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ABSTRACT 
 
Machine Learning (ML) has seen an exponential growth in its applications due to its advanced data-
driven prediction capabilities. The study presents a data-driven approach as a preliminary attempt to 
predict the power at which departure from nucleate boiling (DNB) occurs in pressurized water reactors 
(PWRs) by constructing an advanced ML algorithm that takes outlet pressure, inlet temperature and inlet 
mass flux as the input features. DNB is a critical heat flux (CHF) phenomenon seen in PWRs. The 
experimental data from the PWR subchannel and bundle tests (PSBT) benchmark is first used to train an 
artificial neural network (ANN) to predict the DNB power, which produces a root mean square error 
(RMSE) of 6.89 kW/m when tested on a blind subset of the PSBT data. Since the PSBT dataset is 
relatively small to train an accurate ANN, a data augmentation methodology based on generative 
adversarial networks (GANs) is used to expand the training dataset. By assuming that the real data 
follows a certain distribution, GANs try to learn that underlying distribution to generate similar synthetic 
data to augment the database and to improve the predictive capabilities of the ANN. The data generated 
from GANs are validated using 1-nearest neighbor and kernel maximum mean discrepancy. To further 
ensure data from GAN is similar to PSBT, the data is tested and filtered out using the sub-channel 
thermal-hydraulic code CTF. The results indicate that with the addition of 120 data points from GAN the 
RMSE reduces to 4.84 kW/m showing promising results for future developments. 
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1. INTRODUCTION 
 
Departure from nucleate boiling (DNB), a phenomenon corresponding to critical heat flux (CHF) 
conditions seen at subcooled and low-quality flow boiling is a major limiting factor in the design and 
operation of PWRs [1]. This phenomenon is encountered in a variety of two-phase flow boiling systems 
like high-power microprocessor cooling, refrigeration industry, medical technology fields and nuclear 
power plants [2]. DNB is said to occur when there is a sharp deterioration of the heat transfer at the 



heater/coolant interface due to the formation of a stable vapor film that blankets the heated surface and 
prevents flow of liquid to the surface leading to a potentially catastrophic escalation of the heater 
temperature [3]. The paper first aims to predict the power at which DNB occurs in a computationally 
inexpensive way. 
 
With recent advances in computational capabilities and optimization techniques, the methods based on 
ML provide an alternative approach to existing data-driven domain knowledge-based tools [4]. These 
tools are extremely useful in engineering fields where the physical phenomenon in consideration (DNB) 
is complex. Within this category, an artificial neural network (ANN), also called feed forward neural 
network, multi-layer perceptron, or deep neural network when there are multiple hidden layers, is a very 
promising choice as it has been shown to serve as a universal approximator of any nonlinear relations [5] 
[6]. This paper focuses on the utilization of ANN to predict the linear power at which DNB occurs. The 
input features are outlet pressure (bar), inlet temperature (ºC) and mass flux (kg/m2hr), and the output 
feature is the linear power (kW/m) at which DNB occurs. Different architectures of the ANN are studied 
to find the optimal number of hidden neurons, hidden layers and the most efficient training algorithm. 
 
The dataset used to train and test the ANN is taken from test series 2, assembly A2 from phase II (DNB 
benchmark) of the PSBT benchmark which consists of 76 data points [7]. A dataset consisting of only 76 
data points is considered very small. Therefore, it is challenging to train an accurate ML model with such 
a small dataset, especially for an ANN, whose number of parameters (weights and bias) increase quickly 
with the number of layers and neurons per layer. To alleviate the data scarcity issue, the main focus of this 
paper lies in augmenting the dataset with deep generative modeling, more specifically, the generative 
adversarial networks (GANs). GANs have received wide attention for their potential in the field of ML to 
learn high-dimensional, complex real data distributions [8]. GANs are first trained using data from the 
PSBT benchmark, then they are used to generate synthetic data which “behaves” very close to the real 
measurement data. Thus, each data point from GAN consists of outlet pressure, inlet temperature, inlet 
mass flux and the linear power at which DNB occurs. To validate the data generated by GAN metrics like 
the leave-one-out accuracy corresponding to 1-nearest neighbor, and the kernel maximum mean 
discrepancy are used. Both these metrics test how similar the generated data from GAN is to the PSBT 
data. To further ensure the similarity between the GAN data and the PSBT data; an additional method is 
applied that utilizes the advanced thermal hydraulic code CTF [9]. To do this, PSBT data is first simulated 
on CTF and the power values at which DNB occurs as predicted by CTF are compared to the power 
values in the PSBT data. The range of errors between these power values are then used as an acceptable 
range to validate artificially generated data from GAN.  Data generated by the GAN are simulated on 
CTF and the power values predicted by CTF are compared to the power values of data from GAN. Only 
those data points from GAN are then chosen whose error in power lies within the aforementioned 
acceptable range. This paper mainly focuses on the utilization of GANs to augment the training database 
for the ANN to improve its predictive capabilities. Thus, this paper presents the ability of GANs to 
augment database not only for image generation but also to augment data in the field of nuclear 
engineering. 
 
