
AM, i.e. insertion into high consequence applications. -

(George, Nature Mat Rev, 2019)




A Starting Point: Use UHV tribometer to Probe (Bare)
s | Metal

- High fidelity. capacitive displacement & flexural
cantilever based system situated on 8" CF vacuum
flange

- Two chambers: allows for fast entry transfer system
or a second tribometer

Specs

-Linear
reciprocating
motion

iso view

- Load metering (0.1
mN to 1N)

- Cryo stage (4—
800K; actual +/-
150C)

-100 to 10-° torr

-100 ym/s — 100
mm/s

-10 kHz acquisition




10

Literature Survey ... No Data for Bare Metal Properties
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(Jones et al, Sci. Reports 2020)
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Friction and Wear Testing
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UHV testing in the
absence of environment
allows us to probe
fundamental friction
behavior of Cantor HEA
sliding against a sapphire
sphere under different
loading conditions.

For a relatively soft
material, it exhibited
high wear resistance.

(Jones et al, Sci. Reports 2020)




Different Friction Behavior - TEM of Wear Track
12 1 Microstructure

Representative cross-section TEM of u = 0.32 wear track

initial grain size 1-10 pm

10 mN track showed an
average grain size below
10 nm

100 mN track showed a
slightly larger average
grain size of ~ 20 nm

low friction 10 mN wear
track surface falls within
inverse HP regime

(Jones et al, Sci. Reports 2020)



131 Lower Friction is a Result of Surface Grain Refinement

sphere-on-flat sliding contact
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I contact diameter (10s pum)

T - - e
e - L o

shear layer J

thickness
*drawn approximately to scale (100s nm)
Representative cross-section TEM of 4 = 0.32 wear track Representative cross-section TEM of 4 = 0.68 wear track

It is useful to define the friction coefficient of metals as
the ratio of interface shear strength and bulk hardness:

Bowden & Tabor: z=— 2% ,=_" von Mises O,
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14 1 Friction

Inverse Hall
-Petch

hardness (GPa)

3.0

Inverse Hall-Petch Regime (Softening) is Key to Low

from Lu et al., Science, 2009
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Fundamental mechanism of softening during sliding

remained poorly understood...



151 New Model Developed Based on Dynamic Amorphization

sphere-on-flat sliding contact

_ contact diameter (10s pm) . ¢

shear layer j
thickness

* drawn approximately to scale (100s nm)

sliding interface
(refined microstructure)

Energy barrier (or stress) for the creation of a dynamic amorphous interface,
which is analogous to generating a continuous high angle grain boundary...

atomic volume of volume fraction thermal
amorphous metal of GB to crystal energy
¢ Vo ¢
. TYd-0) (é&.. kT
Amorphization model: f(d) = [L&] 1— +| -1 |
M T;n d Eror b
t t t t
No fitting parameters! heat of homologous strain rate per atomic
fusion temperature (Oto 1) diameter"3

(Argibay & Chandross, PRL, 2020)
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Model Predictions?
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The red line is a prediction 1
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Literature Survey Revisited
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mixed metal-oxide HEASs, as
do pure metals, exhibit very
different properties than the
metal without oxidation |

under both a 10 mN and 100
mN normal load, the AM
Cantor HEA exhibited high
wear resistance

(Jones et al, Sci. Reports 2020)



18 | AM+ Tribology — Rapid Materials Discovery (Synthesis
and Characterization)

Challenging to Make Easy to Make
(Inconsistent because of defects) (Ideal for Tribological Testing)
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Mg | —The contact of thee stylus s assumed o produce a semi-cinoular progected area when viewed rom the Lop.
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AM+ Tribology — Rapid Materials Discovery
19 I (Synthesis and Characterization)

Enhanced solid solution effects on the strength of nanocrystalline alloys

' STRAIN HARDENING OF SINGLE ALUMINUM

Limothy J, Kupen,
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High-Throughput Scratch Testing for Rapid Material
20 | Characterization

strain rate
(1/s)

spheroconical
diamond stylus

hardness
(GPa)

strain rate sensitivity
exponent,

activation
= volume
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length




Characterization Possible Even with ‘Bad’ AM
21 1 Specimens
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AM Cantor HEA Revisited — Temperature and Strain Rate
Dependent Hardness
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m a(m) V @mm’) V'? mm) (V) (nm’)
CoCrFeMnN1-70C 0.070 0.004 0.158 0.541 0.013
CoCrFeMnNi125C 0.045 0.005 0.293 0.664 0.035
CoCrFeMnN1200C 0.035 0.003 0.458 0.771 0.025




23 1 Summary

- Low friction and wear of metal sliding contacts can be
achieved by mitigating thermomechanically-driven
microstructural evolution (e.g., grain growth).

- Fundamental investigations of metal contacts led to the
development of a simple model that can be used to guide
alloy design — prediction of ultimate strength based on
materials properties like heat of fusion.

- Evidence that high entropy alloys (HEAs) may be an ideal
alloy system for additive manufacturing of tribological and
structural components.

- Able to rapidly elucidate hardness, strain rate
dependence, fracture toughness, etc. from scratch testing
AM specimens.

Questions?



