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Introduction

• Motivation
• Uncertainty quantification for high resolution numerical

models.
• fine mesh resolution
• many random parameters/variables

• Objective
• Develop scalable (numerical and parallel) algorithms to

quantify uncertainty in large-scale computational models.

• Methodology
• Exploit non-overlapping domain decomposition methods in

conjunction with an intrusive polynomial chaos approach.



fenics

Uncertainty Quantification Framework
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Bayesian Estimation using Nonlinear Filtering

• Model Equation

uk+1 = ψk (uk , fk ,qk) −− Forecast Step

• Measurement Equation

dk = hk (uk , εk) −− Assimilation Step

Sensors
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Domain Decomposition Method for Stochastic PDEs

• Spatial decomposition[
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Domain Decomposition Method for Stochastic PDEs
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Domain Decomposition Method for Stochastic PDEs
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Sarkar, A. Benabbou, N. and Ghanem, R., IJNME, 2009.
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Block Sparsity Structure

L = 3 and pu = 4, 5.

pu = 3 and L = 4, 5.
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Extended Interface Problem

• The Extended Schur Complement System

SUΓ = GΓ .

S =
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• Develop parallel iterative algorithms.
• Formulate scalable preconditioners.
• Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.



fenics

Two-Level Domain Decomposition Methods for SPDEs
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• Condition Number Bound of Deterministic System
• One-level preconditioner
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Two-Level Domain Decomposition Methods for SPDEs

• Partitioning the interface nodes into remaining (�) and corner(•) nodes
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Probabilistic Balancing Domain Decomposition with Constraints   
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs
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a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.

Investigated numerical and parallel scalabilities:
Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A., CMAME, 2013

Desai, A., Khalil, M., Pettit, C., Poirel, D. and Sarkar, A., CMAME 2017
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Implementational Framework
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Problem Setup for Numerical Experiments

• Model Problem:

−∇ ·
(
cd(x, θ) ∇u(x, θ)

)
= F (x), Ω×W,

u(x, θ) = 0, δΩ×W,

• Diffusion coefficient cd modelled as a lognormal process with
the underlying a Gaussian process having mean µ, variance σ2

and exponential covariance function C (on a 2D domain).

C (x1, y1; x2, y2) = σ2 e−|x2−x1|/b1−|y2−y1|/b2 ,
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Block-Sparsity Structures

Fixed mesh resolution N ≈ 150, Pu = 3 with L = 3 and L = 5.
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Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive

3 4 5
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coarse mesh (N ≈ 150)
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Scalability against Stochastic Dimensions:

Intrusive vs Non-Intrusive (Sparse Grid)

Fixed mesh resolution (52704 nodes and 105410 elements) and
third order PCE for intrusive. Smolyak sparse grid with l = 3 and
l = 4 for non-intrusive.
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Scalability against Number of Random Variables: NNC/BDDC

Fixed mesh resolution (52704 nodes and 105410 elements), fixed
problem size per subdomain (≈ 60,000) and third order PCE
(linear system of order max. ≈ 93 million)
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Scalability against Number of Random Variables: NNC/BDDC

48 246 704 1520

Number of subdomains (cores)

400

600

800

1000

 E
x
e

c
u

ti
o

n
 t

im
e

 (
s

)

(56 PCE)

(286 PCE)

(816 PCE)

5 RVs

15 RVs

(1771 PCE)

20 RVs

10 RVs

Fixed mesh (52704 nodes and 105410 elements), fixed problem
size per subdomain (≈ 60,000) and third order PCE
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Parallel Scalability (Strong): NNC/BDDC
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Fixed global problem, mesh with (52704 nodes and 105410
elements) and number of PCE terms Pu = 1771.
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Scalability using Large-Scale HPC Cluster

For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (Pu = 56).
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Scalability using Large-Scale HPC Cluster

For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (Pu = 56).
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Probabilistic Coarse Grid in Three Dimensions:

Extended Wirebasket Grid

(-) - the global interface edge, (•) - vertices (?) - interface-edges
and (•) - interface-faces.
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Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based

Methods

Ref. Book by Smith, Bjorstad and Gropp, 2004

For the vertex-based method in two dimensions

κ ≤ C (1 + log(H/h))2,

For the vertex-based method in three dimensions

κ ≤ C (H/h)(1 + log(H/h)).

For the wirebasket-based methods in three dimensions

κ ≤ C (1 + log(H/h))2.
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Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid

FWW UW = dW ,

FWW =
ns∑
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Modified BDDC/NNC Preconditioner:
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Numerical Experiments: Wirebasket based BDDC/NNC solver

• Diffusion equation

−∇ ·
(
cd(x, θ) ∇u(x, θ)

)
= F (x), Ω×W,

u(x, θ) = 0, δΩ×W,

• Diffusion coefficient cd - lognormal process having underlying
a Gaussian process with exponential covariance C

C (x1, y1, z1; x2, y2, z2) = σ2e−|x2−x1|/bx−|y2−y1|/by−|z2−z1|/bz .
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Characteristics of the Solution Process:

Diffusion Equation

Mean and standard deviation.
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Characteristics of the Solution Process

Selected PCE coefficients.
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Numerical Experiments: Wirebasket based BDDC/NNC solver for PDE System

• Linear Elasticity

−∇ · σ
(
U(x, θ)

)
= F (x) in D,

σ
(
U(x, θ)

)
· n̂ = bT on Γ1 = δD\Γ0,

U(x, θ) = 0 on Γ0.

Stress tensor σ:

σ
(
U(x, θ)

)
= λ

(
∇ · U(x, θ)

)
I + 2µε

(
U(x, θ)

)
,

where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are Lamé constants.

• Young’s modulus E - lognormal stochastic process (as before).
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Characteristics of the Solution Process:

Linear Elasticity

Mean magnitude of the beam deflection subjected to self-weight.
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Characteristics of the Solution Process:

Linear Elasticity

x , y and z components of the mean and standard deviation.
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Characteristics of the Solution Process:

Linear Elasticity

x , y and z components of the selected PCE coefficients.
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Diffusion
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Elasticity
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Advantages of FEniCS Based Solver

Implementational Efficiency

• Easy to implement stochastic aspects for a wide variety of
PDEs (e.g. Poisson, Elasticity etc)

• Enables seamless integration with preprocessing and
post-processing modules

Reduced Memory and Time Consumption

Domain Decomposition framework with parallel subdomain level
assembly in FEniCS using MPI
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SSFEM Solver

Implementational framework of SSFEM solver
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DD Framework using FEniCS

Deterministic and stochastic submatrices
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DD Framework using FEniCS

Deterministic and stochastic submatrices



fenics

Acknowledgment

• Financial contributions
• Natural Sciences and Engineering Research Council of

Canada
• Canada Research Chair Program
• Canada Foundation of Innovation
• Ontario Innovation Trust


	fenics