2. PSBT DATA 
 
This paper utilizes data the test series 2 of the PSBT benchmark to train an ANN and a GAN. The DNB 
measurements of the PSBT database for test series 2 were performed for full-length partial 5×5 array rod 
bundles which simulate 17×17 PWR fuel assemblies. Thermocouples attached to the inner surface of the 
heater rods were used to detect the power at which DNB occurs. The bundle power, which is axially 
uniform for test series 2, is gradually increased by small steps of 0.328 kW/m at the vicinity of DNB 
power, which is based on preliminary analysis. The occurrence of DNB is confirmed by a rod temperature 
rise of more than 11ºC (20ºF) as measured by the thermocouples. The DNB power is then defined as the 
power corresponding to the step just before the step where the temperature increased [7]. To focus on data 



belonging to a particular geometry and a particular radial power distribution, data is only taken from the 
steady state test series A2 which consists of 76 data points. 
 
3. GENERATIVE ADVERSARIAL NETWORK (GAN) 
 
GAN is a machine learning algorithm designed to solve the generative modeling problem [10]. The role 
of a generative model is to learn the probability distribution of data by studying a collection of training 
examples [10]. Generative models have become highly important and popular recently because of their 
capability to represent complex and high dimensional data as well as their applicability in various fields 
like image and music generation, medical images, security and various other academic domains [8]. 
GANs model high-dimensional distributions of data by training a pair of neural networks that compete 
with each other, i.e., the generator and the discriminator.  
 
GANs were proposed [11] in which a generative model is pitted against an adversary: a discriminative 
model that has to learn to determine whether a sample is from a model distribution or from a data 
distribution. The generative model/generator can be thought of as an art forger whose job is to produce 
fake art that looks extremely real and to sell it without being caught/detected. The discriminator can then 
be thought of as an art judge whose job is to figure out which art is real and which art is fake. Thus, the 
generator will do its best to fool the discriminator by making “fake” data look a lot like “real” data; while 
the discriminator will do its best to distinguish accurately between the “fake” and “real” data. The 
generator as such has no access to real images and can thereby only learn by interacting with the 
discriminator [12]. The discriminator, however, has access to both the synthetic samples (fake art) as well 
as samples drawn from real data (real art). The error signal to the discriminator is provided by simply 
knowing the truth of whether the art was real or was forged by the generator, which ultimately leads the 
generator to produce better quality of forgeries [12]. This competition drives the generator and 
discriminator to improve their methods until the fake artwork is indistinguishable from the real artwork. 
This adversarial learning occurs between the generator and discriminator which are both ANNs [10]. The 
generator aims to generate artificial data as close as possible to the real data (with a distribution denoted 
by 𝑝𝑝𝑟𝑟), while the discriminator aims to distinguish between the artificial and real data. To learn the 
generator’s distribution 𝑝𝑝𝑔𝑔  over data 𝑥𝑥, a prior distribution (normal distribution) 𝑝𝑝𝑧𝑧 is defined on input 
noise variables 𝑧𝑧. The prior is the initial distribution for the generator before the beginning of training that 
is taken from an input noise distribution denoted by 𝑝𝑝𝑧𝑧(𝑧𝑧). The mapping to data space for the generator is 
then defined as 𝐺𝐺(𝑧𝑧; 𝜃𝜃𝑔𝑔), where 𝐺𝐺 is a differentiable function represented by an ANN with parameters 𝜃𝜃𝑔𝑔 
[13] (the parameters are the weights and biases that build the ANN). The discriminator denoted by the 
ANN 𝐷𝐷(𝑥𝑥; 𝜃𝜃𝑑𝑑), outputs a single scalar. 𝐷𝐷(𝑥𝑥) represents the probability that 𝑥𝑥 came from the data rather 
than 𝑝𝑝𝑔𝑔 [14]. The discriminator is trained to maximize the probability of assigning the correct label to 
both training examples and samples from the generator while simultaneously training the generator to 
minimize log (1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)�). In other words, the discriminator and generator play the two-player 
minimax game shown in Equation 1 below with value function denoted by 𝑉𝑉(𝐺𝐺,𝐷𝐷). This implies that the 
discriminator wants to successfully be able to distinguish between real data and data that is created by the 
generator while the generator wants to successfully fool the discriminator by generating fake data that is 
as similar as possible to the real data.  
 

