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Introduction

e Motivation

® Uncertainty quantification for high resolution numerical
models.

® fine mesh resolution
® many random parameters/variables

® Objective
® Develop scalable (numerical and parallel) algorithms to
quantify uncertainty in large-scale computational models.

® Methodology

® Exploit non-overlapping domain decomposition methods in
conjunction with an intrusive polynomial chaos approach.
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Uncertainty Quantification Framework

Step 1
Case Selection

Characterization
Probabilistic Model > :
Stochastic PDE ofi lir:(g;t:Emty

Step 2
Simulation

Large-Scale Linear

SSFEM Discretization

FEM/PCE System Solver

DDM

Step 3
Analysis

Data Assimilation
Sensitivity Analysis

Response Statistics

PCE coefficients
mean/variance PCKF/GSA

DA
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Bayesian Estimation using Nonlinear Filtering
® Model Equation

uii1 = ¥y (ug, fr,q,) — — Forecast Step
® Measurement Equation
dyi = hy (ug, €)

—— Assimilation Step
Sensors
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Domain Decomposition Method for Stochastic PDFEs

® Spatial decomposition

3 A0 ) (8- (1)

® Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDFEs

’;5
Al

T ans
RosAry,i
1
fi
f’.ls

!
ns
Tes
Z R fr
s=1

1
A/r,iRl 1
Unj
: N i
A”S R > _wi(0) :
Ir,i™Ns < n.
ns ’ Jj=0 u’s
T ps i
D> R;ArRs ur j
s=1

We(0)), k=0,...,N.

Vi (6))



FENICS
00000

Domain Decomposition Method for Stochastic PDFEs
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Block Sparsity Structure
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Extended Interface Problem
® The Extended Schur Complement System

SUr = gr.

S = ZRST[AH — A3 (A7) T AR

s=1

® Develop parallel iterative algorithms.
® Formulate scalable preconditioners.
® Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.




Two-Level Domain Decomposition Methods for SPDEs

M= "M T[SE I HE + MY (S Ho,
s=1

® Condition Number Bound of Deterministic System
® One-level preconditioner

(M™1S) < Ci(l +lo ﬂ)2
" = e €h
® Two-level preconditioner
H 2
K(M™LS) < C(1+ log =)
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Two-Level Domain Decomposition Methods for SPDEs

® Ppartitioning the interface nodes into remaining (M) and corner(®) nodes




Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs

M= HETISE T HE + HY (S Ho,
s=1
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a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.
Investigated numerical and parallel scalabilities:
Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A.,, CMAME, 2013

Desai, A., Khalil, M., Pettit, C., Poirel, D. and Sarkar, A., CMAME 2017
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Implementational Framework
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Problem Setup for Numerical Experiments

® Model Problem:

—V - (ci(x,0) Vu(x,0)) = F(x), QxW,
u(x,0) = 0, 0Q X W,
e Diffusion coefficient c¢; modelled as a lognormal process with

the underlying a Gaussian process having mean p, variance o
and exponential covariance function C (on a 2D domain).

2

C(X]-’yl' X2’y2) — 0-2 e_|X2_X1‘/b1_|y2_yl‘/b27
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Block-Sparsity Structures

Fixed mesh

resolution N ~ 150, P, = 3 with L =3 and L = 5.

N
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Errors Analysis of PCE Coefficients of Solution Process:
Intrusive Vs Non-Intrusive
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Scalability against Stochastic Dimensions:

Intrusive vs Non-Intrusive (Sparse Grid)
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Fixed mesh resolution (52704 nodes and 105410 elements) and
third order PCE for intrusive. Smolyak sparse grid with / = 3 and
| = 4 for non-intrusive.
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Scalability against Number of Random Variables: NNC/BDDC

Number of iterations
o
[

1
1
1
1
1
1
1
1
1

48 246 704 1520
Number of cores (subdomains)

Fixed mesh resolution (52704 nodes and 105410 elements), fixed
problem size per subdomain (= 60,000) and third order PCE
(linear system of order max. ~ 93 million)
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Scalability against Number of Random Variables: NNC/BDDC
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Fixed mesh (52704 nodes and 105410 elements), fixed problem
size per subdomain (= 60,000) and third order PCE
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Parallel Scalability (Strong): NNC/BDDC'
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Fixed global problem, mesh with (52704 nodes and 105410
elements) and number of PCE terms P, = 1771.
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Scalability using Large-Scale HPC' Cluster
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For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (P, = 56).
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Scalability using Large-Scale HPC' Cluster
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For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (P, = 56).
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Probabilistic Coarse Grid in Three Dimensions:

Extended Wirebasket Grid

(-) - the global interface edge, (®) - vertices (*) - interface-edges
and (e) - interface-faces.



Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based
Methods
Ref. Book by Smith, Bjorstad and Gropp, 2004
For the vertex-based method in two dimensions
k< C(1+log(H/h))?,
For the vertex-based method in three dimensions

K < C(H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

r < C(1+ log(H/h))>.



Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid
Fww Uw = dw,
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Numerical Ezperiments: Wirebasket based BDDC/NNC' solver
e Diffusion equation

—V - (ci(x,0) Vu(x,0)) = F(x), QxW,
u(x, 0) 0, 0 x W,

e Diffusion coefficient ¢4 - lognormal process having underlying
a Gaussian process with exponential covariance C

Clxasy1, 215 %0, y2, 22) = 07 e~ Peal/belemnl/bymlz=al/b:
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Characteristics of the Solution Process:

Diffusion Equation

u
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Y,

Mean and standard deviation.
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Characteristics of the Solution Process
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Selected PCE coefficients.



Numerical Exzperiments: Wirebasket based BDDC/NNC' solver for PDE System

® Linear Elasticity

Stress tensor o
o (U(x,0)) = A(V - U(x,0)) ] + 2ue(U(x,0)),

E E 4
where \ = m and pu = i) are Lamé constants.

® Young's modulus E - lognormal stochastic process (as before).
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Characteristics of the Solution Process:

i U Magnitude

Y2 29e-07 01 1.96-01
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Characteristics of the Solution Process:

Linear FElasticity

x,y and z components of the mean and standard deviation.
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Characteristics of the Solution Process:

Linear FElasticity

L aspiacement X | displocement ¥ | dspiocement 2
: oot 0 e 2 60003 0002 25006 ; B%01 0 8304

x,y and z components of the selected PCE coefficients.
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Number of iterations

15 . . . .
—%— wirebasket coarse grid
—G- vertex coarse grid
10+
=0
=== o7
5f = ——— % —— — — — H—————— =
0 . . . .
160 240 320 400

Number of cores (subdomains)

Diffusion



FENICS
00000

Number of iterations
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Advantages of FEniCS Based Solver

Implementational Efficiency

® Easy to implement stochastic aspects for a wide variety of
PDEs (e.g. Poisson, Elasticity etc)

® Enables seamless integration with preprocessing and
post-processing modules

Reduced Memory and Time Consumption

Domain Decomposition framework with parallel subdomain level
assembly in FEniCS using MPI
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SSFEM Solver
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® Polynomial Chaos expansion
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Implementational framework of SSFEM solver
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DD Framework using FEniCS

Deterministic and stochastic submatrices
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DD Framework using FEniCS

® Polynomial Chaos expansion
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