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑉𝑉(𝐷𝐷,𝐺𝐺) =  𝔼𝔼𝑥𝑥~𝑝𝑝𝑟𝑟(𝑥𝑥)[log𝐷𝐷(𝑥𝑥)] + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))]                (1) 
 
The architectures of the discriminator and generator are varied until an optimal structure is obtained. This 
is done by using two validation metrics: leave-one-out (LOO) accuracy corresponding to 1-nearest 
neighbor (1NN) and the kernel maximum mean discrepancy (KMMD) which are both explained in the 
sections below. Both 1NN and KMMD are good metrics to evaluate GANs in terms of discriminability, 
robustness and efficiency [14].  



 
3.1. 1-Nearest Neighbor (1NN) Classifier 
 
1NN classifiers are one of the most commonly used metrics and are an ideal metric for evaluating GANs 
[15]. They contain advantages seen in other metrics like inception score, mode score etc. along with 
having its own advantage of giving an output score in the interval of [0,1], similar to the accuracy/error in 
classification problems.  
 
1NN classifiers belong to the two-test family for which a binary classifier is applied. Given two sets of 
samples denoted by R and G, where R represents real data and G represents data generated by the GAN, 
with |R|=|G|, the LOO accuracy is computed of a 1NN classifier trained on R and G with positive labels 
for actual data and negative labels for generated data [14]. A commonly used cross validation method is 
the k-fold cross validation where the data is split into k subsets, and k-1 sets are used for training while 
the remaining is used as a validation test case [14]. LOO cross validation is a special case of k-fold cross 
validation where k is equal to the number of observations.  
 
While evaluating the GAN, the optimal LOO accuracy should be very close to 0.5, which signifies that 
the distributions of the generator and actual data match. An accuracy of 0.5 implies that the discriminator 
is no longer able to differentiate between the actual data and the data from the generator. When the LOO 
accuracy is less than 0.5, it implies that the GAN is overfitting to the actual data. If the generator has 
managed to memorize every single data point from the real data, the LOO accuracy would be 0.0. Higher 
values of LOO accuracy (close to 1.0) imply that the generated data distribution is completely different to 
the real data distribution.  
 
3.2. Kernel Maximum Mean Discrepancy (KMMD) 
 
KMMD is a commonly used criterion for model selection by computing the distance between two 
distributions. KMMD is a method to calculate the distance between embeddings of empirical distributions 
that are in a reproducing kernel Hilbert space [13]. The KMMD is a metric on the space of probability 
distributions that uses characteristic kernel to ensure that the distribution embeddings are unique for each 
probability measure [14]. In a GAN, the KMMD computes the distance of the generated dataset to the 
reference real dataset. KMMD is defined [14] as shown in Equation 2 below.  
 

𝑀𝑀𝑀𝑀𝑀𝑀2�𝑝𝑝𝑟𝑟,𝑝𝑝𝑔𝑔� =  𝔼𝔼𝑥𝑥𝑟𝑟,𝑥𝑥𝑟𝑟′~𝑝𝑝𝑟𝑟; 𝑥𝑥𝑔𝑔,𝑥𝑥𝑔𝑔′ ~𝑝𝑝𝑔𝑔[𝑘𝑘(𝑥𝑥𝑟𝑟, 𝑥𝑥𝑟𝑟′) − 2𝑘𝑘�𝑥𝑥𝑟𝑟, 𝑥𝑥𝑔𝑔� +  �𝑥𝑥𝑔𝑔, 𝑥𝑥𝑔𝑔′ �]               (2) 
 
This metric measures the similarity between 𝑝𝑝𝑟𝑟 (real distribution) and 𝑝𝑝𝑔𝑔(parametrized distribution) for 
some fixed kernel function 𝑘𝑘 that maps for real data denoted by 𝑥𝑥𝑟𝑟 and generated data denoted by 𝑥𝑥𝑔𝑔. 
Given two sets of samples from ℙ𝑟𝑟 and ℙ𝑔𝑔, the empirical KMMD between the two distributions is 
computed with finite sample approximation of the expectation [15]. Lower the value of KMMD implies 
that ℙ𝑟𝑟 and ℙ𝑔𝑔 are closer to one another.   
 
KMMD has proven to be a reliable metric to evaluate and validate GANs. KMMDs have low sample 
complexity and low computational complexity and are able to successfully identify generative data from 
real data [15]. It is also seen that KMMD can be used in other applications that involve evaluating the 
hypothesis about network architectures, expected likelihood and prediction accuracy [13]. Thus, this 
paper uses KMMD (with gaussian kernels) as a tool to evaluate and compare the similarity between PSBT 
data distribution and GAN generated data distribution.  
 
4. CTF 
 



CTF is an advanced thermal hydraulic code and is an improved version of COBRA-TF (Coolant-Boiling 
in Rod Arrays-Two Fluids) [9]. CTF is a thermal hydraulic simulation code designed for light water 
reactor (LWR) vessel analysis. It is currently managed by the Reactor Dynamics and Fuel Management 
Group (RDFMG) at North Carolina State University. CTF can be used for thermal hydraulic rod bundle 
analysis and for safety analysis of LWRs, as well as to model transients like loss of coolant accident in 
PWRs. This code uses a two fluid, three field modeling approach in which the three fields are fluid film, 
fluid drops and vapor. Each field has a set of conservation equations with the assumption that the liquid 
and droplet fields are in thermal equilibrium and thereby share an energy equation. 
 
The artificially generated data from the GAN is run on CTF with the same geometry and radial power 
distribution as that of A2 test series of the PSBT database. CTF is modified so as to stay in accordance 
with the method of power prediction done in PSBT. To understand the acceptable error is CTF, PSBT data 
is run on CTF wherein only the inlet mass flux, inlet temperature and outlet pressure are varied based on 
each data point. The output power from CTF when an 11ºC temperature rise is observed is compared to 
the power of the PSBT data point. The error percentage ranges are computed. This range behaves as a 
cap/filter for the GAN data. The power predicted by CTF is then compared with the value of power in the 
GAN data by computing the error percentage. Only those data points are then accepted that have error 
percentages that are comparable to the error percentages when PSBT data was run on CTF. To do this, 
two steps are implemented using CTF which are as follows:  
 
• The first step consists of simulating the PSBT test cases with CTF using the exact geometry and test 

conditions of A2 test series. In CTF, the inlet mass flux, inlet temperature and outlet pressure from the 
PSBT data are used as boundary conditions. To stay consistent with the way DNB power was 
measured, the CTF simulations are performed as follows. The bundle linear power is increased in 
small steps of 0.328 kW/m (identical to the process in the PSBT benchmark), with steady state being 
achieved after every increment. The temperatures at every axial node are saved at every power. Once 
a steady state is achieved after an increment in power, the temperatures at every axial node are 
compared with the temperature at every axial node in the previous time step. If a temperature rise of 
greater than or equal to 11ºC is observed, the simulation stops and the power at the previous step is 
noted down. This power is then compared with the power from PSBT data and the error in 
percentages is documented. The range of errors for the 76 PSBT data points from then acts as a 
filtering criterion for the GAN generated data.  

• The second step consists of running the data generated from GAN, after evaluation using the 1NN 
and KMMD metrics. All of the GAN data is simulated on CTF using the values of the inlet mass flux, 
inlet temperature and outlet pressure from the GAN data. The power values are computed via CTF 
simulation by using the same methodology as the first step. This power from CTF is then compared 
with the power values of the GAN data. The errors of each data point are then computed and only 
those data are chosen whose error lies between the error ranges of the PSBT data (as computed in the 
first step).  

 
5. ARTIFICIAL NEURAL NETWORKS (ANN) 
 
Different types of ANNs have been applied to a variety of disciplines, including those related to applied 
thermal engineering: from solar radiation [16] and wind speed [17] to forecasting pressure drops in heat 
exchangers [18], along with a substantial increase in nuclear engineering applications [4], due to their 
ability to serve as a universal approximator of non-linear relations in the category of supervised learning.  
The main advantages of ANNs compared to other expert systems are their speed, simplicity and ability of 
modeling a multivariate problem to solve complex relationships between the variables and can extract the 
non-linear relationships by means of training data [19] [20]. ANNs have the ability to overcome the 
limitations of conventional approaches without the usage of specific analytical equations by extracting the 
required information using training data [21].  



 
ANNs operate as black box model that try to restore the learning mechanism by trying to mirror the brain 
functions in a computerized way [21] [22]. ANNs have various capabilities like generalization, 
convergence, learning and error-toleration with structure of the high-speed parallel processing [21] [22]. 
ANNs learn relationship between input and output through training data. ANNs consist of elementary 
processing devices called neurons that are used to build layers of non-linear informational processing 
devices [21] . Each neuron is multiplied by a connection weight and the products along with the biases are 
transformed through a transfer function (non-linear function) to generate the final output. The ANN is 
trained using the back-propagation algorithm along with Adam gradient descent [23].  
 
6. RESULTS  
 
This section of the paper presents the results achieved. The first set of results corresponds to GAN 
evaluation and validation using the 1NN and KMMD metrics. The next set presents the error percentages 
of the PSBT data simulated with CTF to get an understanding of the acceptable range of error in the code 
predictions. The final set corresponds to the ANN algorithm that predicts the power at which DNB occurs 
with just PSBT data, followed by results with data from PSBT and GAN.  
 
6.1 GAN Validation Results with 1NN and KMMD 
 
To get an idea of what the optimal architecture of the GAN should be, color maps which are also called as 
heat maps are generated to get an apprehension of the number of hidden neurons needed. The heat maps 
for 1NN and KMMD, shown in Fig. 1 below are when the generator and discriminator have one hidden 
layer each and the number of neurons in both are varied in the x axis (generator) and y axis 
(discriminator). Fig.2 shows the color maps for 1NN and KMMD when the generator has one hidden 
layer with 10 neurons (fixed) and the number of neurons in the first (y axis) and second hidden layer (x 
axis) of the discriminator are varied.  
 
 

 
Figure 1. KMMD and 1NN Heat Maps for different number of neurons in one hidden layer of the 

Discriminator and Generator 
 
 



 
 

Figure 2. KMMD and 1NN Heat Maps for different number of neurons in the first and second 
hidden layer of the Discriminator  

 
 
After further evaluation using the heat maps shown in Fig. 1 and Fig. 2, it is seen that a GAN with 10 
neurons in the single hidden layer of the generator and 50 and 40 neurons in two hidden layers of the 
discriminator respectively resulted in a 1NN value of 0.546 (close to the optimal value of 0.5) and a 
KMMD of 0.1206 (among the lowest compared to KMMD for other architectures). Each hidden layer of 
both the discriminator and generator have a drop out of 0.3 and the training is run for 2000 epochs and a 
batch size of 19. Epoch denotes the number of times an algorithm goes through the entire training set. The 
graphs shown in Fig. 3: (a) and (b) represent the generator and discriminator loss over 2000 epochs 
respectively.  
 
 

                                                    
(a)                                                                   (b) 

Figure 3. (a) Discriminator loss over every epoch, (b) Generator loss over every epoch 
 
 
As seen in Fig 3. (a), the discriminator loss reaches a value of around 0.5 which is the optimal [24]. This 
is because a value of 0.5 for discriminator loss implies that the discriminator is no longer able to 
distinguish between real and generated data. It can also be seen in Fig 3. (b), over 2000 epochs the 
generator loss increases and then stabilizes over a value around 1.0 which is a commonly seen in GANs 
as this implies that the data from the generator was similar to the real data and thereby was successfully 
able to fool the discriminator [25].  



 
6.2 CTF Results 
 
CTF is used to further validate the data generated by the GAN. The data from GAN is simulated using 
only the outlet pressure, inlet temperature and inlet mass flux values from the data are implemented in the 
CTF simulation. The power output from CTF is then compared with the power value from the GAN data 
and the error in percentage is computed. Only those data points from GAN are taken that fall within a 
certain range of errors. Thus, to compute this range of acceptable error percentage in DNB power, PSBT 
test cases are simulated with CTF. The graph shown in Fig. 4 depicts the error in percentages of each of 
the 76 data points of PSBT that were run on CTF.  
 
 

 
Figure 4. Error percentage in DNB power of PSBT data run on CTF 

 
 
From the graph, it can be seen that the acceptable values in error percentage in power should lie between -
40.86% and 15.2%. It is seen that high values of errors were found in cases with high temperature. It 
should also be noted that CTF was unable to simulate data points with low pressure values (<50 bar). The 
error values also arise due to the fact that CTF checks temperature at every axial node location in the rod 
as opposed to the PSBT data where the temperature is only measured at a set number of axial locations 
where the thermocouples were placed.  
 
Thus, to further validate and evaluate data from GAN; the generated data is simulated with CTF and the 
error in power are compared between the power predicted by CTF and the power data from GAN. The 
percentage error in power for randomly chosen 63 data points generated from GAN that are simulated on 
CTF is shown in Fig. 5.  
 
 



 
Figure 5. Error percentage in DNB power of GAN data run on CTF 

 
 
Only those data, for which the error falls within the PSBT measurement error (as shown in the graph 
above using the two dotted horizontal lines), are accepted to augment the database. The graph above gives 
an example of how GAN data points are filtered out and only those data points are chosen that lie 
between the dotted horizontal lines shown in the graph. Out of 500 data points generated by the GAN, 
only 300 data points were accepted who had acceptable errors as discussed above.  
 
6.3 ML Regression for DNB Power Prediction 
 
An ANN is built using the MLP Regressor in scikit-learn [26]. The ANN has two hidden layers of 50 
neurons each and uses the Adam optimizer with tanh activation function. The total number of epochs is 
set to 500 with a learning rate of 0.005. The hyperparameters for the ANN were chosen through trial and 
error. 
 
To test the predictive accuracies of the ANN, a constant set of data from PSBT is reserved irrespective of 
what the training data comprises of. This is done to have a fixed set of data that can be used to check the 
optimal requirement of additional data from GAN. Fig 5. compares the mean absolute error (MAE) and 
root mean square error (RMSE) computed on the fixed 17 data points from PSBT. The plot shows the 
variance in the errors when the training set is varied by increasing the number of data points from GAN. 
With every addition of 40 data points, the hyperparameters of the ANN and the optimal set of 
hyperparameters are chosen through trial and error. The beginning of the graph indicates no data points 
from GAN have been included in the training.  
 
 



 
Figure 6. MAE and RMSE errors on PSBT test data with addition of GAN data points in the 

training dataset 
 
 
It can be seen from the results shown above that the error values reduced with the addition of more data 
points from the GAN up to 120 data points from GAN. After 120 data points the errors kept increasing. 
This could be due to a large amount of GAN data present in training which could result in the ANN 
overfitting on the training set.  
To test the applicability of GAN data on different test cases, different sets of arbitrary 17 data points were 
chosen to test the error reduction after adding GAN data to the training. It was seen that even after 
choosing different test sets of PSBT data, with the addition of data from GAN the error always reduced by 
20-30%.  
To further evaluate the performance of the ANN after the addition of GAN data, training and testing is 
done over 50 shuffles of randomly chosen data from PSBT and GAN. The training data consists of 
randomly chosen 75% of PSBT data plus randomly chosen 75% of “X” GAN data, where “X” represents 
the number of GAN data points chosen and is varied from 0 to 200. Similarly, the test dataset consists of 
the remaining 25% of PSBT data and 25% of “X” GAN data. For each value of “X”, 50 randomly chosen 
datasets from both PSBT and GAN are used and the values of MAE, RMSE and R2 are averaged over the 
50 shuffles. The graphs shown in Fig. 7. below show the (a) MAE and RMSE and (b) R2 score with and 
without hyperparameter tuning of the ANN.  
 
 

  
(a)                                                                               (b) 

Figure 7. (a) MAE and RMSE with and without hyperparameter tuning (b) R2 with and without 
hyperparameter tuning 



 
 
It can be seen from the graphs in Fig. 7. that MAE and RMSE values decrease only slightly without 
hyperparameter tuning and remain almost constant while R2 score decreases slightly. However, with 
hyperparameter tuning the MAE and RMSE decrease significantly and the R2 score increases 
significantly. A second similar test as above is conducted where the test data comprises only of PSBT 
data. The training data is 75% of randomly chosen PSBT data plus “X” GAN data where “X” here is 
number of additional GAN data points as a percentage of total PSBT training data points. This “X” ranges 
from 0 to 300%. Each value of MAE, RMSE and R2 score computed is averaged over 50 shuffles of 
randomly chosen PSBT and GAN data. Graphs in Fig. 8. show the (a) MAE and RMSE and (b) R2 score 
averaged over 50 shuffles and are computed with and without hyperparameter tuning. 
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Figure 8. (a) MAE and RMSE with and without hyperparameter tuning (b) R2 with and without 
hyperparameter tuning 

 
 
It can be seen from the graphs in Fig. 8. that the MAE, RMSE and R2 score improve significantly more 
with the addition of GAN data up to around 75% on the x-axis. This shows that adding GAN data whose 
size is up to 75% of the original training data size helps in the improvement in the predictive accuracies of 
the ANN. Adding more than 75% decreases the predictive accuracy of the ANN which can be a  
consequence of overfitting. Hence, it can be seen that using GAN to augment the database for the ANN to 
predict the power at which DNB occurs improves the predictive accuracy of the ANN.  
 
7. CONCLUSIONS  
 
This paper presents a preliminary attempt to develop an ANN to predict the power at which DNB occurs 
without relying on modeling limitations that are present in subchannel codes. Recently GANs have found 
a major augmentation in its uses from image generation, medical images, music etcetera but has seen only 
limited applications in data augmentation for regression purposes. Thus, this paper successfully 
demonstrates the abilities of GANs to augment a database by mimicking the PSBT data distribution. This 
paper looks into two metrics to validate and evaluate the GAN: 1NN and KMMD. It is seen that generator 
architecture with 10 neurons in the hidden layer and a discriminator architecture with 50 and 40 neurons 
in its two hidden layers resulted in the lowest value of KMMD around 0.12 and a 1NN LOO accuracy 
very close to 0.5.  
This paper also confirms that with the help of augmented data from GAN, the ANN was able to improve 
its predictive accuracy by overcoming the dearth of data present in test series A2 of PSBT. This is seen by 
computing the MAE and RMSE. With the addition of augmented data from GAN, the MSE and RMSE 



errors computed on a fixed dataset from GAN reduced from 5.16 kW/m and 7.54 kW/m to 3.97 kW/m 
and 4.84 kW/m respectively.  
Future work entails enlarging the database by adding more experimental data and in turn generating more 
data from the GAN. Future work will also focus on building a more generalized ML algorithm that can 
predict the power at which DNB occurs for various geometries and test cases.  
 
ACKNOWLEDGEMENTS 
 
This work has been supported by the Office of Nuclear Energy of US Department of Energy.  
 
REFERENCES 
 
[1]  E. Demarly, A New Approachh to Predicting Departure from Nucleate Boiling (DNB) from Direct 

Representation of Boiling Heat Transfer Physics, Massachusetts Institute of Technology, Department 
of Nuclear Science and Engineering, 2020.  

[2]  M. Bruder, G. Bloch and T. Sattelmayer, "Critical Heat Flux in Flow Boiling-review of the current 
understanding and experimental approaches," Heat Transfer Engineering, vol. 38, pp. 347-360, 
2017.  

[3]  Y. A. Çengel, Heat and Mass Transfer, India: Mc Graw Hill, 2019.  
[4]  X. Zhao, K. Shirvan, R. K. Salko and F. Guo, "On the Prediction of Critical Heat Flux using a 

Physics-Informed Machine Learning-Aided Framework," Applied Thermal Engineering, vol. 164, 
no. 114540, 2020.  

[5]  H. Kurt, M. Stinchcombe and H. White, "Multilayer Feedforward Networks are Universal 
Approximators," Neural Networks, vol. 2, no. no. 5, pp. 359-366, 1989.  

[6]  T. Poggio and F. Girosi, "Networks for Approximation and Learning," vol. 78, 1990.  
[7]  A. Rubim, A. Schoedel, M. Avramova, H. Utsuno, S. Bajorek and A. Velazquez-Lozada, 

"OECD/NRC Benchmark Based on NUPEC PWR Sub-Channel and Bundle Test (PSBT) Volume 1: 
Experimental Database and Final Problem Specifications," Nuclear Energy Agency of the OECD 
(NEA), 2012.  

[8]  Y. Hong, U. Hwang, J. Yoo and S. Yoon, "How Generative Adversarial Networks and their Variants 
Work: An Overview," ACM Computing Surveys, vol. 52, pp. 1-43, 2019.  

[9]  R. Salko , M. Avramova, A. Wysocki, A. Toptan, J. Hu, N. Porter, T. Blyth, C. Dances, A. Gomez, 
C. Jernigan, J. Kelly and A. Abarca, CTF Theory Manual, U.S. Department of Energy, 2020.  

[10]  I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. 
Bengio, "Generative Adversarial Networks," Communications of the ACM, vol. 63, pp. 139-144, 
2020.  

[11]  I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. 
Bengio, "Generative Adversarial Nets," Advances in Neural Information Processing Systems, vol. 
27, 2014.  

[12]  A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta and A. A. Bharath, "Generative 
Adversarial Networks: An Overview," IEEE Signal Processing Magazine, 2018.  

[13]  W. Bounliphone, E. Belilovsky, M. B. Blaschko, I. Antonoglou and A. Gretton, "A Test of Relative 
Similarity for Model Selection in Generative Models," 2016.  

[14]  J. Cheng, J. C. Dekkers and R. L. Fernando, "Cross-Validation of Best Linear Unbiased Predictions 
of Breeding Values using an Efficient Leave-One-Out Strategy," J Anim Breed Genet, pp. 519-527, 
2021.  

[15]  Q. Xu, G. Huang, C. Guo, Y. Sun, F. Wu and K. Weinberger, "An Empirical Study on the Evaluation 



Metrics of Generative Adversarial Networks," 2018.  
[16]  B. Amrouche and X. LePivert, "Artificial Neural Network Based Daily Forecasting for Global Solar 

Radiation," Applied Energy, vol. 130, pp. 333-341, 2014.  
[17]  A. P. Marugán, F. P. Márquez, J. M. P. Perez and D. Ruiz-Hernández, "A survey of Artificial NEural 

Networks in Wind Energy Systems," Applied Energy, vol. 228, pp. 1822-1836, 2018.  
[18]  A. Khosravi, J. G. Pabon, R. N. Koury and L. Machado, "Using Machine Learning Algorithms to 

Predict the Pressure Drop during Evaporation of R470C," Applied Energy, vol. 133, pp. 361-370, 
2018.  

[19]  S. A. Kalogriou, "Artificial Intelligence for the Modeling and Control of Combustion Processes: A 
Review," Progress in Energy and Combustion Science, vol. 29, no. no. 6, pp. 515-566, 2003.  

[20]  A. Mellit and S. A. Kalogirou, "Artificial Intellgence Techniques for Photovoltaic Applications: A 
Review," Progress in Energy and Combustion Science, vol. 34, no. no. 5, pp. 574-632, 2008.  

[21]  M. Mohanraj, S. Javaraj and C. Muraleedharan, "Applications of Artificial Neural Networks for 
Refrigeration, Air-Conditioning and Heat Pump systems-A REview," Renewable and Sustainable 
Energy Reviews, vol. 16, no. no. 2, pp. 1340-1358, 2012.  

[22]  O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. Mohamed and H. Arshad, "State-of-the-Art 
in Artificial Neural Network Applications: A Survey," Heliyon, vol. 4, no. no. 11, 2018.  

[23]  D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," ICLR, 2015.  
[24]  J. Kim, K. Jeong, H. Choi and K. Seo, "GAN-based Anomaly Detection in Imbalance Problems," 

Springer International Publishing , 2020.  
[25]  J. Brownlee, "How to Identify and Diagnose GAN Failure Modes," 2019.  
[26]  F. Pedregosa, "Sciki-learn:Machine Learning in Python," JMLR, vol. 12, pp. 2825-2830, 2011.  
 
 

 


